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1 Introduction

The efficient numerical computation of problems in fluid mechanics exhibiting boundary
layer or corner singularity phenomena requires properly designed meshes. It is well-known
(see, e.g., [8, 14] and the references therein) that exponential convergence for corner singu-
larities can be obtained by the use of increasing polynomial degree and of meshes which are
geometrically refined towards the corners. Recently, refinement strategies using irregular
meshes with hanging nodes became very attractive (see, e.g., [2, 3, 11]). On the other
hand, anisotropic meshes with cells of extremely high aspect ratio are very well suited for
the resolution of boundary layers (see, e.g., [15, 17]).
As it is well-known, stability of mixed hp-FEM discretizations for viscous incompressible
fluid flow is guaranteed as long as a discrete inf-sup condition is satisfied by the velocity and
pressure spaces. For many pairs of velocity and pressure spaces this inf-sup condition has
been established (see [18, 5, 7] and the references there for h-version FEM and [4, 19, 20, 16]
and the references there for p-version/spectral FEM). Nevertheless, almost all the presently
available techniques for establishing divergence stability seem to require the regularity of
the meshes in some sense (see [3] for some results on anisotropic meshes). This precludes,
of course, anisotropic and irregular meshes as described above. Recently, some attention
has been turned to this issue and it has been proved by Becker and Rannacher [2, 3] that a
certain nonconforming low order element is indeed stable independent of the element aspect
ratio on axiparallel meshes. In [13] we proved stability for hp-elements independent of the
aspect ratio on anisotropic mesh patches.
In this paper the earlier work [13] is extended and we present a family of conforming hp ve-
locity and pressure spaces which is divergence stable on a quite general class of anisotropic,
possibly irregular meshes. We allow geometric mesh patches with hanging nodes as well as
anisotropic refinements. In order to resolve both, boundary layers and corner singularities,
we prove the divergence stability of hp-FEM on tensor products of geometrically refined
meshes. First, the discrete inf-sup condition for low order elements with hanging nodes is
proved with an inf-sup constant depending only on the geometrical grading factor. To do
this, we introduce an interpolant of Clément type on geometric meshes with hanging nodes
which is of independent interest. Second, with the aid of a macro-element technique cor-
responding stability results for hp-FEM are obtained. Also, the dependence of the inf-sup
constant on the polynomial degree k is given explicitly, that is we show that the inf-sup
constant is bounded from below by Ck− 1

2 if the mesh contains no triangles and by Ck−3

otherwise. Numerical estimates of inf-sup constants indicate the sharpness of our results
and the dependence on the geometrical grading factor σ.
The outline of the paper is as follows: In Section 2 we formulate the Stokes problem and
define the meshes and spaces to be analyzed. In Section 3 our main result is given and
a numerical example is considered. In Section 4 we establish stability results on reference
meshes which implies by a macro-element technique our main result.
The usual notation is used in this paper: For a polygonal domain D ⊆ lR

2 or an interval
D = (a, b) we denote by Hk(D) the Sobolev spaces of integer orders k ≥ 0 equipped with
the usual norms ‖·‖k,D and seminorms |·|k,D, H0(D) = L2(D), H1

0 (D) = {u ∈ H1(D) :
trace(u) = 0 on ∂D}, L2

0(D) = {p ∈ L2(D) : (p, 1)D = 0} where (·, ·)D denotes the L2(D)
inner product. For s ≥ 0 nonintegral, the Sobolev spaces Hs(D) with norm ‖·‖s,D are
defined as usually via the K-method of interpolation (see, e.g., [23] or [10]). The set of all
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polynomials of total degree ≤ k on D ⊆ lR
2 is denoted by Pk(D), the set of all polynomials

of degree ≤ k in each variable by Qk(D). If I is an interval we define Pk(I) as the set of
polynomials on I of degree ≤ k. In the following we denote by C generic constants not
necessarily identical at different places but always independent of the meshwidths and the
polynomial degrees.

2 Problem Formulation

2.1 Stokes Problem

In a bounded, polygonal domain Ω ⊂ lR
2 we consider the Stokes boundary value problem

for incompressible fluid flow: Find a velocity field #u and a pressure p such that

−ν∆#u+∇p = #f in Ω, (1)

∇ · #u = 0 in Ω, (2)

#u = 0 on ∂Ω. (3)

Here, ν > 0 is the kinematic viscosity which is related to the Reynolds number Re of the
flow by ν = 1/Re. The right hand side #f is a given body force per unit mass. The usual
mixed formulation of (1)-(3) is the following:
Find #u ∈ H1

0 (Ω)
2 and p ∈ L2

0(Ω) such that

ν (∇#u,∇#v)Ω − (p,∇ · #v)Ω =
(
#f,#v

)

Ω
, (4)

(q,∇ · #u)Ω = 0 (5)

for all (#v, q) ∈ H1
0 (Ω)

2 × L2
0(Ω).

It is well-known (see, e.g., [7, 14]) that for #f ∈ L2(Ω)2 there exists a unique weak solution
(#u, p) of (4)-(5) due to the continuous inf-sup condition

inf
0"=p∈L2

0
(Ω)

sup
0"=!v∈H1

0
(Ω)2

(∇ · #v, p)Ω
|#v|1,Ω ‖p‖0,Ω

≥ C(Ω) > 0. (6)

A conforming FE-discretization of (4)-(5) is obtained in the usual way: Given finite dimen-
sional subspaces #VN ⊆ H1

0 (Ω)
2 andMN ⊆ L2

0(Ω), find (#uN , pN) ∈ #VN×MN such that (4)-(5)
holds for any (#v, q) ∈ #VN × MN . A family {#VN × MN}N is γ(N)-stable, if the following
discrete inf-sup condition holds

inf
0"=p∈MN

sup
0"=!v∈!VN

(∇ · #v, p)Ω
|#v|1,Ω ‖p‖0,Ω

≥ γ(N) > 0. (7)

If γ(N) in (7) does not depend on N , we say that the family {#VN ×MN}N is stable. If a
family is γ(N)-stable the discrete problem has a unique solution (#uN , pN) in #VN ×MN and
the rate of convergence of the FE approximations {(#uN , pN)}N of (#u, p) is determined by

that of the best approximations of (#u, p) in
{
#VN ×MN

}

N
, i.e. we have the error estimates

[5, 14]

‖#u− #uN‖1,Ω ≤ Cγ−1(N) inf
!v∈!VN

‖#u− #v‖1,Ω + Cν−1 inf
q∈MN

‖p− q‖0,Ω , (8)

‖p− pN‖0,Ω ≤ Cνγ−2(N) inf
!v∈!VN

‖#u− #v‖1,Ω + Cγ−1(N) inf
q∈MN

‖p− q‖0,Ω (9)
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with C = C(Ω) independent of N and ν.

