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Eidgenössische Technische Hochschule

CH-8092 Zürich
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The Method of Transport was originally developed for the Euler equation

in 1993 by M. Fey. He introduced the physical property of infinitely many

propagation directions into the numerical method. Here, we present the ex-

tension of this method to equations with inhomogeneous fluxes, such as the

shallow water equations. For efficiency reasons and to reach higher order

accuracy certain modifications had to be made to the method, whereby the

multidimensional character will be kept. The resulting scheme can then be

interpreted as a decomposition of the nonlinear equations into a system of

linear advection equations with variable coefficients in conservative form.
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1 INTRODUCTION 1

1 Introduction

The two-dimensional shallow water equations in conservation form read

U t +∇ · F = 0, (1)

with

U =

(
h
h u

)

the state vector, where h is the total depth of the fluid and u = (u, v)T the
velocity vector. The divergence acts on the rows of the flux matrix F given
by

F = U uT +
h c2

2

(
0T

I

)

,

where c =
√
g h the celerity with g the constant of gravity and I is the 2× 2

identity matrix.
In Section 2, we present the main idea of the Method of Transport (MoT) for
the shallow water equations. In Section 3, we derive a different formulation of
the shallow water equations that indicates the possible decomposition. Error
analysis shows that this system can be approximated to any order of accuracy
by a number of linear advection equations in conservative form which can be
solved independently. The idea of transport can also be applied to this type
of equations. The extension to a high order scheme follows in a natural way
as shown in Section 4. In Section 5, we present numerical results obtained
with the developed scheme for free surface flow problem.

2 First Order Method of Transport

The Method of Transport is a finite volume method, where the update to
the new timestep is done by adding incoming and subtracting outgoing flows
with all the neighboring cells. The final scheme in conservation form reads

Un+1
Ωi

= Un
Ωi

−
1

|Ωi|
∑

j !=i

(FΩiΩj
− FΩjΩi

), (2)

where |Ωi| is the area of the cell. The contributions FΩiΩj
represent the

quantity of information which flows from domain Ωi into domain Ωj . The
contributions FΩiΩj

approximate the physical multidimensional flux F .
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Ω1

Ω0

Ω5

Ω2

Ω3

Ω4 Ω6

Ω7

Ω8

Figure 1: Interaction between the cell Ω0 and its neighboring cells for a
Cartesian grid.

In the case of the shallow water equations the flux is not homogeneous,
i.e. F(λU) %= λF(U), for all λ ∈ IR. Nevertheless, it is possible to decompose
the flux function into a linear combination of waves which are propagating
with their corresponding characteristic speeds

F n =
3∑

i=1

λi αi ri.

The αi are the amplitudes of the waves propagating with speed λi, the eigen-
values of the Jacobian of F n. They are given by

λ1,3 = u · n± c,
λ2 = u · n,

where n = (n1, n2)T is a unit vector. It follows from the inhomogeneity of
the flux that the vectors ri can not be the eigenvectors of the Jacobian as is
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the case of the Euler equations. Note that the vectors αi ri have no direct
physical meaning. They represent neither a shock or a rarefaction wave.
Hence, we look for some vectors ri which are the eigenvectors of a matrix M
similar to the Jacobian and satisfying M U = F(U)n.
Guided by the process used for the Euler equations [2], we define

R1 = α1 r1 + α3 r3 = h

(
1
u

)

(3)

and

Ln = α1 r1 − α3 r3 =
h c2

2

(
0T

I

)

n. (4)

Note that L is a (N + 1) × N matrix, with N the space dimension in our
case 2. It turns out that R2 = α2 r2 = 0 vanishes completely, i.e. there is no
advection wave for the shallow water equations. Notice that the state vector
U can be rewritten as

U =
N+1∑

i=1

αi ri = R1.

We have decomposed U and F in a set of waves, which leads to a flux-vector
splitting in one dimension for an inhomogeneous flux.

2.1 Contributions FΩiΩj

With the help of the coefficients R1, and L the contributions FΩiΩj
can be

split into two parts, corresponding to the C+ and C− waves

FΩiΩj
= F c+

ΩiΩj
+ F c−

ΩiΩj
. (5)

Each component can be written as the integrals of the waves generated by
domain Ωi into the domain Ωj . The first contribution F c+

ΩiΩj
is represented

by

F c+

ΩiΩj
=

∫

Ωj

C+
Ωi
(x, t0 +∆t) dx.

