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1. INTRODUCTION

In the field of partial differential equations, there are still many unsolved prob-
lems, like existence and uniqueness of solutions of nonlinear hyperbolic and mixed
hyperbolic-parabolic systems. For numerical analysis, convergence of finite difference
approximations to such generally unknown solutions plays an important role.

A whole theory has been developed during the past twenty years to prove conver-
gence of finite difference approximations to smooth solutions of nonlinear hyperbolic
and mixed systems. Initially, this technique was introduced by Strang [12] to treat
pure Cauchy problems for hyperbolic systems. It was further developed to treat initial-
boundary value problems for hyperbolic equations by Michelson [9] on one hand and
afterwards to treat Cauchy problems for systems of mixed hyperbolic-parabolic type
by Schroll [11] on the other hand. Recently, the authors proved convergence of a
class of difference approximations to initial-boundary value problems for hyperbolic-
parabolic systems, cf. [3]. The idea in this theory is to construct an approximation
to the numerical solution, the so-called pilot function, which is highly consistent with
the scheme. Convergence follows then by proving stability of a linearisation of the
scheme. This is done in analogy to Lax’s equivalence theorem for linear problems,
which states that ‘stability is equivalent to convergence’ under the condition that
some consistency assumption holds.

The schemes treated in [3] were constructed such that no artificial boundary condi-
tions were necessary. For this reason they are only first order accurate. In the present
paper the proof is generalised to higher order approximations.

First, we have to define artificial boundary conditions. They are chosen in such
a way that a summation by parts formula holds, c¢f. [1]. Summation by parts is an
important tool to prove stability by means of the energy method. In a further step,
we have to construct the pilot function. Since the boundary-scheme is not the same as
the one applied in the interior of the domain, boundary layers will occur, which have
to be approximated as well. The boundary layer terms depend not only on the grid
parameter but on its reciprocal as well and they thus have to be analysed carefully to
insure that they are uniformly bounded as the mesh size shrinks to zero. Convergence
finally follows from consistency of the pilot function together with the stability esti-
mate for some linearisation of the scheme and some smoothness assumption on the
nonlinear scheme.

2. PRELIMINARIES AND AN OUTLINE OF THE CONVERGENCE THEORY

The mixed systems under consideration shall be written in the following block—form

v All A12 v . B11 0 v Cl
oo (o)) () -0 o) () +(8)
The coefficients are smooth functions depending on the unknown u = (v,w)? € R"
and (t,z) € Q,
Q:=10,7] x [0,1].

We shall consider some fixed finite time 7" such that a classical solution for the initial—
boundary value problem exists.

(2) A, B € C®((R" x Q),R™™), (€ C=((R" x Q),R").
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The system for v € R™, m < n is assumed to be strongly parabolic in the sense that
(3) Bi(u,t,z) € C¥((R™ x Q),R™ ™), By + Bj, > 281 > 0.

Furthermore, we assume that all eigenvalues of Ay are real and distinct, i.e. the
system for w is strictly hyperbolic. In fact, we will assume that Ass is diagonal

(4) Agy = A = diag(\i, i = 1,2,... ,n —m).
The system (1) shall be augmented with initial and boundary data

u(0,2) = 2(z), z€0,1], =€ C=(0,1],R")
v(t,0) = folt), o(t,1)= fi(t), t€[0,T], fieC=(0,T],R™).

For the hyperbolic component one has to prescribe the ingoing characteristic variables
at the boundaries. For simplicity, we assume there is a fixed number say ¢ < n —m
characteristics travelling to the right. They will be denoted by w* € R?. Then, we

have
+
w = (w_ ) c R,
w

The corresponding characteristic speeds are the positive and negative eigenvalues of

A22

(5)

[ diag(X; > 0) 0
An=A= ( 0 diag(\; < 0) ) '
At the left boundary, we need to know w™
(6) w+(t7 0) = go(t), Jo € COO([Ov T]qu)

and at the right boundary w™ must be given
(7) w_(tv 1) = gl(t)v g1 € COO([Ov T]an_m_q)‘

For compatible data, i.e. when f;, ¢; and z vanish in the corners (0,0) and (0, 1), one
can show (cf. [3] and [7] Chap. 7) that locally in time a smooth solution exists. More
precisely:

Assumption 2.1. There is a time T > 0 such that the initial-boundary value problem
(1) = (7) has a unique solution u € C*(Q, R").

The purpose of the present paper is to construct a higher order finite difference
method for the IBVP (1) — (7) and to prove convergence of the approximation com-
puted by that method towards @ as the mesh size shrinks to zero.

A general concept to prove such convergence results was introduced in [11] and [3].
Let us briefly recall the main steps.

The difference method can be written as a root equation

(8) Op(u) =0

where the discretisation operator @, acts on grid functions defined on a regular grid
in time and space

Qh = QAt X QAQU C Q,
QAt = {tk:kAt, kZO,l,...[X’},
Qar = {z;=jAz, 7=0,1,...J}.
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Choosing J, K € N the grid parameters are

-(2)-()

Due to consistency reasons (see [11]), the step sizes have to be related
At = pAx,

where p is arbitrarily but fixed.

The concrete discretisation will be developed in the next section. The goal is to
show that the nonlinear system (8) has a unique solution U and to estimate the
deviation

U —ulp|| = O(AzP), Az — 0.
This can be achieved by the following three steps (cf. [11] and [3]):
e Verify that D®), is Lipschitz continuous near
D@ (uln) = DOy (u)|| < Lipal|tln — ul].
e Construct an approximate solution
' =i+ ArzuM + Az 4+
which is high order consistent with the scheme
1@ (™)l = o(Lipy,), Az — 0.
e Show that the scheme linearised at u?' is stable, i.e. D®;(u!|,) is regular and
(9) D@ (W)l < L.

