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Abstract

In this paper identities are derived which allow the computation of the

Coulomb energy associated with N charges in a central cell and all their

periodic images. These identities are all consequences of one basic identity

which is obtained in a simple and straightforward way. It is possible to extend

the results to other types of potentials as well.



I. Introduction

The calculation of the Coulomb energy of an infinite periodic system is an important

part of the numerical work in many applications. These systems are usually obtained

by considering N charges in a central box and all their periodic images. One of the

main problems is the acceleration of the slow convergence of the occurring sums. One

of the first paper dealing with this problem was by Madelung 1918 [7] who was mainly
concerned with Coulomb forces. In fact a new derivation of some of his central identities

will be given here. Madelung’s reasoning is restricted to the Coulomb case, whereas the

present derivation works for a general class of potentials (including all power potentials).

Madelung did not calculate the associated Coulomb energy, which is the hardest problem.

Ewald [4] developed a method to calculate the Coulomb energy which is still widely used.

His paper is rather difficult to read, but his method of derivation has influenced many
researchers for decades. In 1991 Lekner [6] rederived some of the central identities which

are in essence contained in [7]. But Lekner made an elegant application of some powerful

identities of Euler and Jacobi which were partly used by Ewald already. Lekner first

calculated the Coulomb forces and then determined the Coulomb potential from there.

Since the Coulomb potential becomes singular at a charge point, this procedure would

actually require a delicate study of the limiting behaviour.

In this paper the derivation of the central identities for the associated sums is based on a

simple basic lemma and ultimately leads to an equivalent formula for the Coulomb energy

as Lekner’s. For Coulomb forces it was given in [8].

The most important aspect of this formula will however be discussed in Part II, where we
consider the situation that there are many charges in the central cell (say > 102). Then

the amount of work required for N charges is proportional to N2 since 1
2 N(N − 1) pairs

have to be calculated for the Coulomb energy or the Coulomb forces. It is an important

feature of our central result that it allows us to reduce drastically the CPU time required

for many charges as compared to Ewald’s method. Since the discussion is rather delicate

and lengthy it will be postponed to a separate part. Numerical examples in practical
applications will follow in separate works as well.

II. Basic Identities

All the summation formulae to follow are consequences of a basic identity for sums of the

general form

(2.1) S(x, r) =
∞
∑

k=−∞

p(x+ k, r) .

Here x ∈ (0, 1), r > 0 and p is an arbitrary function such that the series converges for

x ∈ (0, 1) and r > 0.
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It is easy to see that S(x, r) is a periodic function in x (with period 1) for any r > 0.
Therefore an obvious way to handle S(x, r) is to expand it in a Fourier series with respect

to x. This leads to

Lemma 1 Suppose that p(s, r) is such that

a0(r) ≡
∫ ∞

−∞
p(s, r)ds

a!(r) ≡
∫ ∞

−∞
p(s, r) cos(2π"s)ds

b!(r) ≡
∫ ∞

−∞
p(s, r) sin(2π"s)ds











" = 1, 2, 3, ...

all exist .

Then the following identity holds

(2.2) S(x, r) = a0(r) + 2
∞
∑

!=1

[a!(r) cos(2π"x) + b!(r) sin(2π"x)] .

Proof: We use the complete orthonormal set of functions for the interval (0, 1), given by

{1,
√
2 cos(2π"x),

√
2 sin(2π"x)}, " = 1, 2, 3, ... .

The Fourier coefficients of S(x, r) are

a! =
√
2

∫ 1

0

∞
∑

k=−∞

p(s+ k, r) cos(2π"s)ds .

Interchanging summation and integration and choosing the new integration variable

t = s+ k we have

a! =
√
2

∞∑

k=−∞

∫ k+1

k
p(t, r) cos(2π"t)dt =

√
2

∫ ∞

−∞
p(t, r) cos(2π"t)dt ,

and the same reasoning holds for a0 and b!. This leads to the identity (2.2).

Remarks: Two special cases are of importance.