2.2 Finite Element Spaces

We define the velocity-pressure space pairs #VN ×MN to be analyzed below.

2.2.1 Preliminaries

A mesh T on a bounded polygonal domain Ω ⊂ lR
2 is a partition of Ω into disjoint and

open quadrilateral and/or triangular elements {K} such that Ω = ∪K∈T K. The mesh T is
called regular if for any two elements K,K ′ ∈ T the intersection K ∩K ′ is either empty, a
single vertex or an entire side. Otherwise, the mesh T contains hanging nodes and is called
irregular. We denote by hK the diameter of the element K and by ρK the diameter of the
largest circle inscribed into K. The meshwidth h of T is given by h = maxK∈T hK . The
fraction σK := hK

ρK
is the aspect ratio of the cell K. A (regular or irregular) mesh T is called

κ-uniform if there exists κ > 0 such that

max
K∈T

σK ≤ κ < ∞. (10)

T is called an affine mesh if each K ∈ T is affine equivalent to a reference element K̂ which
is either the reference triangle T̂ = {(x, y) : 0 < x < 1, 0 < y < x} or the reference square
Q̂ = (0, 1)2, i.e. K = FK(K̂) with FK affine.

2.2.2 Reference meshes

Our hp-FEM will be based on certain two-level families of meshes: a macroscopic κ-uniform
mesh denoted Tm which will be locally refined either towards corners or towards the bound-
ary. To this end we introduce now some meshes on the reference elements Q̂ and T̂ (which
are the reference elements for Tm). Most of these reference meshes are irregular or contain
anisotropic elements.

Definition 2.1 Let n ∈ lN0 and σ ∈ (0, 1). On Q̂, the (irregular) geometric mesh ∆n,σ with
n + 1 layers and grading factor σ is created recursively as follows: If n = 0, ∆0,σ = {Q̂}.
Given ∆n,σ for n ≥ 0, ∆n+1,σ is generated by subdividing that square K ∈ ∆n,σ with 0 ∈ K
into four smaller rectangles by dividing the sides of K in a σ : (1− σ) ratio.
The (regular) geometric mesh ∆̃n,σ is obtained from ∆n,σ by removing the hanging nodes as
indicated in Figure 2.1.

In Figure 2.1 the geometric mesh is shown for n = 3 and σ = 0.5. Clearly, ∆n,σ is an
irregular affine mesh, it contains hanging nodes. The elements of the geometric mesh ∆n,σ

are numbered as in Figure 2.1, i.e.

∆n,σ = {Ω11} ∪ {Ωij : 1 ≤ i ≤ 3, 2 ≤ j ≤ n+ 1} . (11)

The elements Ω1j , Ω2j and Ω3j constitute the layer j.

Definition 2.2 Let Tx be an arbitrary mesh on I = (0, 1), given by a partition of I into
subintervals {Kx}. On Q̂, the boundary layer mesh ∆Tx is the product mesh

∆Tx = {K : K = Kx × I,Kx ∈ Tx} .

3



Figure 2.2 shows a typical boundary layer mesh. We emphasize that any Tx is allowed. In
particular, rectangles of arbitrary high aspect ratio can be used such that boundary layer
meshes are not κ-uniform.

Definition 2.3 Let n ∈ lN0 and σ ∈ (0, 1). On I = (0, 1), let Tn,σ be the one dimensional
geometric mesh refined towards 0 given by a partition of I into subintervals {Ij}n+1

j=1 where

Ij = (xj−1, xj) with x0 = 0 and xj = σn+1−j, j = 1, . . . , n+ 1.

On Q̂, the geometric tensor product mesh ∆2
n,σ is then given by Tn,σ ⊗ Tn,σ, i.e.

∆2
n,σ = {Ij × Ik : Ij ∈ Tn,σ, Ik ∈ Tn,σ} .

The tensor product mesh ∆2
n,σ contains anisotropic rectangles with arbitrary large aspect

ratio (see Figure 2.2). For the proof of the inf-sup conditions ahead, it is important that
∆2

n,σ can be understood as the geometric mesh∆n,σ into which appropriately scaled versions
of boundary layer meshes ∆Tx are inserted to remove the hanging nodes. A geometric tensor
product mesh is shown in Figure 2.2 with n = 5 and σ = 0.5. The underlying geometric
mesh ∆n,σ is indicated by bold lines.

Remark 2.4 The geometric meshes ∆n,σ, ∆̃n,σ and the tensor product mesh ∆2
n,σ can also

be defined on the reference triangle T̂ . This is shown in Figure 2.3. On the reference square
Q̂ we can even admit mixtures of geometric tensor product meshes and geometric meshes
as illustrated in Figure 2.4. Of course, other combinations are imaginable.

2.2.3 Geometric boundary layer meshes

Definition 2.5 Consider a (coarse) κ-uniform affine mesh Tm on a bounded polygonal
domain Ω ⊂ lR

2. An affine mesh T on Ω is called geometric boundary layer mesh with
macro-element mesh Tm if T is obtained from Tm in the following way: Some elements
K ∈ Tm are further partitioned into FK(T̂ ) where T̂ is any of the possibly irregular affine
reference meshes on K̂ as introduced in the previous subsection (Definitions 2.1, 2.2, 2.3
and Remark 2.4) and FK is the affine mapping between K̂ and K.

The elements of Tm are called macro-elements. If no macro-element in Tm is further refined
the notion “geometric boundary layer mesh” reduces to the already introduced notion of
“κ-uniform affine meshes” (such meshes can of course also contain geometric refinements
but they are not allowed to have anisotropic elements). Also the notion of “macro-elements”
becomes in that case unnecessary. “Geometric boundary layer meshes” are a very general
class of possibly highly irregular and anisotropic meshes. We will show below that they are
well suited for the effective resolution of boundary layer and corner singularity phenomena,
i.e. the hp-FEM based on such meshes can resolve boundary layers and corner singularities
at an exponential rate. Typically, mesh-patches from Tm near the boundary of the domain
are partitioned anisotropically using ∆Tx-meshes to approximate boundary layers. Patches
near corners are geometrically refined towards the corners with the meshes ∆n,σ or ∆2

n,σ.
This takes into account boundary layers as well as the singular behaviour of the solution
near a corner. In the interior of the domain a simple κ-uniform mesh can be used. Some
examples of geometric boundary layer meshes are shown in Figures 2.5 and 2.6.
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Remark 2.6 Of course, other reference meshes are imaginable for the further local refine-
ment in the macro-elements. As long as these reference meshes are divergence stable (cf.
the macro-element technique in Proposition 4.11) they can be added to the “family of local
refinement strategies”. Further, we remark that no restriction on the regularity of the mesh
between two adjacent macro-elements is imposed (even if one demands the macro-element
mesh to be regular). For example, a mesh as in Figure 2.7 is admissible.

