Eidgenossische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ziirich Swiss Federal Institute of Technology Zurich

hp FEM for Reaction-Diffusion Equations
[I: Regularity

J.M. Melenk and C. Schwab

Research Report No. 97-04
February 1997

Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule

CH-8092 Ziirich
Switzerland



hp FEM for Reaction-Diffusion Equations
II: Regularity

J.M. Melenk and C. Schwab

Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Ziirich
Switzerland

Research Report No. 97-04 February 1997

Abstract

A singularly perturbed reaction-diffusion equation in two dimensions is considered. We
assume analyticity of the input data, i.e., the boundary of the domain is an analytic curve,
the boundary data are analytic, and the right hand side is analytic. We give asymptotic
expansions of the solution and new error bounds that are uniform in the perturbation pa-
rameter as well as in the expansion order. Additionally, we provide growth estimates for
higher derivatives of the solution where the dependence on the perturbation parameter ap-
pears explicitly. These error bounds and growth estimates are used in the first part of this
work to construct hp versions of the finite element method which feature robust exponential
convergence, i.e., the rate of convergence is exponential and independent of the perturbation
parameter .
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1 Introduction

Numerous partial differential equation models contain large or small parameters. We mention only
the Navier—Stokes equations at small viscosity, the plate- and shell equations at small thickness,
nearly incompressible solids and so on. The presence of small parameters often implies that the
problem is singularly perturbed and much attention has been devoted in the past decades to the
asymptotic analysis of the solution; we mention here only [1], [2]. Typically, the solutions admit
decompositions into a smooth part, so-called boundary layers, and, in nonsmooth domains, corner
layers. While the asymptotic structure of the solution is known for many problems (see, e.g., [3],
[4], [5], [6]), the asymptotic expansions are often too complex to allow for the quantitative solution
of specific problems, and one has to resort to numerical solutions of the boundary value problem
(BVP) of interest. Here the singular perturbation character of the problem and the boundary
layer components of the solution cause stability (locking) and approximability problems. The key
to the convergence of a stable numerical method for these BVPs is the regularity of the solution,
particularly, bounds on higher derivatives.

To analyze the parameter dependence of solution derivatives of arbitrary order for a class of
elliptic, singularly perturbed BVPs is the purpose of the present paper. The main results are new
growth estimates for higher order derivatives that are explicit in the small parameter ¢ and new,
sharp error bounds of the asymptotic expansions of the solutions. These bounds are used in the
first part of this work to analyze an hp Finite Element Method (hp-FEM) with robust exponential
convergence for this problem class [7]. The techniques we employ, namely, Morrey’s regularity
theory and asymptotic expansions, are applicable to general elliptic systems and results analogous
to the ones obtained here likely hold true for many other, singularly perturbed elliptic problems;
this will be explored in future work.

1.1 The Model Problem
We consider the following model problem

Lou. = —’Au. +u. = f on Q C R?,

U = ¢ on OS2 (1.1)

where 01 is a closed, non-selfintersecting, analytic curve, f is analytic on €, ¢ is analytic on 9€,
and € € (0,1] is a small parameter.

As usual, we denote by L?(£2) the square integrable functions on Q and by H'(2) those functions
of L?(Q2) whose (distributional) derivative is also in L?(£2). The trace operator maps H'(2) onto
the space H'/2(0S2) by restricting the elements of H'(f2) to the boundary 9. H{ () denotes the
kernel of the trace operator, that is, it is given by those functions in H*(2) whose trace on 0 is

zero.
The weak formulation of (1.1) is to find u. € H'(Q) such that u.|sq = g and

B.(ue,v) = 82/ Vu. - Vudxdy + / uv drdy = F(v) == / fvdxdy Yo € Hi(Q). (1.2)
Q Q Q
Associated with this problem is the notion of an “energy”

lull? @ = Be(u,u) = e[ Vull L) + l[ullf2)



and an energy norm, being the square root of the energy. We have the a-priori estimate

[uclle.o < [[fll2@) + Cligll e (1.3)

for some C' > 0 independent of €.

The purpose of this paper to analyze the growth of the derivatives of the exact solution . of (1.1).
As the input data is analytic, standard elliptic regularity theory implies that the exact solution
u. is analytic on €, i.e., it satisfies estimates of the form

| D%u|| o) < |a]lC.KI Vo € N2

However, the constants C. and K. depend on ¢ and our aim here is to control explicitly the
dependence on ¢ of the derivatives of u.. Using the techniques of Morrey [8], we show in Section 3
(Theorem 3.1) the following estimate:

| D%l 20y < CK*' max (Jaf,e™ 1) Va € N}

with C, K > 0 independent of . Note that for || > e}, this yields an estimate independent of &;
roughly speaking, this means that derivatives of order higher than e~! “don’t see” the boundary
layers introduced by the singular perturbation. This estimate is also sufficient to prove that
polynomials of degree p can approximate the solution u. at a robust exponential rate provided
that the polynomial degree p is at least O(s7!).

For a description of the behavior of the derivatives D%u. of order |a] < 7', a more careful
analysis is necessary. It is well-known that the solutions of (1.1) exhibit boundary layers, that is,
in a neighborhood of the boundary 02, the behavior of the solution normal to the boundary differs
substantially from the behavior in the tangential direction. The description of the boundary layers
is done in terms of asymptotic expansions. The main purpose of our analysis in Section 2.3 is to
provide new error bounds for the remainder depending explicitly on the perturbation parameter
e and the expansion order (Theorem 2.7).

1

1.2 Notation

We introduce boundary fitted coordinates to define later on the asymptotic expansions of the exact
solution. Let (X (), Y (0)), 6 € [0, L) be an analytic, L-periodic parametrization by arclength of
the boundary 92 such that the normal vector (—Y”(6), X'(6)) always points into the domain €.
Introduce the notation x(6) for the curvature of the boundary curve and denote by T the one
dimensional torus of length L, i.e., R/jo 1y endowed with the usual topology. The functions X, Y,
and hence also k are analytic on T by the analyticity of 0€2. For the remainder of this paper, let
po > 0 be fixed such that

0<py < 77— 1.4
< Tl .
Then the mapping
Y [0,00] x T — 9 (1.5)
(p,0) = (X(0) = pY'(6),Y(0) + pX'(0))



is real analytic on [0, pg] X Tr. The function 1) maps the rectangle (0, pg) x [0, L) onto a tubular
neighborhood €y of 9€2. Furthermore by the choice of pgy, the inverse ¢! : Qy — 0, po] x T,
exists and is also real analytic on the closed set €.

For technical reasons we will be able to define the boundary layer expansion, that is, the inner
expansion, only in a neighborhood of the boundary 0€2. Therefore, we introduce a cut-off function
x supported by a neighborhood of 0€). For ease of notation, let us define x in the neighborhood
of 0 in boundary fitted coordinates (p,#). Fix

0 < p1 < po, (16)

and let x be a smooth cut-off function, defined on [0, 00) x T, satisfying

1 for0<p<
xz{ RS (1.7)

0 for p> (pr+ po) /2.

The boundary layer functions u?¥ to be defined and analyzed in Section 2 decay exponentially
away from the boundary. In order to describe this exponential decay, we introduce exponentially
weighted spaces.

Definition 1.1 Let a € R. Define the spaces HY, H} as the completion of the smooth function
on [0, 00) which have bounded support under the norms || - |lo.a and || ||1.o. These norms are given

by
o 1/2
e = { [ elr@pas)
Ooo 1/2
e = { [T (1P + 17w )
Similarly, we define for functions f : [0,00) x Tr, the norms || - ||o.a.co and || - ||1.0.00 via
o0 1/2
oo = {su ["elpPar
yeTL JO

oo 1/2
[l = {SUP /0 20 (| (2 ) + 10, £, 1)) dx} |

yeTL

For functions f of two variables, we introduce the short hand notation

2

s = Y e S e

|a|=p B1,...,0p=1

to control all derivatives of order p simultaneously. B
Finally, as the right hand side f of (1.1) is assumed to be analytic on {2 there is a complex
neighborhood €2 C C x C of ) and a holomorphic extension of f (for convenience again denoted

by f) to Q which satisfies
IVPfllpoey < Crplvy VP €Ny (1.8)



for some C, v5 > 0. As f is holomorphic on Q, there is a constant Yaf = vf such that

where A® denotes the iterated Laplace operator, i.e., A = 1d, AD = A, A® = AA, etc.

2 Analysis of the Asymptotic Expansion

In this section we present classical asymptotic expansions for the solution of (1.1). Our main result
is a new error bound for the remainder, Theorem 2.7.
The asymptotic expansions (defined more precisely in the next subsection) allow us to decompose
the solution u, as

Ue = Wypr + XuﬁL +7ru

where M € Ny indicates the expansion order, wy, is the truncated outer expansion, uf! is the
truncated inner expansion, x is the cut-off function defined in (1.7), and rj; is a remainder. That
the boundary layer functions uf¥ decay indeed exponentially away from the boundary 92 is proved
in Section 2.2. The error bounds for the asymptotic expansion, i.e., bounds on the remainder r,/,
can be found in Section 2.3.

2.1 Inner and Outer Expansion

For every M € Ny the outer expansion of order 2M is given by

M
wyy = Zs%A(")f. (2.1)
i=0
The function u, — wj)s then satisfies
Le(ua - wM) - f - LawM = 52M+2A(M+1)f‘ (22)

So, asymptotically as € tends to zero, the functions wj, satisfy the differential equation in 2.
However, the functions wj; do not satisfy the given boundary conditions g. We therefore introduce
a correction uP” of wy,, which will lead to the inner expansion. The correction u”” is defined as

the solution of

LBl = 0 in Q,
3 (2.3)
uBl = g - Ze% [A(i)f] 20 on 0f2. ’
i=0

The inner ezpansion is now an asymptotic expansion for this correction function u?”. In order
to define this expansion, we need to rewrite the differential operator L. in the boundary fitted
coordinates (p, ). If we introduce the curvature k() of 02 and the function

1

O’(p, 0) = 1— K(Q)p



we have (see, for example, [3])
Au(p,0) = 03 u— k(0)o(p,0)0,u+ o°(p, 0)9; u+ pr'(0)0*(p, 0) 0y .

