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Abstract

We report, in two notes, recent progress in the implementation of wavelet-
based Galerkin BEM on polyhedra and study the performance.



A WAVELET-GALERKIN BOUNDARY ELEMENT METHOD
ON POLYHEDRAL SURFACES IN R® !

Christian Lage and Christoph Schwab
Seminar fiir Angewandte Mathematik
ETH-Zirich
Ramistrasse 101
CH-8092 Ziirich, Switzerland

SUMMARY

The implementation of a wavelet-based Galerkin discretization of the double layer po-
tential operator on polyhedral surfaces I' C R® is described. The algorithm generates
an approximate stiffness matrix with O(N(log N)?) entries in O(N(log N)?) operations
where N is the number of degrees of freedom on the boundary. The condition number of
the compressed stiffness matrix is bounded uniformly with respect to N. A C++ real-
ization of the data structure containing the compressed stiffness matrix is described. It
can be set up in O(N(log N)?) operations and requires O(N (log N)?) memory. Numer-
ical experiments show the asymptotic complexity estimates and convergence rates to be
accurate already for moderate N. Problems with N > 10° were computed in core on a
workstation.

PROBLEM FORMULATION

Let Q C R? be a bounded polyhedron with Lipschitz boundary I' = 99 and let n(y)
denote the exterior unit normal vector at y € I'. We consider the Dirichlet Problem

AU=0inQ, Ul=Ff. (1)

By L*(T') we denote the space of functions u : I' — R that are square integrable with
respect to the surface measure ds,.
We equip L?(T") with the inner product

(u,v) :/Fuvdsgﬂ. (2)

!Presented at the 13th GAMM-Seminar on Numerical Treatment of Multi-Scale Problems, Christian-
Albrechts-Universitat Kiel, January 24th to 26th, 1997 (in press in Notes on Numerical Fluid Mechanics,
Vieweg, 1997).




The double layer ansatz

where the double layer kernel K is given by
n(y) - (r —
Koy = "0 =y
A |z — y|

leads with the jump relations to the second kind boundary integral equation
ue L*T): (v,Au) = (v, f) VYve L*T) (4)

for the unknown density u : I' — IR. Here A is the classical double layer potential operator
which is defined almost everywhere on I' by

(Au)(z) = —%u(x) + [ K@ yul)ds, weT. (5)

It is well-known that under our assumptions the operator A : L*(T') — L*(T") is bounded,
thus the Galerkin equations (4) make sense. Moreover, in the pointwise definition (5), the
fraction 1/2 is to be modified when z is on an edge or a vertex; this, however, does not
affect the weak formulation (4).

MULTIWAVELET DISCRETIZATION

We present now a fully discrete wavelet Galerkin discretization of (4) together with its
properties. Full proofs for all assertions can be found in [PSS],[PS],[LS]. [R] analyzes
also a fully discrete wavelet algorithm for boundary integral equations of the type Au = f;
there, however, collocation and tensor product wavelets are discussed.

GALERKIN DISCRETIZATION

The boundary I' is partitioned into Ny planar, open pieces I'; which are affine images
of the triangle U° = { (z1,72) |0 < 2y < 1,0 < 25 < z; } in R?, i.e. there exist bijective,
linear maps x; such that I'; = x;(¢4°). The partition {I';}% is assumed to be regular,
i.e. for i # j the set T; N T, is either empty, a vertex, or an entire edge.

An inner product (-, -) equivalent to (-, -) in L*(T') can be defined by

(u,v) = Z/MO (@, 0 x5) (vl, 0 X5) dwa das (6)

For s > 0, we consider also the Sobolev spaces H*(T';) of functions with pullback in H*(U°)
endowed with the norm || - ||;. The space of functions u € L*(T) with ulp, € H*(L;) for



s > 01is [[;2) H*(T';), equipped with the norm

1/2
2
HS(F]‘)> . (7)

We define a dense subspace sequence V! C L*(T"), | = 0,1,2,... as follows: divide U°
into 4’ congruent subdomains {2} } by successively halving the sides / times. Then define
spaces

No
lull, = | D [lul
j=1

Vi={ue L*I) | (U|FJ © Xj)

. l
u}ezconst, ]:1,‘_,,N0’k:1,...,4:}.

of piecewise constant (with respect to x;), discontinuous functions. Obviously, the spaces
V! form a hierarchy, i.e.,

Vicvic...cvicvittc..., (8)

Ny = dim(V') = Ny4' and the V' are dense in L(I").
The Galerkin approximation u” of u is given by

ut e VF <v,AuL> = (v, f) Vv e VE (9)

We make the fundamental assumption that the Galerkin scheme (9) is stable in the
following sense: For L, sufficiently large, there exists C' > 0 such that

VL > L f v, Au 0 (10)
> Ly in sup ————— > C¢ >
omertozunert [ut o],
where P;, denotes the L2-projection
Py L*(T) — V&, (v— Po),9) =0 VpeV~ (11)

The stability (10) implies that for sufficiently large L, the Galerkin solutions u’ of (9)
exist and are quasioptimal, i.e.