2.2.4 hp-FEM spaces

We introduce the hp-FEM spaces to be investigated later on. Therefore, let T be an affine
mesh on Ω. With each element K ∈ T we associate a polynomial degree kK . All degrees
are combined into a degree vector

k = {kK : K ∈ T } (12)

and we put |k| = max {kK : K ∈ T }.
We define the velocity and pressure spaces

Sk,1(Ω, T ) :=

{

u ∈ H1(Ω) : u|K ◦ FK ∈
{

QkK (Q̂) if K is a quadrilateral
PkK (T̂ ) if K is a triangle

∀K ∈ T
}

(13)
and

Sk,0(Ω, T ) :=

{

p ∈ L2(Ω) : p|K ◦ FK ∈
{

QkK (Q̂) if K is a quadrilateral
PkK (T̂ ) if K is a triangle

∀K ∈ T
}

.

(14)
Implementationally, some care is required to ensure interelement continuity in (13) if kK is
variable. In some elements the external (or side) modes in the polynomial spaces must be
reduced whereas the internal (or bubble) modes are of full degree kK . This can be achieved
by introducing edge-degrees as in [14].
We set further

Sk,1
0 (Ω, T ) = Sk,1(Ω, T ) ∩H1

0 (Ω), Sk,0
0 (Ω, T ) = Sk,0(Ω, T ) ∩ L2

0(Ω).

If the polynomial degree is constant throughout the mesh T (i.e. kK = k ∀K ∈ T ), we use
the shorthand notations Sk,1(Ω, T ) and Sk,0(Ω, T ).

3 Main result

3.1 Stability

In this section our main result on the divergence stability of Sk,1(Ω, T )2 × Sk−2,0(Ω, T ) on
a geometric boundary layer mesh T with underlying macro-element mesh Tm is stated. Let
K ∈ Tm be a macro-element and TK the restriction of T to K. We allow general polynomial
degree distributions k as in (12) on T which satisfy

(i) If TK = FK(∆Tx) then k is constant on TK .
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(ii) If TK = FK(∆) where the reference mesh ∆ on K̂ contains anisotropic elements
and has an underlying geometric mesh ∆n,σ (e.g. ∆ = ∆2

n,σ) then k is constant on
FK(∆n,σ).

Theorem 3.1 Let T be a geometric boundary layer mesh on a bounded polygonal domain
Ω ⊂ lR

2 such that the underlying macro-element mesh Tm is regular and κ-uniform for
κ > 0. Assume that all the geometric refinements in T are obtained with a fixed grading
factor σ ∈ (0, 1). Let k be a polynomial degree distribution on T which satisfies (i) and (ii)
above and let |k| = max {kK : K ∈ T }. Then there exists a constant C > 0 (depending only
on κ, σ and Ω) such that the spaces

#VN = Sk,1
0 (Ω, T )2, MN = Sk−2,0

0 (Ω, T ) (15)

satisfy the inf-sup condition (7) with γ(N) ≥ C |k|−α where α = 1
2 if T does not contain

triangles and α = 3 otherwise.

We will prove this theorem in Section 4 using a macro-element technique (cf. Proposition
4.11 ahead). The main difficulty is to establish local stability results on the reference
meshes.

Remark 3.2 Although a geometric boundary layer mesh T may contain anisotropic mesh-
patches, the inf-sup constant in Theorem 3.1 is independent of the element aspect-ratio in
such a patch.

Remark 3.3 We could also allow for different geometric grading factors σ in the geomet-
rically refined patches. As long as σ is bounded away from 1 and 0 Theorem 3.1 still holds.
This is for example satisfied if only finitely many macro-elements are refined geometrically.
More general families of reference meshes are of course admissible for the local refinement
of the macro-elements, provided they are patchwise divergence stable as will be explained
in Section 4.

Remark 3.4 In particular, Theorem 3.1 states divergence stability on κ-uniform regular
meshes consisting of affine triangles and quadrilaterals, which is already well-known (cf.
[16] for the hp-version).

Remark 3.5 The inf-sup constant in Theorem 3.1 depends on the geometric grading factor
σ. The following numerical example indicates that one can not expect to remove this
dependence. We calculated inf-sup constants for [Q2]

2 × Q0 elements (that is piecewise
quadratic velocities and piecewise constant pressure) on the basic geometric mesh ∆1,σ

which consists (with the numbering in (11)) of the four quadrilaterals

Ω11 = (0, σ)× (0, σ), Ω22 = (σ, 1)× (0, σ),

Ω12 = (σ, 1)× (σ, 1), Ω32 = (0, σ)× (σ, 1).

In Figure 3.8 the inf-sup constants are plotted for σ ∈ (0, 1). The inf-sup constants C(σ)
deteriorate as σ approaches σ = 0 or σ = 1. The graph indicates clearly that one can not
bound the inf-sup constant uniformly in σ ∈ (0, 1) although the boundary layer meshes ∆Tx

are stable independently of the aspect ratio [13]. In that sense we expect our results to be

sharp. Figure 3.8 suggests in fact that C(σ) ≥ K
√
σ(1− σ) with K ≈ 1.4 independent of

σ ∈ (0, 1).
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3.2 Consistency

With the geometric tensor product meshes near corners one wants to approximate boundary
layers and corner singularities at an exponential rate. They arise for example in solutions
of the full, incompressible Navier-Stokes equations near walls with no-slip boundary con-
ditions. The precise asymptotic structure of such solution components is not available in
general (see [21, 22] where boundary layers appearing at large Reynolds number in Oseen
type equations in a two dimensional channel are studied). Therefore, we consider here
only a very simple model situation and emphasize that the subsequent arguments are in-
tended only as an illustration that solution components which typically arise in viscous,
incompressible flow mandate the meshes considered here and can be approximated at an
exponential rate. Our stability analysis does not deal, however, with advective effects which
arise for example in the Oseen approximation of the Navier-Stokes equations. Here an ad-
ditional stabilization of the scheme may be necessary at small ν. We consider only the
approximation of one component of the velocity field, similar statements hold also for the
pressure [12].
Let ∆2

n,σ be the tensor product mesh on the unit square Q̂ geometrically refined towards

the origin (cf. Definition 2.3 and Figure 2.2). We assume that the solution u ∈ H1(Q̂)
consists of two exponential boundary layers and one corner singularity component, i.e. u is
of the form

u(x, y) = uc(x, y) + ub1(x, y) + ub2(x, y) (16)

= uc(x, y) + C1(y) exp(−x/d) + C2(x) exp(−y/d).