Expanding the function ¢ in a converging geometric series gives

7(p.0) = 3" [KO)) = > k()7

) =0

where we introduced the stretched variable notation p = p/e. Note that we chose py < |||z ((0,1))
in (1.4) so that the power series expansion converges uniformly in (p, ) € [0, po] x [0, L].

Recall that Qg is the tubular neighborhood 9€ which is the image of the rectangle (0, py) x [0, L)
under the map . In this tubular neighborhood g the differential equation (2.3) takes the form

—&? {8§UBL+Zpi (aiapuBL+a’é guBL+ag89uBL)} +uPt =0 in Q (2.4)
1=0

where we introduced the abbreviations

@ =~ k@I, ab = i+ DO, @ = L a(e) " (6). (2.5)

For technical convenience let us also formulate (2.4) in terms of the stretched variable p:

—RuPt — Z(Eﬁ)i (ea10, u" + 2ab 05 uP" + 2as0, uP") + Pt = 0. (2.6)
i=0

Now, in order to define the inner expansion, we make the formal ansatz v = >~ 5’61(@ 6)
where the functions U; are to be determined. Inserting this ansatz in (2.4) and equating like
powers of € we obtain a recurrence relation for the functions U;:

~

~RU+U;, = F i=0,1,...,
E’ _ E1+13i2+13i3’

i—1
E' = ) 7o Uiy,

Jj=0
1—2
~ EPTRIPN
Fo= E ﬁ]agani—Q—j,
=0
i—2
3 i T ‘
Fy = E plaz0y Ui—o;
=0

where we used the tacit convention that empty sums take the value zero. As we expect the
boundary layer function u®* to decay away from the boundary 9Q and as we want to satisfy the



boundary conditions, we supplement these ODEs for the ﬁl with the boundary conditions

U — 0 as p — 00,
g — [f]ag ifi=0
Uipq = Gi:= _[A(i/2)f]8§2 if0 <7 <2M is even
0 otherwise.

The inner expansion of order 2M + 1 is defined as the function

2M+1 2M+1

uit (p,0) = > Tp.0) = 3 £Tilp/=,0), (2.7)

and it satisfies the boundary conditions
[t lon = g = Y e [AD flaq.

Remark 2.1: We defined ufF as the inner expansion of order 2M + 1 so that the first neglected
term of the formal asymptotic expansion Y = &'U; is of order e**2. This is precisely the same
power of ¢ as the first neglected term of the outer expansion Y oo e Al f truncated after the 2
term.

2.2 Properties of the Boundary Layer functions
By Lemma B.4 we see that the functions a}, | = 1,2,3, i € Ny of (2.5) satisfy

HDpCL;'”Loo([QL)) < CAApAi Vp,i € NO,Z = 1,2,3 (2.8)

for some appropriate Cy, A, and A. In fact, Lemma B.4 allows us to choose A > |5l Lo (j0,))
arbitrarily close to ||&| ze~ (o)), S0 that we may assume that

poA =:1q<1. (2.9)
Similarly, we see that independently of M there are Cg, G, and G such that
IDPGi|| 1= (jo.0)) < Cli + p)PGPG!. (2.10)

We are now in position to formulate the following two propositions which clarify the properties of
the functions U;. The proofs are deferred to Appendix A.

Proposition 2.2 For each o € [0,1) the functions U; defined above satisfy

K"K,

O Uillooo < Cp—t—2
|| 0 ||1,7 = U(l_a)Hl

(i +m)™*™  Vi,m €Ny (2.11)



for Cy, Ky, Ky chosen such that

Cy = 6Cq+1, (2.12)
K, = 2max(G,A), (2.13)

Ky, > 2max(24,G+1) such that (K;' + Ky 2K? + Ky 2K,)120, < (2.14)

DO | —

Proposition 2.3 Let « € [0,1). Under the same hypotheses as Proposition 2.2, the functions (7,
satisfy

N KKK ,
105 95" Uillo,aee < Cot—22{i + m+max (n —2,0)}'"™  Vi,m,n € Ny (2.15)

- (1 =)t
where Cy, K1, Ky are as defined in Proposition 2.2 and K3 > e satisfies

—1 —1 2 —2 —2 -2 —2
AK2 Ky + Kiky {(3 + K, Ky K;2<1. (2.16)
(1— A/K)(1 — 24/ K,5)(1 — e/ K3)

Proposition 2.3 yields the following corollary.

Corollary 2.4 Let K1, Ky, K3 and Cy be as in Proposition 2.3. The functions (72 can be extended

to functions holomorphic on
C x {z||Imz| < K;'e %},

On setting Ky := K3e?, K5 := K,e2, the functions ﬁl satisfy for allp > 0,1 € Ny, z€ C, (€ C
with |C| < K5 the estimate

6K2
1 —«

iMﬁ+49+<)§CX®ea%mz( )3%1—Kuqr1

where the constant C'(a) > 0 depends only on o € (0,1), Cy, and K.

Proof: Proposition 2.3 allows us to control the growth of the derivatives of the functions (71‘, and
we are therefore able to get bounds on the power series expansion of U;. By Lemma B.3, we have
for p > 0 the estimate

m 71 e+l
1 efaf)CUKl KQKB
/20[ (1 _ a)z—f—l

Therefore, for p > 0 and z € C, ¢ € C with |¢| < K5 ' we have

i+m

(i +m+n)

7y o~ 1 —ap ') m 77
07 35 U3 0)] < =05 05 il <

< 0505 Uip,0))
121" [¢I™ <
nim.
n,m=0
1 Ky \' < KP'K»(i+m+n)tm
Sk () 30 A g,
V2a(l — a) (I—a)) <= n!m!



From the estimate (a + b+ ¢)?*® < a®h’e®*"+%¢ valid for non-negative a, b, and ¢, we obtain
('l + m _'_ n)erm < iimmei+m+2n.

With the aid of Stirling’s formula, m! > C'm™e™™, we arrive at

00 omr om IA/ (ﬁ (9) ( 0 m+2n
5 09 Uilp, ek, y m™me
nemo< O ap i E K'mF(n m
Rt n' ' |Z| |C| — (O[)e ((1 . O()) ? . 1 n mme— m| | |§|

) K, \'. & 1
< Cla)e (W) £ RIS

= Cla)e* <(1ef(z>)liiee”<slzl (1 - Kye?(¢)) ™

This estimate shows that the functions (Afl are indeed entire in the first variable and holomorphic
in the second variable provided that || < K;'e™2. O

Lemma 2.5 Let Ky, K4, and K5 be given by Corollary 2.4. For every a € (0,1) there is Cy,, > 0
depending only on «, the function f, the boundary data g, and the function k (i.e., the geometry
of the domain Q) such that

}8” o ult(p 6’)’ CoSyyml (2K meKapepemar/e pmeNy, p>0

es}lp Hﬁp %' BL( )”LQ(p,oo) < CaSMm!(2Ks)m€K4p<’51/2717“3704)/E p,m €Ny, p=>0
€0

IA

where Sy is given by

2M+1 i
Ky(2M +1
s Z (86 o )) .

/ 1—a
=0

Remark 2.6: Under the assumption eeKy(2M + 1)/(1 — a) < gy < 1, we get the simplified
bound
Su < Clq)

where C(qp) is independent of M and €. As we shall see shortly, under a similar assumption (2Me
sufficiently small), the remainder r); is small in €. In the complementary case, i.e., 22M >> 1,
the asymptotic expansion loses its meaning; this is the reason why we prove estimates for high
order derivatives of the solution wu. of (1.1) separately in the next section without reference to
asymptotic expansions.

Proof of Lemma 2.5: By Cauchy’s integral theorem for derivatives we have for R > 0

o o Ui(p/e, 0 *ppm +Z€+C)dd
Uilofe:0) = / R/a 1K) (=2)PHH(=¢)mT ‘




On using the parametrization z = Rcost + iRsint, t € [0,27), Corollary 2.4 implies

11—«

< Coe™Pml(2K5) e (ﬂ) ilefap (G—KQ) i,

l—«o 11—«

i ) Ky \' .
0,9 Ui(p,0)| < Caapm!p!Rp(2K5)meapeK4R< e z) i

where we chose R = p+ 1 and used Stirling formula p! < CpPe™?4/27(p + 1) in the last estimate.
Therefore, we can conclude

oMl 2M+1 EeKi i
m i m Ty~ —p _—ap m K. 2
8 o ut (p,0)| < Z e Pe'(0} 05 Ui(p, 0)] < Cla)e e ml(2K5)™ e z; <1—a)

< Ola)ePe *Pm)(2K5)mefP Z

=0

" (e Ko(2M + 1)\
11—«

which proves the first estimate. The second estimate follows immediately from the first one. [

2.3 Controlling the Remainder

Let wy; and uPF be the truncated outer and inner expansions defined in (2.1), (2.7), and let x be
the cut-off functlon defined in (1.7). Then then remainder r); is defined by

BL
Ue = Wnr + XUpp + Ty

(We should note that the boundary layer function uf¥ and the cut-off function are defined in

boundary fitted coordinates whereas w); and u. are defined in the usual z, y coordinates so
that, strictly speaking, the term yu®l has to be understood as (yu%L) o~ on the tubular
neighborhood €y where 1 is the boundary fitted coordinate transformation defined in (1.5) and
yxufF is understood to vanish outside €)). The following theorem gives a bound in energy norm
for the remainder r,; which depends explicitly on the perturbation parameter € and the expansion
order M.