When these requirements can be fulfilled, then it follows by the theory of Lopez-
Marcos and Sanz-Serna [8]

i) There is a constant S > L and a stability radius Ra, = (L™ — S™')/Lipa,
such that the nonlinear scheme is locally stable

lu =]l < Sl @n(u) = u(v)ll,  u,v € B(u|n, Rao).

Here B(u, R) denotes the open ball of radius R, centered at u. Furthermore, we have
ii) For small & a unique solution of the scheme (8) U & B(upi|h, Ra,) exists.

An obvious consequence is that [/ converges to u?* at high order
1T = w4l < SlI@n(u™]1)]I-

By construction u?* converges to . The rate of this convergence is bounded by the
order of consistency of the scheme. So far || - || is an arbitrary norm.

Since our linear stability theory is based on energy estimates, it is natural to measure
convergence in a discrete L?-norm in space. For grid functions on €y, we use

lulloc,2 = max flu(, )]l

For functions on Qx, the discrete L?*-norm

lully = Az > Ju(z)]”

l’GQAm
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is induced by the product

(u,0) =Az > <u(z)v(z)>.

l’GQAm

Below, we shall also use the restricted product and norm

(u,v)(“) = Az Y <uj,v;> and (HUH(M))Q — (u,u)(“),

J=l
The maximum norm is denoted by

lulleo = max Ju(z)].

Finally, for real vectors, we write

<u,o>=u'v and |u|* = ulw.

In the next section, the scheme is set up and the main result will be stated. Verity-
ing Lipschitz continuity of D®}, is a technical and not very interesting computation.
Naturally, the scheme involves At, Az and Az? in the denominator. As the space
derivatives appear nonlinearly in the system (1), the Lipschitz constant of D®;, w.r.t.
|| - ||0.2 1s typically bounded by (see [11])

Lipa, < m
In Section 4, the pilot function will be defined and in Section 5, linear stability is
proved. Finally, the main result is established in Theorem 3.1.

3. THE FINITE DIFFERENCE SCHEME

3.1. Space Discretisation. In [3], a first order upwind scheme was analysed. Some
investigations on second order approximations can be found, for example, in [10, 13].
Since the first order error terms of even order differences are of dispersive type, we are
not interested in applying such schemes to hyperbolic equations and therefore skip
to third order differences. At inner grid points, a well-known third order difference
formula is

d
i)~ (PP); =

Uj—g — 6u]‘_1 + 3u]‘ + 2u]‘_|_1
dx ’

6Ax J=

cod =2

The upper index (3) indicates that the approximation is formally of third order. p®
is of backward type. Intuitively there is more information taken from the left than
from the right. In Section 5 there is a more precise definition of which differences
we have to designate as backward and which as forward ones. The forward difference
Df), being the almost adjoint of — DB in the interior is given by

—2uj_1 + 3u; — 6uj1q + Ujgo )

DPu); = — L d A )

( + u)] 6Ax ) ) )

In [1], it is proved that it is possible to find artificial boundary conditions of first order
and a norm matrix H, which has to be positive definite, such that the summation by

parts formula holds

(10) (u,D(_S)v)H = —(Df)u, V) 4 ugvg — ugvo.
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The above scalar product is defined as
(uv v)H = (uv HU)

From (10), we can easily deduce a summation by parts formula for the sum of the two
approximations

1 1
(11) (u, §(D(_3) + Df))v)g = —(5(1?(_3) + Df))u,v)g + ujvy — ugvg.
The full difference operators, including boundary points, read
-1 1
9% 5 4
13 13 13
1 11
s L 3 3
AzDY = 11
6 2 3
1 1 1
s L 3 3
2 _12 5 5
13 3 13 13
2 _9 7
5 5 5
and
_7 9 _2
5 5 5
_5 _5 12 2
3 13 13 13
1 1 1
-3 —2 1 —%
AzD{) = [ S
+ 3 2 6
1 1 1
-3 —3 L =5
4 5 09
13 13 13
-1 1
The corresponding norm matrix is
.o (5 13 13 5
(12) H = dlag(ﬁ,ﬁ,l,l,...,l,ﬁ,ﬁ).

To apply these operators to systems, we have to multiply each entry of PP and Df)

by an identity matrix /. The dimension of [ is given by the number of unknowns in
the system to which DY and Df) are applied. In fact, we have to build the tensor

products PP @ I and Df) @ I. The dimension of [ is n, when Df) is applied to u,
(3)

it is m or n — m when D}’ is applied to v or w respectively, and finally it is ¢ or
n —m — ¢, when Df) is applied to w™ or to w™. In order not to overload notation,
we shall omit these identity matrices whenever it is clear which one has to be taken.
For example, we write (D(_S)uk)j for the j-th block of (D(_S) @ In)u(ty).

Having this, we can write down the spatial discretisation with the centered second
order approximations for the derivatives of the v-components and with the third order
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(3)

approximation D’ for the derivatives of the w*-components. The time variable ¢ is
omitted in the notation.

_(fO)t
_(90)15
(A7)o(DFv)o + A5 (D w™)o — (€7 )o
A(DP v, DDt DPw=); — B(DyD_u); — C;
_(fl)t
(A$)(DPv); + AF(DDwt ), — (CF)s
_(gl)t

(13)

The middle line has to be repeated for y =1,2,...,J — 1. To be more precise, we
should have written (D((JQ)U,D(_S)w"',Df)w_) as ((D(()2)v)T, (D(_S)w"')T, (Df)w_)T)T.