(a) If p = p(|x + k|, r) then p is symmetric in its first variable and all coefficients b!
vanish. Then identity (2.2) reduces to

(2.3) S(x, r) = 2
∫ ∞

0
p(s, r)ds+ 4

∞
∑

!=1

∫ ∞

0
p(s, r) cos(2π"s)ds · cos(2π"x) .
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(b) If p(x + k, r) = −∂P
∂x and P = P (|x + k|, r), then p(−s, r) = −p(s, r) and all

coefficients a! vanish. Furthermore

b! = 2
√
2

∫ ∞

0
p(s, r) sin(2π"s)ds = −2

√
2P (s, r) sin(2π"s)

∣
∣
∣

∞

0

+ 2
√
2 · 2π"

∫ ∞

0
P (s, r) cos(2π"s)ds .

Assuming that lim
s→∞

P (s, r) = 0 we thus arrive at the identity

(2.4) S(x, r) = 8π
∞
∑

!=1

" ·
∫ ∞

0
P (s, r) cos(2π"s)ds · sin(2π"x) .

Examples:

(a) For Coulomb forces we can apply identity (2.4) with P (s, r) = (s2+r2)−
1

2 . Consider

now a cube of side 1 and a unit charge at the origin. Then the x-component of the

Coulomb force at the point (x, y, z), due to the charge and all its periodic images,

is given by

Fx =
∞
∑

k,j,m=−∞

x+ k

[(x+ k)2 + (y + j)2 + (z +m)2]
3

2

.

Setting rjm = ((y + j)2 + (z +m)2)
1

2 and

S(x, rjm) =
∞
∑

k=−∞

x+ k

[(x+ k)2 + r2jm]
3

2

we can apply identity (2.4) to obtain

(2.5) S(x, rjm) = 8π
∞
∑

!=1

" ·K0(2π"rjm) sin(2π"x),

where K0 denotes a modified Bessel function. Since K0 decays exponentially for

large argument the sum over j and m converges fast and we arrive at

(2.6) Fx = 8π
∞
∑

!=1

" · sin(2π"x)
∞
∑

j,m=−∞

K0(2π"rjm) .

Identity (2.6) was derived by Lekner in [6] by different methods.

(b) For p(s, r) = exp(−β(s2 + r2)
1

2 ) · (s2 + r2)−
1

2 we can apply identity (2.3). The
corresponding Fourier-transform (see e.g. [2], p. 17, #27) then yields

(2.7)

∞∑

k=−∞

exp(−β[(x+ k)2 + r2]
1

2 ) · [(x+ k)2 + r2]−
1

2 =

2K0(βr) + 4
∞
∑

!=1

K0[r(β
2 + 4π2"2)

1

2 ] · cos(2π"x) .
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(c) For p(s, r) = (s2 + r2)−
1

2
−ν , ν > 0, identity (2.3) and the table in [2], p. 11, #7,

together with the asymptotic formula for Kν ([1], p. 375, #9.69) lead to

(2.8)

∞
∑

k=−∞

1

[(x+ k)2 + r2]
1

2
+ν

=
π

1

2

Γ(ν + 1
2)

{Γ(ν)

r2ν
+ 4

(π

r

)ν
·

∞
∑

!=1

"ν ·Kν(2π"r) · cos(2π"x)
}

.

The sum on the left in (2.8) diverges if ν → 0. However we may take a collection of

charges qi such that
I

∑

i=1

qi = 0,

and consider instead the sum

S :=
∞
∑

k=−∞

I
∑

i=1

qi

[(xi + k)2 + r2i ]
1

2

.

We can use the asymptotic formulae

Γ(ν) =
1

ν
+ o(ν)

and

r−2ν
i = 1− log ri · 2ν + o(ν2)

to conclude from (2.8) letting ν → 0 that

(2.9)

∞∑

k=−∞

I∑

i=1

qi

[(xi + k)2 + r2i ]
1

2

=

I
∑

i=1

qi

{

− 2 · log ri + 4
∞
∑

!=1

K0(2π"ri) cos(2π"xi)
}

.

III. Coulomb potential and Coulomb energy

The first goal of this section is to derive an expression for the potential

(3.0) U(
→
r ) =

∑

→
n∈ZZ3

′
N
∑

i=1

qi

| →
r − →

r i +
→
n |

,

where the prime indicates as usual that the | →
n | = 0 terms in the sum are to be omitted.