Theorem 2.7 For every M &€ Ny the remainder ry; satisfies ryy = 0 on 0S), and there are
constants C';, K > 0 depending only on the right hand side f, the boundary data g, the function k
(i.e., the geometry of the domain), and the cut-off function x such that

Irarlleo < C (e K (2M 4 2))*M 2.

Proof: For any M € NO we the remainder r,; is defined as ry; = v, — wyy — Xu L where w)y,
is defined by (2. 1) is defined by (2.7) and x is the cut-off function of (1.7). Hence, by
construction of uPl, rM = 0 on 0f). Furthermore, the remainder 7, solves the following elliptic
equation:

L.ry = L. (u—wM Xuff)— gMF2AMFY) £ LoxuF

= 2MPAMHD £ 4 2ANBE 4+ 2eVy - VulE — yLouBE.



Let us now estimate the L? norm of the right hand side. By the assumptions on f, cf. (1.9), we
have

|2 H2ACTED £l o) < C (e7ap(2M +2)"72.

Let us fix a € (0,1) for the remainder of this proof. As y = 1 for 0 < p < p; and x = 0 for
p > (p1+ po)/2, we obtain with the aid of Lemma 2.5

| AxubF |2y < Ca®?Spe /e,

e Vx - Vurf iz < Cag'?Sye /e

with Sy, defined in Lemma 2.5. Finally, by Lemma A.6, we have
HxLeuﬁLHLz(Q) < Ce'l? (Ke(2M + 2))*M*?

for some K > 0 independent of ¢ and M. Using the energy estimate e2(|Vru||72.q) + [rul|72(q) <
HLETMH%Q(Q) (cf. (1.3)), we obtain the following estimate for ry;:

Iralleq < O{e 2 AN fll i) + /2y e 2 12 (Ke(2M +2)P172 ) (2.17)

where C' > 0 is independent of ¢ and M. As a € (0,1) is fixed, we can bound
Sy < (2M +2) max (1, (K'e(2M + 1))*M+1)

for some appropriately large K’ independent of M and e. Using the bounds

2M + 2

api
e~ /E < e(ape)

2M+2
e~ (2M+2) ;—ap1/e < ( ) o~ (2M+2) _. (K"(QM + 2))2M+2’

we infer
Spe e < (2M + 2) max ((K”(2M + 2))* 2 e(apie) ™ (K'e(2M + 1))*M+)
which allows us to complete the proof of Theorem 2.7. 0

Remark 2.8: The proof of Theorem 2.7 shows that a slightly stronger statement holds. We
have actually proved the existence of constants K, C' independent of ¢ and M such that

Iralleo < C{€2M+2||A(M“)f||mo(m + eV (Ke(2M + 2))2M+2}.

Hence, if the right hand side f satisfies AM*D f =0, e.g., if f is a polynomial of degree 2M + 1,
then the e-dependence of the estimate is actually improved by a factor €'/2.

Remark 2.9: In the proof of Theorem 2.7, with the exception of AM+D f all the terms could
be bounded in exponentially weighted spaces. This means that, if AM+Df = 0 then we have
estimates of the form

Heﬁd(m)/aLE,,,M”LQ(Q) < 0(9,6)51/2 (KE(QM + 2))2M+2

10



where d(z) = dist(z,082) and S > 0 appropriately. From this, one can infer estimates on rj; in
exponentially weighted energy norms as the bilinear form B. in (1.2) can be seen to satisfy an inf-
sup condition on pairs of exponentially weighted spaces (cf. Proposition A.1 for a one dimensional
analog).

Remark 2.10: The proof of Theorem 2.7 shows that we have
| Lerar|| ooy < C (Ke(2M + 2))**2.
As ryr = 0 on 012, the classical maximum principle gives us the pointwise bound

7 ar ||z () < C (Ke(2M +2))*M+2.

As the boundary 0f2 is smooth, we can actually use the shift theorem for —A in order to control
higher derivatives of r;.

Corollary 2.11 Assume the same hypotheses as in Theorem 2.7. Then for each k € Ny there are
constants Cy, K > 0 depending only on k, f, g, x, and k (i.e., the geometry of Q) such that

7arll ey < Cre™ (K (2M + 2))*M+2 k e Np.

Proof: The proof is an application of the classical shift theorem and an induction argument on
k. We note that the corollary holds true for £ = 0 and k£ = 1 by Theorem 2.7. Furthermore, r,,

solves

—Ary = € 2L.ory —e ry in Q,

ry = 0 on 0f). (2.18)

If we proceed as in the proof of Theorem 2.7 but use Lemma A.7 instead of Lemma A.6, we can
estimate
Lol mn2iy < Che® F (eK(2M +2))*M Kk >2.

Hence the shift theorem allows us to conclude
7ol ey < Ck (5% (eK(2M +2))*M2 572”TMHH’C‘2(Q)>

for k > 2. The obvious induction argument concludes the proof. 0

3 Growth Estimates for the Derivatives

Theorem 3.1 Let u. be the solution of (1.1). Then there are C and K > 0 depending only on f,
g, and the geometry of Q (in particular, C', K are independent of €) such that

VPuc| 120y < CKP max (p, e ") (1 + ||uc]|-0) Vp € Np. (3.1)

11



Remark 3.2: The proof of Theorem 3.1 actually shows that a similar statement holds for the
Helmholtz equation: If u. solves

E2Au.+u. = f on Q C R?,

U = g on 0f2 (3:2)

then Theorem 3.1 still holds true.

Proof of Theorem 3.1: Let Br C 2 be a ball of radius R and denote Bg/, the ball of radius
R/2 with the same center. Proposition 3.3 below yields

IV 25 < CKPmax (p, e (14 [lucllen) ¥ € No

where C'; K > 0 are independent of ¢ and p. Let us now consider estimates at the boundary.
First, we see that we may consider the case of homogeneous Dirichlet data: As the boundary data
g is analytic, it can be extended analytically into €2, e.g., by taking as the extended function G
defined by

-AG = 0 on €2,
G =g on 0.

As 02 and ¢ are assumed to be analytic, standard elliptic theory gives that G is analytic on €.
Note that G is independent of €. The auxiliary function © = u — G solves

—A\i410 = f=f+E2AG-G=f-G on (,
w = 0 on 02

and by the triangle inequality we can bound
IVPull 2Banay < VPl 2Bane) + IVPGl 2 Brre) - VP € Ny

for balls Bg. It suffices therefore to get the desired bounds for .

In order to apply Proposition 3.12, we introduce a mapping to flatten the boundary locally: For
R > 0 and a point zy € 092, we introduce the conformal map ¢ which maps QN Bsg(zo) conformally
onto

G2R:{< y) |2 +y* <4R?, y>0}.

The transformed functions o( Y, f=fo( ! then solve

—EAa+ | Pa = fICYP on Gag,
u(x,0) = 0, —2R < x < 2R.

Furthermore, by the analyticity of 9, the function |(¢~ )' | is (real) analytic on Gr and hence
Proposition 3.12 is applicable (note that f and hence f |(C71)'|? are independent of ¢), and we get
the desired estimate for u, i.e.,

V7] 2y < CKPmax (p, eV (L4 illoc,)  Vp € No.

12



Applying Lemma 3.13 allows us to infer a similar estimate for u:
978 25, 00y < CK™ max (e (14 [l ppmnn) Y0 € Ny

where Bp is a ball or radius R’ > 0 with center x( such that B N C C*I(GR/Q). The constants
C, K' > 0 depend again on R, f, g, and the point zy but are independent of ¢.
A compactness argument allows us to conclude the proof of the theorem. O

The remainder of this section is devoted to the proof of Propositions 3.3 and 3.12 as they are at
the heart of Theorem 3.1. As all the estimates of Propositions 3.3 and 3.12 are intrinsically local,
we introduce the short hand

lvllr = |lvllz2Bg) for balls By of radius R,
[ol2r = IVollf + vl
lvllae = Ivllc2Gr for semi discs G of radius R,
lvlZc, = €lIVolg, +lvllE,:

By standard theory ([8], Chap. 5.7), we know that the solution u. of (1.1) is analytic on  and
our aim is merely to assert that the derivatives of u. grow indeed in the fashion indicated in (3.1).
In fact, we will follow the proof of [8].

3.1 Interior Estimates

In this subsection we consider the following problem
—?Au+ b(z,y)u = f on a ball By of radius R (3.3)
where b, f are analytic and satisfy the estimates

IV lewsmy < Crpl e, (3.4)
Vb imeny < CoBPpl Wpe N, (3.5)

for some constants C, Cj, v, and B > 0.

Proposition 3.3 Assume that u satisfies (3.3) and that f and b satisfy (3.4), (3.5). Then for
K > 1 satisfying (3.8) which is independent of € we have the estimate

max (p, e 1)PT2
Nip(u) < 2R P00 i) v —2 (3.6)

[p]!
where N, is defined in (3.7) below.

Remark 3.4: If f =0, then the estimate (3.6) can be strengthened to yield

max (p, =)+
Nig() < KPR

13



In order to prove Proposition 3.3, we need to introduce some notation.

1
Mpp(v) = — sup (R—7r)*|[VPl,,  pé€Ny,
P’ R/2<r<R
1
Np(v) = — sup (R-— )2t VP Ry, peNgU{-2,—1}, (3.7)
[p] R/2<r<R
[p]! = max(1,p).