Hu—uLHO < Cvier‘l/fLHu—vHO. (12)

Remark 1 The stability (10) of the Galerkin discretization (9) follows, for example, from
a Géarding inequality in L*(T") of the operator A. However, on polyhedral boundaries T,
such an inequality generally is not valid. Nevertheless, stability of (9) has been shown, at
least for certain polyhedra, in [Fl| provided that V'* is constrained to be zero in an O(h)
vicinity of the edges of I'. It has been observed in numerous numerical experiments, how-
ever, that on polyhedra (10) apparently holds even without the zero constraint, although
a proof does not seem to be available. We assume (10) in our analysis.



MULTIWAVELET BASIS

We denote by Ty := x;(U}), I € Z;, | = 0,...,L the images of U, under respective
coordinate transformations where the index sets Z; are defined by

T={(,Lk): 1<j< No,1 <k<4'}.

A basis for V¥ is given by {¢; : [ € I} with

2L if I =1, / .
g01|FI, = {0 otherwise, I,LI'eZ;, [=0,..., L.
Then

(er, 1) =6ip I,I' €Iy
and (4) is equivalent to a linear system of equations with a dense stiffness matrix, i.e. it
requires O(N?) memory.

The multiscale Galerkin method is also given by (4), but a multiwavelet basis is used
for the representation of the solution and the stiffness matrix of (4). To describe this
wavelet discretization, we define a sequence W' of subspaces as orthogonal complement
with respect to (-, -) of V"1 in V&

Wh={ypeV'|(p9)=0 VYoec VT I>1. (13)
Then V*! = Vi@ WL and we obtain the multilevel splitting
VE=wW'eoW'q...0o Wt (14)
where W := V°. Hence every function u* € VL admits a unique decomposition
uf = w’ +wt + -+ wh, wewli=o,... L. (15)

Let P, =0. Then w' = (P, — P,_1)u” in (15).

To obtain an orthonormal basis for W we proceed as follows: consider the space Wt
of piecewise constant functions on the four subdomains U} C U°, k = 1,...,4 which have
¥i o)
These multiwavelets are the analogs of the Haar-wavelet in one dimension. For [ > 1 we
define the basis functions ¢;: ' — R of W' as usual by means of the mother wavelets 9,:

vanishing mean. We denote by 91, 1, 13 an orthogonal basis of W with ’

-1,7, -1 _7
= 2 wVOXj lf[_l [,IIEL—l,Vzla“‘yg‘ (]‘6)
0 otherwise,

V(1)

Ty
For { = 0 we use the basis functions

Vo) = I €1 (17)

Then for [ € INy an orthonormal basis of W' is given by the functions {4y | J € J; } with
the index sets J; defined by

j._{{(I,V)UeIl_l,lgug?)} for [ > 1,
PTU{(IL,0) |1 €Ty} for | = 0.

By (14) an orthonormal basis of V! for [ € Ny is then given by
{Y;1J€eFHU...UT}

Accordingly, ||ul| r2(r) can be characterized by the multiwavelet expansion coefficients.

(18)



Proposition 2 For every u € L*(T"), there holds
- 2
lullZay ~ D2 > 1w, %)l (19)
1=0 JET;
where ~ denotes the equivalence of norms.

We use the multiwavelet basis (17), (16) in the Galerkin equations (4). To this end, we
write u” in its wavelet representation

L
ul = Z Z ub;, uh = (uL,sz) (20)

=0 JeJ;

and denote by @ = (u%)jc7u..u7, the vector of wavelet coefficients of u”. It is determined
by the linear system

L
Z Z (lZ)J,Al/)J')U?':(l/)J,f), JG%,,ZIO,,L (21)

I'=0 J' €Ty
We denote the Ny x Ny, stiffness matrix in the wavelet basis by AL, i.e.,
AL = (g, Ay, Jed, J €Ty, LI =0,... L (22)
Then we can write (21) as B
Al = f (23)

where f = (g, ) resu..ug,- Note that AL is not symmetric in general. It follows
from the stability (10) and the norm equivalence (19) that the condition numbers of the
sequence { A%} of matrices are bounded: There exists x* € R such that for all L

condy(AF) < K*. (24)

COMPRESSION

The wavelet basis {1;} defined in (17), (16) has vanishing mean in local coordinates
which implies that many of the entries A%, are smaller than in the standard Galerkin
basis (see Lemma 6.1 of [PSS] or [Sch| for details). This allows to neglect most elements
A%, without essentially compromising the asymptotic convergence rate of the scheme.