Note that this is a “regularized potential” since it contains no singular terms for
→
r=

→
r i,

in contrast to Madelung’s definition. It has the advantage that it leads directly to the
energy as defined below.
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In order to calculate U(
→
r ) we write it out more explicitly. Using the abbreviation

ri(k, ", m) = [(x− xi + k)2 + (y − yi + ")2 + (z − zi +m)2]
1

2

we have

(3.1)

U(x, y, z) =
∞
∑

m=1

∞
∑

k,!=−∞

N
∑

i=1

qi
{ 1

ri(k, ", m)
+

1

ri(k, ",−m)

}

︸ ︷︷ ︸

U3(x,y,z)

+
∞
∑

!=1

∞
∑

k=−∞

N
∑

i=1

qi
{ 1

ri(k, ", 0)
+

1

ri(k,−", 0)

}

︸ ︷︷ ︸

U2(x,z,y)

+
∞
∑

k=1

N
∑

i=1

qi
{ 1

ri(k, 0, 0)
+

1

ri(−k, 0, 0)

}

︸ ︷︷ ︸

U1(x,z,y)

.

Note that the Coulomb energy can then be written as

(3.2) E =
1

2

N
∑

j=1

qj U(xj , yj, zj) +
1

2

N
∑

i &=j=1

qi qj
1

| →
r i −

→
r j |

.

In order to derive an alternative expression for E we first consider

(3.3)
S3(x, y, z, β) :=

∞
∑

k,!,m=−∞

((x+ k)2 + (y + ")2 + (z +m)2)−
1

2 ·

exp(−β[(x+ k)2 + (y + ")2 + (z +m)2]
1

2 ) .

We set
ρ!m = ((y + ")2 + (z +m)2)

1

2 .

and use identity (2.7) with r replaced by ρ!m to find

(3.4)

∞
∑

k=−∞

((x+ k)2 + r2!m)
− 1

2 · exp(−β[(x+ k)2 + ρ2!m)]
1

2 ) =

2K0(β ρ!m) + 4
∞
∑

p=1

K0[ρ!m(β
2 + (2πp)2)

1

2 ] · cos(2πpx) .

In the sum (we denote it by T 1
!m(x, β)) on the right side of Eq. (3.4) the limit β → 0 is

well behaved, also when the summation over " and m is performed. Thus we have to deal

with the term K0(β ρ!m) in more detail.
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We now write ρ!m = ((y + ")2 + r2m)
1

2 , rm = |z + m|, and use (2.7) again with p(s, r) =
2K0[β(s2 + r2)−

1

2 ]. From the table in [2], p. 56, #43, we get

(3.5)

∞
∑

!=−∞

K0[β(((y + ")2) + r2m)
1

2 ] =
π

β
exp(−βrm) +

2π
∞
∑

p=1

1

((2πp)2 + β2)
1

2

exp[−rm((2πp)
2 + β2)

1

2 ] · cos(2πpy)
︸ ︷︷ ︸

1

2
T 2
m
(β)

.

Again, the term T 2
m(β) makes no difficulties as β → 0 and the summation over m is

performed. It remains to analyse

T 3(β, z) :=
2π

β

∞
∑

m=1

(exp(−β|z +m|) + exp(−β|z −m|))

which consists of two geometric series. A few routine steps yield

T 3(β, z) =
2π

β

exp(−β(1 + z)) + exp(β(1− z))

1− exp(−β)
,

and an expansion with respect to β gives

(3.6) T 3(β, z) = 2π
[ 2

β2
−

1

β
+

1

6
+ z2 +O(β)

]

.

Hence, if we form
N
∑

i=1

qi T
3(β, z − zi) ,

and let β → 0 we are left with the simple expression

(3.7) T 3(0) := 2π
N
∑

i=1

(z − zi)
2 qi .

This holds for any set of N charges with charge neutrality.

Next we analyze the term

(3.8) V (y, z) := 2
∞∑

m=−∞
m&=0

T 2
m(0) = 2

∞∑

m=−∞
m"=0

∞∑

p=1

1

p
· exp[−2πp|z +m|] cos(2πpy) ,

stemming from the second term on the right of (3.5).

A first possibility is to sum over m first, which gives after some algebra:

∞
∑

m=−∞
m"=0

exp[−2πp|z +m|] =
exp(−π · p)
Sh(πp)

Ch(2πpz), (0 ≤ z ≤ 1) .