From standard elliptic theory, we have the following a-priori estimate

Lemma 3.5 Let f € L*(Bg), u € H'(Br) N H*(B,) for all r < R. Let u satisfy Au= f on Bpg.
Then there is a generic C > 0 (i.e., independent of R, v, §, and f) such that

|V2u|? dedy < C/ (If1? 4+ 07 Vul|* + 0 *ul?) dady

BT Br+6

fO<r<r+d<Rand0 <6 <r. Similarly, if f and u are only defined on a semi-disc Gr and
if u=0 on the straight part, then

|V2ul? dedy < C/G (If1* 4+ 072 Vul* + 0 *|ul?) dady.

GT r+48

Proof: The proof can be found in [8], Lemma 5.7.1. O

Lemma 3.6 Let u solve Au = f on Bgr. Then there is C; > 0 independent of u, R, and f such
that
Nrp(u) < Cy [Mpp(f) + Nrp-1(u) + Npp-o(u)] Vp € No.

Proof: The proof is based on Lemma 3.5 and can be found in [8], Lemma 5.7.3. u

Lemma 3.7 Let u, v € CP. Then

p
VP (uv)| < @ V| VP,

q=0

Proof: See [8], Lemma 5.7.4. O

Lemma 3.8 Let b, u be analytic and assume that b satisfies (3.5). Then

Mp,(bu) < Gy i (Bg)pq (g)Q =2 ).

|
q=0 Eh

14



Proof: By Lemma 3.7 we have
1
Mpp(bu) < = sup (R —r)""?|VP(bu)ll,

p! R/2<r<R
1 p
< & osw =Y (V) v ),
P R/2<r<R =0 4q
< Gy Z( ) C= s sup (R=rprveal,
R/2<r<R
p R p—q+2 1
< Gy B (‘) — sup (R—r)m e g2y,
4=0 2 q* R/2<r<R
p p—q
BR R\"[¢g—2]!
< Cbz <7) <§) p Np,g-2(u).

q=0

t

Proof of Proposition 3.3: Let (| be the generic constant of Lemma 3.6 and choose 2K >
max (2, R,vR, BR) such that

R\’ YR\ CyR/(2K)
—) K2 = ) KMy K?) <1 .
C1Cfﬁ(2) (2[() + (1—BR/(2K)+ + )_ (3.8)
for all p € Ny. We will proceed by induction on p. As K > max (1, R/2), the claim holds for p = —2

and p = —1. Let us therefore assume that (3.6) holds for all —2 < p’ < p. As —Au = e 2(f — bu),
we get for p € Ny using Lemma 3.6 and Lemma 3.8

Npp(u) < Ci{e?Mpy(f —bu) + Ngp1(u) + Ngpo(u) }
< Cl{g_QMR,p<f) I 8_20bi (?)pq (2)2 lq — 2]!N3,q,2(u) N

q=0

+Npgp-1(u) + NR,p—Q(U)}-

From the induction hypothesis (3.6) we obtain

R —2,e71)4
Npp(u) < 016_2MR,p(f) + Ci(||ulle,r + 1){01, < ) <§) —2quax (q ; e ) n
q=0 :
)P

max (p — 1,71 +! 1

LRt +Kmax(p—2€ }
p—1]! [p—2]!
As we have the estimates
1 p! 1
5_2—'% max (¢ —2,e" 1?7 < — max (p, e hpt2
pq p:
L_p max (p — 1,e )P < 1 max (p, e~ )P,
plp—1]! -
1 p —1 1 —1\p+2
— max (p — 2, )P < —max(p,e )P
ptlp—2]! ( ) p! #:e7)

15



we obtain

max (p,e ")
p!

p — 2
o () (¢ )

ClgizMR,p(f) +

+2
Nrp(u) < Cie™*Mpy(f) + K7 (|fulle.r + 1) x

max (p, e~
p!

)
K" (Juller +1) X

IA

Gy (R/(2K))*

XCI{CH — BR/(2K)

+ Kt +K*2}.

Finally, as we have

R
Mgy (f) < CpyPVm (5) ;

e+ 1) x

C1Cpy/T (§)3K2 (ﬁ)p + Cl{CbM + K 4 Kz}] .

x 2K 1 — BR/(2K)

The fact that the bracketed expression is bounded by one by the choice of K in(3.8) concludes
the induction argument. O

3.2 Estimates on Straight Parts of the Boundary

The strategy to get estimates near the boundary is to control first the derivatives in the tangential
direction and then in a second step control the normal derivatives. We consider the problem

—e?Au+bu = f on G,
u = 0 on I'p

(3.9)

where G is a semi-disc of radius R and 'y is the straight part of 90Gg. Without loss of generality,
we may assume that
Gr=A{(z,y)|*+y* <R, y>0}.

We assume that the functions f, b are analytic on G and satisfy the estimates

VP fll Lo (G r)
I VPb|| oo (Gr)

CyvyPp! Vp € Ny, (3.10)

<
< C,B’pl  VpeN,. (3.11)
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Additionally, we introduce the notation

1
My, () = ~ sup (R—r)"*ov]g,,
’ P R/2<r<R
1
— sup (R—r)P"?||V?0Pv|q, ifp>0
N _ p! R/2<r<R
R,p<v> - +2 2t .
sup (R —r)P™ ||V Po)|q, if p=-2,-1,
R/2<r<R
1
N;?,p,q(v) = — % Sup (R— 7“)1”+‘1+2||85+2 ’Pv|g,, p>0,qg> -2, (3.12)
[+ 4! r2<r<r
~ 1
Mpy(v) = — sup (R—1)""?|VP0|g,.
P R/2<r<R

Note that we have N}’%,p,o < Nll%,p' We have

Lemma 3.9 Let u € H'(GR) solve Au = f on Gr and assume that u = 0 on the straight part of
Gr. Then there is a generic constant Cy > 0 such that

Nj%,p(“) S C? {M;%,p<f) + N;%,p—1<u> + Nll%,p—2<u)} .

Proof: The proof follows from Lemma 3.5 and can be found in [8], Lemma 5.7.3". u

Lemma 3.10 Let u, v € CP*9. Then

p q
p q m an —m 9g—n
ooz < S0 () (1) apereliog ozl

m=0 n=0

Proof: Can be found in [8], Lemma 5.7.4". O

Proposition 3.11 Let v € H'(GR) solve (3.9) on Gr and assume that f and b satisfy (3.10),
(3.11). Then there is K¢ > 0 independent of € such that

pmax (p, e~ )Pt
[p]!

Proof: The proof is almost verbatim the same as the proof of Proposition 3.3. Instead of using
Lemma 3.6 we make use of Lemma 3.9. In particular, the constant K¢ will be chosen such that

K¢ > max (1,7R/2, BR/2,v7R/2). O

Npp(u) < Kg* (1 + [lullcr)-

Proposition 3.12 Under the same hypotheses as in Proposition 3.11 there is K; > 0 given by
(5.13) independent of € such that

(p+q, e t)prat2
[p)!

where K¢ > 1 is the constant of Proposition 3.11 and Ny,

N/ (u) S Kg+2K$+2 max

R,p,q

A+ llullecr)  p=0,g= -2

is defined in (3.12).

»Dyq
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Proof: Choose 2K; > max (2, BR,yR, R) such that for all p >0, ¢ >0

e/ (5) () (3) ke sene s g s <

(3.13)
We will proceed by induction on q. By Proposition 3.11 and our earlier observation that Np , <
Npg,, the claim is true for ¢ = 0 and all p > 0, and it is easy to see that the claim is also true for
q=—2, q= —1: We have for ¢ = —2 that the claim holds for p =0, p = 1. For p > 2, we have

1
Npp-a(1) sup (R —r)"[|0f ulle, < sup (R — )22 V22 g,
fop=2 (P —2)! rj2<r<r (P —2)! rj2<r<r
R\?2
< (3) Nhpalo)
which concludes the case ¢ = —2. Similarly, for ¢ = —1, we observe that the claim is true for

p =0, and obtain for p > 1

1 —
(p—1)! R/ggp R(R — )P0, B ullg, < -1 R/;gp R(R P2 |,
: <r< | <re<

< (g)Q Npp-1(u).

Let us now proceed with the proof of the proposition. Let us assume that the induction hypothesis
is proven for —2 < ¢’ < ¢q. We have

N;%,p,fl (’LL)

—asu = Put+e(f—bu),
02002 u| < |08 ul 42|08 O f] + e 2|0 02 (bu)).

By Lemma 3.10, we obtain
q p
o008 (bu)| < (p) (q) 02 8 b 37 3
p
< Gy (p) (q)Bp+q_m_"(p+q—m—n)!|8;‘8;”u|.