The wave C+ describes the propagation of quantities R1(U(y, t0)) with veloc-
ity u+ c n. This propagation can be interpreted as an infinity of advections.
The sum of all these advections is described by the integral over the unit
sphere S ∈ IRN . The wave C+ is defined with help of the vector function

g(y, t0, n,∆t) = y +∆t (u(y, t0) + c(y, t0)n)
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and the Dirac’s delta distribution as

C+
Ωi
(x, t0 +∆t) =

1

|S|

∫

S

∫

Ωi

R1(U(y, t0)) δ(x− g(y, t0, n,∆t)) dy dS.

|S| is the area of the sphere, dS is an area element and n is the outer normal
to element dS with unit length. The factor 1/|S| has a normalization role,
such that the quantity R1 distributed with the wave C+ is invariant during
the time evolution.
The second contribution has the form

F c−

ΩiΩj
=

∫

Ωj

C−
Ωi
(x, t0 +∆t) dx.

The wave C− is similar to the wave C+. It represents the propagation of the
quantity L(U(y, t0))n with velocity u+ c n

C−
Ωi
(x, t0 +∆t) =

N

|S|

∫

S

∫

Ωi

L(U(y, t0))n δ(x− g(y, t0, n,∆t)) dy dS.

The normalization factor N depends on the dimension of the space.
The above description of the contributions has to be applied on a discrete
mesh. If U is assumed to be constant in each cell, this leads to the Method
of Transport with infinitely many advection directions (MoT∞). For more
details see [2].

2.2 Method of Transport Simple

In the MoT∞ the functions C+ and C− are complicated and hence, computing
the integrals for the contributions is very time consuming. A simplified ver-
sion of the MoT∞ approximates the support of C+ and C− by a rectangular
and the functions by piecewise constant on rectangular subdomains. This
method is called Method of Transport simple. The contributions FΩiΩj

have
to be computed with

C+(x, t0 +∆t) = R1(U
n
Ωi
)f c+(x, t0 +∆t)

C−(x, t0 +∆t) = L(Un
Ωi
) f c−(x, t0 +∆t).

The supports of the functions f c+ and f c− and their partitions into subdo-
mains are shown in Figure 2.
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D1D2.2 D2.4

D2.3D3.2 D3.3

D3.1 D2.1 D3.4

∆t u

∆t c

Figure 2: Decomposition of the support of the function f c+ and f c−.

Using the notation Di = ∪jDi.j the piecewise constant function f c+ and the

vector f c− = (f c−
1 , f c−

2 )T are given by

f c+(x, t0 +∆t) =






1 if x ∈ D1

1/2 if x ∈ D2

1/4 if x ∈ D3

0 elsewhere

,

f c−

1 (x, t0 +∆t) =






1/2 if x ∈ D2.4

−1/2 if x ∈ D2.2

1/4 if x ∈ D3.3 ∪D3.4

−1/4 if x ∈ D3.1 ∪D3.2

0 elsewhere

,

and analog for f c−
2 .

The function f c+ can be interpreted as the sum of four translations of the
original cell. The translations can be described as

fa(x, a, t0 +∆t) =
∫

Ωi

δ(y +∆t a(y, t0)− x) dy
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and

f c+(x, t0 +∆t) =
1

4

4∑

i=1

fa(x, u+ c ñi, t0 +∆t)

with

ñi ∈
{(

1
1

)

,

(
−1
1

)

,

(
−1
−1

)

,

(
1

−1

)}

for i = 1, . . . , 4. The function f c− can also be written with the help of fa as

f c−(x, t0 +∆t) =
1

4

4∑

i=1

ñi f
a(x, u+ c ñi, t0 +∆t).

The contribution FΩiΩj
can then be computed as

FΩiΩj
=

∫

Ωj

1

4

4∑

i=1

(R1 + L ñi) f
a(x, u+ c ñi, t0 +∆t) dx. (6)

This decomposition will be further developed to reach second order.

3 Decomposition of the Equations

In Section 2, the contributions are decomposed into two waves, C+ and C−.
These waves are related to critical waves. It is the aim of this section to
decompose the shallow water equations in a similar fashion. In [4] the de-
composition is done for the Euler equations.

3.1 Decomposition in Infinitely Many Advection

Equations

Using the coefficients R1 and L from (3) and (4), F can be written as

F(U) = R1 u
T + c L.