6



Thus, a first way to write V (y, z) is

(3.9) V (y, z) = 2
∞
∑

p=1

1

p

exp(−π · p)
Sh(πp)

Ch(2πpz) · cos(2πpy)

A second possibility is to sum over p first. To do so we write the term as the real part of

a complex function:

1

p
exp(−|z +m|2πp) cos(2πpy) =

1

p
Re[exp(−ζ · p)]

with ζ = 2π(|z +m| − i · y). Then, since Re ζ > 0 we have

∞
∑

p=1

1

p
exp(−p · ζ) =

∫ ∞

ζ

∞
∑

p=1

exp(−p · w)dw =
∫ ∞

ζ

exp(−w)

1− exp(−w)
dw

= − log(1− exp(−ζ)) .

Now

Re[log(1− exp(−ζ))] = log |1− exp(−(|z +m|− i · y)2π)|

= 1
2 log

{

1− 2 exp(−|z +m|2π) cos(2πy) + exp(−|z +m|4π)
}

,

and therefore a second way to express V (y, z) is

(3.10)

V (y, z) = −
∞∑

m=−∞
m"=0

log
{

1− 2 exp(−|z +m|2π) cos(2πy) + exp(−|z +m|4π)
}

= −
∞
∑

m=−∞
m"=0

L[y, z +m] ,

with the obvious definition of L[y, z +m].

Remark: The sum in (3.10) converges very fast in the whole range y, z ∈ (0, 1), whereas
the convergence becomes slow in (3.9) if z approaches 1.

We can now collect all terms which give a contribution to U3(x, y, z). As an abbreviation

for later on we set, for r > 0 and any s,

(3.11) Be[r, s] = 4
∞
∑

p=1

K0(2πpr) cos(2πps) .

Then from (3.4), (3.7) and (3.10) one finds

(3.12)
U3(x, y, z) =

N
∑

i=1

qi
{ ∞

∑

m=1

∞
∑

!=−∞

(Be[ρi(", m), x− xi] +Be[ρi(",−m), x− xi])

+ V (y − yi, z − zi) + 2π(z − zi)2
}

,

where ρi(", m) = ((y − yi + ")2 + (z − zi +m)2)
1

2 .
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We now turn our attention to the term U2(x, y, z). Analogously as before we first consider
the expression

(3.13) S2(x, y, z, β) =
∞
∑

!=1

∞
∑

k=−∞

exp(−β[(x+ k)2 + (y + ")2 + z2]
1

2 )

[(x+ k)2 + (y + ")2 + z2]
1

2

.

Setting ρ(") = ((y+ ")2 + z2)
1

2 we can express the sum over k as in (3.4) in different form
as

(3.14) S2(x, y, z, β) = 2
∞
∑

!=1

{

K0(βρ(")) + 4
∞
∑

p=1

K0(ρ(")[β
2 + (2πp)2]

1

2 ) · cos(2πpx)
}

.

The second sum in (3.14) is well defined for β → 0. For U2(x, y, z) we will need the sum

S(β) := 2
∞
∑

!=1

(K0(βρ(")) +K0(βρ(−"))

= 2
∞
∑

!=−∞

K0(βρ("))− 2K0(βρ(0)) .

As in (3.5) we can transform the last sum to

2π

β
exp(−β|z|) + 4π

∞
∑

p=1

1

[(2πp)2 + β2]
1

2

exp(−|z| [(2πp)2 + β2]
1

2 ) · cos 2πpy .

For β → 0 we only have to look at the terms

2π

β
exp(−β|z|) = 2π

( 1

β
− |z|+O(β)

)

and
−2K0(βρ(0)) = 4 log β + log(ρ2(0)) +O(β)

with ρ2(0) = y2 + z2.

If one now forms a sum
N∑

i=1
qi { } the remaining terms as β → 0 lead to

(3.15)

U2(x, y, z) =
N
∑

i=1

qi
{ ∞
∑

!=1

(Be[ρi("), x− xi] +Be[ρi(−"), x− xi]) +

+ 2
∞
∑

p=1

1

p
exp(−2πp|z − zi|) cos(2πp(y − yi))

+ log(ρ2i (0))− 2π|z − zi|
}

,

with ρ2i (") = (y − yi + ")2 + (z − zi)2.
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The calculations leading to (3.10) now show that

(3.16) −2
∞
∑

p=1

1

p
exp(−2πp |z − zi|) cos 2πp(y − yi) = L[y − yi, z − zi]

where L[ , ] is defined in (3.10).