Hence, we obtain for Nz (u)

N, o (u) = sup (R — r)PTaH2||gP 9912y,
R,p,q( ) (p+Q)!R/2§7P<R< ) H x Yy ”G

< Nppiog-a() + 5_2MR,p+q(f) +
4 Ld ptqg—m—n+2
- P\(4a cmen (B (p+q—m—n)[m—2+n]
C 2 Bp+q m—-n [ N’ .
+ Che Z Z <n) (m) < 2 ) (p + Q)' R,mm—Q(u)

m=0 n=0

T
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By the induction hypothesis
[m =2+ n]!Ngpmo(u) < KgP? K max (m — 2 +n,e )™ (1 + ||ull-qp),
and applying Lemma B.8 twice, we get

Ny qlu) < KRy 2 7

(1 + Jullegn) + e 2Mppiq(f)+

Rl (p+Q)
mn [ R prg-m—nt2 . max (m — 2 +mn, e )™t
£+ fulloan)e? 33 Bre- (—) ey e £
i (p+q)!
max (p + ¢, e )Prat? o
< KM K? TE (1 + flullegr) + & 2 Mppiqg(f) +
BR\PHo T emax (p4 q, e t)prat?
e +HuHeGR>Kp“Kq( ) ZZ( ) L el
o~ max p_|_q7 p+q+2
< < Plg(f) + KPP )
X|:K2K72+ Cb(R/(2K7)) ]
077 7 (1- BR/(2Ke))(1 — BR/(2K7))
Finally, as
_ R p+q+3
Mg l) < OVATE (5)
we conclude
) +2max(p+q, )p+q+2
Nppolu) < K§K? T (14 [Julle,ar) <
R\’ YR YR 7 2 2 2 2 Cb(R/(2K7))2
Vrel=) () () KK+ K2K-
Crv/ml (2) (2K6) (2K7) o Rt R BRI 2K,))(1 - BRJ(2KY))

As the bracketed expression is bounded by one by the choice of K7 in (3.13), the induction
argument is completed. O

Lemma 3.13 Let G, Gy C R? be bounded open sets. Assume that g = (g1,92) : Gi — R? is
analytic and injective on Gy, detg’ # 0 on Gy, and satisfies g(G1) C G. Let f : G — C be
analytic on G and assume that it satisfies for some e, Cy, v > 0

VP fll 2y < Cpry? max (p, e~ hyp Vp € No.
Then there are C, K > 0 depending only on Cy, vy, and the map g such that

||Vp (f @) g) ||L2(G’1) S CKP max (p, 5_1)p \V/p € NQ.
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Proof: The growth conditions on the derivatives of f imply that f can be extended to a holo-
morophic function (also denoted f) on G C C x C with G C G and G independent of € > 0. First,
we claim that there are dy, 7/, and C' > 0 depending only on v and C such that

1£C+ 21000, + 22() 2y < CeT° (3.14)

for all continous functions 2, 2o : G — C with ||z;[|ze@) < 0 < 0o, © = 1,2. As f is holomorphic
on G, there is §y > 0 such that for all (z,y) € G the power series expansion of f about (z,v)
converges on a ball of radius 2d,. For functions 21, 2o with ||2;]| () < 0 <y we obtain:

e+ 21(m)y + 2l ) = | 3 Dy (2| € S0 D ()5

a€eN? a6N2

Therefore we get

56+ 2100+ 2Dl < 32 1Dl

aeN3

<3 3 (0@ o) (@) )

=0 |al=p

1/2

< Z Hfo”LQ(G) <Z 2p) Z vafHL2 2p/25p

p=0 |lal=p
<¢; ¥ %(ﬁys*a)ﬁcf S 19_"’7,,2,,/25,,

o<pet " poe P

1
1 — V278

where we used Stirling’s formula in the form p! > CpPe™P and made the tacit assumption that d,
is so small that eyv/2yd; < 1 so that the second sum is finite. This proves (3.14).

As g is analytic on G there is a holomorphic extension (also denoted g) to G; € C x C. Thus,
there are 7, ) > 0 such that for all (z,y) € G;

P
< C«fex/iwé/a +C Z <6\/§75> < Cvfex/?yé/a + < Ce V2v8/e

p>e~1

lgi(z + 21,y + 22) — gi(z,y)| < nd, i=1,2, 21,2 € Cwith |z], |22] <& < dp. (3.15)

For any 0 < 0 < min (d},dp/n) we obtain by Cauchy’s integral theorem for derivatives for every
(z,y) € Gy and every a = (ay, ay) € N2

g)(x+ 21,y + 22)

Da(fog) (xay) = / / ledZQ
is1)=6 Jzajms (—21) 1T (=22t

D (f o g) (x, y)| < W/ | 5/ | 5‘f(g1(:t+Zl,y+Zz)792(x+21,y+2’2))}2 |dz1||dzs|.

By (3.15), we can write

g(x 4 21,y + 22) = g1 (x,y) + (1, G2(T 4+ 21,y + 22) = g2(2, ) + G
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where (7, (3 are smooth functions of x, y, 21, 22, and |(;| < nd, i = 1,2. Integrating over Gy, we
obtain after the smooth change of variables g(x,y) = (2/,y’) (note that 0 < ¢; < |det ¢'| < ¢y < 00)
and denoting (], ¢, the functions corresponding to (i, (» after the change of variables

D o a)e s < g | [ VG G+ G eyl )
As |C1], |¢5] < né uniformly in (2/,y') € G, |z, |22| < 0, estimate (3.14) yields
ID*(f 0 9) || 260y < 05‘—6'7 M/ Y0 < § < min (6}, 00/7).
In order to extract from this estimate the claim of the lemma, we distinguish the cases |«a|e large

and |ale small. If |a|e/(ny") < min (d7, do/n), choose § := |ale/(nY') to get

ID(f 0 9)||z2(cy < Cleny’)¥leol,

If |a|e/(ny') > min (6}, d0/n), choose § := min (), d9/n) and observe that e~ < |a]/(n7/d) to
arrive at
ID*(f 0 9)|l12(cy) < Cal 6 1lel

which completes the proof. O

A Derivative Estimates for the Inner Expansion

A.1 Preliminaries

In this Appendix we want to analyze the growth of the derivatives of the functions generated
by the inner expansion. In order to do so, we need to consider first the following simple one
dimensional boundary value problem.

—u"+u = f on (0, 00),
u(0) = geR, (A.1)
u — 0 asx — oo.

Proposition A.1 Let 0 < a <1 and f € H2. Then there is a (unique) solution u of (A.1) which
satisfies

ol < 7o 11 o+ Il (A2)

Proof: Let us first observe that the function ge™ solves the homogeneous equation and satisfies
the Dirichlet boundary condition at x = 0. As

1
e e <
Hg Hl, = ‘.ﬂm
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we may therefore restrict out attention to solving (A.1) with homogeneous Dirichlet data, i.e.,
g = 0. In order to do so, we introduce the Hilbert spaces

Vo={uec H|u0)=0}, V.,={uecH, |u(0) =0},

and define on V, x V_, the bilinear form
B(u,v) = / (u'v' + uv) dx.
0
By Schwarz’s inequality, this bilinear form is well-defined, and in fact we have

B(u,0)] < luliallvli—a Vi€ Vave Vo,

We claim now that B satisfies the inf-sup condition. Given u € V,, choose v(x) = e***u(z). We
have v'(z) = €2**(2cqu + ') and therefore

[l r— /0 e 20w (v’2 +1)2> dx :/0 e ((2au+ u')* + u?) du

/ e ((80? + D + (40 1 3/2)u%) d < OfJul?,.
0

IA

On the other hand,

[e.9]

B(u,v) = / e*** ((20m + u')u' + u?) da = ||ul|], +/ e***20m'u dx
0 0

o0
> ulli,— a/o e [u’2 —|—u2] dx
l -«

= (I—a)lullf, > [ull1allvfl,-a-

Furthermore, it is easily seen that for any 0 # v € V_, we have sup,y. B(u,v) # 0. Therefore,
the problem

find u € V,, such that B(u,v) = / f(z)v(z)dx YoeV_,
0

has a unique solution u which satisfies

0 < =1/l

as desired. 0

A.2 Controlling the 6 derivatives of the inner expansion: proof of
Proposition 2.2

Proof of Proposition 2.2: Let us first see that Proposition 2.2 is true for ¢ = 0 and ¢ = 1. As
Fy = 0, we have Uy = Go(0)e™”. We have Fy = Uy and therefore, U, = 10Go(0)e " + G1(8)e™
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UO and U1 are analytic in both p and 6. We will now proceed by induction on i for all m 6 Ny
simultaneously. The formulas for UO, U, show that (2.11) is true for ¢ = 0 and ¢ = 1. Let
us therefore consider the case i > 2 and assume that (2.11) holds true for all m € Ny and all
J<i—1.

As all the U; are analytic in 6, we may differentiate the differential equation with respect to 6.
For each m € Ny we therefore get that J;" U; satisfies

—03 o' Ui+orl, = orF, on (0, 00),

85”@(,/0\,0) — 0 as p — 00.

Proposition A.1 gives the a-priori estimate

m 77 3 m m
||89 UiHlvO‘voo S m |:||60 E||0,a,oo+ ||D GiHL‘X’([O,L))]
3 5 .
S 1z a [Z 105" Fillo.a.00 + ”DmGiHLw([QL))] : (A4)
=1

Let us estimate each of the four terms on the right hand side separately. Let us first deal with
oy Fr. We have

i—1 m
oy B} = ZZ( )Dﬂa{ﬁfag%—“aﬁmlj.
7=0 pu=0

By Lemma B.1, we have for each fixed 6 and j

17 95 0, Uil < 6775779105 Uimi—jllr,ass
<5 Op KK (m = i — 1 — )R (1 — o — §) T

where used the induction hypothesis. Lemma B.2 suggests now the choice § = (1 — «)j/i. We
obtain

KfﬂﬂuKéflfje—j(m —p4i—1- j)m—u-ﬁ-i—l—j ;
C(U — ~ 1

(1 —a)(i—j)
m—p pri—l—j _—j _ S TR m—pti—1—j
< CUKl Ky 7e?dim—p+i—1—j7+1) i
(1 —a)(i—j)~

where the second estimate was justified by the fact that m — pu+1¢—1— 7 > 0. This estimate
together with the assumptions (2.8) implies

177 05" 3, Ui—1jlo,an0c

IA

KMKi
(1—a)
i—1

x> D Cj) p AP KT K G e (m— i — 1= j o+ 1)t
pn=0

§=0 p=

K 1

Ham FlHano S CYUC(A

,l'i
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Lemma B.6 with the particular choice b =1, a =i — 1 — j is applicable, and we obtain
K"K} Ki'x
(1—a)
i—1 m .
X Z ZAMAJK;ﬂK;Je—j(m +i—1 —j + 1)m+i—j—1