The propagation of the quantity R1 with the velocity u+c n is a translation by
u combined with an expansion c n. For each n we can interpret the behavior
of R1 as a transport process described by

φ
1
(n) := (R1)t +∇ · (R1(u+ c n)T ).
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Since the critical waves move in all directions, we have to split R1 and prop-
agate it in all directions. With the identities

1

|S|

∫

S
dS = 1 and

1

|S|

∫

S
n dS = 0,

where S is the unit sphere in IRN and |S| its area, and the state vector U
rewritten as

U =
1

|S|

∫

S
R1 dS,

the integral of φ
1
(n) over the unit sphere becomes

1

|S|

∫

S
φ
1
(n) dS = U t +∇ · (U uT ) = 0.

However, this is not the left-hand side of the shallow water equations. The
missing term in the flux matrix can be associated with the C− wave. The
vector Ln is also transported with the velocity u + c n. The corresponding
transport terms are

φ
2
(n) := (Ln)t +∇ · (Ln(u+ c n)T ).

Clearly
1

|S|

∫

S
LndS = 0 and

1

|S|

∫

S
nnT dS =

1

N
I.

To get consistency with the shallow water equations (1), we take N times
φ
2
. Then the equations

1

|S|

∫

S
φ
a
(n) dS = U t +∇ · F = 0, (7)

with
φ
a
(n) := φ

1
(n) +Nφ

2
(n)

recover the original nonlinear system. φ
a
(n) is the combination of the C+

and C− waves. Observe that this factor N for the C− wave had already been
derived to make the first order scheme consistent with the shallow water flux.
Using

Ra(n) := R1 +N Ln,
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we get for φ
a

φ
a
(n) = (Ra)t +∇ · (Ra(u+ c n)T ).

Hence the state vector is represented by

U =
1

|S|

∫

S
Ra(n) dS. (8)

In the next subsection we shall make use of this representation to create
a numerical scheme. The similar decomposition for the Euler equations is
described in [4].

3.2 Decomposition in Finitely Many Advection Equa-

tions

The disadvantages of the formulations (7) and (8) are that the state vector
U is represented by an integral and infinitely many advection equations have
to be solved. The integral will now be replaced by a finite sum of k terms.
(8) becomes

U =
1

k

k∑

i=1

Ra(ni) =
1

k

k∑

i=1

(
R1 +N Lni

)
(9)

and (7)
1

k

k∑

i=1

φ
a
(ni) = U t +∇ · F = 0. (10)

In order that (9) and (10) hold exactly, the ni have to satisfied certain con-
ditions. From equation (9) follows

k∑

i=1

ni = 0 (11)

and from (10)
N

k

k∑

i=1

ni ni
T = I. (12)

Collecting these results we can approximate the shallow water equations (10)
by a combination of k advection equations if (11) and (12) holds.
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The condition (11) and (12) do not define ni uniquely. Here we consider in
particular the four vectors aligned on the horizontal and vertical axis, which
are

ni ∈
{(

1
0

)

,

(
0
1

)

,

(
−1
0

)

,

(
−1
0

)}

(13)

for i = 1, . . . , 4. Note that this choice of is not related to the dimensional
splitting approach. In general the final propagation u + c ni is not aligned
with the coordinate axes. These ni are also a natural way to approximate the
characteristic cone. The vectors ni can be interpreted as the support points
for a quadrature rule to integrate the characteristic cone.
The choice of the ni influences the functions f

a used in (6). Here we will check
the union of their supports, shown in Figure 3, which have to approximate
the support of the exact waves C+ and C−.

∆t u

∆t c n2

∆t c n3

∆t c n4

∆t c n1

Figure 3: Support of the contributions FΩiΩj
for the unit vectors defined in

(13) and for the MoT∞.