The last term to study is

U1(x, y, z) =
∞
∑

k=1

N
∑

i=1

qi
{ 1

ri(k, 0, 0)
+

1

ri(−k, 0, 0)

}

=
∞
∑

k=−∞

N
∑

i=1

qi
ri(k, 0, 0)

−
N
∑

i=1

qi
ri(0, 0, 0)

.

We can apply now identity (2.9) which in the present case gives

(3.17) U1(x, y, z) =
N
∑

i=1

qi
{

Be[ρi(0), x− xi]− 2 log ρi(0)−
1

ri(0, 0, 0)

}

.

In order to find the expression for the Coulomb energy as given by (3.2) we collect the

terms with
→
r '=→

r j (E1) and look at the limit as
→
r→→

r j (E2). The combination of (3.12),

(3.15) and (3.17) shows that the i '= j part of the Coulomb energy can be written as

(3.18)
E1 =

1

2

N
∑

i &=j=1

qi qj
{ ∞

∑

m,!=−∞

Be[ρij(", m), xi − xj ] +W (yi − yj, zi − zj)

+ 2π((zi − zj)2 − |zi − zj |)
}

,

where we have set

ρij(", m) = [(yi − yj + ")2 + (zi − zj +m2]
1

2

and

(3.19) W (y, z) := −
∞
∑

m=−∞

L[y, z +m] .

The “self energy” E2 containing the i = j terms needs some separate analysis which now

follows.

We start with term U3(x, y, z) given by (3.12).

For the Coulomb energy one has to form

C3 :=
N
∑

j=1

qj U3(xj , yj, zj) .

9



This expression is well defined and one finds

(3.20) C3 =
N
∑

i=1

q2i
{

8
∞
∑

m=1

∞
∑

!=−∞

∞
∑

p=1

K0 [2πp
√
"2 +m2]− 4

∞
∑

n=1

log(1− e−2π·n)
}

.

Next we look at the term U2(x, y, z) which because of (3.16) can be written as

(3.21)
U2(x, y, z) =

N
∑

i=1

qi
{ ∞
∑

!=1

(Be[ρi("), x− xi] +Be[ρi(−"), x− xi])

+ log((y − yi)2 + (z − zi)2)− L[y − yi, z − zi]− 2π |z − zi|
}

.

The only terms that become singular as y → yi, z → zi are the two terms involving

the logarithms. A straightforward series expansion shows that the two log-terms have

the limit −log(4π2) as y → yi, z → zi. Hence the contribution to the Coulomb energy

stemming from U2(x, y, z) is

(3.22) C2 :=
N
∑

i=1

q2i
{

8
∞
∑

!,p=1

K0(2πp · ")− log(4π2)
}

.

The last and hardest term to analyze stems from U1(x, y, z) given by (3.17). If we take

x = xi and ρ =
√
y2 + z2 there in the place of ρi(0) the expression to study is

(3.23) f(ρ) := Be[ρ, 0]− 2 · log ρ−
1

ρ
= 4

∞∑

p=1

K0(2πpρ)− 2 log ρ−
1

ρ
.

We state the result in the form of

Lemma 2

(3.24)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

For 0 < ρ < 1 one has

f(ρ) = 2
∞
∑

p=1

( −1
2
p

)

ζ(2p+ 1) ρ2p + c0 = 2
∞
∑

!=1

(1

"
−

1√
"2 + ρ2

)

+ c0

with ζ = Riemann Zeta function and

c0 = −2(log 2− γ) ∼= −0.231863 .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Proof: We consider the function

(3.25) g(ρ) :=
∞
∑

!=1

(1

"
−

1
√

"2 + ρ2)

)

.

Then

g′(ρ) = ρ
∞
∑

!=1

1

("2 + ρ2)
3

2

.
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We can now apply identity (2.8) with ν = 1, x = 0 yielding after some rearrangement

g′(ρ) =
1

ρ
−

1

2ρ2
+ 4π

∞
∑

p=1

pK1(2πpρ) .