The matrices A and C are partitioned according to the decomposition of u as

Al At 0
A21:(~21)7 A222A2A+—|—A_:(0 N )7

- G
A12 — (A127A12) and CQ — ~ .

2

D4 are the two point forward and backward differences, and D(()z) is defined by

1

3.2. Time Stepping by High Order Runge-Kutta Methods. For the time
discretisation, we apply a high order implicite Runge-Kutta method, in order to get
an overall scheme that is accurate of at least second order in the interiour.

The semidiscretisation reads

(14) ue+ PO (u,t) =0, u(0) = =
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An implicit Runge-Kutta method for solving (14) is given by

Uy = 2| Az,
Ukl _AUk_l —I_ Z alvmpé?)l?(ukm7tkm) = 07
t —
(15) m=1
U — UL —
. A — —|—Zblpé?2(ukl,tkl):0,
t =1
k=1,2,.... K.

Here, uy, is an approximation to the solution at the intermediate gridpoint
tkl =11+ At € [tk—17tk]7 121,2,...78

The goal in Section 4 is to construct a function, which is of third order consistent
with the fully-discrete problem. For this purpose, a Runge-Kutta method of stage
order ¢ = 3 is needed. We shall analyse the Radau ITA method, which is given by its
Butcher-array

4—v6 ] 88 —T7v6 296 —169v6 —2+ 36
10 360 1800 255
446|296 4+169v6 884+ T7vV6 —2—-3V6
(16) 10 1800 360 255
X 16 — V6 16 + V6 1
36 36 9
16 — V6 16 +6 1
36 36 9

and which has stage order three, that is

% + Z az,mpf;)(ﬁkm,tkm) = O(At?),

% + Z blpé?;g(ﬁkmtkl) = O(Atq)v
t =1

k=1,2,....K, 1=1,2,...,s,

m=1

where @ is the solution of (14).

This method has two further properties, which will allow us to prove stability of
the overall scheme. It is algebraically stable and has a positive coercivity coefficient,
ag(A™h) = 5/(4—|—\/6), where A = {a;,,,} is the matrix of the Runge-Kutta coefficients,
cf. [5].

Now we are in the position to state the main result

Theorem 3.1. Consider a mived system (1), (2), where By is strongly parabolic and
Agy is strictly hyperbolic and reqular. Let u be the unique smooth solution of the
initial-boundary value problem (1)—(6).

For sufficiently small step sizes At = pAx, where p is arbitrarily but fived, the
Radau ITA method (15), (16), applied to the space discrete problem (13), (14), has a
unique solution U defined on Qy,, which converges at second order to the analytical
solution u

10—l = O(A?), Ax -0,
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The proof of this Theorem will be developed in the next two sections. Finally we
collect the individual steps and summarise the proof in Section 6.

4. APPROXIMATION TO THE NUMERICAL SOLUTION, BOUNDARY LAYER TERMS

According to the general concept in Section 2, we have to construct a high order
consistent function u”*, at which the scheme will be linearised. The stability of the
linearised scheme will be discussed in the next section.

4.1. Construction. As the order of consistency of our space discretisation decays
to one near the boundary, boundary layers will occure. The following ansatz takes
this layers into account.

uP(t e, 6,¢) =t e) + AvuD(t,2) + Ac*u?(t, )
(17) FALIO(L,E) + A1, ) + AaPrD(1,¢) + Acr(1, ()
f =

1l —=a

X
Ae ST TAg

The error terms are defined by equations that we get by

e substituting the ansatz (17) into the semi-discrete equations u; + Pfx)(u) =0,
given by (14),

e expanding the terms which do not depend on ¢ or ( with respect to the step
size,

e separating the terms depending on z, £ and (,

e seting the coefficients of Az and Az? to zero.

The results are linear initial-boundary value problems that define u" and «(?, and
finite difference equations that define IV, () +(1) and ) at the grid points.
By construction, uP' satisfies the semi-discrete equations up to order three. As we
shall see in Section 6, it is even third order consistent with the fully-discrete scheme.
The defining equations for u{!) are

(18)  uW, + A(@)uY, + DAV, = B(@)uY,, + DB(@)uVi,, + DC(@)uD.

Additionally, we have homogeneous initial and boundary conditions, such that u()
vanishes.

Next, we define the first boundary layer terms (V) and (). To this end, we split
up (D and v, { = 1,2, into three parts, according to the components v, wt, and w~
of u, i.e.

. N Nt .w—T , N Nt 'w_T
16) (lm NCENG ) G- (rm OO0 ) _

The defining difference equations are

wt
Lo =0,

. (AzDPO"™ ). = 20 02a(tho 7). 7 =1,

= iT Y0, j=2.3,...,
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P =0,
07 j:l,Q,...,J—27
(20) (Axpf»rg)m)j _ ) k(e wy), j=7-1,
110 xx(tkax]) + 5(/\;")—1(141"2)]1)”(@7;1;])7
Jg=J.
_110 xx(tk,x]) %(7\]_)_1(‘112) vxx(tkal'])
w— ] _ 0
AgDP MYy = .
(21) (AxDY L7 ) =, (th, ), J =1,
07 ]—2,3,...7J—17
D" =0
(Afo)r]gl)w_)j _ { 0, 7=0,1,...,J—2,
(22) _256 xx(tkawj) ] = J - 17
r0" =0,

The space derivatives of the parabolic component are discretised with second order
accuracy including the boundary points. Thus, the v-parts of () and /") are zero
and we can prove the following lemma.

