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1 Introduction

Elliptic boundary value problems in domains  C R® with piecewise smooth boundary ' = 69
can be reformulated as boundary integral equations if a fundamental solution is available. The
approximate solution of such boundary integral equations by means of finite element spaces
VL on T' gives rise to the so-called boundary element method (BEM). Under the assumption
of strong ellipticity of the boundary integral operators (valid in many cases), Galerkin-BEM
are known to exhibit quasi-optimal asymptotic convergence [29], i.e., the rate of convergence
is governed by the best approximation error of the boundary density from VZ. If I' and the
boundary data are piecewise analytic (as in many cases of engineering interest), so are the
unknown densities approximated by BEM [7].

It has been shown in [7], [9], [16] that proper design of V¥ ensures exponential convergence
of the BEM in terms of N = dim V% for piecewise analytic solutions. “Proper design” means
here anisotropic meshes that are geometrically graded towards the edges of I" have to be used
possibly in conjunction with variable polynomial degree which increases linearly off the edges of
I". Such subspaces V'L pose special challenges to the numerical evaluation of the stiffness matrix.
Quadrature of singular or near singular integrals over domains of arbitrary high aspect ratio
has to be performed with an error that is exponentially decreasing in N in order to preserve
the convergence rate of the scheme.

To develop and analyze such a quadrature strategy is the purpose of the present paper.
We show how a numerically integrated stiffness matrix can be computed in O (N32°) kernel
evaluations which preserves the O (exp (—bN"2%)) convergence rate of the hp-Galerkin BEM.
We prove the result for second kind integral equations but hasten to add that our quadrature
error estimates are actually also applicable to weakly singular as well as hypersingular kernels
(after proper regularization) on piecewise analytic surfaces. Likewise, our quadrature schemes
also show how fully discrete h-type Galerkin BEM with anisotropic graded meshes can be
obtained in optimal (up to logarithmic terms) complexity.

Our quadrature scheme will use tensor product Gaussian quadratures in the reference square
and geometric subdivisions of the integration domains if necessary [24] (see also [2]). In addi-
tion, for the singular and also certain near singular integrals over edge-parallel, high aspect-
ratio elements arising in the hp-BEM, this will be combined with certain regularizing coordinate
transformations from [11, 20, 21]. The quadrature error analysis is nevertheless novel in several
respects. In [11, 21|, kernel expansions in local coordinates were used to reduce curvilinear
panels to flat panels. Then, regularizing coordinate transforms were introduced in combination
with semi-analytic techniques. For the h-version BEM on non-degenerate meshes, a satisfactory
error analysis was presented. However, this expansion technique becomes inefficient and numer-
ically unstable for elements with high aspect ratio and for high order approximation, especially
from the viewpoint of practical implementations. The use of kernel expansions can be avoided
by a fully implicit treatment of the kernel presented in [20] where also the problem of near sin-
gular integration over elements differing in size by orders of magnitude was solved. There, the
order of the elements was fixed and the quadrature error estimates were h-asymptotic. Here, we
prove exponential convergence for all quadratures, uniform in p, the degree of the shape func-
tions and moreover, in the aspect ratio of the edge elements. In Ap-BEM (and also in h-versions
with mesh grading towards the edges) this aspect ratio must become arbitrarily large to ensure
efficiency of approximation. Our quadrature strategy ensures exponential convergence uniform
in the aspect ratio of the elements.



This allows to compute a numerically integrated stiffness matrix A” satisfying (42) with
work Wy of order O(NY) for some a > 0, i.e., in algebraic complexity. Therefore the fully
discrete scheme will exhibit exponential convergence also in terms of the work measure.

The outline of the paper is as follows. In Section 2, we formulate the boundary integral
equation and the assumption on I'. We define the hp-Galerkin scheme, present an exponen-
tial convergence result and a general framework for the analysis of consistency errors due to
quadrature. Section 3 contains the quadrature error analysis and the main results. In Section
4 we report the results of numerical experiments which are in full agreement with our error and
complexity estimates.

2 hp-Boundary Element Method

2.1 Problem formulation

Let Q C RR® be a bounded domain with a piecewise analytic, orientable Lipschitz boundary
manifold I' = 9. We assume that there is a polyhedron Q with surface I' consisting of open
(plane) quadrangles and triangles K, 1 < j < M which have the property that

r= U kK (1)
K N K'is either empty, a vertex, an edge, or K.