Theorem 3 Let 5,5 € [0,1] and assume that

s>t s g5 500
=%=" =%="

(25)
With a > 1 a parameter to be selected define truncation parameters

5”/ = maX{a2_L2a(L_l)2d(L_l’), 2_l, 2_l’} (26)



and the corresponding compressed stiffness matriz A by

Ayp ifdip < o,

27
0 otherwise (27)

AJJ’ = {

where J = (I,v), J = (I',V') and d;p = dist(T';,T'p) the Euclidean distance of T'y and
'y, Solve

Alg =7f. (28)
and denote by
L
it =33 dlp, e VF
1=0 JET,

the corresponding approximate solution. Then the following holds:

1. Denote by N(AL) the number of nonzero entries in AL. Then

O(Np(log N1)*) ifa=a=1,

O(Nplog Np) otherwise. (29)

N(A) = {

2. There exists a level Ly such that for a sufficiently large in (26) the compressed
Galerkin scheme is stable, i.e. for L > L the Al are nonsingular and uniformly

bounded, 1.e. 3
VL > Ly: cond(AY) < k. (30)

3. Assume that we have for some 0 < s < 1 the reqularity
feHT) = weH ) (31)
Then, for sufficiently large a and Lo in (26) and (30), respectively, we have
u—a*|, < CllogNp)" Ny [lull, = Ch* log hl” [ul, (2)

where v =0 if 0 < s<1landv=3/2 if s=1.

4. Let z € Q and denote by ¢ the solution of the adjoint problem A*p = K(z,-).
Assume the regularity o € H*(T") for some 0 < § < 1 and, as before, that u € H*(T).
Compute an approzimate solution UL(z) to the Dirichlet problem (1) by inserting
the approximate density u* into (3).

Then, for sufficiently large a and Ly and o, & as in (25) there holds the error estimate

U) = 0*(@)] < Coa *(log No)* Nz [lull, [l (33)
= Ca*h* " [logh[” [lull, ll]l;

This theorem is a special case of [PS] (see also [DPS],[Sch] and [PSS]). Even with the
space V'L of piecewise constants, we have essentially the maximal asymptotic convergence
rate O(h?) (this rate will usually not be achieved, however, due to edge- and vertex
singularities of u).



NUMERICAL QUADRATURE

Theorem 3 still assumed that the entries
~ 1
AJJI = —5 /I‘¢J($)¢Jl($)d8$ + /1" /1" K(l’, y)@DJ(aj)wJ/(y)dsydsm (34)

for J,J' € JyU...UJy of the compressed stiffness matrix AL were evaluated exactly. This
is not possible, in general, and approximations Ayp = QK must be used, where
Qs is a family of quadrature rules to be specified. In our implementation we used the
quadrature scheme that was proposed and analyzed in [PS]. We now describe it briefly
and present its principal properties (for the sake of brevity, we discuss only the quadruple
integral in (34)).

Since each multiwavelet 1 is piecewise constant in local coordinates, the integral (34)
with J = (I,v), J' = (I',V') may be assembled from 16 “elementary” integrals over pairs
I'r, x Ty, (Le, 1) € child(Z) x child(I") where the set

child(l) :={Il. € Zjy1: Iy, C Iy}, T€I; (35)

specifies the indices of the four subdomains of I';. We consider therefore now only the
fourfold integrals over such pairs. We distinguish two types of integrals to be evaluated:
a) non-singular case d;; > 0, b) singular case d;;r = 0. Since K (z,y) is analytic for z # y
and the multiwavelets piecewise constant in local coordinates, in case a) the integrands are
analytic on I'; x I'pr. For analytic integrands Gaussian quadrature formulas converge, as it
is well-known, exponentially with the rate depending on the size of the integrand’s domain
of analyticity. The only difficulty that arises is that for d;; < max{diam (I';),diam (I';+)}
the integrand’s domain of analyticity and consequently the rate of exponential convergence
of Gaussian quadrature may be very small. This can be prevented by subdivision of the
larger panel (see [S],[PS]).

