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Abstract

The Method of Transport was originally developed for the Euler equa-

tion in 1993 by M. Fey. He introduced the physical property of infinitely

many propagation directions into the numerical method. Here, we present

the extension of this method to equations with inhomogeneous fluxes, such

as the shallow water equations. For efficiency reasons and to reach higher

order accuracy certain modifications had to be made to the method, whereby

the multidimensional character will be kept. The resulting scheme can then

be interpreted as a decomposition of the nonlinear equations into a system

of linear advection equations with variable coefficients in conservative form.

We present a multidimensional high order resolution scheme for the advection

equation and for the shallow water equations. A special limiting technique is

used for these methods to keep the multidimensional properties.
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1. Introduction

The two-dimensional shallow water equations in conservation form read

(1) U t +∇ · F = 0,

with

U =

(
h
h u

)

the state vector, where h is the total depth of the fluid and u = (u, v)T

the velocity vector. The divergence acts on the rows of the flux matrix
F given by

F = U uT +
h c2

2

(
0T

I

)
,

where c =
√
g h is the celerity with g the constant of gravity and I is

the 2× 2 identity matrix.
In Section 2, we derive a different formulation of the shallow water
equations that indicates the possible decomposition. Error analysis
shows that this system can be approximated to any order of accuracy
by a number of linear advection equations in conservative form which
can be solved independently. The idea of transport can also be applied
to this type of equations. The extension to a high order scheme follows
in a natural way as shown in Section 3. We discuss a new idea for
the limiting process and present a high order resolution scheme for the
shallow water equations. In Section 4, we present numerical results
obtained with the developed scheme for free surface flow problem.

2. Decomposition of the equations

In [2] and [5], the contributions are decomposed into two waves, C+

and C−. These waves are related to critical waves. It is the aim of this
section to decompose the shallow water equations in a similar fashion.
In [4] the decomposition is done for the Euler equations.

2.1. Decomposition in infinitely many advection equations.
Using the coefficients R1 and L defined in [5] as,

R1 = h

(
1
u

)
and L =

h c

2

(
0T

I

)
,

F can be written as

F(U) = R1 u
T + c L.

1
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The propagation of the quantity R1 with the velocity u+c n is a transla-
tion by u combined with an expansion c n. For each n we can interpret
the behaviour of R1 as a transport process described by

φ
1
(n) := (R1)t +∇ · (R1(u+ c n)T ).

Since the critical waves move in all directions, we have to split R1 and
propagate it in all directions. With the identities

1

|S|

∫

S

dS = 1 and
1

|S|

∫

S

n dS = 0,

where S is the unit sphere in IRN , N is the space dimension in our case
2 and |S| its surface. With the state vector U written as

U =
1

|S|

∫

S

R1 dS,

the integral of φ
1
(n) over the unit sphere becomes

1

|S|

∫

S

φ
1
(n) dS = U t +∇ · (U uT ).

However, this is not the left-hand side of the shallow water equations.
The missing term in the flux matrix can be associated with the C−

wave. The vector Ln is also transported with the velocity u+ c n. The
corresponding transport terms are

φ
2
(n) := (Ln)t +∇ · (Ln(u+ cn)T ).

Clearly, since L is independent of n

1

|S|

∫

S

LndS = 0 and
1

|S|

∫

S

nnT dS =
1

N
I.

To get consistency with the shallow water equations (1), we take N
times φ

2
. Then the equations

(2)
1

|S|

∫

S

φ
a
(n) dS = U t +∇ · F = 0,

with
φ
a
(n) := φ

1
(n) +Nφ

2
(n)

recover the original nonlinear system. φ
a
(n) is the combination of the

C+ and C− waves. Using

Ra(n) := R1 +N Ln,

we get for φ
a

φ
a
(n) = (Ra)t +∇ · (Ra(u+ c n)T ).
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Hence the state vector is represented by

(3) U =
1

|S|

∫

S

Ra(n) dS.

In the next section we shall make use of this representation to create a
numerical scheme. The similar decomposition for the Euler equations
is described in [4].

2.2. Decomposition in finitely many advection equations. The
disadvantages of the formulations (2) and (3) are that the state vector
U is represented by an integral and infinitely many advection equations
have to be solved. The integral will now be replaced by a finite sum of
k terms. (3) becomes

(4) U =
1

k

k∑

i=1

Ra(ni) =
1

k

k∑

i=1

(
R1 +N Lni

)

and (2)

(5)
1

k

k∑

i=1

φ
a
(ni) = U t +∇ · F = 0.