We can see that the support of the waves C+ and C− does not completely
overlap with the one of the MoT∞. The corners are not recovered.
Another possible choice is given by the unit vectors lying on the diagonal,
but in this case strips along the edges of the exact support are not recovered.
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This problem can be improved by replacing the vectors ni by the ñi

ñi ∈
{(

1
1

)

,

(
1
−1

)

,

(
−1
1

)

,

(
−1
−1

)}

(14)

for i = 1, . . . , 4. The support generated by these ñi is identical to the support
of the functions f c+ and f c− of the Method of Transport simple, (see Figu-
re 2), but the ñi do not satisfy (12) since they are not unit vectors.
We already introduced the scaling factor N to set consistency in (12). If we
defined Ra in a more general way as

R̃a(ñi) := R1 + ωi L ñi, (15)

where

ωi :=
N

ñT
i ñi

,

we get exactly the shallow water equations

1

k

k∑

i=1

φ̃
a
(ñi) = U t +∇ · F = 0, (16)

φ
a
becomes

φ̃
a
(ñi) := (R̃a(ñi))t +∇ · (R̃a(ñi) (u+ c ñi)

T ). (17)

3.3 High Order Resolution

To solve the equations (16) for one time step, we linearize φ̃
a
(ñi) and set to

zero each component of the sum. The decomposition process now becomes
obvious. At a given time, t0, we eliminate the time dependency of u and c
by freezing the time so that

a(x, ñi) := u(U(x, t0)) + ñi c(U(x, t0))

becomes a function of x only. Thus, we obtain a set of linear advection
equations of the form

˜̃
φ
a
(ñi) := (R̃a(ñi))t +∇ · (R̃a(ñi) a(x, ñi)

T ) = 0. (18)
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Summing up the solutions of (18) for i = 1, . . . , k leads to an approximate
solution of (16):

1

k

k∑

i=1

˜̃
φ
a
(ñi) = 0. (19)

The time evolution of the exact solution can be approximated by the average
of the solutions of the decomposed equations. For a general nonlinear system,
this approximation is only of first order.
To find a more accurate approximation we replace (15) by

R̃a(ñi) = R1 + ωi (L+K) ñi (20)

such that the solution of (19) with (20) coincides with the solution of (1) up
to second order. K is a correction matrix

K(x, t0) =




k11 k12
k21 k22
k31 k32



 ,

which is determined by an error analysis. We will see that the correction
terms are of order O(∆t). It turns out that the corrected equations have
the same structure as before. This idea can be generalized to a higher order
method.

3.4 Correction Terms

The correction terms are computed by comparing the Taylor expansion of
the solution of (1) with the Taylor expansion of (19) with (20). Here, we
explicitly carry out the computation for the first component h, the same
strategy has to be applied to the other components. The Taylor series of the
solution of (1) at (x, t0 +∆t) is

h(x, t0 +∆t) = h(x, t0) +∆t ht(x, t0) +
∆t2

2
htt(x, t0) +O(∆t3). (21)

From now on, we will omit the argument (x, t0). Using the conservation of
mass and momentum (1), the time derivatives in (21) can be replaced by the
spatial derivatives

h(x, t0 +∆t)=h−∆t (h u)x −∆t (h v)y +
∆t2

2
((h u2 +

h c2

2
)x + (h u v)y)x

+
∆t2

2
((h u v)x + (h v2

h c2

2
)y)y +O(∆t3).

(22)
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Although the correction terms depend on the vectors ñi, they can be com-
puted for any choice of ñi that fulfill the consistency relations (11) and (12).
The solution h̃ of (19) is the average of the k solutions of (18). The Taylor
expansion for its first component is

hi(x, t0 +∆t) = hi +∆t (hi)t +
∆t2

2
(hi)tt +O(∆t3), (23)

where the derivatives are given by

(hi)t=−((hi + ωi k11 ñi,1 + ωi k12 ñi,2) (u+ c ñi,1))x
−((hi + ωi k11 ñi,1 + ωi k12 ñi,2) (v + c ñi,2))y

and
(hi)tt=−((hi + ωi k11 ñi,1 + ωi k12 ñi,2) (u+ c ñi,1))tx

−((hi + ωi k11 ñi,1 + ωi k12 ñi,2) (v + c ñi,2))ty
=−((hi)t (u+ c ñi,1))x − ((hi)t (v + c ñi,2))y.

The last equality follows from the linearity of (18), where u, v, c are functions
of x only and the correction coefficients and their derivatives are first order
terms in ∆t, but they appear in the second derivative (hi)tt, with third order
influences on the solution h̃. (hi)tt can be rewritten as

(hi)tt = ((((hi + ωi k11 ñi,1 + ωi k12 ñi,2) (u+ c ñi,1))x
+ ((hi + ωi k11 ñi,1 + ωi k12 ñi,2) (v + c ñi,2))y) (u+ c ñi,1))x
+ ((((hi + ωi k11 ñi,1 + ωi k12 ñi,2) (u+ c ñi,1))x
+ ((hi + ωi k11 ñi,1 + ωi k12 ñi,2) (v + c ñi,2))y) (v + c ñi,2))y.