Lemma 4 Let v > 0 be a parameter that depends only on the boundary I' and its
parametrization. Assume diam(I'p) > diam(I';) and dip > 0. Then there exists a bi-
nary partition {U'; : I € A(I,I')} of Iy such that dy;; > v 1275 for all I € A(I,1').
Moreover, the number of subelements I'; C I'p is bounded by

AL, I < C(y)(I—=1"+1). (36)

A recursive partition with a stronger subdivison ratio would yield better errors [S], but
the binary partition in Lemma 4 is natural in our multiscale context (the data structures
for discretization and quadrature coincide).

Next, we apply Gaussian quadrature to each pair (I'r,I';). For that, the triangular
elements are transformed to (—1,1)* via the degenerate mapping

00 - ( &) 7

yielding the transformed kernel

Kpn(&,€) = 4|01 IPr| & & K (x5 0 (k1) ™" 0 @(€), x5 0 (ki) T 0 ®(€)) . (38)

In summary, we formulate a variable order, composite quadrature rule (see [S]) for the
approximation of Ay



Lemma 5 Let J = (I,v)y e Jyand J = (I',V) € Jp with L > I" and dip > 0.Compute
approzimations Ay to the corresponding nonzero entries Ay of A* by the variable order,
composite quadrature rule

Asp = Z Z Z Yy

TeA(I,I") I.€child(I) I.echild()
= Qi K¢s¢p

where the orders of the Gaussian quadrature rules G¢* and G satisfy

Yol GG K i (6,€) (39)

- 1+210g27—1—log2(l—l'+1)+2(2L—l—l’)+l’—l+2

(11T == 40
ni( ) =3 oz, 7, (40)

with )

p1i=1+~2"d, 5, pri=1+y2"d, ;. (41)
Let the singular integrals be computed exactly. Then the total quadrature work is bounded
by O(Ny(log N1,)?) kernel evaluations and all assertions of Theorem & still hold for the
numerically integrated, compressed stiffness matriz.

The singular case d;p = 0 is, after possible subdivision of the larger element, reduced to
the above case plus a singular integral over two panels of equal size. Here special variable
transformations are applied ([HSa],[PS]) which render the integrand analytic, yielding
also here a consistent quadrature approximation in O(Ny(log N;)3) work (see [PS] and
note that integrals over panel pairs on the same side of I' do not contribute). In summary,
we have

Theorem 6 For the quadrature approximation AL of the compressed stiffness matriz ac-
cording to Lemma 5, all results of Theorem & still hold. The total cost of the fully discrete
method is not greater than O(Ny(log Ni)?) kernel evaluations.

IMPLEMENTATION

For the implementation of our method we used the object oriented framework for
boundary element methods described in [L1] and [L2]. This framework provides the
mathematical concepts of boundary elements such as subspaces, dualforms, operators or
functions, in terms of classes. Two major extensions of the framework are necessary to
cover the demands of our wavelet discretization: a specialization of the base class DualForm
endowed with the variable order, composite quadrature rule of the previous Section and
a specialization of the base class Operator to assemble and store the compressed stiffness
matrix.

For the sake of brevity, we only discuss the algorithmic aspects of the underlying
classes and omit their precise definition.

QUADRATURE ALGORITHM

The assembly of the stiffness matrix imposes the evaluation of the element matrices



integrate(Z, I, I') {
if dist(;,T;) >y L2711 {
for (1., 1) € child(f) x child(/) { ]
calculate (E';), ; = 2l+1+2 G?l(I’I’I’)GZIZ(I’I’I’) K;.7.(£,¢)

calculate (E}I)fclc — 2l+i+2 G?Z(I,f,l’)Ggl(I,f,I’) Kfclc(f’fl)
¥

} else {

for I, € child() ( 7, B% ) « integrate(/, I, I

E%, using E7; , B} | with I, € child(/)

evaluate F’ i

D
}
return ( }f, E}I)

}

Algorithm 1: Composite quadrature rule, [ > [>1.

0,...,3 if I,I' € T,

[y— A , =
(Erp)u = (A(I,V)(I v ))W » BV = { 1,...,3 otherwise

for I,1I' € Ty U ... UZ,. We manage this task by calculating the corresponding element
matrices related to the standard basis functions ¢; using the variable order, composite
quadrature rule (39):

(Erp)rn = Qi Korepr, I € child(I), I € child(I").

Afterwards, a transformation E} — Epp is applied. Algorithm 1 illustrates the recursive
implementation of the subdivision. The initial call integrate(I,I',I') evaluates the matrix
E}; as well as its symmetric counterpart £}, ; simultaneously. In this way the construction
of the subdivision which is identical in both cases is fully exploited. In the interests of
efficiency temporary matrices generated during the subdivision on higher levels are cached,
such that subsequent calls can profit. It turns out that a cache size of O(Ny) together
with special calling sequence is sufficient to guarantee an optimal usage of data. Moreover,
the size of the cache could be reduced to O(log Ny,) still yielding the same performance as
before. But, from the object oriented point of view, this approach weakens the important
encapsulation between assembly and quadrature.