In order that (4) and (5) hold exactly, the ni have to satisfy certain
conditions. From equation (4) follows

(6)
k∑

i=1

ni = 0

and from (5)

(7)
N

k

k∑

i=1

ni ni
T = I.

Collecting these results we can represent the shallow water equations
(5) by a combination of k advection equations if (6) and (7) hold.
The condition (6) and (7) do not define ni uniquely. Here we consider
in particular the four vectors aligned on the horizontal and vertical
axis, which are

(8) ni ∈
{(

1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}

for i = 1, . . . , 4. Note that this choice of ni is not related to the
dimensional splitting approach. In general the final propagations u+cni

are not aligned with the coordinate axes. These ni are also a natural
way to approximate the characteristic cone. The vectors ni can be
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interpreted as the support points for a quadrature rule to integrate the
characteristic cone.
Another possible choice is given by the unit vectors lying on the diag-
onal. In this case strips along the edges of the exact support are not
recovered. We solved this problem by replacing the vectors ni by the
ñi

(9) ñi ∈
{(

1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
−1
−1

)}

for i = 1, . . . , 4. The choice of ñi is identical to the Method of Transport
simple. To allow non unit vectors for the directions ni, we have to use
a more general definition for Ra.
We already introduced the scaling factor N to get consistency in (7).
If we define Ra as

R̃a(ñi) := R1 + ωi L ñi,

where

ωi :=
N

ñT
i ñi

,

we get exactly the shallow water equations

(10)
1

k

k∑

i=1

φ̃
a
(ñi) = U t +∇ · F = 0,

φ
a
becomes

(11) φ̃
a
(ñi) := (R̃a(ñi))t +∇ · (R̃a(ñi) (u+ c ñi)

T ).

Note, that even though the numerical celerity seem to be larger by a
factor of

√
N the CFL condition is not affected by this choices, i.e.

∆t ≤ min(
∆x

|u|+ c
,

∆y

|v|+ c
).

2.3. High order corrections. To solve the equations (10) for one
timestep, we linearize φ̃

a
(ñi) and set each component of the sum to

zero. At a given time, t0, we eliminate the time dependency of u and
c by freezing the time so that

a(x, ñi) := u(U(x, t0)) + ñi c(U(x, t0))

becomes a function of x only. Thus, we obtain a set of linear advection
equations of the form

(12)
˜̃
φ
a
(ñi) := (R̃a(ñi))t +∇ · (R̃a(ñi) a(x, ñi)

T ) = 0,
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which we have to solve for one timestep ∆t with initial conditions

(13) R̃a(ñi) = R1(U(x, t0)) + ωi L(U(x, t0)) ñi.

Summing up the solutions of (12) for i = 1, . . . , k leads to an approxi-
mate solution of (10), i.e.

(14) U(x, t0 +∆t) ∼=
1

k

k∑

i=1

R̃a(ñi)(x, t0 +∆t).

The time evolution of the exact solution can be approximated by the
average of the solutions of the decomposed equations. For a general
nonlinear system, this approximation is only of first order.
A more accurate approximation can be found by replacing (13) by

(15) R̃a(ñi) = R1 + ωi (L+K) ñi.

The correction matrix K

K(x, t0) =




k11 k12
k21 k22
k31 k32



 ,

can be chosen such that the error after one timestep is of third order.
It is determined by an error analysis in [7]. The components of K are
given by

k11=−
∆t

2 c
((1−

3ω

2
) hx c

2 + h u ux + h uy v)

k12=−
∆t

2 c
(h u vx + (1−

3ω

2
) hy c

2 + h v vy)

k21=−
∆t

2 c
((
5

4
−
3ω

2
)hx c

2 u+(
1

2
−ω)h c2 ux + h u2 ux+

1

4
hy c

2 v + h u uy v +
1

2
h c2 vy)

k22=−
∆t

2 c
(h u2 vx + (1−

3ω

2
) hy c

2 u− ω h c2 uy + h u v vy)

k31=−
∆t

2 c
((1−

3ω

2
) hx c

2 v + h u ux v − ω h c2 vx + h uy v
2)

k32=−
∆t

2 c
(
1

4
hx c

2 u+
1

2
h c2 ux + h u v vx +(

5

4
−
3ω

2
)hy c

2 v +(
1

2
−ω)h c2 vy + h v2 vy),

where

ω =
1

k

k∑

i=1

n2
i,1 =

1

k

k∑

i=1

n2
i,2.
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(15) shows that the corrected equations have the same structure as
before. This is true even for higher order corrections.