Lemma 4.1. The first boundary layer terms v and (V) defined at the grid points by
(19)—(22) are bounded independent of the grid parameter Ax.

Proof. We prove the lemma for ") only. Since the v-components of r!) are
zero, we have to prove that the w™- and the w™-components are bounded. These

are defined by decoupled systems of difference equations. Thus, we can treat each
wt
component independent from the others. Let r denote any component of r,(:)

r; = r(x;). The vector r is defined through the following system of equations

and

1 To 0
-9 5 4 2 0
1 -6 3 2 T 0
1 -6 3 2 T3 0
(23) 1 -6 3 2 o | ] o
1 -6 3 2 rJy_9 0
2 =12 5 5 rj_1 YJ—1
2 —9 7 ry YJ

Here, yj_1 and y; are the appropriate components of —1/2wF (tx,x;-1) and
1/20F (tr, 7)) + 5/2(AF) " (AY,) ves(ts, 5) respectively.
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We get 1o = 0 and define b; = r;/rj_1, j = 2,3,...,J and ¢; = r;j/ry, J =
1,2,...,J. Then, we have by = —5/4, b3 = —39/10 and for j = 4,5,...,J — 1, b; is

defined recursively by
3 3 1

R S TR
and we get by = —185/78, bs = —1043/370, bs = —5505/2086. From the recursion
formula it is obvious that b; € (=3, —2.5) if b,y and b;_y are in this interval, which
is true for bs and bg. Therefore, we know that |r;_1| < |r;| for y =1,2,...,J—1, and
we thus have to prove that r;_; and r; are bounded.
From the last two equations in (23), we get

= Tyj—1 —dys
80cy_1 —94cy_o + ldecy_s
and therefore
rj—-.1 = €j-1T1 = CJ_1(7yJ_1 — 5yJ>

SOCJ_l — 94CJ_2 + 14CJ_3
bJ—le—2(7yJ—1 - 5?JJ)
80by_1byj_q — 94by_5 + 14~

Now, we have
byib_s

80by_1by_9 — 94by_o + 14
which gives a bound for r;, 7 < J —1. For r;, we get
yJ i (7?JJ—1 - 5yJ)(9bJ—1bJ—2 - 211;_2)
7 T(80by_1by_o — 94by_o + 14)

0.006 <

< 0.013,

and we have b b ol
J—1bj_2 — 2b5_»
0.008 < < 0.017
T(80by_1by_o — 94by_o + 14) ’

wt
from which it follows that r,(:) is bounded independent of the grid size.

Now, we estimate the components of r,gl)w_. Let therefore ¢ denote any component
of r,(gl)w . The vector ¢ is defined by
(24)
-7 9 =2 90 0
-5 =5 12 =2 G 0
-2 -3 6 -1 2 0
-2 =3 6 -1 qs 0
—2 -3 6 -1 g |~ o |’
-2 -3 6 -1 472 0
—4 =5 9 qr-1 Zj-1
1 q7 0
with zy_1 = —5/26W,, (tx,xj-1). Obviously, the problem can be scaled such that
ZJj—1 = 1.
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To prove pointwise boundedness of ¢, we make use of the fact that we can always
subtract a constant vector from the left hand side in (24) without changing the right
hand side of the first J — 1 equations. So, we define

(25) $; = 4; — 4o, j:()vlv"'vjv

and we have to solve the following reduced system

79 =2 0 0

—5 =5 12 =2 51 0

-2 -3 6 -1 59 0

-2 -3 6 -1 53 0

(26) -2 -3 6 -1 s; |~ o
-2 -3 6 -1 72 0

—4 =5 9 -1 1

1 87 —qo

Now, it is obvious that we can proceed in the same way as for p. We define
di = s;j/sj-1, J = 2,3,...,J and e; = s;/s1, j = 1,2,...,J, and we get dy =
9/2, ds = 44/9, and

3 2
di—y  dj_yd;_y’

d; =6— J=4,5...,J.
We have dy = 233/44, ds = 1248/233, and from the recursion formula, we see that
d; € (5,5.5) if dj_1,dj—y € (5,5.5). Thus |s;_1| < |s;| for j =1,2,...,.J, and we need
to prove that s; is uniformly bounded.

From the second last equation in (26), we get

€Jj _ deJ—l
€J—5€J_1—4€J_2 9djdj_1—5dj_1—4

S] = €j81 =

and hence

0.102 < sy < 0.157,

so that we have proved |s|., to be bounded independent of the grid size. With (25) it
follows that the same is true for q. O

Remark 4.1. The proof of Lemma 4.1 shows that, in the interior of the interval
(0,1), r is bounded by

1—1}]‘

1-— T
exp <1Og1'25ﬂ) + | < |rjl < exp <log 3'9W) + |,
F=1,2,. . J—1.

11



The second smooth error term u(?) of the pilot function is defined by the following
system of partial differential equations.

u®, + AW (1P, 4+ 1/6 (Tara, 0)) + DA(T)u P,
+ DA(@)IWa, + DA(w)rWi,
(27) = B(@)(u®,y + 1/12 Uppe) + DB(0)uP i,
+ DB(u )z< Ve + DB(W)rM i,
+ DC(@)u® + DC(w)IM + DC(@)r™)

where (1 and IV are extended to the whole interval by smoothly interpolating the
grid functions defined above.