Here, C1 and C2 are analytic functions on [0, 1] and d =
√
ν = 1/

√
Re ∈ (0, 1] is a small

parameter related to the Reynolds number Re that can approach zero. uc(x, y) is a corner
singularity function independent of d which we assume to belong to the countably normed
space

uc ∈ B2
β(Q̂). (17)

We refer to [1, 9] for the exact definition of these spaces. In polar coordinates (r,ϕ) near
the origin the function uc is typically of the form uc = rαΦ(ϕ) for some α ∈ (0, 1) and
some analytical function Φ(ϕ). In such a case, (17) is satisfied. If the number n of layers is
related linearly to the polynomial degree k, i.e. k = [Cn] for some C > 0, we have on the
underlying geometric mesh ∆n,σ with hanging nodes the following approximation property
(see [8, 14]):

inf
v∈Sk,1(Q̂,∆n,σ)

‖uc − v‖1,Q̂ ≤ K exp(−bk) (18)

where K and b are independent of k and d. Since ∆2
n,σ is finer than ∆n,σ, (18) holds also

for Sk,1(Q̂,∆2
n,σ).

In [13] we investigated with the aid of [15] the approximation properties for an exponential
boundary layer function ub of the above form on a boundary layer mesh ∆Tn,σ where Tn,σ

is the one dimensional geometric mesh as in Definition 2.3. If the grading factor σ and the
number n of layers is such that σn ≤ Cd for some C > 0 then

inf
v∈Sk,1(Q̂,∆Tn,σ )

(
‖ub − v‖0,Q̂ + d |ub − v|1,Q̂

)
≤ K exp(−bk) (19)

7



for K and b independent of k and d. Since the mesh ∆Tn,σ is also contained in ∆2
n,σ, (19)

remains valid for Sk,1(Q̂,∆2
n,σ). From an approximation point of view, the mimimal mesh

that resolves boundary layers robustly as in (19) is the two-element mesh of [15] where the
smaller element near the boundary has width O(kd). From (18) and (19) we conclude with
the triangle inequality that the spaces Sk,1(Q̂,∆2

n,σ) can approximate functions u of the
form (16) at an exponential rate.

Proposition 3.6 Let u be of the specific form (16). Let the polynomial degree k be related
linearly to the number n of layers and let n be such that σn ≤ Cd for some C > 0. Then

inf
v∈Sk,1(Q̂,∆2

n,σ)

(
‖u− v‖0,Q̂ + d |u− v|1,Q̂

)
≤ K exp(−bN

1
3 ) (20)

where K, b > 0 are independent of N = dim(Sk,1(Q̂,∆2
n,σ)) and d.

Remark 3.7 We point out that the a-priori estimates (8), (9) are not uniform in ν >
0. Nevertheless, the dependence on ν is algebraic, so that the convergence estimate (20)
indicates that the ν-dependence in (8) and (9) can be compensated at a modest number of
degrees of freedom in the hp-FEM, at least for laminar flows.

4 Proof of the stability result

This section is devoted to the proof of Theorem 3.1. The proof will proceed in analogy to
the definition of geometric boundary layer meshes. First we present local stability results,
then we give in Section 4.2 a general stability result for some low order elements on the
irregular reference mesh ∆n,σ which is of independent interest. These results are finally
“glued” together with the aid of a macro-element technique presented in Section 4.3 in
order to obtain the proof of Theorem 3.1.

4.1 Local stability results

For the stability proof, we recapitulate some results on the stability of spectral elements on
the reference square and triangle.

Theorem 4.1 Let K̂ = Q̂ and k ≥ 2. Then there exists a constant C > 0 independent of
k such that

inf
0"=p∈MN

sup
0"=!v∈!VN

(∇ · #v, p)Q̂
|#v|1,Q̂ ‖p‖0,Q̂

≥ Ck− 1
2 (21)

where #VN = Qk(Q̂)2 ∩H1
0(Q̂)2, MN = Qk−2(Q̂) ∩ L2

0(Q̂).
If K̂ = T̂ and k ≥ 2 then there holds

inf
0"=p∈MN

sup
0"=!v∈!VN

(∇ · #v, p)T̂
|#v|1,T̂ ‖p‖0,T̂

≥ Ck−3 (22)

with C independent of k, #VN = Pk(T̂ )2 ∩H1
0 (T̂ )

2 and MN = Pk−2(T̂ ) ∩ L2
0(T̂ ).

(21) is proved in [19] and (22) in [16].
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Remark 4.2 While (21) is known to be optimal, (22) is likely suboptimal.

Remark 4.3 As in [16], Theorem 4.1 and the macro-element technique ahead (cf. Propo-
sition 4.11) imply immediately Theorem 3.1 on κ-uniform regular meshes of affine elements.

Divergence stability on boundary layer patches (as shown in Figure 2.2) is established in
[13]:

Theorem 4.4 Let T = ∆Tx be a boundary layer mesh as in Definition 2.2. Then there
exists a constant C > 0 independent of Tx and k ≥ 2 such that the spaces

#VN = Sk,1
0 (Ω,∆Tx)

2, MN = Sk−2,0
0 (Ω,∆Tx)

satisfy the inf-sup condition (7) with γ(N) ≥ Ck− 1
2 .

This is proved in [13].

4.2 Stability of some low order elements on geometric meshes

with hanging nodes

In this subsection we establish divergence stability of low order elements on the irregular
geometric meshes ∆n,σ.

4.2.1 A Clément type interpolant on ∆n,σ

We first present a result which is of independent interest, namely a Clément type interpolant
I : H1

0 (Q̂) → S1,1
0 (Q̂,∆n,σ) on geometric meshes with hanging nodes. We remark that such

irregular meshes are frequently generated by adaptive FE codes and our interpolant I allows
to derive residual a-posteriori error estimates along the lines of [24]. This will be elaborated
elsewhere. The degrees of freedom of the FE-space S1,1

0 (Q̂,∆n,σ) are given by the nodes
{Ni}Mi=1 shown in Figure 4.9. Let {ϕi}Mi=1 be the usual Lagrange basis functions for these
nodes, i.e. ϕi ∈ S1,1

0 (Q̂,∆n,σ), |ϕi| ≤ 1 and ϕi(Nj) = δij . The support of ϕi consists of the
layers i and i+ 1 (cf. Figure 4.9). We define an interpolant Iu by

I : H1
0 (Q̂) → S1,1

0 (Q̂,∆n,σ), Iu =
M∑

i=1

αiϕi

where

αi =

∫
supp(ϕi) udx

area(supp(ϕi))
.