ASSEMBLY AND COMPRESSION

According to Theorem 3, the truncation criterion (27) yields a compressed stiffness
matrix with O(Np(log N1)?) nonzero entries. For a practical implementation it is essential,



assemble(I, I') {
if dlSt(F[,Ff) S 511/ {
if l =1 and (j, k) < (j', k') return

(Erp,Epp) «— (Epp, Eyp) < integrate(I, I', I')
store E;p, Epp in A¥ in compressed form

if { > 1
for I € child(I") assemble(Z, I7)

}

return

}

Algorithm 2: Assembly and compression.

however, that the nonzero entries in the compressed stiffness matrix can be localized also
in essentially O(Ny1) operations, i.e. without scanning the whole N? entries of the full
matrix. This objective is easily achieved if one exploits the tree structure of the index set
ToU...UZ implied by the sets child(/) as it is done in the function assemble() sketched
in Algorithm 2. With this function the compressed stiffness matrix is generated by:

fOI‘IEIQU...UIL
for I' € Z, assemble(/, I')

Except the generation of element matrices, each task of the recursive function assemble()
is of order O(1). Hence, the complexity of determining the nonzero entries is proportional
to the number of calls of the function which again is proportional to the number of nonzero
entries, i.e. O(N(log N)?). This is borne out by our numerical experiments below.

For our compression technique we borrow from the well know encoding algorithm of
Ziv, Lempel and Welch described for example in [Wo| which encodes repeated substrings
more efficiently. In our case we only encode sequences of zero entries in the stiffness matrix
by their length. In order to achieve high compression rates long sequences of zero and
nonzero entries, respectively, are desired. Therefore, we arrange the wavelets 1; according
to the preorder depth first traversal of the domains I'; (cf. Algorithm 2) which takes the
local relations of the domains into account. Note that the symmetry 6, = 6p; of the
threshold values is transmitted to the pattern of zero and nonzero entries of the stiffness
matrix, such that the simultaneous evaluation of the element matrix Er; and its dual in
Algorithm 1 is justified. Moreover, the same pattern of compression can be applied to
rows and columns of the stiffness matrix. For a detailed discussion of this topic see [LS].

NUMERICAL EXPERIMENTS

Here we present some preliminary numerical experiments obtained with the described
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Figure 2: Total memory used for storing the compressed stiffness matrix.

We point out that the CPU-time for the solution accounts only for about 15 per cent
of the total CPU-time. Therefore, with the present method the BEM-paradigm that most
of the work is spent for quadrature is still valid and a speed up similar to the one for
dense matrices can be achieved with the parallelization of the matrixassembly. In Figure
5 the error at interior points is depicted. The dashed lines shown illustrate the bounds
O(N71) and O(N~!(log N)3), respectively (cf. (33)). It can be observed that the expected
convergence of essentially O(h?) is preserved by the compression. The same is true for the
convergence of the L*-norm of the discrete density u' (Figure 6) showing the behaviour
|ut]lo — [|ullo < Ch* with & ~ 1.3.

CONCLUSION

We close the present paper with some remarks. We have realized an O(N(log N)?)
implementation of a fully discrete Galerkin boundary element method for potential prob-
lems in general polyhedral domains. For the problems considered the method as well
as the implementation converge at interior points of the domain with essentially O(h?).
The implementation is sufficiently general so that other partial differential equations of
mathematical physics, such as Stokes, elasticity or Helmholtz (for moderate wavenumber)
can be easily accomodated [LS]. Problems with N > 10° DOF can be computed in core
on a serial workstation in less than half an hour (see Figure 3).

For a simplistic complexity comparison with a FEM in 2, we assume uniform mesh
as for the BEM, and linear continuous elements. The number of unknowns in the FEM
would then grow like O(h™%), but the rate of convergence, using the H>-regularity in a
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Figure 3: CPU-time for the assembly of the compressed stiffness matrix.

convex polyhedron, would also be essentially O(h?). Using an optimal O(N) = O(h™3)
multigrid solver, we would therefore achieve convergence at an interior point of order
O(W=2/3) in terms of the work measure W whereas our wavelet BEM gives interior point
convergence of order O(W™'), i.e. the lower dimension of the domain to be discretized
pays off if the solution is only desired in a few points.