From the generalization of (12) for non-unit vectors follows

1

k

k∑

i=1

ωi ñ
2
i,1 =

1

k

k∑

i=1

ωi ñ
2
i,2 = 1.

If we sum up the expansion (23), the solution h̃ is

h̃=h−∆t (h u+ k11 c)x −∆t (h v + k21 c)y

+
∆t2

2
(u (h u+ k11 c)x + c (ω h c+ k11 u)x + u(h v + k12 c)y + c(k11 v)y)x

+
∆t2

2
(v (h u+ k11 c)x + c (k12 u)x + v(h v + k12 c)y + c(ω h c+ k12 v)y)y +O(∆t3)

(24)
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where

ω =
1

k

k∑

i=1

n2
i,1 =

1

k

k∑

i=1

n2
i,2.

For all sets of unit vectors satisfying (11) and in particular for the vectors
(13) , ω is always one half. For the set of vectors (14), ω is one. It is also
possible to combine the two type of vectors, then the ω corresponding to
these eight vectors has a value of three quarters.
We want (24) and (22) to be equal up to second order, so we have to fix k11
and k12 so that

∆t(k11 c)x +
∆t2

2
(h u ux + (1−

3ω

2
) hx c

2 + h uy v)x = O(∆t3)

and

∆t(k12 c)y +
∆t2

2
(h v vy + (1−

3ω

2
) hy c

2 + h u vx)y = O(∆t3).

Following the same argument for the moments h u and h v, we can compute
the other components and will find that the correction matrix is given by

k11=−
∆t

2 c
((1−

3ω

2
) hx c

2 + h u ux + h uy v)

k12=−
∆t

2 c
(h u vx + (1−

3ω

2
) hy c

2 + h v vy)

k21=−
∆t

2 c
((
5

4
−
3ω

2
) hx c

2 u+(
1

2
−ω) h c2 ux + h u2 ux +

1

4
hy c

2 v + h u uy v +
1

2
h c2 vy)

k22=−
∆t

2 c
(h u2 vx) + (1−

3ω

2
) hy c

2 u− ω h c2 uy + h u v vy)

k31=−
∆t

2 c
((1−

3ω

2
) hx c

2 v + h u ux v − ω h c2 vx + h uy v
2)

k32=−
∆t

2 c
((
5

4
−
3ω

2
) hy c

2 v +(
1

2
−ω) h c2 vy + h v2 vy +

1

4
hx c

2 u+
1

2
h c2 ux + h u v vx).

4 Higher Order Scheme

In the previous section, we decomposed the shallow water equations in a
set of linear advection equations with variable coefficients. Now we want to
present a high order numerical scheme to solve these equations. Therefore,
we consider the two-dimensional advection equation in conservative form

ut +∇ · (u aT ) = 0, (25)
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where a = a(x) = (a, b)T . We want to extend the multidimensional Method
of Transport to higher order. For the scalar equation the scheme (2) becomes

un+1
Ωi

= un
Ωi

−
1

|Ωi|
∑

j !=i

(FΩiΩj
− FΩjΩi

),

where the contributions FΩiΩj
are defined as

FΩiΩj
=

∫

Ωj

U(x, t0 +∆t) dx.

The wave U describes the transport of u from the computational cell Ωi to
any point x in space.
The advection equation (25) can be rewritten as

ut + (∇ u) · a = −u (∇ · aT ). (26)

It follows that the evolution of u in (26) along the characteristic curve z(τ)
satisfies

d

dt
u(z(t), t) = −u (∇ · aT ),

where z(τ) is defined by

ż(τ) = a(z(τ)), z(t) = ξ. (27)

We can express the transport of the quantity u along the characteristic curve
z(t0 +∆t, ξ), the solution of (27), by using

U(x, t0 +∆t) =
∫

Ωi

u(ξ)δ(z(t0 +∆t, ξ)− x) dξ.