The next proposition states that I is essentially an interpolant of Clément type. Let

E(∆n,σ) = {e : e edge of K, K ∈ ∆n,σ}

be the set of all edges of elements in ∆n,σ. The length of the edge e is denoted by he.
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Proposition 4.5 There exists a constant C > 0 just depending on the grading factor σ
such that

∑

K∈∆n,σ

1

h2
K

‖u− Iu‖20,K +
∑

K∈∆n,σ

|u− Iu|21,K +
∑

e∈E(∆n,σ)

h−1
e ‖u− Iu‖20,e ≤ C |u|21,Q̂ .

In particular, ‖Iu‖21,Q̂ ≤ C |u|21,Q̂.

Define
Ωi = supp(ϕi), di = diam(supp(ϕi)).

Ωi is affine equivalent to a reference support Ω̂ which is either an L-shaped patch as in
Figure 4.9 or a square. As usual, the following scaling property holds

∣∣∣f̂
∣∣∣
k,Ω̂

∼ dk−1
i |f |k,Ωi

, k = 0, 1. (23)

Here, we use f 4→ f̂ for the pullback operators which are defined on functions via composi-
tion with the affine mappings Ω̂ → Ωi. Now, write ui = u|Ωi

and fix an element K ∈ ∆n,σ.
Let

JK = {i : K ⊆ Ωi} .

Clearly, the cardinality of JK is bounded by a constant C independently of K. Further,
there exist constants C1 and C2 just depending on σ such that

C2 ≤
di
hK

≤ C1 ∀i ∈ JK . (24)

Now, since |ϕi| ≤ 1 and |JK | ≤ C

1

h2
K

‖u− Iu‖20,K =
1

h2
K

∥∥∥∥∥∥
u−

∑

i∈JK

uiϕi +
∑

i∈JK

uiϕi −
∑

i∈JK

αiϕi

∥∥∥∥∥∥

2

0,K

≤ C

h2
K

∑

i∈JK

(
‖ui‖20,Ωi

+ ‖ui − αi‖20,Ωi

)
.

Scaling and applying (24) yields

1

h2
K

‖u− Iu‖20,K ≤ C
∑

i∈JK

(
d2i
h2
K

‖ûi‖20,Ω̂ +
d2i
h2
K

‖ûi − α̂i‖20,Ω̂

)

≤ C
∑

i∈JK

‖ûi‖21,Ω̂ + ‖ûi − α̂i‖20,Ω̂

where

α̂i =

∫
Ω̂ ûidx∫
Ω̂ dx

(= αi).

With the aid of the first and second Poincaré inequality we get

1

h2
K

‖u− Iu‖20,K ≤ C
∑

i∈JK

|ûi|21,Ω̂ .
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The right hand side is scaled back to Ωi which gives the desired result:

1

h2
K

‖u− Iu‖20,K ≤ C
∑

i∈JK

|ui|21,Ωi
. (25)

Further,

|u− Iu|21,K =

∣∣∣∣∣∣
u−

∑

i∈JK

uiϕi +
∑

i∈JK

uiϕi −
∑

i∈JK

αiϕi

∣∣∣∣∣∣

2

1,K

≤ C




|u|21,K +
∑

i∈JK

|uiϕi|21,Ωi
+

∑

i∈JK

|uiϕi − αiϕi|21,Ωi




 .

We have

|uiϕi|21,Ωi
≤ C |ûiϕ̂i|21,Ω̂
≤ C ‖(∇ûi)ϕ̂i‖20,Ω̂ + C ‖ûi(∇ϕ̂i)‖20,Ω̂
≤ C ‖ûi‖21,Ω̂ ≤ C |ûi|21,Ω̂ ≤ C |ui|21,Ωi

and

|uiϕi − αiϕi|21,Ωi
≤ C ‖(∇ϕ̂i)(ûi − α̂i)‖20,Ω̂ + C ‖(∇ûi −∇α̂i)ϕ̂i‖20,Ω̂
≤ C ‖ûi − α̂i‖20,Ω̂ + C ‖∇ûi‖20,Ω̂
≤ C |ûi|21,Ω̂ ≤ C |ui|21,Ωi

where we used again scaling and the inequalities of Poincaré. Together we get

|u− Iu|21,K ≤ C
∑

i∈JK

|ui|21,Ωi
. (26)

Let now e be an edge of the element K and ê the corresponding egde in the reference
element K̂. We use now the notation f 4→ f̂ for the pullback operator induced by the affine
equivalence of K and K̂. We get with the trace theorem

1

he

‖u− Iu‖20,e ≤ C
∥∥∥û− Îu

∥∥∥
2

0,ê
≤ C

∥∥∥û− Îu
∥∥∥
2

1,K̂

≤ C

h2
K

‖u− Iu‖20,K + C |u− Iu|21,K .

Refering to (25) and (26) gives

1

he

‖u− Iu‖20,e ≤ C
∑

i∈JK

|ui|21,Ωi
. (27)

Combining (25), (26) and (27) is the assertion (since |JK | ≤ C).

Remark 4.6 An analogous interpolant can be constructed for the geometric mesh ∆n,σ on
the triangle T̂ .
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4.2.2 The space L1(K)

In this subsection we introduce a low order velocity space which is also used e.g. in [7].
To define this space, consider a parallelogram K with vertices a1, a2, a3, a4 = a0. We
denote by fi the edge [ai−1, ai] and by #ni its unit outward normal as shown in Figure 4.10.
K is affine equivalent to the reference unit square Q̂ in the (x̂1, x̂2) reference space. The
vertices, edges and normals of Q̂ are denoted by f̂i, âi and #̂ni, respectively. We introduce
the reference variables

x̂1, x̂2, x̂3 := 1− x̂2, x̂4 := 1− x̂2

and set

q̂1 := x̂2x̂3x̂4, q̂2 := x̂1x̂3x̂4, q̂3 := x̂1x̂2x̂4, q̂4 := x̂1x̂2x̂3.

For example, the polynomial q̂1 vanishes on the sides f̂2, f̂3 and f̂4. Finally, we let

#pi := #ni

(
q̂i ◦ F−1

K

)
i = 1, . . . , 4.

The velocity space L1(K) is then defined as

L1(K) := Q1(K)2 ⊕ span (#p1, #p2, #p3, #p4) .

L1(K) is of dimension 12 and Q1(K)2 ⊂ L1(K) ⊂ Q2(K)2 with strict inclusion.

Lemma 4.7 A polynomial #p ∈ L1(K) is uniquely determined by the 12 quantities:

#p(ai) i = 1, . . . , 4,
∫

fi
#p · #nids i = 1, . . . , 4.

Furthermore the restriction of #p to any side fi of K depends only upon the degrees of freedom
defined on that side.

This is proved in [7, Section II.3.1].