But since for Bessel functions one has K1(s) = −dK0

ds we are led to

(3.26) g(ρ) = log ρ+
1

2ρ
− 2

∞
∑

p=1

K0(2πpρ) + const. .

We can now apply an identity given in [5] (I am indebted to Prof. J. Lekner for pointing

this out):

(3.27)

4
∞
∑

p=1

K0(2πpρ) · cos(2πpx) = 2
[

γ + log
(ρ

2

)]

+
1√

ρ2 + x2

+
∞
∑

!=1

{ 1
√

("− x)2 + ρ2
− 1

"

}

+
∞
∑

!=1

{ 1
√

("+ x)2 + ρ2
− 1

"

}

.

With x = 0 a simple combination of (3.23), (3.26) and (3.27) shows that c0 has the

value given in equation (3.24), with γ = Euler constant. This proves Lemma 2. The

contribution to the Coulomb energy stemming from U1(x, y, z) is thus

(3.28) C1 :=
N∑

i=1

q2i · c0 .

Finally we can collect all terms contributing to the self energy E2. The numerical evalu-

ation of the sums in (3.20), (3.22) and the expression (3.28) lead to

(3.29) E2 = Q0

N
∑

i=1

q2i ,

with Q0 = 2
∞∑

p=1

∞∑

m,n=−∞

′ K0(2πp(m2 + n2)1/2)− 2
∞∑

!=1
log(1− e−2π·!) + γ − log(4π)

∼= −1.942248 .

Remark: The constant Q0 is in accordance with the corresponding constant given by
Lekner in [6], p. 495. Lekner derived it by completely different arguments.

We sum up our calculations in the form of a

11



Theorem: The Coulomb energy as defined by (3.2) can be expressed as

(3.30)

E =
1

2

N
∑

i &=j=1

qi qj
{ ∞

∑

m,!=−∞

Be[ρij(", m), xi − xj ]

−
∞
∑

m=−∞

L[yi − yj, zi − zj +m]

+ 2π((zi − zj)2 − |zi − zj|)
}

+Q0 ·
N
∑

i=1

q2i

where
ρ2ij(", m) := (yi − yj + ")2 + (zi − zj +m)2 ,

Be[ρ, x] := 4
∞
∑

p=1

K0(2πpρ) cos(2πpx) ,

L[y, z] := log{1− 2 cos(2πy)e−2π|z| + e−4π|z|} ,

Q0
∼= −1.942248 .

Remarks:

1. In some applications one considers a two dimensional layer of cells of some finite

height extending to infinity only in two dimensions. This means that the potential

as defined in (3.1) contains only the terms U2(x, y, z) and U1(x, y, z). It is then easy

to verify that the associated Coulomb energy is given by terms described in the
following

Corollary: The Coulomb energy of a two-dimensional layer of finite height h,
i.e. 0 ≤ z ≤ h, with associated Coulomb potential

U(x, y, z) =
∞
∑

!=1

∞
∑

k=−∞

N
∑

i=1

qi
{ 1

ri(k, ")
+

1

ri(k,−")

}

+
∞
∑

k=1

N
∑

i=1

qi
{ 1

ri(k, 0)
+

1

ri(−k, 0)

}

where r2i (k, ") = (x− xi + k)2 + (y − yi + ")2 + (z − zi)2, can be expressed as

(3.31)

E =
1

2

N
∑

i &=j=1

qi qj
{ ∞

∑

!=−∞

Be[ρij("), xi − xj ]

− L[yi − yj, zi − zj ]− 2π|zi − zj |
}

+ Q̂0 ·
N
∑

i=1

q2i

with ρ2ij(") := (yi − yj + ")2 + (zi − zj)2 and

Q̂0 = 4
∞
∑

!,p=1

K0(2πp · ") + γ − log(4π) ∼= −1.955013.
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2. Both expression (3.30) and (3.31) coincide with the formulae (28), (34) and (43) of
Lekner [6] as some simple algebra reveals. An important difference in the derivation

is that the constants Q0, Q̂0 were not found a posteriori by comparison with a special

case as in [6]. They follow from the definition of the Coulomb energy.