3. Higher order scheme

In the previous section, we introduced a second order decomposition of
the shallow water equations in a set of linear advection equations with
variable coefficients. Now we want to present a high order numerical
scheme to solve these linear equations. Therefore, we consider the two-
dimensional advection equation in conservative form

(16) ut +∇ · (u aT ) = 0,

with a = a(x) = (a, b)T . The advection equation (16) can be written
as

(17) ut + (∇ u) · a = −u (∇ · aT ).

3.1. Two-dimensional approach. We want to extend the multidi-
mensional Method of Transport to higher order. The Method of Trans-
port is a finite volume method, where the update to the new timestep
is done by adding incoming and subtracting outgoing flows with all the
neighbouring cells. The final scheme in conservation form for the scalar
equation reads

un+1
Ωi

= un
Ωi

−
1

|Ωi|
∑

j "=i

(FΩiΩj − FΩjΩi),

where |Ωi| is the area of the cell. The contributions FΩiΩj
represent the

quantity of information which flows from domain Ωi into domain Ωj .
The contributions FΩiΩj

approximate the physical multidimensional
flux F and are defined as

FΩiΩj =

∫

Ωj

U(x, t0 +∆t) dx.

The wave U describes the transport of u from the computational cell
Ωi to any point x in space and is given by

(18) U(x, t0 +∆t) =

∫

Ωi

u(ξ, t0)δ(z(t0 +∆t, ξ)− x) dξ.

δ is the Dirac’s delta distribution and z(t0+∆t, ξ) is the characteristic
curve along which the evolution of u in (17) satisfies

d

dt
u(z(t), t) = −u (∇ · aT ).
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The characteristic curve z(τ) is defined as the solution of

(19) ż(τ) = a(z(τ)), z(t0) = ξ.

The integration of the delta distribution in (18) is not trivial, due to the
nonlinear argument. Assuming the map defined in (19) to be bijective,
then the variable transformation

v(ξ, x) := z(t0 +∆t, ξ)− x

has an inverse s(v, x), i.e. v ◦ s = Id, which allows the integration of
the delta function. Thus, the computation of the contributions FΩiΩj

becomes

(20) FΩiΩj =

∫

Ωj

u(s(0, x), t0)
1

det(J)
dx,

where J = dz/dξ is the Jacobian of the mapping in (19).
It turns out, that the integration of (19) determines the accuracy in
time, where as the reconstruction of the function u in cell Ωi limits the
spatial accuracy. For this reason, choosing constant values for a and
u in each cell leads to first order scheme. In this case, the wave U is
given by

U(x, t0 +∆t) =

∫

Ωi

u(ξ, t0)δ(x−∆t a− ξ) dξ

and the contributions by

FΩiΩj =

∫

Ωj

u(x−∆t a, t0) dx.

To get a second order approximation of the characteristic curve we take
a linear reconstruction for a(z)

(21) a(z) = a+ Az,

where the matrix A is defined as

A =

(
ax ay
bx by

)
.

Since A is constant, the solution of the corresponding linear differential
equation

ż(τ) = a+ Az, z(t0) = ξ

is given by
z(τ) = −A−1 a+ eA τ (A−1 a + ξ).

Taking the Taylor expansion of z(τ)

z(τ) = ξ + τ (a+ A ξ) +
τ 2

2
(Aa+ A2 ξ) +O(τ 3),
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we get

(22) z(t0 +∆t, ξ) = ξ +∆t (a + A ξ) +
∆t2

2
(Aa+ A2 ξ) +O(∆t3).

