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Abstract

In this note isoperimetric bounds are derived for the maximum of the

solution to the Poisson problem for a plane domain. This extends previous

bounds of Payne valid for the torsion problem.
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1 Introduction

The boundary value problem

(1.1)







∆ψ + 1 = 0 in Ω ⊂ lR2

ψ = 0 on ∂Ω

is usually called the torsion problem because of its mechanical interpretation. Another
interpretation relates (1.1) to a laminar flow in a pipe of cross-section Ω. Then, ψ is
proportional to the flow velocity. A third important possibility is a stationary heat flow
problem with ψ measuring the temperature.

An important quantity in all these contexts is

S =
∫

Ω
|∇ψ|2 dx =

∫

Ω
ψ dx (dx = area element) .

In the mechanical interpretation of (1.1) S is called the torsional rigidity. A second
quantity of interest is

ψm = max
Ω

ψ(x) .

Many bounds for ψm and S are known, see e.g. [1, 2, 4]. In particular Pólya and Szegö
proved that

(1.2) ψm ≤
A

4π
,

with A denoting the area of Ω and furthermore that

(1.3) S ≤
A2

8π
.

Later on Payne [3] proved the sharper inequality

(1.4) ψm ≤
( S

2π

)1/2

and also gave the lower bound

(1.5) 4π · ψm ≥ A− (A2 − 8πS)1/2 .

In all these inequalities the equality sign holds if Ω is a disk.

In this note the primary concern is to give an extension of Payne’s inequalities (1.4), (1.5)
to the Poisson problem in the plane, i.e. the boundary value problem

(1.6)







∆u+ p(x) = 0 in Ω

u = 0 on ∂Ω

1



where p(x) is a smooth, strictly positive function satisfying

(1.7) −
∆(log p)

2p
≤ K

for some constant K. If K > 0 is an additional requirement is that

(1.8) K
∫

Ω
p dx < 4π .

Remark:

Problem (1.6) is equivalent to problem (1.1) for a domain on a surface of Gaussian cur-
vature K = − 1

2p ∆(log p) (see [1, 4] fo more details).

2 Extension of Payne’s inequalities

The analogue of inequalities (1.4) and (1.5) can be stated as

Theorem:

Suppose p(x) satisfies (1.7) and (1.8) in the simply connected plane domain Ω and set

A =
∫

Ω
p dx, S =

∫

Ω
|∇u|2 dx =

∫

Ω
u p dx .

Then one has for um = max
Ω

u the inequalities

(2.1) um −
1

K
(1− e−Kum) ≤

K · S
4π

and

(2.2) um +
( A

4π
−

1

K

)

(eKum − 1) ≥
K · S
4π

.

Equality holds in (2.2), (2.3) if Ω is a disk and p is of the form

p =
c

(1 + cK
4 r2)2

,

c = positive number

r = distance from the center of the disk .

Remark:

For K → 0 inequalities (2.1) and (2.2) reduce to the inequalities (1.4) and (1.5) of Payne
as a Taylor expansion with respect to K shows.

2



Proof of the Theorem:

Let Γt be the level-line where u = t and Ωt the domain enclosed by Γt. We set for
v ∈ (0, um)

(2.3) S(v) =
∫ um

v

(

∮

Γt

|∇u| ds
)

dt .

Then

(2.4) −
dS

dv
=

∮

Γv

|∇u| ds =
∫

Ωv

p dx =: a(v)

where we have used Green’s identity and defined the quantity a(v) such that

a(0) =
∫

Ω
p dx ≡ A and a(um) = 0 .

Next we make use of the fact that (see [1], p. 53)

(2.5) −
da

dv
=

∮

Γv

p
ds

|∇u|
a.e. in (0, um) .

By Schwarz’s inequality one has

(2.6)
∮

Γv

|∇u| ds ·
∮

Γv

p
ds

|∇u|
≥

(

∮

Γv

√
p ds

)2

At this point we can use Bol’s inequality (see [1], p. 36) which states that if p(x) satisfies
(1.7) and (1.8) then

(2.7)
(

∮

Γv

√
p ds

)2
≥ a(v)(4π −Ka(v)) .

Combining now (2.4), (2.6) and (2.7) we are led to the inequality

(2.8)
d2S

dv2
−K ·

dS

dv
≥ 4π

or in equivalent form as

(2.9)
d

dv

(

e−Kv ·
dS

dv

)

≥ 4πe−Kv .

Integration of (2.9) from a value v = v0 to v = um gives after some rearrangement

(2.10) −
dS

dv

∣

∣

∣

v0
≥

4π

K
(1− e−K(um−v0)) ,

since −
dS

dv

∣

∣

∣

um

= a(um) = 0.
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For v0 = 0 (2.10) reads

(2.11) A ≥
4π

K
(1− e−Kum)

or equivalently

(2.12) um ≤
1

K
log

( 4π

4π −KA

)

as noted by Bandle (see [1]).

If we now integrate (2.10) one more time from v0 = 0 to v0 = um we are led to

(2.13) S(0) =
∫ um

0

(

∮

Γt

|∇u| ds
)

dt =
∫

Ω
|∇u|2dx = S ≥

4π

K

[

um −
1

K
(1− e−Kum)

]

,

which is inequality (2.1).

(For the second equality sign in (2.13), see e.g. [4], p. 190). Inequality (2.2) is obtained in
a completely analogous manner: the first integration of (2.9) is now from v = 0 to v = v0
and the second is from v0 = 0 to v = um as before.

3 Remarks

(a) It was shown by Bandle (see [1]) that

S ≤
4π

K2
log

4π

4π −KA
−

A

K
.

If we write (2.13) as

S +
4π

K2
(1− e−Kum) ≥

4π

K
um

and use (2.11) and (2.12), we see that the upper bound for um given in (2.1) is sharper
than the bound (2.12), but it requires the knowledge of S or a close upper bound for S.

(b) There are other types of bounds that can be obtained from the differential inequality
(2.8). For example if we write it in terms of a(v) as

−
da

dv
≥ 4π −Ka(v)

and then change the independent variable and writing u in the place of v it becomes

(3.2) −
du

da
≤

1

4π −Ka
.
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This inequality can be integrated in many ways. As an example we perform a double
integration as follows:

(3.3)
∫ A

0

[

∫ A

s

(

−
du

da

)

da
]n
ds =

∫

Ω
un p dx ≤

∫ A

0

[

∫ A

s

da

4π −Ka

]n
ds .

Setting f =
1

K
log

( 4π

4π −KA

)

= upper bound for um one has e.g.

(3.4)
∫

Ω
u2 p dx ≤

2

K

(

2πf 2 +
A

K
−

4π

K
f
)

.

If instead of the double integral
∫ A

0

∫ A

s
( ) we select

∫ A

0

∫ s

0
( ) then we obtain

(3.5) S ≥ A · um +
1

K
(4π −KA) · f −

A

K
.

(c) A number of other types of bounds for problems (1.1) and (1.6) can be found in [1],
[2] and [4].
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