Remark 4.8 If K is a triangle we may define a space K1(K) with P1(K)2 ⊂ K1(K) ⊂
P2(K)2 in complete analogy to the definition of L1(K). For details, see [7, Section II.2.1].

For an affine mesh T on Ω consisting of quadrilaterals the space L1,1(Ω, T ) is

L1,1(Ω, T ) :=
{
#u ∈ H1(Ω)2 : #u|K ∈ L1(K) ∀K ∈ T

}
(28)

and
L1,1

0 (Ω, T ) := L1,1(Ω, T ) ∩H1
0 (Ω)

2.
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4.2.3 Divergence stability of L1,1
0 × S0,0

0 on ∆n,σ

We are now able to show the inf-sup condition for L1,1
0 × S0,0

0 elements on the irregular
geometric mesh ∆n,σ. To do so, we apply the technique of overlapping macro-patches of
[18].

Theorem 4.9 The spaces L1,1
0 (Q̂,∆n,σ) and S0,0

0 (Q̂,∆n,σ) are divergence stable, that is the
inf-sup condition (7) holds with a constant just depending on the grading factor σ.

We introduce the patches {Mj}Mj=1 using the numbering in (11):

M1 = Ω11 ∪ Ω22 ∪ Ω12 ∪ Ω32,

Mj = ∪ {Ωik : 1 ≤ i ≤ 3, j ≤ k ≤ j + 1} 2 ≤ j ≤ n.

M1 is built of the four elements near the origin whereasMj for j ≥ 2 consists of the elements
in the layers j and j + 1. As in (14) and (28) we let

S0,0(Mj) =
{
p ∈ L2(Mj) : p|K ∈ Q0(K), K ⊂ Mj

}
,

L1,1
0 (Mj) =

{
#v ∈ H1

0 (Mj)
2 : #v|K ∈ L1(K), K ⊂ Mj

}

and
NMj

=
{
p ∈ S0,0(Mj) : (∇ · #v, p)Mj

= 0 ∀#v ∈ L1,1
0 (Mj)

}
.

The degrees of freedom of L1,1
0 (Mj) are shown on Figure 4.11. The circles indicate the

values of #v · #n and the crosses the nodal values (cf. Lemma 4.7). Now, it holds

NMj
= {p = const on Mj} , (29)

since by our choice of the velocity spaces a pressure in NMj
is not allowed to have jumps

over the interelement edges. We can split S0,0(Mj) orthogonally in L2(Mj) into

S0,0(Mj) = NMj
⊕WMj

. (30)

Let
E(Mj) = {e : e edge of an element K ⊂ Mj , e 6⊂ ∂Mj}

denote the set of all interelement edges in the patch Mj . Extra care must be taken due to
the presence of hanging nodes. Therefore, we define

E0(Mj) = {e ∈ E(Mj) : e has no hanging node in the mid-point} .

Globally, E(∆n,σ) and E0(∆n,σ) are defined completely analogous. Recall that the length of
an edge e is he. We denote by [f ]e the jump of a piecewise continuous function f across
the edge e of an element K:

[f ]e(x) = lim
t→0+

f(x+ t#ne)− lim
t→0+

f(x− t#ne) x ∈ e,

where #ne is the unit outward normal to the element K. On each patch Mj we introduce a
mesh-dependent seminorm

|p|2Mj
=

∑

K⊂Mj

h2
K ‖∇p‖20,K +

∑

e∈E0(Mj)

he

∫

e
|[p]e|2 ds.
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For p ∈ S0,0(Mj) only the jump terms contribute to this seminorm. Globally, we define
analogously

|p|2h,Q̂ =
∑

K∈∆n,σ

h2
K ‖∇p‖20,K +

∑

e∈E0(∆n,σ)

he

∫

e
|[p]e|2 ds.

Hence, a scaling argument gives the local stability condition

sup
0"=!v∈L1,1

0
(Mj)

(∇ · #v, p)Mj

|#v|1,Mj
|p|Mj

≥ γ > 0 ∀p ∈ WMj
\{0} (31)

where γ is independent of j (and thus of the meshwidth h) but depends on the grading
factor σ.
Now, let 0 6= p ∈ S0,0

0 (Q̂,∆n,σ). We write pj := p|Mj
. According to (29) and (30) we

decompose pj into
pj = cj + qj

where cj ∈ NMj
is constant on Mj and qj ∈ WMj

. (31) implies that for each qj there exists

a velocity #vj ∈ L1,1
0 (Mj) (choose #vj = 0 if qj = 0) such that

(∇ · #vj , qj)Mj
≥ γ |qj |2Mj

, |#vj|1,Mj
≤ |qj |Mj

,

and therefore also

(∇ · #vj, pj)Mj
≥ γ |pj|2Mj

, |#vj|1,Mj
≤ |pj|Mj

.

We set now #v :=
∑M

j=1 #vj and have #v ∈ L1,1
0 (Q̂,∆n,σ). Then

(∇ · #v, p)Q̂ ≥ γ
M∑

j=1

|pj|2Mj
≥ C |p|2h,Q̂ (32)

and

|#v|21,Q̂ ≤
M∑

j=1

|#vj|21,Mj
≤ C |p|2h,Q̂ . (33)

(32) and (33) imply

sup
0"=!v∈L1,1

0
(Q̂,∆n,σ)

(∇ · #v, p)Q̂
|#v|1,Q̂

≥ C1 |p|h,Q̂ = C1 ‖p‖0,Q̂
|p|h,Q̂
‖p‖0,Q̂

. (34)

Following still [18], we show that in (34) the semi-norm can be replaced by the full L2-norm.
By the continuous inf-sup condition (6) there is a velocity #v ∈ H1

0 (Q̂)2 such that

(∇ · #v, p)Q̂ ≥ C ‖p‖20,Q̂ , |#v|1,Q̂ ≤ ‖p‖0,Q̂ .

Let #vh = #I#v := (Iv1, Iv2) ∈ S1,1
0 (Q̂,∆n,σ)2 where I is the Clément type interpolant of

Proposition 4.5. We integrate by parts, apply Cauchy-Schwarz and Proposition 4.5 to get

(∇ · #vh, p)Q̂ = (∇ · (#vh − #v), p)Q̂ + (∇ · #v, p)Q̂

14



=
∑

K∈∆n,σ

∫

K
(#v − #vh) ·∇p+

∑

e∈E0(∆n,σ)

∫

e
((#vh − #v) · #n) [p]eds+ C ‖p‖20,Q̂

≥ −





∑

K∈∆n,σ

h−2
K ‖#vh − #v‖20,K +

∑

e∈E(∆n,σ)

h−1
e ‖#vh − #v‖20,e






1
2

|p|h,Q̂ + C ‖p‖20,Q̂

≥ −C2 |#v|1,Q̂ |p|h,Q̂ + C3 ‖p‖20,Q̂

≥ ‖p‖20,Q̂

(

C3 − C2

|p|h,Q̂
‖p‖0,Q̂

)

.