Remark 4.2. The second error term u® depends on Az as v and IV do, however
for any fired Ax > 0, it is clear that u'® is a smooth function. Since ¥V and IV,
now regarded as functions in x, are uniformly bounded for Ax — 0, it follows that
u® is bounded independently of Az, and the pilot function is properly defined so far.

It remains to define the second boundary layer terms [®) and ). This is done
through difference equations, which are similar to those for () and ).

wt
27 =0,
(28) wt —Lgt (1 =1
(A:z;D(_S)Z,(f) )j _ waxx( kvx]) J )
0, y=2,3,....J.
wt
iy =0,
0, 7=12,...,J—-2,
) AeDP Py =) _Lat =J—1
( TL_Tg )] - 78wxxac( k7x]) J )
%wxl’x(thx]) ] = J
- %{I)Z_’l’l’(tk7:p])7 ] — 07
(Afo)l,(f) )j = _718wxxx(tk7x])7 ] = 17
(30) 0, j=23,....J—1,
=
0, 7=0,1,...,J—2,
(AzDP P . = { ) . SR
(31) waam’( k,l’]) J = -5
r,&?}w_ = 0.

The remaining components of #(?) and [(?) are zero. The proof of the following lemma
follows the one of Lemma 4.1.

Lemma 4.2. The second boundary layer terms, r® and [®), defined at the grid points
by (28)—(31) are bounded independent of the grid pammeter Ax.
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4.2. Visualisation. Here we illustrate the boundary layers by solving two model
problems numerically, each with different schemes. The schemes are chosen in such
a way that they differ in the first boundary layer terms, which can be expressed by
the difference of the two numerical solutions. This difference will be plotted below.
First, we investigate the scalar advection equation, for which we can compute the first
boundary layer terms explicitely. The second model problem is an initial-boundary
value problem for the one-dimensional Navier-Stokes equations.

Since the correction terms of the pilot function are defined by linear equations, it
is obviously enough to look at linear problems.

4.2.1. Linear Advection Fquation. We discretise the initial-boundary value problem

U +u, = 0,
u(t,0) = 0, t>0
u(0,z) = sin’(zz), =z €]0,1].

Clearly, this initial boundary value problem has the solution

it a) = 0, 0<e<H,
T = sin(r(x — 1)), t<az <.

In time direction, we apply the implicite Euler method and for the space discretisation,
we use the operator PP We are interested in the first boundary layer term () on
the right boundary. For this reason, we compare the solution of this scheme with the
one of a scheme with boundary conditions that are second order accurate. To this
end, we replace the discretisation for j = J —1,.J by

Up,J—1 — Uk—1,7—1 n 2up g+ 3ug g1 — Oug o + up -3

(32) At 6Ax

Up, ] — Up—1,7 + Sup.g — dup g1 + Ug, -2

At 2Ax

Let U; denote the solution of the first scheme with the first order boundary conditions,
i.e. the method with layer. By U,, we denote the solution of the scheme with the
artificial boundary conditions (32), i.e. without layer.

The boundary layer, which is caused by the first order conditions in D(_S), can be
approximated by the difference R = Az®(U; — U,). On the other hand, »(V(#) can

be computed by formula (23) with

1
Y= Ty (6 sin(x1) cos® () — 3Siﬂ3($1)) ;v =1—Ax—1,

1
Yy = = (6 sin(x2) cos®(xg) — SSin?’(:ch)) , Xy =1—1.

[N]

In Figures 1 and 2, we compare the analytical expression for 1), defined by (23) and
interpolated with the standard cubic spline, with the numerical approximation R, both
at time t = 0.1 and ¢ = 0.5. The computations are carried out with ¢ = At/Az =1
and Az = 1072, We observe that the numerical approximation R—printed as discrete
values—represents the analytical expression quite well.
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FIGURE 1. The solution U; and the boundary layers ) and R at
time ¢t = 0.1.
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FIGURE 2. The solution U; and the boundary layers ) and R at
time ¢ = 0.5.
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4.2.2. Navier-Stokes Fquations. Next, we investigate a linear system of partial differ-
ential equations. Let us consider the following initial-boundary value problem

) GG =600

v(0,2) = 1+ asin’(rz)
p(0,2) = 1— OéSiHS(ﬂ'x) } z € [0,1]

v(t,0) = w(t,1)=1 } >0,
p(t,0) = 1
This is a linearised version of the Navier-Stokes equations.

Again, we apply the implicit Euler method for the time discretisation. The space
variable is discretised with the centered two point stencil for the velocity v. Since we
have physical boundary conditions on either side of the interval, we do not need to
define artificial boundary conditions for v.

The p component is discretised with the two methods from Section 4.2.1 and we
compare the results of the two schemes.

Figures 3 and 6 display the solution at time ¢ = 0.1 and ¢ = 0.5, respectively.
The v-component of the second order error terms is displayed in Figures 4 and 7.
As expected, there is no boundary layer in v. For the hyperbolic component, p, the
superposition of the second order error terms is displayed in Figures 5 and 8. Due to
the low order boundary condition, we clearly observe the boundary layer.

As in Section 4.2.1, the computations are carried out with g = At/Az = 1 and
Az = 1072, The parameter « is set to 0.1.