These surface pieces form the covering 7y := {f( ;1< <M } Furthermore, we assume that

there exists a bi-Lipschitz continuous mapping 7 : L >T,ie,
Crllg =gl <ln@ —n@I < Callz-gll, V&gel

and, for all K € 7, there are plane extensions K of K, i.e., K CC K where n | can be
extended analytically.

)" is analytic on K for all K € 7.

(%
The mapping n defines a covering of I' by 7y := {77 (f() K e %0}.
Let Ky be the reference element, either the unit triangle Ty := {(&,&) : 0 < & < 1,0 <
§s <1 — &} or the unit square Qg := {(&1,&2) 1 —1 < & < 1,-1 < & < 1}. Since K can be
transported onto K by an affine (bi-) linear mapping &z : Ky — K, the composite mapping

kg =nokp: Ky— K (2)

can be extended analytically to a larger domain K satisfying Ky cC K§® C R®. The
situation is illustrated in Figure 1.

By dI' we denote the surface measure defined almost everywhere on I'. We consider the
space L?(T) of functions u : I' — € " which are square integrable with respect to dI". An inner
product on L*(T") is given by

(u,v) = /F widr . (3)
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Figure 1: Surface of a halved tube and corresponding interpolating polyhedron. The inner
radius is 1 while the outer radius and the height is 4. The mesh shown corresponds to the third
refinement level.

Another inner product (-, -), equivalent to (-, -) (i.e., giving rise to equivalent norms) in
L*(T"), can then be defined by

(w0) = 3 [ (worx (€)(vornx (€) de. (4)

~ K
Ketg 0

Given a continuous operator A : L?(T') — L?*(T'), we are interested in the numerical solution of

the equation
u € L*(I) (Au, vy = (f,v) Vv € L*(I). (5)

The operator A is a boundary integral operator which can be represented in the form
(4u) (¢) = e(@)u(e) + p. [ k(z,y)u(y)dr, (6)

where k(z,y) = k(z,y; ¢ — y) and the kernel k£ has the form

k(z,y,2) = > salz,y)2” 277, z,y € R*0+# 2 ¢ R (7)

|a|=t

We assume that for K, K’ € 1y, the coefficient functions s, : K x K' — € and ¢: K — (€
are analytic functions and that the series (7) is finite. In (7) a denotes a three-dimensional
multi-index, € N3, and ¢ an odd integer (cf. [11, Assumption 1.1] and [21, p. 42]).

Proposition 1 The assumption that t is an odd integer implies that

k(x’y)+k(ya$): Z §a(a:,y) (y_aj)a“y_aj“_z_ta z,y € |R3ay7é$
|a| >t+1



Proof. Expansion (7) implies

k@y) +ky2) = Y (saley) + (1) saly,2)) (y —2)" ly — 2|7

jal>¢

For |a| =t we obtain by using the analyticity of s,

$a(2,Y) = 8a(y,7) = 50 (,2) = 50 (Y, 2) + (50 (,9) = $a (z,7))

> Yap (y — )’

|B1>1
and hence
k() +k@ya)= Y &ulwy)y—o)ly—a|™"
la[>2+1
|

A typical example for (6), (7) is the classical double layer potential operator where the sum
(7) is finite and

—lna Yy if |a| = 1,
clz)y=1, t=1, su(z,y)= { 0 2rtelY) ot}|1er|wise.

(8)

Here n,(y) denotes the exterior unit normal vector to Q at y € T'.
The integral in (6) is in general to be understood in the Cauchy principal value sense, i.e.,
. [ k(z,y)u(y)dl’y = lim E(z,y)u(y)dl’,. 9
po. [ ke pul)dr, =limy [ k(e y)u(y)dr, )
Here B.(z) = {y € R’ : |z — y| < ¢} denotes the open ball of radius ¢ about the point x and
the limit is assumed to exist for v € K € 7.
We assume that, for the given data f € L*(T"), the problem Au = f admits a unique solution
u € L*(T).
Approximate solutions to (5) are obtained by the Galerkin method: Given a dense sequence
{VE}32, of finite dimensional subspaces of L*(T"), we solve

ut e VF <AuL,v> = (f,v) Vv e VE (10)
We denote by P, the orthogonal projection
P, :L*T)—=Vh:  ((v—Pr),¢)=0 Voe V™