Further, |#vh|1,Q̂ ≤ C ‖p‖0,Q̂, such that we established

sup
0"=!v∈L1,1

0
(Q̂,∆n,σ)

(∇ · #v, p)Q̂
|#v|1,Q̂

≥ ‖p‖0,Q̂

(

C4 − C5

|p|h,Q̂
‖p‖0,Q̂

)

(35)

We write t for the ratio |p|h,Q̂ / ‖p‖0,Q̂ and combine (34) and (35) into

sup
0"=!v∈L1,1

0
(Q̂,∆n,σ)

(∇ · #v, p)Q̂
|#v|1,Q̂

≥ ‖p‖0,Q̂min
t≥0

f(t)

with f(t) = max(C4 − C5t, C1t). Since mint≥0 f(t) =
C1C4

C1+C5
, the assertion follows.

Remark 4.10 A similar construction yields stability of low order elements for the geomet-
ric mesh ∆n,σ on the triangle T̂ . This holds for example for S2,1

0 × S0,0
0 elements or one

could use the velocity space K1(K) mentioned in Remark 4.8.

4.3 A macro-element technique

A useful tool in order to prove divergence stability is the macro-element technique intro-
duced for example in [19]. It is stated in a very general form in the next proposition whose
proof is given for the sake of completeness.

Proposition 4.11 Let F be a family of irregular or regular affine meshes on the reference
element K̂. On a bounded polygon Ω ⊂ lR

2 let T be an affine mesh which is obtained from a
(coarser) affine κ-uniform macro-element mesh Tm in the following way: Some elements of
Tm are further partitioned into FK(T̂ ) where T̂ ∈ F and FK is the affine mapping between
K̂ and K. Let k be a polynomial degree distribution on T and |k| := max {kK : K ∈ T }.
Assume that there exists a space #XN ⊆ Sk,1

0 (Ω, T )2 ⊂ H1
0 (Ω)

2 such that

inf
0"=p∈S0,0

0
(Ω,Tm)

sup
0"=!v∈ !XN

(∇ · #v, p)Ω
|#v|1,Ω ‖p‖0,Ω

≥ C1 (36)

with a constant C1 > 0 independent of k. Assume that on the reference element K̂ the local
stability condition

inf
0"=p∈Sk−2,0

0
(K̂)

sup
0"=!v∈Sk,1

0
(K̂)2

(∇ · #v, p)Ω
|#v|1,Ω ‖p‖0,Ω

≥ C2k
−α ∀k ≥ 2 (37)

15



is valid with C2 > 0 and α > 0 independent of k. Assume further that the family F is
uniformly stable in the sense that there holds

inf
0"=p∈S

k−2,0

0
(K̂,T̂ )

sup
0"=!v∈S

k,1

0
(K̂,T̂ )2

(∇ · #v, p)K̂
|#v|1,K̂ ‖p‖0,K̂

≥ C2 |k|−α (38)

for all T̂ ∈ F and all polynomial degree vectors k on T̂ that appear in the correspondingly
refined macro-elements.
Then there exists a constant C > 0 only depending on C1, C2 and κ such that the spaces

#VN = Sk,1
0 (Ω, T )2, MN = Sk−2,0

0 (Ω, T ) (39)

satisfy the inf-sup condition (7) with γ(N) ≥ C |k|−α.

Let p ∈ Sk−2,0
0 (Ω, T ). We decompose p into p = p∗ + pm where pm is the L2(Ω)-projection

of p onto S0,0
0 (Ω, Tm), the space of piecewise constant pressures with vanishing mean value

on the macro-element mesh Tm. Because of (36) there exists #vm ∈ #XN ⊆ Sk,1
0 (Ω, T )2 such

that
(∇ · #vm, pm)Ω ≥ C1 ‖pm‖20,Ω , |#vm|1,Ω ≤ ‖pm‖0,Ω . (40)

Next, consider p∗ ∈ Sk−2,0
0 (Ω, T ). Therefore, fix a macro-element K ∈ Tm and set p∗K :=

p∗|K . By construction, p∗K ∈ Sk−2,0
0 (K, TK) where TK is the restriction of T to the macro-

element K. We transform p∗K back to the reference element K̂ via the affine transformation
FK , that is we put

p∗
K̂
= p∗K ◦ FK .

We have TK = FK(T̂ ) for some T̂ ∈ F if K is further refined or TK = FK(T̂ ) with T̂ = K̂
if K is not locally refined. By (37) or (38) there exists #v∗

K̂
∈ Sk,1

0 (K̂, T̂ )2 such that

(
∇ · #v∗

K̂
, p∗

K̂

)

K̂
≥ C2 |k|−α

∥∥∥p∗
K̂

∥∥∥
2

0,K̂
,

∣∣∣#v∗
K̂

∣∣∣
1,K̂

≤
∥∥∥p∗

K̂

∥∥∥
0,K̂

. (41)

We can not use the usual pushforward operator to define #v∗K on K but rather the Piola-
transform

#v∗K = PK(#v
∗
K̂
) = |JK |−1 JK#v

∗
K̂
◦ F−1

K .

Here, JK is the Jacobian of FK and |JK | = det(JK). JK is constant and thus #v∗K ∈
Sk,1
0 (K, TK)2. Moreover, there holds (cf. [5])

(
∇ · #v∗

K̂
, p∗

K̂

)

K̂
= (∇ · #v∗K , p∗K)K . (42)

(42), (41) and scaling give

(∇ · #v∗K , p∗K)K ≥ C2 |k|−α
∥∥∥p∗

K̂

∥∥∥
2

0,K̂
≥ C

h2
K

C2 |k|−α ‖p∗K‖
2
0,K . (43)

By similar scaling properties for the Piola-transform (cf. [5]) we get

|#v∗K |1,K ≤ C
hK

ρ2K

∣∣∣#v∗
K̂

∣∣∣
1,K̂

≤ C
hK

ρ2K

∥∥∥p∗
K̂

∥∥∥
0,K̂

≤ C
hK

ρ3K
‖p∗K‖0,K (44)
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where we applied once again (41). (43) and (44) imply the existence of a Sk,1
0 (K, TK)2-

velocity field on K also denoted by #v∗K such that

(∇ · #v∗K , p∗K)K ≥ C

κ3
C2 |k|−α ‖p∗K‖

2
0,K , |#v∗K |1,K ≤ ‖p∗K‖0,K . (45)

We define now #v∗ =
∑

K∈Tm #v∗K which belongs to Sk,1
0 (Ω, T )2 ⊂ H1

0 (Ω)
2. (45) holds inde-

pendently of K and hence the same estimate is valid for #v∗,

(∇ · #v∗, p∗)Ω ≥ C

κ3
C2

︸ ︷︷ ︸
=:C3

|k|−α ‖p∗‖20,Ω , |#v∗|1,K ≤ ‖p∗‖0,Ω . (46)

Select now #v = #v∗ + δ#vm where δ > 0 is still at our disposal. Then

(∇ · #v, p)Ω = (∇ · #v∗, p∗)Ω + δ (∇ · #vm, pm)Ω + (∇ · #v∗, pm)Ω + δ (∇ · #vm, p∗)Ω .