3. In (3.30) and (3.31) the sums involving the Bessel functions may require many terms

if the arguments ρij(", m) or ρij(") become small (say < 10−2) for a particular pair

i, j. This situation was already recognized by Madelung [7]. In fact, we have to
study the behaviour of the two singular terms Be[ , ] and L[ , ] as the arguments

tend to zero. This is done in the following.

In order to derive an alternative expression which converges fast for small r let us

first consider

(3.32) F (x, r, p) =
∞
∑

k=−∞

[(x+ k)2 + r2]−
1

2
−p ,

where we assume p > 0 and 0 ≤ r < 1, 0 ≤ x < 1.

Since

[(x+ k)2 + r2]−
1

2
−p = |x+ k|−1−2p ·

[

1 +
( r

x+ k

)2]− 1

2
−p

we find by expansion that

[(x+ k)2 + r2]−
1

2
−p =

∞
∑

!=0

( −p− 1
2

"

)

r2!
1

|x+ k|2!+2p+1
.

The generalized Zeta-function (Hurwitz Zeta-function) is defined for arbitrary

m '= 0,−1,−2, ... and x ∈ lC by

(3.33) ζ(m, x) =
∞
∑

k=0

1

(k + x)m
.

We may write F (x, r, p) in the form

F (x, r, p) =
∞
∑

k=0

[(1 + x+ k)2 + r2]−
1

2
−p +

∞
∑

k=0

[(1− x+ k)2 + r2]−
1

2
−p + [x2 + r2]−

1

2
−p

and then use the definition (3.33) to find

(3.34)
F (x, r, p) =

∞
∑

!=0

( −p− 1
2

"

)

r2!
{

ζ(2"+ 1 + 2p, 1 + x)

+ ζ(2"+ 1 + 2p, 1− x)
}

+ [x2 + r2]−
1

2
−p .

13



The only term in (3.34) which needs special attention when p → 0 is the one with
" = 0. The asymptotic behavior of ζ(m, x) is given by (see [3], p. 26)

(3.35) ζ(m, x) =
1

m− 1
− ψ(x) + o(m− 1) ,

where ψ(x) is the Digamma-function.

Hence for any collection of M charges qi for which

M
∑

i=1

qi = 0

we have

(3.36)
M
∑

i=1

qi F (xi, ri, 0) =
M
∑

i=1

qi G(ri, xi) ,

where G(r, x) is defined by

(3.37)
G(r, x) =

∞∑

!=1

( −1
2
"

)

r2!
{

ζ(2"+ 1, 1 + x) + ζ(2"+ 1, 1− x)}

−ψ(1 + x)− ψ(1− x) +
1√

x2 + r2
.

The function G(r, x) is defined for 0 ≤ r < 1 and 0 ≤ x < 1. One can check

however that the series converges only for |x+ r| < 1. It is not hard to check that

the following relations hold

(3.38)







G(r, x) = G(r,−x)

G(r, 1− x) = G(r, x)
.

It follows from (3.38) that we can always restrict x to the interval [−1
2 ,

1
2 ] and r

may be restricted e.g. to the interval (0, 14), since G(r, x) will only be used for small

values of r.

Since (3.36) holds for any collection of charges with charge neutrality and we have

a different expression for the same quantity in the form of identity (2.9), we may

conclude the following identity: For 0 ≤ r < 0.5 and |x| ≤ 0.5 one has

(3.39) G(r, x) = Be[r, x]− 2 log r + const. .

Evaluation of both sides at a convenient value of r and x give const. ∼= 1.386294.

Identity (3.39) allows then to replace the terms Be[ , ] in our Theorem or Corollary

by G(r, x) which is more advantageous to use for small values of r.
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Note that the function Be[r, x] becomes singular for r → 0. However there is another
singular term in (3.30) of opposite sign:

L[yi − yj , zi − zj +m] = L[yi − yj + ", zi − zj +m] (for any " ∈ ZZ). This term has a

logarithmic singularity as well for r = [(yi − yj + ")2 + (zi − zj +m]2]1/2 → 0, which

is possible for −1 ≤ ", m ≤ 1.