We finally emphasize that the quadrature- and compression strategies described here
apply verbatim also to curved surfaces with analytic parametrizations x; (see [PS]). Apart
from earlier work on collocation schemes (see [Sch], [R]), the present work appears to be
the first realization of a wavelet-Galerkin boundary element method for general surfaces
and second kind equations.
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Figure 5: Error at interior points versus N with bounds O(N!) and O(N (log N)?).

Error

Figure 6: ||u!||o — ||ul|o versus N with bound O(N~2).



implementation of the multiscale scheme. We solved (4) on several polyhedral domains
with quite similar performance. For all considered domains one can verify that Theorem
3 holds with s = § = 1 [LS]. We report here only those from the prism Q = T x (0, 1)
where 7" is an equilateral triangle with sides of length 1. The initial triangulation was the
coarsest possible one to cover I' and contained Ny = 8 triangles. For the right hand side

f of (4) we chose the harmonic function  sin(£z) cos(my) sinh(éwz).

Nonzero Elements

Figure 1: Number of nonzero elements in the compressed stiffness matrix.

In Figure 1, we show the number of nonzero entries in the compressed stiffness matrix —
we clearly see the predicted O(N (log N)?) behaviour. This, however, is not worth much if
the memory overhead used to administer the sparse data structure is excessive. Therefore,
in Figure 2 we show total memory used to store the compressed stiffness matrix AL (i.e.
memory used for the nonzero entries of A% as well as for the supporting data structure).
We see also here the predicted O(N(log N)?) behaviour. Next, in Figure 3, we show the
CPU time used to generate the sparse stiffness matrix AZ: this includes the time to locate
the nonzero entries as well as the set-up of the sparse data structure. We see here a
O(N(log N)?) behaviour rendering the estimates of Theorem 6 (numerical quadrature)
overly pessimistic. We also note that the total memory required to store the compressed
matrix at L = 7 and N, = 131072 unknowns amounts to 421MB which just fits in the
core of our workstation. At this level, the compression rate is, inclusive the overhead for
administering the sparse data structure, 3-1073. The CPU-time for the iterative solution
(GMRes) is shown in Figure 4. Its behaviour consonant to the number of iterations

level 1 2 3 4 5 6 7
iterations | 15 19 20 21 22 22 22

validates the bounded condition numbers of the compressed stiffness matrices A (see item
2 of Theorem 3).
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Abstract

We present a boundary element method on general polyhedral surfaces in space.

The shape functions are piecewise constant multiwavelets. The NV x N stiffness

matrix is numerically sparse, i.e. only O(N(log N)?) entries with a-priori known
locations need to be computed. Numerical results for > 10° unknowns are pre-

sented.

1 Model Problem and BIE Formulation

Let Q C R? be a bounded polyhedron with Nj straight faces I';, and bound-

ary I' = 0€2. In 2, consider the problem
AU=0inQ), U=fonl.

We look for U(z) in the form of a double layer potential, i.e.

Ute) = [ MO0 ) ds(y) = [ K(eyuly) ds()

E
dm|z —y| J
with n(y) the exterior unit normal at y € I', and obtain the BIE

— Jule) + [ K@ y)u()asy) = /()

for any point x € ' that is not on an edge or a vertex.

!Presented at the BEM 19 conference, Rome, September 9th to 12th, 1997.

(1)



2
Figure 1: Sequence {MZ}H) of meshes on I'.

2 Galerkin BEM

We assume each side 'y, of T to be triangular (this can always be achieved).

We generate a sequence of meshes {Mk}l on I'j, by successively halving

<L
the sides of each triangle 7' € M} (Figure 1). The corresponding mesh on

I'is M; = Ugﬁl M. with N; = Ny4! triangles T;, j=0,...,N;—1, on the
surface.
Similar to the classical panel method, we look for an approximate solu-

tion
Np—1

L L\ L
= 3 (ut}, o (1)
where ¢! is one on triangle 7} € M, and zero elsewhere. Inserting (4) into
(3) and collocating at the barycenters leads to the panel method. Here we
use instead the Galerkin method where we multiply the BIE (3) by test
functions ¢F and integrate over I':

[ k@) (—éu%) + [ K(yu'(y) ds<y>> ds(x)

= [ ¢H@) /() dS(2)
r
or, in matrix formulation,

(2 (a2 + [K2]) {ut} = {2} ©)

where mass- and stiffness matrix are given by

[ME] = diag { /(sof<x>)2ds<x>}, (7)

0<i<Np

KE] = {/w?(w)/f((w,y)wf(y) ds(y) dS(fv)} (8)

r

and {ui}, { ff} denote the solution- and load vector, respectively.
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Figure 2: Old and new refinement.