Since pm is piecewise constant on Tm and #v∗ vanishes on ∂K for all K ∈ Tm the third term
(∇ · #v∗, pm)Ω is zero. With (40) and (46) one has for ε > 0

(∇ · #v, p)Ω ≥ C3 |k|−α ‖p∗‖20,Ω + δC1 ‖pm‖20,Ω − δC4 |#vm|1,Ω ‖p∗‖0,Ω
≥ C3 |k|−α ‖p∗‖20,Ω + δC1 ‖pm‖20,Ω − δC4 ‖pm‖0,Ω ‖p∗‖0,Ω

≥ C3 |k|−α ‖p∗‖20,Ω + δC1 ‖pm‖20,Ω − δC4

4ε
‖p∗‖20,Ω − δεC4 ‖pm‖20,Ω

=

(

C3 |k|−α − δC4

4ε

)

‖p∗‖20,Ω + δ (C1 − C4ε) ‖pm‖20,Ω .

Choosing ε = C1

2C4
and δ = 2εC3|k|

−α

C4
yields

(∇ · #v, p)Ω ≥ C3

2
|k|−α ‖p∗‖20,Ω + C5 |k|−α ‖pm‖20,Ω ≥ C6 |k|−α ‖p‖20,Ω . (47)

From (46) and (40) follows also

|#v|1,Ω ≤ |#v∗|1,Ω + δ |#vm|1,Ω ≤ ‖p∗‖0,Ω + C |k|−α ‖pm‖0,Ω ≤ C7 ‖p‖0,Ω (48)

with C7 independent of k. (47) and (48) imply (39) which finishes the proof of Proposition
4.11.

4.4 Proof of the main result

Applying the macro-element technique in Proposition 4.11 gives immediately the following
corollaries used in the proof of Theorem 3.1.

Corollary 4.12 Let ∆n,σ be the geometric mesh on Q̂ (cf. Definition 2.1). Let k be a
polynomial degree vector as in (12) and let |k| = max {kK : K ∈ ∆n,σ}. Then there exists
a constant C > 0 independent of n and k but depending on σ such that the pairs

#VN = Sk,1
0 (Q̂,∆n,σ)

2, MN = Sk−2,0
0 (Q̂,∆n,σ)

fulfill the inf-sup condition (7) with γ(N) ≥ C |k|−
1
2 .

17



We apply Proposition 4.11 with

F = ∅, Tm = ∆n,σ

and κ = κ(σ) is the uniformity constant of the mesh ∆n,σ (which depends only on σ).
Setting #XN = L1,1

0 (Q̂,∆n,σ), condition (36) is satisfied due to Theorem 4.9 with C1 = C1(σ)
independent of k. (37) holds because of Theorem 4.1 with α = 1/2. The assertion follows
now from Proposition 4.11.

Corollary 4.13 Let ∆2
n,σ be the geometric tensor product mesh on Q̂ (cf. Definition 2.3)

with underlying geometric mesh ∆n,σ. Let k be a polynomial distribution on ∆2
n,σ which is

constant on each element K ′ ∈ ∆n,σ. Let |k| = max
{
kK : K ∈ ∆2

n,σ

}
. Then there exists a

constant C > 0 independent of n and k but depending on σ such that the spaces

#VN = Sk,1
0 (Q̂,∆2

n,σ)
2, MN = Sk−2,0

0 (Q̂,∆2
n,σ)

satisfy the inf-sup condition (7) with γ(N) ≥ C |k|−
1
2 .

As in Corollary 4.12 above, we apply Proposition 4.11 with

F = {∆Tx : Tx arbitrary} , Tm = ∆n,σ

and κ = κ(σ) is the uniformity constant of the mesh ∆n,σ (which depends only on σ).
Setting #XN = L1,1

0 (Q̂,∆n,σ), condition (36) is satisfied due to Theorem 4.9 with C1 = C1(σ)
independent of k. (37) follows from Theorem 4.1 and (38) from Theorem 4.4 with α = 1/2
(since the constant in Theorem 4.4 does not depend on the one dimensional mesh Tx). Thus
Proposition 4.11 can be applied and Corollary 4.13 follows.

Remark 4.14 Corollaries 4.12 and 4.13 hold also for the meshes ∆n,σ and ∆2
n,σ on the

reference triangle T̂ with inf-sup constant γ(N) ≥ C |k|−3. Divergence stability for the
mixed meshes mentioned in Remark 2.4 is obtained in the same way using Proposition 4.11,
Theorem 4.1 and Theorem 4.4. The inf-sup condition holds with C |k|−α where α = 1/2 if
the mesh contains no triangles and α = 3 otherwise.

Proof of Theorem 3.1: The proof of Theorem 3.1 is now easy. We put #XN = S2,1
0 (Ω, Tm)2.

By standard theory (see, e.g., [7, 5]), (36) in Proposition 4.11 is satisfied. Due to Theorem
4.1, Theorem 4.4, Corollary 4.12, Corollary 4.13 and Remark 4.14, we see that (37) and
(38) in Proposition 4.11 are valid with α = 1/2 if the mesh does not contain triangles and
with α = 3 otherwise. Proposition 4.11 therefore gives the assertion of the theorem.
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[8] B.Q. Guo and I. Babuška: The hp-version of the finite element method I: The basic approx-

imation results; and part II: General results and applications, Comp. Mech. 1 (1986), 21-41
and 203-226.
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Figure 2.1: The geometric meshes ∆n,σ and ∆̃n,σ with n = 3 and σ = 0.5.
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Figure 2.2: Boundary layer mesh and geometric tensor product mesh on Q̂.
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Figure 2.3: The meshes ∆n,σ and ∆2
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23



x̂2

x̂1
0 1

1

x̂2

x̂1
0 1

1

Figure 2.4: Further reference meshes on Q̂.

Figure 2.5: Geometric boundary layer meshes near convex corners.
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Figure 2.6: Geometric boundary layer meshes near reentrant corners.

Figure 2.7: The macro-elements are irregularly connected in this mesh.
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