1.081

098+

1.061

096

1.041-

0.94

1.02-

0.9 I I I I I I I I I I I I I I I I I I
0 .

FIGURE 3. The v- and the p-component of the solution at ¢ = 0.1.
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FIGURE 4. At ¢ =0.1: v-component of the second order error terms.
No right boundary layer exists (right picture).
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FIGURE 5. p-component: Superposition of the left boundary layer
and second order error term, p(® (left picture), and the right boundary
layer, at t = 0.1.
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FIGURE 6. The v- and the p-component of the solution at ¢ = 0.5.
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FIGURE 7. At ¢ = 0.5: v-component of the second order error terms.
No right boundary layer exists (right picture).
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FIGURE 8. p-component: Superposition of the left boundary layer
and second order error term, p(® (left picture), and the right boundary
layer, at t = 0.5.

5. STABILITY AND CONVERGENCE

Having defined the third order consistent pilot function, it remains to show stability

of the scheme linearised at u?’. In a first step an energy estimate for linearised, strictly
hyperbolic problems, discretised with the third order approximations PP and Df)
will be proved. In combination with the estimates for the parabolic component in [3],
an estimate for the mixed system follows. Finally, in Section 5.4 we shall see that the
overall scheme is linearly stable in the sense of (9). Let us begin with collecting some

technical preliminaries.
5.1. Some Useful Tools.

Definition 5.1. Let A = diag(Ag, Ay,...,Ay), A; € RuX%2 5 =0,1,...,J. The
commutator [D, A] of some difference operator and A is defined by
D, Al=D@ 1y, - A—A-DR I,

Lemma 5.1. Let H be positive definite. For any difference approximation D on Qa,
and for the discretisation A of any smooth matriz function A € C'([0,1], R%4*42) it
holds that ||[D, A]||m can be bounded independently of Ax.

Proof. As usual, the matrix A is given by
A= diag(Ao, Al, cee AJ)
We have |
—d1m (A — A, Im=01,....J
Az b ( ! m

where d;, = 0if |l —m| > s and s is the bandwidth of D. Since A(x) is differentiable,
it holds that

[Dv A]l,m =

|Ap — At =

[ DA@©e] < Aalt = m| sup [DAG)].

z€[0,1]
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Therefore, we have

D, Alpm| = |dim (I = m)| sup [DA(z)],

z€[0,1]

which is independent of the gridsize Ax. O

Lemma 5.2. Let D be any consistent finite difference approximation to d/dx and let
H = diag(ho, b1, ..., hy) be a diagonal norm matriz, then there exist constants ¢ and
" such that the followmg estimates hold for all functions u

(i) [Dullyy” < || D_ul -,

(i) 1Dl §7™ < e Duf @91,

Proof. Let I and R denote the lower and upper bandwidth of D respectively and
define I/ = L'(j) = max(0,5 — L) and R' = R'(j) = min(J,j + R). To simplify
notation, we set Az = 0, then

R/

(Du)y = Y dju(E™ ).

m=L'
Due to consistency of D, it holds that

R/
S i =0,

m=L'
therefore, there exist numbers 3;,,, L' +1 < m < R’ with

R/

R/
Z d],mEm_] = Z 6j,m(Em_]D—)‘

m=L"' m=L'4+1

With 8, = Y |B;m| we get by elementary computation
L'+1

(Du);|* = | Z djm(E™u))? = | Z Bim(E™ ™ D_u),;|?
m=L' m=L'4+1
. R/ .
B max |(E" Do) <8 S (BT Do)l
-~ m=L'4+1

Hence with 8 = lrgj%%](h]ﬂ]) we have

(Pl ) = 32 hal(Du) |2<Zh6 ( > |<Em—fD_u>j|2)

m=L'4+1

mm(J_m,J)
<83 ( 5 |<EMD_u>j|2)

m=—L \j=max(1-m,1)

< BRAL+1)Y|(D_u);?

7=1
= BRA+ L+ 1)(||D_ul|")?,

from which (i) follows. (ii) can be proved analogously. O
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Definition 5.2. A pair of difference approzimations (D_, Dy) is called dissipative
with respect to a norm matriz H, if the difference H(D- — D) is positive semidefinite
and if at least one of its eigenvalues is positive.

Lemma 5.3. The pair of third order approrimations (D(_S),Df)) with its related
normmatriz H is dissipative.

Proof. We have

1 -2 1
The Cholesky factor of this operator is given by
1 -2 1
1 =2 1
6 —
Arp = YO 1 2 1 |

1 =21

0 0

0
which proves the lemma. O

5.2. Strictly Hyperbolic Problems. The discretisation of a strictly hyperbolic
system at internal points reads:

(33) (w); + (P(w); =0, j=1,2,...0—1,
with
(PR (Dw); = AF(tas, Aa) (DD w); + A™(1 25, Aw) (D w),
— C(t,z;, Ax)w.

The unknown vector w is a function of the time variable ¢. Furthermore, we have
initial and inflow boundary data

wi(0) =0, j=0,1,...],
wd (1) =0, w;(t)=0, tec[0,T].

At the outflow boundaries, the conditions are

(34)

(35) (wi)o = —A~(t,0, A)(DPw ™ )o + C (1, w9, Ax)uwo,
(wi)s = —A*(t20, A2)(DDwt), + CH(t s, Ay,
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Now, the time derivative of ||w]|7 is

Ld
2dt

[l = (w,wi)n

= —(w, PPw)07Y £ A < wo, (w))o > +Az < wy, (w); >p .

Using the homogeneous boundary conditions, we get

(w,w)r = —(w, A+D(_3)w)g"]_1) — (w, A‘Df)w)g"]_l) + (w, Cw)g"]_l)
— <wy, Ay DY wy >+ < wy, Cywe >
— < wi, MDD wt sy + < wh, Chwy >y
= —(wt, ATDP )57 — (=, A D)
+ (wt, Crw)§?) 4 (w, Cmw) 7Y
= —(wt, ADPwt)y — (0, A DY w )y + (w, Cw)y

and energy boundedness of the semidiscrete problem can be proved as follows.