Proposition 2 Assume that, for sufficiently large L, the approzimate problem (10) is stable
in the sense that
HPLAULHO 2 Cs

uLHO vut € VE. (11)

Then there exist unique solutions u® of (10) which converge quasioptimally to the unique solu-
tion u of (5), i.e.,
|- ut|, < C inf, flu— v, (12)

The relation (12) states that the Galerkin approximations converge quasioptimally to the
exact solution. The actual rate of convergence is therefore determined by the regularity of the
exact solution and the selection of the spaces V. In order to achieve exponential convergence,
we need to control derivatives of all orders of the exact solution w simultaneously. This is
conveniently expressed by regularity statements in countably normed spaces B,(I") of piecewise
analytic functions which we now present.



2.2 Regularity

Let V (K)) denote the set of vertices of the reference element Ky. For X € V (K,), let B (X)
denote the ball with radius R centered at X where R is chosen such that

UX = BR(X)QKO

satisfies
K(): U UX, and V(Ko)\XﬁUXZQ
X€eV(Kop)
For a vertex X € V (Kj), let us introduce polar coordinates (rx,Jx) on Ux centered at X
such that ¥x € (0,ax). For a parameter o > 0, we can then define

BQ(KQ) = {U S LQ(KQ) .

HTI)C(_Q(a/arX)k(ﬁX(aX - ﬁx))lfg(a/aﬁx)lvuﬂ : < Cdk+l+1k!l!,

(Ux (13)
k,1€N, X € V(Kp), and C,d independent of k,1},
B,(T) = {veL*T):vokg € B,(Ky),K € 10} .
We assume the following regularity property of the operator A:
if u € L*(T') and Au € B,(T) for some o < 1/2, then u € B,(T). (14)

This holds for example for the classical double layer potential operator on all convex (and also
certain nonconvex) polyhedra, see [7, Theorem 3.1].

Remark 3 If the right hand side f in (5) is analytic in K, for all K € 7y, then f € B, and,
due to (14), u € B,(T).

2.3 hp-Boundary Elements

We construct hp-subspaces V¥ C L* (T') of dimension Ny, such that for any u € B,(T)
: 4
UIEI‘l/fL lu = vl 2y < Cexp(—by/Np) (15)

with C' > 0 and b > 0 independent of L. For the model double layer potential problem on a
convex polyhedron in IR?, these spaces also satisfy (11) and, due to (12), the Galerkin boundary
element method converges at the exponential rate (15).

We begin with explaining how hp-subspaces V¥ can be generated on the surface I in IR®
described above. We will use the notation introduced in the previous section. Let € denote the
set of (possibly curved) edges of I' while & = ! (&) is the pull-back on T.

2.3.1 Polyhedral surfaces and geometric quadrangulations

First, we will consider the case that I' is the surface of a polyhedron. Then, w.l.o.g., the
function n (cf. Section 2.1) may be taken as the identity. Let the initial mesh 7, be the
covering defined in the previous section. It will turn out that, for the quadrature methods, the
following assumption is very convenient and will be made throughout the paper.



Assumption 4 We assume that for any K € 1y the following holds
if K has an edge e C € then the opposite edge is parallel to e.

The hierarchy of geometric meshes depends on the grading parameter o € ]0,1/2] and is
constructed recursively by the following procedure:

First we assume that 7y only contains quadrangles. In the following algorithm, the notation
i + 1 stands for (¢ + 1)mod 4 and i5 := imod 2. Let us assume that 7,_; was generated for
L>1.

Geometric Refinement:

for all K € 7;,_; do begin
let {X;},-,-5 denote the set of vertices of K (counterclockwise ordering);
let e; := X;X;,1 denote the set of edges;
for : =0 to 1 do begin
if e; Ue; 9 C € then connect the midpoints of e;;; and e;,3;
end;
for i = 0 to 3 do begin
if e, C ¢ and e;;5 N & = then connect X;,; + 0 (Xip2 — Xi11)

end;
end;

The resulting geometric mesh is denoted by 7, = { K1, K, ..., Ky, }. Note that, for L > 0,
each element of 7, has a uniquely determined parent P (K) € 7 _; characterized by K C P (K).

2.3.2 Polynomial degree distribution

The subspace V' consists of piecewise polynomials (in local coordinates) of degrees p® =
(p{{,pf) on K € 17 which we combine in the linear degree vector ép = {pK K e TL} with
initial degree Ly and slope p > 0. It is constructed recursively by the following algorithm. The
notation |m| denotes the largest integer smaller than or equal to m.