§=0 p=0

10" Fl”ano < CyCa

,L'Z

Now, Lemma B.7 is applicable with p = 0 (implying v =0),a =m — 1, and b =1, i.e., a > —1,
and a + b =m > 0 and the expression simplifies considerably:

i—1 m
m o K"K} . )
”ag Fi1|’0,a,oo < CUCA( ;K ZZAHAJK “K J (m—i—l) it (1+1 2
7=0 pu=0
Z+m i+m— 1K— _
oyt 21— AJK\1-24/K,

if A/Kj, 2121/ K, < 1. Let us now turn to 0" ﬁ’f. The estimates are completely analogous to those
for 9* F'. We have

CuCy

i—2 m

opEE=>">" ( )Dﬂag Po U, .
j=0 pu=0
As before Lemma B.1 with § = (1 — «)j/(i — 1) and the induction hypothesis lead to

KPP R emi(m — 40 — §)mrtisi (g — 1)1

O Uiz jlloam < C . A
179 2-jll0ae0 < Cu ) (i—1—j) 1

Therefore, we obtain for ;" ]312

K"K}

WKKX

19" Fllo,,00 < CuCia

i—2 m . ;
- S o — 1)t
><§:§Z:<m)““mﬁﬂk1“Kg%z%wv—u—ki—jyn““J.<Z b
== \n (i =1 =gyt
As i1 —j > 2, Lemma B.6 is applicable with a =i — 7, b = 0, and we get

K"K}
(1 —a)t

i—2 m ) i
o , TR (R L
X E E AFA KKy e ?(m+1+i—1-—7) i 1](2»_1_‘7-)%17]"

Now choosing p =0, a =m + 1, b = 0, and replacing ¢ by ¢+ — 1 in Lemma B.7, we get

105 F2{|o.000 < CurCla _K2K52x

Jj=0 p=0

KK i—2 m

108 E llo.ace < CUCAWKQK Z ZAMA]K ey Je i (m 4 )i+ 2
j=0 p=0
< CyC 1 2 i K2K 2 _ .
< CpCa (1—a)i-! 1449 1~ A/, 1—24/K,
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Let us now deal with 9" ]/7;-3. We have

i—2 m

RE =3 (7:;) Dal Oy Uy

Jj=0 p=0

As before Lemma B.1 with § = (1 — «)j/(i — 1) and the induction hypothesis lead to

Ky IS e n — i — 1 — )it - 1)

Oy Uia—jllo,am < C . L
1770 2-jlloacc < Cu )y —1—j) 1

Therefore, we obtain for ;" ﬁf’

~ K™K}
m 72 1 2 _9
105" Fi llo,a,00 < CUCAWIQKQ X
i—2 m m (Z 1)1;1
§ E VAR AT R =T =0 (0 _ C 1 Ame—ptiol-j -
Xj:ou:()(/i)M.AAKl Kotelm=pri=1-J) (i —1—j)y—1-3

Asi—1—j > 1, Lemma B.6 is applicable with a =i —1— 7, b =0, and we get

~ K"K:
O F2loace < CpCp—r—2_K K>
|| 0 i ||0, 00 = VU A<1 _()é)zfl 139 "X
ZS_Q Em APFAK TP, e SRR R (e D
X VK e T (m i — 1 — ) ==

§=0 p=0
Now choosing p = 0, a = m, b = 0, and replacing ¢ by ¢« — 1 in Lemma B.7, we get

i—2 m

K"K

108" F2|l0.000 < CUCA7<1 — a)z‘—lKlK{Q Z ZAN[U’K;NK;J@*J(m 4o 1)1 )
j=0 p=0
KmKi(m—l—Z')eriil 1 1
< COpCp——2 4 KiK;? —.
= U eyt 1 AR 1 - 24/K,

Finally, we have by assumption
D™ Gl oo o.0y) < CaG'G™ (5 + m)™™.

The a-priori estimate (A.4) therefore gives

S K"K (i +m)™™
Hae UiHl,a,oo < Cu (1 _ a)iﬂ
} _ 3 3C, 3cq faN (a\"
x |{K;'+ KK} + K3 °K — + (—) ra
{ 2 2 1 2 1} (]_—A/Kl)(l_ZA/KQ) CU KQ Kl

The definitions (2.12), (2.13), and (2.14) of Cy, K;, and K, imply now that the bracketed expres-
sion is bounded by 1 which concludes the induction argument. O
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A.3 Controlling all derivatives of the inner expansion: proof of Propo-
sition 2.3

Proof of Proposition 2.3: We will proceed by induction on n for all 7 and m simultaneously.
As K3 > 1, Proposition 2.2 implies that (2.15) holds for n = 0 and n = 1. Let us therefore see
that (2.15) is true for n > 2 under the assumption that the claim of the proposition is true for
v < n — 1. For notational convenience we introduce the new parameter

p=n—22>0.
Differentiating (A.3) p times, we get
—0; 09" Uy = 0, 04" Iy — 0, 0" U (A.5)

Now, we proceed just as in the proof of Proposition 2.2. Let us first consider

i—1 m min(p,j) .
£ ()0

7=0 u=0 v=0

Without loss of generality we may assume that ¢ > 1, for otherwise ﬁ’l = 0. By Lemma B.1 we
have, together with the induction hypothesis (and the estimate max(p — v +1—2,0) < p+ 1),
for 0 < v < min (j,p) and each fixed 6

570 7 Uit o < 6707 = wp e U7 8 T loass <

Km ,LLKZ 1— .]Kp I/+1€_(] V)<,]—V)] V<m M+Z_1_j+p+1)m M+Z 1— _]
5] V(l—()é—(S)Z 1—j5+1

Lemma B.2 suggests the choice 6 = (1 — a)(j — v)/(i — v) which leads to
1705 8 Ui lloase <
K KR e U — b i = 1= j b pt Do — )i
(1)l |

Together with the assumptions (2.8), we arrive at

SN KszKp-H i—1 min(j,p) m
10505 Flllone < CoCam g 0 K z;z()()(yu
=0 p=

=0 v

<Cy

<Cy

(m—p+i—1—j+p+ )mrrlmi(; — )=
(1—a)™(—j)~ '
As before, we apply first Lemma B.6 witha=i—1—-75>0,b=p+ 1> 1 and then Lemma B.7
witha =m —12> —1, b =1 to obtain
KszKp-f—l

m 71
||(3§ ' F o,a00 < CUCAWK X

X APAT KK, K e UmY)

i—1 min(j,p) m
X Z Z ZAMAJ’K;MKQ—jK?’—ue—(j—u)(l — o) (m+i +p)m+i—1e(1+ln2)j.

j=0 v=0 p=0
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We conclude
108 35" Fi[|o,0,00 <

K KiKE™ OAK K1
7(Z+m+p)m+z 1 Af)o 3

<Cy - .
(1 a) (1— A/K)(1— 24/ K5)(1 — e(1 — a)/K3)

The terms Z?’f and 1/7\}3 are treated similarly. Without loss of generality, we may assume that ¢ > 2
for otherwise F? = F> = 0. We have,

i—2 m min(p,j) .
Ll S R

7=0 u=0 v=0
As before Lemma B.1 with 6 = (1 — a)(j — v)/(i — 1 — v), the induction hypothesis, and the
estimate max (p — v — 2,0) < p, we get
17705 057 Uica—jlloace <
Km ,quQKz 2— ]Kp Ve—(] y)(m M+Z_j+p>m uti— ](’l—l—l/)l 1-v
A=) G- 1) - '
Inserting this and the estimates (2.8) in the definition of F2, we obtain for 9% o F2,

. KszKp - i—2 min (j,p) m j
105 05 F2|’0aoo<CUﬁCAK2 222 Z Z( ) < )(y)’j!x
Jj=0 pu=0

m—p+1+i—1—j+p)ymrtit-l=iG 1 —py-1-v

(=1 |
Applying Lemma B.6 witha =i —1—3j4+1 > 2and b = p > 0 and then Lemma B.7 with
a=m-+1,b=0, and ¢ replaced with i — 1 leads to

KMKiKY

< Cy

J

XAPATKTPK, T Ky Ve UY) (

105" 0% F2lo.a00 < CuCart— 2 KK,
(1—a)~!
i—2 min (j,p) m _ ' ' | |
X ZA“AJK;“K;]K;VQ*(]*V)<1 — )’ (m+i +p>m+le(1+ln2)j.
7=0 v=0 p=0
We conclude
185 05" F2{lo,a00 <
K KiKYY 4 CAKZK; 2K
SCU7“(2+m+p)m+z A .
(1-a) (1— A/Ky)(1— 2A/K2)(1 —e(1— a)/K3)

Let us see that the term E3 is also under control. Without loss of generality, we may assume that
i > 2 for otherwise F? = 0. We have,

i—2 m min(p,j) .
S5 E () rura e

7=0 pu=0 v=0
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As before Lemma B.1 with § = (1 — a)(j — v)/(i — 1 — v), the induction hypothesis, and the
estimate max (p — v —2,0) <p
705 ™ Ui o jlloae <
Ay S R B R B e R )
=) (i — 1= )1 |

< Cy

Therefore, inserting this and the estimates (2.8) in the definition of ]3{9’, we obtain for 9% 95" ﬁ? ,

KM KiK? 2 e Gp) m j
m 193 3
||8p8 F ||ano < CU< — ) CAKlK E E E ( ) ( ) (V) vlx

= v=0 pu=0
(jfl/)(m_:u+l_ L—j+p)m G —1— )™

(=) (i = 1=y |
Applying Lemma B.6 witha=i—1—3 > 1 and b = p > 0 and then Lemma B.7 with a =m > 0,
b =0, and ¢ replaced with ¢ — 1 leads to

K"KiK?Y KlK "

(I —a)-!
i—2 min (j,p) m

X Z Z Z AﬂAJK;uK;nguef(jw)(l _ a)”(m +i—1 +p)m+i71€(1+ln2)j.