Proposition 5.1. The semidiscrete problem given by (33)—(35) is energy bounded,
i.e. there is a constant ¢ such that

Sl = cflwlls.

Proof. First, we estimate the term —(w"’,]\"’D(_S)w"')H, we split DY into its al-
most antisymmetric and its symmetric part

—2(wt, A DDty = —(wt, ANDY + DNty — (wt, AH(DP — DP )yt

From Lemma 5.3 we know that (D(_S) — Df)) is positive semidefinite and therefore we
have

(36) —2(wt, ATDPwt)y < —(wt, AT (DY) + DDyt ).
Using summation by parts (11) and the inflow condition on the left boundary it follows
—(w*, A (DY 4 D yut)y
(D2 + DP ot Kty + (wh, [DE + DY, Aty — 2 < wif A wd >
By Lemma 5.1 and the fact that /~\"j is positive definite, we get
—(wt, AP + DOt )y < (DY + DY Yywt, Awt) g + arf|w* |-

Because H is diagonal, it is obvious that At is self-adjoint with respect to (+,-)m, and
it follows that

_ 1
~(w* A PY + Dyt < Serlluwt |

The term —(w_,f\_Df)w_)H is estimated similarly and to (w,Cw)y we can apply
Schwarz’s inequality, which concludes the proof. O
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As we have seen in the proof of Proposition 5.1, it is necessary to apply the back-

(3) (3)

ward difference D7 to wt and the forward operator Dy’ to w™. Doing so, the pair

(D(S) Df)) becomes dissipative in the sense of Definition 5.2. Otherwise, inequal-

ity_(36) would not hold and the scheme could no longer be stable, since this would
contradict a result by Jeltsch and Smit, cf. [6].

In the case where forward and backward approximations are identical, D_ = D, =
Dy for example, the matrix H(D_ — D, ) vanishes and the scheme is non-dissipative.

5.3. Mixed Systems. The semidiscretisation for mixed systems is given by
(37) (ue); + (PO (W), =0, j=1,2,...0—1,
where Pf;) is defined as

(PR () = A(DY v, DOt DP ),
— Bi(DyD_u); — Cjuj.

At the boundaries we have the inflow conditions (34) for the hyperbolic part and
Dirichlet conditions for the parabolic part

v;(0) =0, j=0,1,...J,

(38) vo(t) = ve g =0, t€[0,T].

The outflow conditions are essentially given by (35), but we have to add the coupling
terms

o) (@0 = —(A2o(D)o = A~(t 2o, Aa)(DP w0 + C (1, w0, Aruo,
(i), = —(Af) (D) = At as, Ax)(DPwt), + CH(t g, Ax)uy.

Let H be the norm—matrix defined in (12) and let H be defined by
H = diag(Lm, il Loy Polimy ooy Loy g L),

We can now prove an energy estimate for the semidiscrete mixed system.

Proposition 5.2. The semidiscrete problem given by (37)—(39) is energy bounded,
i.e. there is a constant ¢ such that

Dl < elul
di UIlH = Cl|U||H-

Proof. Differentiating ||u||# gives

1d
5@”“”?{ = (Uaut)H

= —(UaP@U)%’J_l) + Az < ug, (ug)o >0 + Az < ug, (ug)g >n .
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Making use of the boundary conditions, we get

1 1
(u7 ut)H = _(U, B11D+D_v)(1’J_1) —|—§(v7 B11D_D+v)(1’J_1)

2
! I
—(v, A1 Dov) 771 — (v714~1f2p(_:3)w+)(1,J—1)
I Re
D D
v VI
S e e
VII VIII
— (A DDt (u, Cujye.
Ix P

For the terms [-111, we have the following estimates, which are proved in [3], Section 4
I < =p(ID-vo|")? + erjo]| V| Dy,
I < =B(|D1ol|79) 4 ea|o)| =D D] 71,
T < eoffo]| 0 (| Dyl 7D 4 [ DovfH71).
For VIIT and I X, we have the estimates from Proposition 5.1 and for IV, we have
IV = (v, AL,DPwt) = (v, HH ' ALDPwt) = (v, (H AH) D wt)
= (0, DI H A wt) g — (v, [P, H AT Jw )y,

With Lemma 5.1, the summation by parts formula (10), the boundary conditions,
and by Schwarz’ inequality, we get

<
<

1V < ea D ullallw |l + esllofmlle |l

and by Lemma 5.2

IV < ol || D=o|| ") +|[ Do | D) [ |l + exlloll ol || 1.
Analogously, we have

V < es(|D-o)|) 4| Dyo | w1 + colloll a1
Finally, it follows from the equivalence of the norms || - ||z and || - ||2 that

IV +V < ewoflw] (| D-v]| T 4 [ Do 77D 4 [fofH771).
With Lemma 5.2, we get for VI and VII

VI < enllw 5" ID2olli "™ < el [l Dol
VIE < el [ IDE 0 < eullw™ 15| Do) )
and finally by Schwarz’s inequality
X < asllull%

The proof is concluded by applying the algebraic inequality

o202 2
+ 202’
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5.4. Stable Time Integration. Now, we have to prove that implicit Runge-Kutta
methods are stable integrators for energybounded linear semidiscrete problems. First,
we show that there exists a unique solution of the time integrator and then we can
prove that the scheme is stable in the sense of (9). The general theory of Runge-Kutta
methods, as we apply it here, can be found, for example, in [5].