Polynomial Refinement:

if L =0 then define p% = (Ly, L) for all K € 7
else begin
for all K € 7, do begin
let {e;},-,-; denote the edges of K and {E;},_., the edges of P (K);
for i := 0 to 3 do begin o
if there is £ such that e; = £ then

. PK
pg = min (L, {pjz( )+ uJ) ;
else if there is E; such that e; C E; then pf := L,
Z

end;

end;end;

Remark 5 Note that the geometric refinement algorithm preserves Assumption 4 for the finer
grids 7r, L > 0.



2.3.3 hp-Finite Element Space

The hp-finite element spaces corresponding to the geometric meshes 7;, and the degree vector
op are defined by lifting tensor products of Legendre polynomials onto the surface elements
K e TL- Let

WO (€) = (a+1/2)"P Lo (6), a=01,2,... (16)
with L, denoting the Legendre polynomials of order a on the interval (—1, 1) scaled such that
L. (1) = 1 holds. This implies in particular that the ©° are orthonormal in L*(—1,1), i.e.

1
L Patppdf = dap (17)

where 6,3 = 1 if o = 3 and 0 otherwise.
For K € 71, let xx denote an analytic chart mapping the unit cube (—1, 1)2 onto K having

the property that
& (eo) = (1), (1), X' (en) = () (1) (18)

where e; denotes the ith edge of K. In the considered case where K is a quadrangle, yg is
bi-linear. The basis functions on K are given by

o (€)= ¥, (&1) ¢, (&2) (19)
0 -1 /
pr(x): (gpaOXK)(x)/ |K| fOI'J,'EK, forogazgpf(, Z:1,2
0 otherwise,

Here, and in the following |K| := || X; — Xs|| - || X2 — X;||- The resulting local hp-finite element
space is given by

VE(K) =span {pX |0 <os <pff, 1<i<2}.
The global hp-finite element space is composed of the local ones: VI := Vl,ﬁ;p C L*(T) is the
set of all functions uw : I' — € of the form

pK
u(@) = > > ugen (@) (20)
Ker, a=0
with some coefficients uX € € and the reduced mesh

TI'-J::{KETL:[_(Qsz(Z)}.

K K
Here and in the following the notation Zﬁio stands for 2211:0 2222:0. In order to simplify the
notation we introduce the set

IL::{(K,a)|K€T£,O§ai§pffor1§i§2}. (21)

Notice that u € VI vanishes in a neighborhood of the edges and vertices of I'. This is necessary
to prove stability (11) of the Galerkin scheme (10) by the finite section method [7]. Since
this neighborhood of the edges is exponentially small in L, however, this does not lead to a
deterioration in approximation.

The dimension Nz of V¥ depends on the choice of §p. For the considered case of linear
degree vectors, we obtain asymptotically

N =O((L +1)%). (22)



2.3.4 Curved surfaces and general meshes

In the following, we will explain how the construction given above for a polyhedron and quad-
rangles can be modified in order to treat more general situations.

Curved boundaries: Let I' be the (possibly curved) surface of a 3-d domain Q and T,n,
and 7y as explained in Subsection 2.1. We generate hp-meshes using 7y, [', and € as explained
above. The surface meshes are then given by

ro={n(K): K en).

The definition of the hp-finite element spaces is the same as in the polyhedral case. The charts
(18) have to be replaced by nox . For convenience, we replace the quantity |K| by |K| := ‘K‘

Triangular elements: Triangular elements can be used in combination with quadrangles. We
only have to guarantee that the initial mesh 7, has the property that

K € 1y is a triangle & KN & =0.

This condition implies that triangular elements will never be subdivided by geometric refine-
ment. As a basis we use the Dubiner basis functions (see [5]) on the reference triangle and
liftt them onto the surface. Here, we do not go into the details but consider only quadrilateral
meshes. The restriction to quadrangulations is not a severe restriction as can be seen in the
following

Remark 6 Any triangle can be split into three quadrilaterals by connecting the muidpoints of
the edges with the barycenter.

2.4 Stability and convergence of hp-boundary element methods

The following theorem concerns the approximation properties of the subspace V' for functions
u € B,(I'). We recall the definition of the slope p and the parameter L, characterizing the
polynomial grading function ép. For the following analysis we assume always that the mesh 7,
only consists of quadrilaterals.