7j=0 v=0 u=0

X APATKTHK, K e

||8m6pF3||Oozoo < C(UC(A

We conclude
102 05" F¥ lp.a00 <
m It 2 _ _
Ki K2K§: (i = 14 m+p)ym+i CaKi K,y Ky .
(1—a) (1—A/K))(1—2A/K5)(1 —e(l — a)/K3)

Finally, by the induction hypothesis,

<Cy

K"KiKY
(1 —a)y+!

KPP KSKY (
(1— a)itt

102 95 Uilloase < Cu 3 (i + m + max (p — 2,0)) "

Cy i+m+p) K,

and we get therefore for ||97 9y (71‘”0,04,00

105 99" Uillo,aoe < 1105 95" Fillo,ao + 105 9" Uillo,0,00
KPP KiKE™?
( _&>l+1
(R KRR 4 GG TG

(1— A/K) (1 — 24/ K5) (1 — e/ K3)

By the choice of K3 in (2.16) we have that the bracketed expression is bounded by one which
completes the induction argument. O

Cy (i +m +p)*" x
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A.4 Controlling L.uPtf

Lemma A.2 With Cy, Ky, Kz, and K3 as in Proposition 2.3 there are constants C(a) and K > 0
depending only on the constants of Proposition 2.3 such that

. ~ i\’ [ ek, \' .
PR Us(p,0)] < Cla)plm!K™ (i) (6 2) i vp>0,0€0,L),

ae 11—«
K"K3KY

Aoy 9 i m o+ max (p = 2,017

||/p\ja§8glﬁi||0,a,oo S CU

Proof: The first estimate follows from Corollary 2.4 (and Cauchy’s integral theorem for the
derivatives) and the fact that |z7e™**| < (j/a)le™ for all z, j > 0. For the second estimate, we
use Lemma B.1 to get

17702 05" Uilloace < 0775777102 05" Usllo.as.0-

Choosing § = (1 — «)j/(i + 1+ j) as suggested by Lemma B.2 the desired estimate follows from
Proposition 2.3 and the bound (i + j + 1) < (4 + 1) jietitl, O

From the proof of Proposition 2.2 we can extract the following lemma.

Lemma A.3 With Cy, K1, K, and K3 as in Proposition 2.3 we have

- : ~ K KiKE" A
Vi,pm €No 805" Filloase < Y 10505 F/lloace < CUW(Z +m 4 p)m.
j=1
Proof: Follows directly from the proof of Proposition 2.3. O

Lemma A.4 For every M € Ny the function uff = S eil; satisfies for 0 < p < po:

2M+1
BL __ } : i 2 77 - o 2M+2 13 2M+3 132 2M+3 133
i=0
2M+1 (o)
2M+3 i ~j+i+1  j+i+1 i+1~j+i+1 j+i+1l a2 i+1~j+i+1, j+i+1 73
—€ E E P a0, + TP T ay T 0) T a0 | Uanir— -
j=0 [i=0

Remark A.5: The functions ﬁl are constructed in such a way that —8?) ﬁl + ﬁl — ]3, =0 for all
1 € Np.

Proof: The sum in the representation (2.6) of the differential operator L. has three parts. Let us
consider each part separately. For 0 < p < py, (i.e., for 0 < p < pg/e) each part is an absolutely
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converging series, which may be reordered. We have

2M+1 o0 0 jH14+2M41
} : } : j i l4ia 7T } : } : PRI
ﬁ’ale 8[3 UZ = ﬁ’ale 8/3 Uiflfj
i=0 j=0 j=0  i=j+1
2M+2 -1

= Z Zﬁ]ala UZ 1— j+ Z Z ﬁ]ajl@ Uz 1—j

1=2M+3 j=i—2M-2
2M+2 2M+1

_ Z EZFl—l— Z Z ﬁj 2M — 2+Z —2M— 2+18 U2M+1 ~

i=2M+3 7=0

2M+2 2M+1 oo
1
— 2 : €F1+€2M+3 § : E :gﬁj-i-H—l j+i+ a U2M+1 iy
7=0 =0

Similarly, we obtain for the second part:

2M+1 oo oo jH+2M+3
o oia2ria2 i ia2
E E f)’agg Jae Uz = E E ﬁ’aze 09 U¢727j
=0 j=0 7j=0 i=j+2
2M+3 1—2

00 1—2
_ . a2 ) a2
= E g’ E ﬁ’a28g Ui_g_j + E g’ E ﬁ]a289 Ui_g_j
=2 7=0 1=2M+4  j=i—2M-3
2M+3 2M+1

2M -3
— E EZFQ + E § —2M— 3+]az +j86 U2M+17j

i=2M+4 7=0

2M+3 2M+1 oo
L~ 1
— E 62@2 + €2M+4 E E :62/‘14—]—}—1 +j+ 86 U2M+1—j-
=0 j=0 1i=0

And completely analogously, for the third part

2M oo 2M+3 2M+1 oo
Z Z /p\ya]82+2+]8 U _ Z ng?) + €2M+4 Z Z gl/“l-i-_]-‘rl H—]—l—lae U2M+17j-
=0 75=0 7=0 =0
Inserting these three sums in the representation (2.6) yields the desired result. U

Lemma A.6 Let py be such that pyA =: ¢ < 1 where A is given by (2.8). Then there are K, C,
and C(«) > 0 depending depending only on q and the constants of Proposition 2.2 (C(«) depends
additionally on o € [0,1)), such that

0 p 6 d() 1/ 2 g ‘2 2M+42
{/ / ‘ 5UM ( ) )‘ } S C(O{)él/ (W) ’
70

6€l0,L) l—«o
IL.uBl(p,0)] < C(Ke2M+2)*M*,  0<p<p.

30



Proof: From Lemma A.4 we get

Ll (3,0)] < 22| Borgia(3,0)] + 24 | By (5, 0)| + € | By 10(5,6)|
4 e2M+3 Z [Z gzﬁj+z+1a{+l+18ﬁ + €z+1ﬁ7+z+1aé+z+1ag + é?HlﬁHHla?g,HH@g U2M+17j .
j=0 Li=0
Let us first estimate F) mi2- The change of variables p = pe and Lemma A.3 yields
PO ~ 2 1/2 R
{/ S Ca SV 9)‘ dp} < 2 Farealloac
p=0
2M+2
< C(a)51/2 (M) )
-«

From Lemma A.3 and Lemma B.3, we obtain for a = 1/2

82M+2|F\2M+2<ﬁ, 9)| < 052M+2H8[) F\2M+2H0,1/2,oo < Cle2M+2 <2K2)2M+2 (2M + 3)2M+2
< Ce(2K,e(2M +2))°M 2.

Completely analogously, we obtain the appropriate estimates for ﬁZQM 43 and ﬁSM 13 if we observe
that we have have by assumption € < 1 and that we can bound

(2M + 3)*MF3 < (2] + 3)e(2M + 2)2MF2 < £22MF2(2)[ 4 2)2M+2,

Let us now turn to estimating the double sum in the expression for L.uPr. We will only consider the
terms involving a4 i+itl , the others being handled completely analogously From the assumptions
(2.8) on the functions a1 It the assumption pgA = ¢ < 1, and the fact that we have 0 < p < py,
we obtain

S5 < Ca(FAY(FAYH < Cad' (FAY.
This leads to

IM+1 oo o, Ml

~ A
ST SR, Uy < E AN, U (A.6)
7=0 =0

By means of the pointwise estimate in Lemma A.2 (choose o = 1/2), we finally get the estimates

2M—+1 oo ‘
Z ZEzALJr]Jrl +J+18f) U2M+1—j
j=0 i=0
C 2M 12M+1 1 2 J . +1 N2M+1—j5
< (2eR)MH Y (A/(Kae®))' (G + 17 @M + 1= )1
7=0

S C<q)K2M+1(2M + 2)2M+2.
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for appropriately chosen K > 0. This estimate completes the argument for the pointwise estimate
of Lemma A.6. In order to conclude the other estimate, we invoke Lemma A.2 again to get

20 2M+1 oo 2
2ap/e 2: 2: ini4j+1 iti+lg 77
/ € e/ ep J a, 8[; U2M+1_j dp
p=0 j=0 =0
2M+1 2M+1

2 o . .
< e X A S 10, Do
5=0 j=0

K )2(2M+2) 2M+1

Z (] + 1)2(j+1)<2M +1— j)2(2M+17j)
j=0

K

11—«

2(2M+2)
<eC(a,q) ( ) (2M + 2)2(3M+2)

where K > 0 is again appropriately chosen. O

In a similar fashion higher derivatives of L.u®l may be estimated. Let us record one possible
result of this form.

Lemma A.7 Let py < ||k||zee(jo,))- Then there are C, Ks, Ko, and Ky depending only on f, g,
po, and Kk, (i.e., the geometry of Q) such that

|02 0 Loufi(p,0)] < CPmIKEKY e ™ (Kioe(2M +2))** 0<p<py, 0€[0,L), pmeN

Proof: We use the same representation formula for L.uP¥ as in the proof of Lemma A.6 and
estimate each term separately. We have by Lemma A.3 and Lemma B.3 with o = 1/2

€2M+2

O O Forya(p, 0)| < CM 2P0 05 Foprallo 200

< CePMF27P KM QUG MP2KET3 QM 4 2 + m + p 4 1) H2Hm
S 062M+267p(62K1)m(26K2)2M+2(62K3)pm! (2M + 2))2M+2

where we used the estimate (2M 4 2 +m + p + 1)2MF24m < (M - 2)2M+2ym2M+24m+2(p+1) <
C(2M + 2)2M+2pleme2M+2+2m+2(+1) - Hence, the term involving ﬁ2M+2 can be estimated as de-
sired. The terms involving ﬁQQM 43 and ﬁ23M 43 can be controlled similarly.