3 Wavelet Basis

The idea is now to pick a set special of shape functions {¢;}Z<L for which

most entries in the corresponding stiffness matrix can be neglected. Rather
than taking all degrees of freedom (DOF) on the finest mesh M, we now
keep some DOF on the coarser meshes and only add the DOF which give
new information (Figure 2). We observe that the new scheme leads to three
new shape functions which are discontinuous, piecewise constant and have
vanishing average. Clearly the new functions are equivalent to the old ones,
i.e. using the basis {wj-}KL instead of {cpf} does not change the BEM

solution:

Np—1 No—1 L—13N;—
R/ T o () RUES S DR (Tl RTANO
7=0 j=0 =0 j=0

. . l L
We may easily pass from the coefficient vector {u,/)}lSL to {uso} by the

pyramid scheme:

[Ho] [Hi] [Hy ]

{ugy ——» {ugy——» — {ug'} > {ug}

/ {uw} / / {uy} 4 ,

{uilp} \C}Q



ie. {uijl} = [H]] {u;} + [GY] {uifl} with block diagonal matrices of the
form

1
[Hl] = blockdiag 1 ERN1+1><NI,
1
1 -1 -1
[G1] = blockdiag j 71 *1 c RN+1x3N
111

The main point in using the wavelet basis is that the stiffness matrix [K ﬂ
can be “sparsified”: Let S]l- ={zel: ¢§(x) # 0} be the support of wavelet
% Then define the sparse matrix [f(ﬂ by

5 I . . 1 ol L—1-1
5] = { [Kw}(z,jxlc;") if dist(55,57) <« 2770 (4)
(1,3)(@3") 0 otherwise

and determine the solution {&5} of the system

(2 [ua2] + [&2)) {at} = () m

Note that [Mﬂ is diagonal due to the L*(T') orthogonality of the ). We

scale the basis {w;-}KL such that [Mﬂ is the identity matrix. It is known

[5][4][1] that the acc;lracy of the solution {ﬂi} is comparable to that of

{u

Lt in (6), but that the number of nonzeros in the compressed matrix
[KE] is < CNy(log Np)*.

4 Numerical Integration

In general, it is not possible to evaluate the entries of the stiffness matrix
exactly such that approximations must be used. For example Gaussian
quadrature formulas converge for analytic integrands, as it is well-known,
exponentially with a rate depending on the size of the integrand’s domain
of analyticity. The only difficulty that arises is that for given wé-, wé-', the
domain of analyticity of K (x,y)w;-(x)w;f,(y) and consequently the rate of
convergence of Gaussian quadrature applied to (8) may be very small if
dist(S%, S%) < max {diam(S]l-), diam(S]l-',)} such that the quadrature cannot
be performed in logarithmic complexity. This can be prevented by subdi-
vision of the larger panel (Figure 3) using the given sequence of meshes as
proposed in [5]. Now the integrals over each combination of the smaller
panel with a panel of the subdivision can be handled by means of Gaus-
sian quadrature of variable order depending on the level and the distance



Figure 3: Subdivision of the larger panel.

of the panels. Moreover, due to the subdivision the singular cases, i.e.
dist(S]l-, S]l',) = 0, are reduced to three basic cases: identical panels, panels
sharing a common edge or panels sharing a vertex. For these cases efficient
quadrature rules are available [6][3].

It turns out that the total cost of the assembly of the compressed stiff-
ness matrix [f(ﬂ is not greater than O(Ny(log Nz)?) kernel evaluations

3].

5 Implementation

For the implementation of our method we used the object oriented frame-
work for boundary element methods described in [2]. This framework pro-
vides the mathematical concepts of boundary elements such as subspaces,
dualforms, operators or functions, in terms of classes. Two major exten-
sions of the framework are necessary to cover the demands of our wavelet
discretization: a specialization of the base class DualForm endowed with the
variable order, composite quadrature rule of the previous Section and a spe-
cialization of the base class Operator to assemble and store the compressed
stiffness matrix.

For the sake of brevity, we only discuss the algorithmic aspects of the
underlying classes and omit their precise definition.