Theorem 7 Let B,(I') be defined by (13) for some 0 < p < 1/2. For every o € (0,1) there
exists p > 0,Ly > 0 (depending on 0,0 and d in (13)) such that, for any u € B,(T'), there

exists v € Va%p such that

lu = vl 2y < C(o,d) Lo (23)

is satisfied where C' is a constant independent of L, but dependent on I', d and o.
Remark 8 The estimate (23) can also be expressed in terms of degrees of freedom:

LO_gL < LeCQIOgU\4/NL < eC’gloga\4/NL — efbé/NL

with b := C'plogo|. This is (15).



Results of this kind have first been proved by Babuska and Guo, [9]. The proof of Theorem
7 consists in a modification of their argument (somewhat simpler since we use discontinuous
functions), see also [7] and [16]. In [7], Theorem 7 was proved for the case Ly = L and p = 0,
i.e. uniform polynomial degree.

Let u* € VI denote the Galerkin solution defined in (10). The stability condition (11)
ensures that (10) admits a unique solution u” for sufficiently large L. Moreover, if u € B,(I")
for some 0 < p < 1/2, Theorem 7 implies the error estimate

Ju =, < C(L+1)0%". (24)

The stability (11) of the Galerkin scheme based on V¥ holds, for example, for the classical
double layer potential operator on convex as well as certain nonconvex polyhedra and for a
polynomial grading function ép characterized by Ly = L and p = 0, see [7]. The arguments
there can be generalized to cover the case Ly = 1, u > 0 sufficiently large as well [8].

For u” € V¥ let & = {ur}rez, denote the coefficients of the basis representation (20). The
Galerkin equations (10) are then equivalent to finding @* such that

—

with the load vector ]?: {{f, #1)}1c7, and the stiffness matrix AL = {Ab Y ez, given by
Al = (o, Apr)y, I,I' €Iy

Due to the way the ¢; are normalized, we have the following equivalence between the L?(I")
norm and the discrete ¢y-norm of the coefficient vectors # of functions v € VL.

Lemma 9 There exist constants 0 < C; < Cy < oo independent of L such that for every
u € V¥ there holds )
2 2
Cillulliam < X |ur| < Collulliag, - (26)

IEIL

Proof. Throughout the proof, ~ denotes equivalence with constants independent of L.
Let uw € V. Then u = ¥ ;cz, urer and

2 2 2

p¥ p¥
_ K K _ K K
> urgr = || X 2 uava = 2 |2 Ua ¥
Ity L2(T) Kery a=0 r2ry  Kem et L2(K)
.
4 K2 ol?
~ Z Z‘ua Soa LZ(KO)
Kerp a=0

due to (19). By the normalization (17) of ©?, the assertion follows since
2 2
lullzamy ~ D2 lurl”
IeTr,

|
The norm equivalence (26) and the stability (11) have the following consequence which is
of interest for the iterative solution of the linear system (25).

Lemma 10 There exists a constant C' independent of L such that condz(AL) < (C < .



2.5 Consistency analysis

In general, one has to use numerical quadrature to calculate approximate entries flfp of the
stiffness matrix AL, resulting in a perturbed matrix A”. For the h-version of the Galerkin-BEM,
this effect was thoroughly discussed in [22]. For the hp-BEM, the situation is different due to
the following two points. The norms in which the consistency has to be measured are different
and the required consistency changes from algebraic to exponential accuracy. The stiffness

matrices AL and AL define finite dimensional operators AL, AL : VI — (VL), where (VL),

denotes the dual space of V¥ (with respect to L*(I')). We estimate the difference between A*
and A”.

Lemma 11 Assume that the entries A}—‘I, of AL satisfy

Bf| = AL, — Af] < o(L). (27)
Then there holds for every u,u € L*(I")
(A" = AY) Ppu, Pra)| < ON®(L) [lull, [l - (28)
Proof. Using Lemma 9, we have
(A" = A") Pyu, Pty < Cllull, |lally [E], w@e LX) (29)

with C' independent of L and the matrix EZ given by EL, := AF, — AL, To estimate HEL .

we use the Schur-Lemma (see, e.g., [17] page 269) with 7y = 1. We estimate for every I € 7,
with (27)

> ‘EILI’ < Np®(L)
I/EIL

and for every fixed I’ € 7, in the same way
> |Bl| < Npo(L).