Substituting (22) into v(ξ, x), the equations

v(ξ, x) = 0

can be solved and the solution is

s(0, x) = (I +∆t A +
∆t2

2
A2)−1(x−∆t a−

∆t2

2
Aa) +O(∆t3).

Using the Neumann series we get as second order approximation

s(0, x) = (I −∆t A +
∆t2

2
A2)(x−∆t a−

∆t2

2
Aa) +O(∆t3)

= x−∆t A x−∆t a+
∆t2

2
Aa+

∆t2

2
A2x+O(∆t3).

By the variable substitution x = s(0, y) we get for the contributions

FΩiΩj =

∫

s(0,Gj)

u(x, t0) dx,

where s(0, Gj) ⊂ Ωi describes the inverse of the domain Gj, which is
sketched in Figure 1.
The domains of integration can be triangles, quadrilaterals, pentagons
or hexagons. To get second order in space, we reconstruct u(x) linearly
and use a quadrature rule to get the contributions.
We can check that with the contributions FΩiΩj defined above, the
numerical method is of second order. Further explanation about the
scheme can be found in [3] and [4].

3.2. Limiting process. In this subsection we study two limiting pro-
cesses for conservation laws. They are based on first order solu-
tions which we assume to converge to the physically correct solutions.
We discuss two type of limiters, namely the slope-limiter and the
contribution-limiter method. For stability reasons, all second order
methods must degenerate to first order near discontinuities. Unfortu-
nately, this also causes a degeneration near extreme points. Only a
very few limiter functions overcome this problem [8].
For simplification, we consider the contributions FΩiΩj

for the one di-
mensional case. For the first order scheme we get

FΩiΩi+1
=

{
∆t ai ui if ai > 0
0 else

.
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F

F

F

F

! !
! !

! !! !

8

0

0 1

0 70 3

s(0,G )

8
G

8

Figure 1. Sketch of transformation (28). The solid line
represents the forward transformation of the original cell.
The dotted line denotes the backward transformation of
G8 into the original cell.

With the notation of section 3.1, the second order scheme reads

FΩiΩi+1
=

∫ xi+1/2

s(0,xi+1/2)

(ui + (ux)i x) dx,

where

s(0, xi+1/2) = s(0, xi +
∆x

2
) =

∆x

2
−∆t a−∆t ax

∆x

2
+

∆t2

2
a ax.

This is equivalent to

FΩiΩi+1
= ∆t[ai ui + (1−

∆t

∆x
a) ((ax)i ui + ai (ux)i)

∆x

2
],

if s(0, xi+1/2) < xi+1/2. The x-derivatives of a and u can be approxi-
mated in different ways. First order approximation is sufficient to get
a second order scheme, if the same stencil is used everywhere. Unfor-
tunately, limiter functions will switch between different stencils even
in smooth regions, e.g. extreme or saddle points. To keep second order
accuracy it is sufficient to use the first derivatives but with a better
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approximation than O(∆x) like

(23)

(ux)
upwind
i =

−ui+2 + 4 ui+1 − 3 ui

2∆x
,

(ux)centrali =
ui+1 − ui−1

2∆x
,

(ux)downwind
i =

3 ui − 4 ui−1 + ui−2

2∆x
.

The first limiting strategy uses a slope-limiter. The slope in cell Ωi is
given by one of these three different finite differences

(24) (ux)i =






(ux)
upwind
i if |(ux)

upwind
i | = min3

(ux)centrali if |(ux)centrali | = min3

(ux)downwind
i if |(ux)downwind

i | = min3

where min3 = min(|(ux)
upwind
i | , |(ux)centrali | , |(ux)downwind

i |).
The scheme with this limiter is essentially non oscillatory for the ad-
vection equation. For the shallow water equations, this limiter does not
prevent overshoots and oscillations at discontinuities. This phenomena
is also observed with all sort of slope-limiters, e.g. the minmod, van
Leer, superbee limiters.
This ENO-like strategy gets worse in several space dimensions since
the numbers of possible stencils increases drastically, e.g. 33 in the
two-dimensional case compared to the three in (23). In addition to
this, the limiting process introduces a new grid dependence, since grid
aligned gradients are treated differently than oblique ones.
The second strategy uses a contribution-limiter and is based on the
non oscillatory character of the first order solution. To conserve this
property, we compute the first and second order solution without any
limiter. The derivatives in the high order computation are always ap-
proximated by the central difference. The next timestep is then given
by

un+1
Ωi

= un
Ωi

−
1

|Ωi|
∑

j∈V

∆FΩiΩj ,

where ∆FΩiΩj = FΩiΩj − FΩjΩi . We want to use the second order
contributions if

(25) min
j∈V

(un+1
j )1 ≤ (un+1

i )2 ≤ max
j∈V

(un+1
j )1,

where V = {i − 1, i, i+ 1}, otherwise the first order contributions are
taken. The superscripts 1 and 2 denotes the order of the quantities
between brackets. To keep the method conservative, FΩiΩj has to be
chosen more restrictive. If the cell Ωi or Ωj is marked to be of first
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order, then FΩiΩj includes the first order contributions from both sides,
otherwise the second order terms are used. In addition if