The integration of the Dirac’s delta distribution is not trivial, due to the
nonlinear argument. Assuming the map defined in (27) to be bijective, then
the variable transformation

v(ξ, x) := z(t0 +∆t, ξ)− x

has an inverse s(v, x), i.e. v ◦ s = Id, which allows the elimination of the
Dirac’s delta distribution. Thus the computation of the contributions FΩiΩj

becomes

FΩiΩj
=

∫

Ωj

u(s(0, x))
1

det(J)
dx,
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where J := dz/dξ is the Jacobian of the mapping in (27).
To get a first order approximation of the characteristic curve we take a linear
reconstruction for a(z)

a(z) = a+ Az, (28)

where the matrix A is defined as

A =

(
ax ay
bx by

)

.

If A is constant, the solution of the corresponding linear differential equation

ż(τ) = a + Az, z(t0) = ξ

is given by
z(τ) = −A−1 a+ eA τ (A−1 a+ ξ).

By taking the Taylor expansion of z(τ)

z(τ) = ξ + τ (a+ A ξ) +
τ 2

2
(Aa+ A2 ξ) +O(τ 3),

we get for z(t0 +∆t, ξ) as

z(t0 +∆t, ξ) = ξ +∆t (a+ A ξ) +
∆t2

2
(Aa+ A2 ξ) +O(∆t3). (29)

Substituting (29) into v(ξ, x), the equations

v(ξ, x) = 0

are easily solved and the solution is

s(0, x) = (I +∆t A +
∆t2

2
A2)−1(x−∆t a−

∆t2

2
Aa)

Using the Neumann series we get as second order approximation

s(0, x) = (I −∆t A+
∆t2

2
A2)(x−∆t a−

∆t2

2
Aa)

= x−∆t A x−∆t a+
∆t2

2
Aa+

∆t2

2
A2x+O(∆t3).
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FΩ0Ω3

FΩ0Ω1 FΩ0Ω8

G8

FΩ0Ω7s(0, G8)

Figure 4: Sketch of transformation (28). The solid line represents the forward
transformation of the original cell. The dotted line denotes the backward
transformation of G8 into the original cell.

By the variable substitution x = s(0, y) we get for the contributions

FΩiΩj
=

∫

s(0,Gj)
u(x, t0) dx,

where s(0, Gj) ⊂ Ωi describes the inverse of the domainGj , which is sketched
in Figure 4.
The domains of integration can be triangles, quadrilaterals, pentagons or
hexagons. Therefore we reconstruct u(x, t0) linearly and use a quadrature
rule to get the contributions.
We can check that with the contributions FΩiΩj

defined above, the Taylor
expansion of the numerical solution corresponds up to second order with
the Taylor expansion of the exact solution. Further explanation about the
scheme can be found in [4] and [5].

5 Numerical Results

This method is implemented on a parallel machine with domain decomposi-
tion strategy. It performs very well on the Intel paragon.
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We compare the numerical simulation of a supercritical expansion of water
in a channel with the measurement of Hager and Mazumder [6].

Figure 5: Experimental results of Hager and Mazumder [6], 10 contour lines
of h for an abrupt expansion in a channel.

The channel is 8 m long and 1.5 m wide, the opening is one third of the total
width and the water streams in with height of 96 mm and a Froude number
of 2. The fact that water flows into a dry bed, does not cause problems.
The first order scheme is a non negative scheme and the second order can be
construct with the same property.
The space discretization uses a Cartesian grid with 240× 45 points and a
time step of ∆t = 10−2, which corresponds to a CFL number of 0.8. The
computation is done till a steady state is reached. Here the pictures are
shown at time T = 5 sec.
The stationary solution shows the same structure as the measurements, but
in the simulation all lines are shifted downstream. The inclusion of friction
corresponding to the bed shear stress to the model, leads to the correct
solution (see Figure 6).
The friction can be added to the equations by a source term

S(U) =




0

−g h Sfx

−g h Sfy



 ,

where Sfx and Sfy are the slopes of the energy grade lines in the x and y direc-
tions respectively. The values are given by the steady state friction formulae
Sfx = (n2 u

√
u2 + v2)/h4/3 in which n is Manning’s roughness coefficient. In

each step, we use an operating splitting, i.e. we first solve the homogeneous
equations (1) and then the ordinary differential equations U t = S(U) with a
second order Runge-Kutta scheme. Since in this example the source term is
not stiff, the operating splitting causes no problems.
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Figure 6: Abrupt expansion in a channel. 10 contour lines of h for the first
order solution (upper figure) and the second order solution (lower figure).

The curved shock structure in the lower picture is well captured and coincides
with the measurements. However, by adding viscosity to the model, we could
possibly get better numerical results.
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