Let us now turn our attention to the double sum. Just as in the proof of Lemma A.6, we will only
consider the first term of the double sum as the the other two are treated similarly. Introduce the

short-hand

2M+1 oo
- E § i~j+l ititla 77 )
S = ep aq 8[; U2M+1_].
j=0 =0

We want to apply Cauchy’s integral theorem for derivatives. In order to do so, let us choose py > 0
such that pg < py < [|k||L~(0,)), and set 0 := (py — po)/2. We observe that by the analyticity of
the function x we have the existence of ¢’ > 0 and C’;, A > 0 such that

A = ¢ <1
laj(0+¢)| < CLA €N, 0€[0,L), (€C, [¢<7.
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We obtain by Cauchy’s integral theorem and Corollary 2.4

S(p+ 2,0+ ) ‘
 dzd¢
I2]= 5/< _y (=P (=)t

0705 5| = 7 spim!

2M+1 oo A o X e 2M+1—j ‘
< CePplmlg P N N (p o) A e ( e ) (M 41— )i
—
j=0 =0

where C' > 0 depends on Cy and §’. As we have by the assumptions py+ 8 < pj) and ppA = ¢’ < 1,
we have

] M - ek, \ 2T
m — —pei—m ~ i+1 77+ _ap 2M 41—
0705 5] < Cerplmts s T ;0: (p+ o)yt A emer (1 - a) (2M + 1 — j)?MH1

Finally, as we have the estimate

. j+1
P+ 5)j+16—aﬁ < <J + 1) 00— (+1)
«Q

we can conclude by fixing « € (0,1) and reasoning as in the proof of Lemma A.6 that
|02 05" S| < CePplmls 76"~ (2M + 2)*MH2 M2

for appropriately chosen K > 0. K is independent of ¢ and M. U

B Some Technical Lemmas

Lemma B.1 Let j > 0. Assume that o« >0, 0 >0 and f € H) 5. Then

N\ J
I f @)l <67 (2) 1 flloass
We allow 6 =0 for the case j = 0.

Proof: We write
|27 f(2)|[§ o = / 202220 f2() dr = / R P
0 0

As the function x +— 2%¢72%% attains its maximum at z = j/J, we get the desired estimate. U

Lemma B.2 Let o € (0,1) and 0 < j < B. Then the function § — §'(1 — a — §)P~7 defined on
0,1 — a] attains its maximum at

d=01-a)3,

@

and the mazimal value is

(1—a)’57B7°(B— ).
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Proof: It is convenient to consider the logarithm of the function, i.e., d — jInd + (8 — 7) In(1 —
a — 0). Computing the zero of the derivative of this function completes the argument. O

Lemma B.3 Let a >0, 2 >0, and h € H:. Then

1 —Qx
1Al @ery < —==€"*IIFl0.,

Via
00 1/2
{[[wopporal < el

Proof: For the first estimate, we use the fact that for a > 0 the function A decays at infinity
which produces the representation

h(z) = —/ R'(t) dt, z € [0, 00),
o 1
hiz)] < e (t)e dt‘ < ——e || g
)l < | [ et < <=,
This proves the first estimate. The second one is proved similarly. O

Lemma B.4 Let I := [a,b] C R be a closed bounded interval, f, g be analytic on I. Then there
are C', Ky, Ky > 0 such that

IDPf" gll oo (ry < CPIKTKY  Vn,p € Ny,
Moreover, the constant K1 > || f||Le(r) may be chosen arbitrarily close to || f||Le(r)-

Proof: The claim of the lemma follows by Cauchy’s integral formula. As f and g are analytic on
the closed interval I, there is a smooth Jordan curve L C C such that [ is contained in the interior
Int(L) of the curve L, dist(I, L) > d > 0, and the functions f, g are analytic on Int(L) U L. For
any z € I, Cauchy’s integral theorem now yields

2 [ rus,

D = (o |

P! n _
< %length<L)Hf”LOO(Int(L))Hg”Lw(Int(L))d P+,

Setting K1 = || f|| zeo(ms(r)), K2 = d ™', and C' = length(L)||g|| e (mmt(2))/ (27d) completes the argu-
ment. u

Lemma B.5 Denote ) the logarithmic derivative of the I functions, i.e., (z) = < InT'(x). Then

T

(i) Y(x) <Inz Va > 0.

(ii) 1 is monotonically increasing on (0, 00).
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(i1i) x— (1 +x) + z'(1 + ) is monotonically increasing on (0,00).
() ¢¥(z) = 3¢¥(iz) + WG+ 1) +In2 Vo >0.
(v) =M1+ )+ ¢v(1+x2)—1-Np(1+(1—-XNz)<In2  VAe]0, 1]z >0.

Proof: (i) follows immediately from 8.361.3 of [9]. (ii) follows immediately from the series rep-
resentation of ¢’ below. (iv) can be found as ex. 2.1 in 2.2.1 of [10]. For (iii), we use the series
representations of ¢ and ¢’ (8.362.1, 8.363.8, 8.365.1 of [9]):

1 - 1
Y(z) = _’Y—;‘Fx;ma

V(l+z) = @)+ -
where v denotes Euler’s constant. Therefore

T

w(1+x)—|—mb'(1+:c):—7+;k(k+x)+(k+x)2.

Termwise differentiation (which is justified by the uniform convergence of the termwise differenti-
ated series) yields

2k

f >
(k+x)3>0 orxz >0

NE

(W1 +2) + 2y (1+a) =

i

1

which proves (iii). Finally, for (v), we note that for fixed x > 0 the function h(A) = —Ap(1 +
Ar) + (1 +x) — (1 — N1+ (1 — N)z) is symmetric with respect to A = 1/2. Moreover, on
(0,1/2) the function h is monotonically increasing:

RN = — [0(1+ Az) + Aey (1 4+ Aa)] + [(L+ (1 — Na) + (1 — Na'(1+ (1 — Na)] = 0

the last estimate following from (iii) and the fact that for A € (0,1/2) we have Az < (1 — \)x.
Therefore, h is maximal for A = 1/2. We conclude

NG AT) + (L4 2) — (L= AL+ (1 N)a)
<~ a/2) + g1+ 2) — (1 +2/2)
S (L o/2) + (124 /D) + SU( 4 /D) 2 — (14 2/2)
< In2+ % (V(1/2 4 2/2) — (1 +2/2)) < In2

by (ii) and (iv). O
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Lemma B.6 Let m >0 and a, b > 0 such that a +b > 1. Then the function

I'(m+1)

——— (a+b+m— )T
Fim =+ 1)\ 2

[
is monotonically decreasing on [0,m] and therefore attains its maximum at p = 0.

Proof: Consider the logarithm of the function in question, i.e.,

fpg) = mT(m+1)—InI'm—p+1)+(a+m—p)ln(a+b+m— p),
, B B B L atm—p
fw) = vm—p+1)—In(a+b+m—p) P —

atm-—p
a+b+m—p

< In(m—p+1)—In(a+b+m—p) —

where we used Lemma B.5, (i) and the assumption a +b > 1. O

Lemma B.7 Letp € Ny, i € N, a > —1, and b such that a + b+ p > 0. Then the function

Fi(,g) s e 0¥ (p) (f)m U jtatbbp) ;)i

v)\v (1 —j)i—I

defined on
0<j<i—1, 0<wv<min(jp)

attains its maximum at v = j = 0.
Proof: For A € [0,1] let us consider the function
J = In f(Aj,5)

defined for j € [0, min (i — 1, p/\)] where we assume that all the factorials in the definition of f
are expressed in terms of the I' function and we set p/A = oo for A = 0. We claim now that this
function is monotonically decreasing in j for each A which proves the claim of the lemma. For

each fixed A\ we have

In f(A\j,j) =—(1+In2)j+Inp!—
—InT(p—Aj+1)—InT(N\j+1)+Inl(G+1)—In[(1-A)j+1)+
i —j+a)n(i—j+a+b+p) + (@ —Nj)In(i —Aj) — (i —j) In(i — j).

Taking the derivative with respect to j yields

d%,lnf()\j,j) = —(1+m2)+Mp(p—XNj+1)—
MA+ 1)+ (L +7) = (1 =NP(L=A)j+1) -

t1—Jj+a , . .
—Aln(i —Aj) — A+ 1In(i — L.
i—j+a+b+tp n(d = Aj) = A =j) +

—In(i—j+a+b+p)—
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By Lemma B.5, (i) and (v), and the assumptions a + b+ p > 0, a > —1, we have

d

d—jlnf()\j,j) < —(1+4+mIn2)+Aln(p—Aj+1)+1In2
1—J+a

t—j+a+b+p

An(p—Aj+1) = Aln(i — A\j) —

—In(i—j+a+b+p) —

—Aln(i —Aj) = A+In(i —j) +1

IA

t1—J+a
t—j+a+b+p

—In(i—j+a+b+p)+In(i—j)—
< Aln(p—XAj+1) = An(i — \j).
In order to obtain an estimate independent of A, let us maximize the function
g: A= An(p—Aj+1) — Xn(i — Aj).

We obtain for ¢’

1 1
'(A) =In(p— Aj + 1) —In(i — Aj) + \j -
g'(A)=In(p—Aj+1) —In(i — Aj) + ](i_)\j p_Aijl)

We see that ¢ > 0 fori <p-+1and ¢ <0 for s > p+ 1 and hence

g < gl)=Inp—j+1)—In(i —j) <0 ifi<p+1
=) g(0)=0 ifi>p+1.

Therefore, dijln f(Aj,7) <0 for all A € [0,1] which completes the proof. O

Lemma B.8 Let p, n € Ny. Then the function

7n%><£)@%%n—nﬂ!

defined for integer m € [0, p| takes its maximum at m = 0.

Proof: .
p RV _
(0)wsn—mr= 2T —m o)
is clearly decreasing as m increases which proves the claim. O
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