Consider the linear semidiscrete problem

(40) ue+ PO (u =0, u(0)=0.
As a direct consequence of Proposition 5.2, we get the following corollary.

Corollary 5.1 (One-sided Lipschitz condition). The linear space discretisation
operator Pf;)(t) fulfills the one-sided Lipschitz condition

(41) — (PO (tyu )y < Lipllulll,  u € F(Qar R).
Proof. From Proposition 5.2, we get that
1d .
~(PS (. w)se = (e w)se = 5= |[ullfy < Lipllully,- -

The system (40) is solved by the linear Runge-Kutta method

Uo = Z| A,
% + 3 PO, un, = 0,

U — U

At

m=1

= + Z blpé?;g(tkl)ukl = 07
=1

k=1,2,... K,

for which we have the following existence and uniqueness result, cf. [5], Theo-

rem [V.14.2 and Theorem 1V.14.4.

Theorem 5.1. Consider the system of ordinary differential equations (40) which
satisfies the one-sided Lipschitz conditions (41). If the Runge-Kutta matriz A of the
method (42) is invertible and

(43) AtLip < ag(A™Y),
then there exists a unique solution of (42).

We remark that the restriction of the time step that is given by (43) is independent
of the spatial grid parameter Ax.

Corollary 5.2. The time-step can be chosen small enough At < ag(A™")/Lip, such
that the Radau ITA method (16), applied to (42), possesses a unique solution.

Proof. For the Radau ITA method it holds that ag(A™') = 5/(4 + \/6) > 0, cf.
[5], Theorem IV.14.5. Thus, At can always be chosen small enough to fulfill (43). O

Now, we can prove that an algebraically stable Runge-Kutta method with positive
coercivity coefficient is stable in the sense of (9).
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Proposition 5.3. An algebraically stable Runge-Kutta method with invertible coeffi-
cient matriz A is a stable time integrator for the energy bounded space discretisation

(42), if At Lip < ap(A™).

Proof. From Theorem 5.1, we know that there is a solution operator Ry such that
the solution on the k-th time level can be written as

U = Rkuk_l.
It is proved in [5], Proposition 1V.15.2 that Ry is bounded as
|Rillw <14+ aAt, for At Lip < ozo(A_l),

from which it follows that the overall scheme is stable. ]

Corollary 5.3. The Radau ITA method is a stable time integrator for (40).

6. PROOF OF THE MAIN RESULTS

Proof of Theorem 3.1. The method (13)-(16) is continuously differen-
tiable. TIts derivative is Lipschitz continuous with a Lipschitz constant Lip,, =
O(Ax™*?), Az — 0. Furthermore, the scheme linearised at u is stable in the sence
of (9), cf. Corollary 5.3. In Section 4, we constructed a pilot function, which is of
third order consistent with the semi-discrete system (14). However, it is not obvious
that «”* is third order consistent with the full-discrete scheme as the theory for stiff
ordinary differential equations requires a one-sided Lipschitz condition for the nonlin-
ear operator PX?, cf. [5]. We have only proved a one-sided Lipschitz condition for the
linearised problem and can therefore proceed as follows, cf. [2], Lemma 8.2.

From linearised stability and consistency of the first equation in (42) and by the
theory of Lépez-Marcos and Sanz-Serna [8], we get consistency of the nonlinear Runge-
Kutta method, i.e.

U — Uk—1 g (3) _ (3) r
—a; 7 > Py (un,) = ue + Pry(u) + O(AL7)

=1
where r = 3 is the stage-order of the Radau ITA method and u = u(t) is any smooth
function. Especially for the pilot function, it follows

uii - uii—l

A P = w4 PR () + O(AF) = O(Ad?),

=1
therefore

1@ (|15 2 = O(A2?)
and hence, a unique numerical solution U exists with

10 = w415 o = O(A?).

The pilot function converges by construction at second order to the analytical solution
and the sought convergence result follows

N0 = lall s < T =l + el = @l = O(A2%), Az — 0.

O
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7. CONCLUSION

An argument to prove convergence of higher order schemes for nonlinear initial
boundary value problems of mixed type was introduced. We have demonstrated, that
the technique is applicable to a scheme with the following features:

The convective terms are discretised by a noncentered dissipative formula with
special treatment of the boundaries, such that a summation by parts formula holds.
The difference formula is third order consistent in the interiour but only first order at
the boundary. The viscous terms are discretised by standard second order differences.
For time integration a Radau ITA Runge-Kutta method is applied.

The main result is that the overall scheme converges at second order to the true
solution of the initial boundary value problem. Some comments on this result are
appropriate:

The fact that we get second order accuracy for the non-compact scheme, even
though the boundary conditions in the hyperbolic part are only of first order, is in
accordance with the classical theory. For ordinary differential equations, this phe-
nomenon is well-known, and for linear initial-boundary value problems to hyperbolic
systems, such results can be found in [4].

To obtain a convergence order more than two, a higher order formula for the vis-
cous terms would be neccesary. Then artificial boundary conditions for the viscous
component must be constructed and additional boundary layers will be introduced.

Nevertheless, independent of the space discretisation, one can not expect to observe
the full classical convergence order of the implicit Runge-Kutta method. The effect of
order reduction is well known in the literature [5]. In the worst case the convergence
order can drop down to the stage order of the RK-method. The order reduction may
be overcome by using multistep methods for time integration, but then additional
initial layers will be introduced.

The stage order three of the Radau ITA method was neccesary in order to construct
a third order pilot function.
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