(∆FΩiΩj )
1 · (∆FΩiΩj )

2 ≤ 0

the first order contribution has to be chosen.
For the one-dimensional advection and shallow water equations, this
limiter performs very well. The speed of the discontinuity or the shock
is correct resolved. The same idea can naturally be extend to the two-
dimensional case. The decision, which contribution to take, is related
to the results of two multidimensional methods and is independent of
the grid as the methods. In (25) the indices i and j become multi-
indices i = (i1, i2) and j = (j1, j2). The set of all neighbours is V =
{(i1 + k, i2 + l); l, k ∈ {−1, 0, 1}.
For the shallow water equations this limiter prevents overshoots and
oscillations at discontinuities.

4. Numerical results

This method is implemented on a parallel machine, with domain de-
composition strategy. It performs very well on the Intel paragon. We
have simulated different problems such as the abrupt expansion in a
channel or the explosion problem. A more delicate one is the shock
focusing problem. The results show the advantage of the multidimen-
sional method compared with a dimension splitting scheme.

4.1. Shock Focusing Problem. Solving a rotational symmetric
problem on a Cartesian mesh causes a lot of problems for any kind
of numerical method. In the case of the shallow water equations, we
compute the circular shock focusing problem as defined in [1]. The
initial values are given by

g · h(x, 0) =
{
0.1 if |x| ≤ 0.35
1 else

and u(x, 0) = 0. The two-dimensional calculations are done on the
square domain [−1.5, 1.5]2 with 160 points in each direction and ∆t =
0.008, which corresponds to a CFL number of 1. Results are shown at
time t = 1.0.
At time t = 0, a circular shock of the initial discontinuity moves in-
wards. At time t = 1.0, the initial circular shock has passed through
the singularity and a circular shock is expanding outward from the
centre and is interacting with the rarefaction wave.
Figure 2 shows the geopotential and the total velocity along cuts of
y = 0 and x+y = 0 of the first order solution and the radial symmetrical
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solution with 10000 points, which is a good approximation of the exact
solution.
Figure 3 shows the second order solution, computed with the slope lim-
iter (24). For the total velocity we observe a large difference between
the two strips at time t = 1. This difference results from errors pro-
duced at the focusing point. Until the shock reaches the focusing point,
the symmetry is preserved. For this limiter the difference between the
two cuts does not converge to zero when the mesh size tends to zero.
This effect can be observed in [1], where the solution is computed with
a operator split scheme using a van Leer limiter. It also appears in the
solution computed with the software package CLAWPACK. A second
order Godunov method described in [6] is used with a minmod limiter
(see Figure 4). Furthermore the first order solution from CLAWPACK
presents a difference between the x and the diagonal strip.
In a first approach to solve this problem we increased the number
of propagation directions ni up to 32 satisfying (6) and (7), but the
difference did not decrease essentially.
We noticed that the second order solution without limiter function,
i.e. using always the central difference to compute the slopes, does not
present this problem (see Figure 5). This indicates that the loss of
symmetry is due to the limiter.
The use of the contribution-limiter (25) removes this behaviour (see
Figure 6). We observe that the structure of the x and the diagonal
strips are almost identical and the solution converges for step size to
zero.
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Figure 2. The dashed line represents the x-strip and
the dashdotted line the diagonal strip from the first order
scheme. The solid line represents the first order radial
symmetric solution.
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Figure 3. The dashed line represents the x-strip and
the dashdotted line the diagonal strip from the second
order scheme. The solid line represents the first order
radial symmetric solution.
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Figure 4. The dashed line represents the x-strip and
the dashdotted line the diagonal strip from the second or-
der scheme computed with the software package CLAW-
PACK. The solid line represents the first order radial
symmetric solution.
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Figure 6. The dashed line represents the x-strip and
the dashdotted line the diagonal strip from the second
order scheme with the contribution-limiter. The solid
line represents the first order radial symmetric solution.
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