Setting η = π · y, ζ = π · z a series expansion gives

(3.40)

log(y2 + z2)− L[y, z] = − log(4π2) + 2 · ζ + 1

3
(η2 − ζ2)

+
1

90
(η4 − 6η2ζ2 + ζ4) +

2

2835
(η6 − 15η4 · ζ2

+15η2 · ζ4 − ζ6) + higher order terms

=: La[y, z]− log(4π2)

with the obvious definition of the approximation La[y, z]. Combining now (3.39)

and (3.40) we arrive at the following result:

If ρij(", m) = ((yi − yj + ")2 + (zi − zj +m)2)1/2 becomes small (say < 0.1), then we

can replace the combination

(3.41)
Be[ρij(", m), xi − xj ]− L[yi − yj, zi − zj +m] =

Be[ρij(", m), xi − xj ]− L[yi − yj + ", zi − zj +m]

in (3.30) by

(3.42) G[ρij(", m), xi − xj ] + La[yi − yj + ", zi − zj +m]− 5.0620485

where G[ , ] is defined in (3.37) and La[ , ] in (3.40).

Numerical example: As an illustration we consider two charges ±1 and compare

Sd [x1, x2, r] =
∞
∑

k=−∞

{
1

√

(x1 + k)2 + r2
−

1
√

(x2 + k)2 + r2

}

with the expression from (2.9), namely

S[x1, x2, r] = 4
∞
∑

!=1

K0(2π"r){cos(2π"x1)− cos(2π"x2)} ,

as well as the formula following from (3.36) which is

H [x1, x2, r] = G(r, x1)−G(r, x2) .
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We choose x1 = 0.2, x2 = 0.3 and r = 0.5

Sd = 0.0727395 k = −500 to 500
S = 0.0727393 " = 1 to 5
H = 0.07274 " = 1 to 15 .

Now if r becomes smaller the sum in (3.37) converges much faster. With the same
values of x1, x2 and r = 0.01:

Sd = 1.5271559 k = −600 to 600
S = 1.5271557 " = 1 to 200
H = 1.5271558 " = 1 to 2 .

4. In formula (3.30) the coordinates x, y, z seem to be treated in a unsymmetric way.
It was shown by Lekner [6] that indeed (3.30) is symmetric in x, y, z, as it should

be.

5. There are many interesting special cases for the identity (2.9). In particular we can

get quickly convergent series for Madelung constants. To this end consider the sum

(3.43) S(r) :=
∞
∑

!=−∞

(−1)!√
"2 + r2

, r > 0 .

We rewrite (3.43) in the form

S(r) =
∞
∑

k=−∞

( 1
√

(2k)2 + r2
−

1
√

(2k + 1)2 + r2

)

=
1

2

∞
∑

k=−∞

( 1
√

k2 + ( r2)
2
−

1
√

(k + 1
2)

2 + ( r2)
2

)

.

By identity (2.9) it follows that

(3.44) S(r) = 2
∞
∑

p=1

(K0(π · p · r)− (−1)pK0(π · p · r)) = 4
∞
∑

p=1

K0((2p− 1)π · r) .

Identity (3.44) now serves to find an alternative expression for the Madelung con-

stant of a square of side 1, namely

(3.45) MS :=
∞
∑

k,!=−∞

′ (−1)k+!+1

√
k2 + "2

.

Writing (3.45) out in more explicit form as

(3.46) MS = 2
∞∑

k=−∞

∞∑

!=1

(−1)k+!+1

√
k2 + "2

+ 2
∞∑

k=1

(−1)k+1

k
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one readily checks that

(3.47)
MS = 8

∞
∑

!=1

(−1)!+1
∞
∑

k=1

K0((2k − 1)π") + log 4

∼= 1.6155426 .

With little extra work we can get the corresponding expression for the Madelung

contant of a unit cube, i.e.

(3.48) MC :=
∞
∑

k,!,m=−∞

′ (−1)k+!+m+1

√
k2 + "2 +m2

.

If we write

MC = 2
∞
∑

k,!=−∞

∞
∑

m=1

(−1)k+!+m+1

√
k2 + "2 +m2

+MS

and use (3.44) we see that

(3.49)
MC = 8

∞
∑

p,k=1

∞
∑

!=−∞

(−1)k+!+1 K0[(2p− 1) π
√
k2 + "2] +MS

∼= 1.747565 .

A completely different, but more complicated derivation of (3.46), (3.49) and similar

types of sums was given in [9].
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