5.1 Quadrature Algorithm

The assembly of the stiffness matrix imposes the evaluation of the element
matrices Fpp, T,T" € UKt M. We manage this task by calculating the
corresponding 4 x 4 element matrices related to the standard basis functions
EZ¥. using the variable order, composite quadrature rule of the previous Sec-
tion and applying a transformation Ef. — EﬁT, afterwards. Algorithm 1
illustrates the recursive implementation of the subdivision. The initial call
integrate(T, T") evaluates the matrix Ef as well as its symmetric counter-



integrate(T,T") {
let [,I' € Ny such that T € M; and T" € My
if dist(7,7")>2"orl=1

evaluate the element matrices Efr, and Ef .
using Gaussian quadrature

else

for every T CT withT € Mgy
update E%.., Ef. with integrate(7,T)

0 i
return Epp and B

}

Algorithm 1: Composite quadrature rule, [ > ['.

part Ef., simultaneously. In this way the construction of the subdivision
which is identical in both cases is fully exploited. In the interests of effi-
ciency temporary matrices generated during the subdivision on higher levels
are cached, such that subsequent calls can profit. It turns out that a cache
size of O(log Np) together with a special calling sequence is sufficient to
guarantee an optimal usage of data.

5.2 Assembly and Compression

For a practical implementation it is essential, however, that the nonzero
entries in the compressed stiffness matrix can be localized also in essentially
O(Np) operations, i.e. without scanning the whole N? entries of the full ma-
trix. This objective is easily achieved if one exploits the tree structure of the
sequence of meshes as it is done in the function assemble() sketched in Al-
gorithm 2. With this function the compressed stiffness matrix is generated
by:

forT e MgU ...UMy
for 7" € M, assemble(T,T")

with a complexity proportional to the number of nonzero entries, i.e. O(Nf
(log Np)?).

For our compression technique we borrow from the well know encoding
algorithm of Ziv, Lempel and Welch which encodes repeated substrings. In
our case we only encode sequences of zero entries in the stiffness matrix by
their length. Note, that the symmetry with respect to [, I’ of the threshold
value a 277"~V of the compression implies a symmetric pattern of zero and
nonzero entries of the stiffness matrix (Figure 4), such that the simultaneous
evaluation of iy, and E}., in Algorithm 1 is justified. Moreover, the same



assemble(T, T") {
let [,' € Ny, j,j' € Nq such that 7' =T} and 1" = T/,
if dist(7,7") < a 2" and (I > 1" or j > j') {

(EYpi, EYp) — (Efp, Ef.p) — integrate(T,T")
store E%T,, Eﬁ,T in compressed form

if >0
for every ' C T" with T' € My
assemble(T, T")

}

return

}

Algorithm 2: Assembly and Compression.

pattern of compression can be applied to rows and columns of the stiffness
matrix. For a detailed discussion of this topic see [3].

6 Numerical Results

Here we present some preliminary numerical experiments obtained with
the described implementation of the multiscale scheme on a SUN Ultra-
Enterprise. We solved (1) on several polyhedral domains with quite similar
performance. We report here only those from the prism Q@ = T x (0,1)
where 7' is an equilateral triangle with sides of length 1. The initial tri-
angulation was the coarsest possible one to cover I' and contained Ny = 8
triangles. For the right hand side f of (1) we chose the harmonic function
3 sin(Zz) cos(my) sinh(éﬁz).

In Figure 5, we show the CPU time used to generate the sparse stiffness
matrix [f(ﬂ, this includes the time to locate the nonzero entries as well

as the set-up of the sparse data structure. We see here a O(N(log N)?)
behaviour showing that the contribution of O(N (log N)?) kernel evaluations
in the quadrature to the overall complexity is small. We also note that
the total memory required to store the compressed matrix at L = 7 and
Ny = 131072 unknowns amounts to 421MB which just fits in the core of our
workstation. At this level, the compression rate is, inclusive the overhead
for administering the sparse data structure, 3 - 10 2.
The number of iterations for the iterative solution (GMRes)

level 1 2 3 4 5 6 7
iterations | 15 19 20 21 22 22 22




Figure 4: Pattern of zero and nonzero entries of the compressed stiffness
matrix, ) = tetrahedron, L = 4. The wavelets ¢§- are ordered according to
the preorder depth first traversal of the triangles in Algorithm 2.

is independent of the number of levels validating the bounded condition
numbers of the compressed stiffness matrices as predicted in [5]. We point
out that the CPU-time for the solution accounts only for about 20 per
cent of the total CPU-time. Therefore, with the present method the BEM-
paradigm that most of the work is spent for quadrature is still valid and
a speed up similar to the one for dense matrices can be achieved with the
parallelization of the matrixassembly.

In Figure 6 the error at interior points is depicted. The dashed line
shown illustrates the bound O(N~!). Tt can be observed that the expected
convergence of essentially O(h?) is preserved by the compression. The same
is true for the convergence of the L2-norm of the discrete density u' (Figure
7) showing the behaviour |[u||y — ||ullo < Ch* with k ~ 1.3.
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