IEIL

From the Schur-Lemma it follows then that HE’LH2 < Np®(L) and (29) imply the assertion. B

Lemma 11 allows to estimate the impact of the consistency error (27) on the asymptotic
convergence rate of the solution @% defined by

Alat = ppf. (30)

Theorem 12 Assume that the Galerkin scheme (10) is stable, i.e. (11) holds, and that the
approzimate stiffness matriz AL used in the computation satisfies (27) with

NL®(L) — 0 as L — 0. (31)
Then (380) is stable, i.e. there exists ¢ > 0 such that
ez e, e o
for sufficiently large L.

10



Assume in addition that uw € B,(I') for some 0 < p < 1/2. Then

Hu — "

| < CuLo®, L>1 (33)
with C > 0 and b > 0 independent of L, provided (27) holds with
®(L) = N;'Lo®*, L>1. (34)
Assume finally that, for every g € B,(T'), 0 < p < 1/2, the solution ¢ of the adjoint equation
A'p=yg (35)
exists in L*(T") and belongs to B,(T') as well. If the quadrature errors satisfy (27) with
®(L) = N;'Lo**, L>1 (36)

then
(g, u) = (g,3")| < Cu(L +1)0™" (37)

with a constant C,, depending only on o and d.

Proof.

1. For sufficiently large L, the discrete inf-sup condition (11) can be written as

o], < efavt],,, wtevh (38)
Using (28) with v* € V¥ we obtain
[0 oy 2 [0y = A" = 4007 oy 2 7 o], = Ouo(z) o
Then (31) gives for sufficiently large L
HULHO <C HA%LH(VL), Vol e VI, (39)

2. We have
Hu _ aLHO < |lu — Pprull, + HPLu - aLHO .

Using (39) and <ALQL,UL> = <Au,vL> for v¥ € V¥ we obtain

4], < O (R 9], = R ]

(VEY (VEY
yielding

Ju=at], < llu = Paadly + ClAG = Pua) ey +C (4 = ADPsa

The first two terms are estimated using the approximation property and the continuity
of A. The estimate for the third term follows from (28) with (34) and PXv* = v%:

(A = A Pru,v™)| < C(L + D)o |Jull, [v*|

0"

11



3. Let ¢f := Pr¢ with ¢ denoting the solution of A*¢ = g. Then
(u—tg) = [(4(u—a"),0) < [(4(u—) 06— 0")| +[(4 (u—"),0%)

The first term can be estimated by C Hu - ﬁLHO |¢ — Prol|, which gives the desired bound
using (33) and the regularity of ¢. For the second term we have

(A (u—at),0") = (A" - ) @",0")
= ((A" - A) (a" - Pou), Poo) + ((A" — A) Pru, Prg) .

The second term on the right hand side can be estimated by (28) and (36) (here the
higher quadrature accuracy is needed). Since 4X — P u € VL we have for the first term
using (28)

(A% = A) (a% - Pru), Pro)| < ONu@ (L) [a” = Pra| I8l

C(L+ D)™ ([[a* = ul, + lu = Prully) I8,
[ |

Theorem 12 shows that the exponential convergence rates (33), (37) are preserved, provided
the consistency error (27) for the matrix entries is controlled with ®(L) = N;'Lo?¢t. This
rather tight bound on the quadrature error must be achieved with a work W, of algebraic order
in dependence on the problem size Ny, since otherwise the convergence rate of the fully discrete
Galerkin scheme will not be exponential in terms of the work Wr.

2.6 Solution of the linear system

The fully populated stiffness matrix A has O(N?) nonvanishing entries and is nonsingular
due to (32) for sufficiently large L under the assumptions of Theorem 12. Therefore Gaussian
elimination will yield a solution in O(N}) operations.

Due to the norm equivalence Lemma 9 and the stability (32) of the fully discrete scheme,
the condition number of A” is uniformly bounded:

cond,(AY) < C < . (40)

Classical iterative methods, such as Richardson iteration, yield a sequence {@"(j)}52, of coef-
ficient vectors {@"(j)}52, and corresponding approximate solutions {u"(j)}52, which satisfy

| () — "

< clat@) - at

<O, j=0,1,.. (41)

L2(T ¢

with ¢ < 1 and C' > 0 independent of L and j. The iterations are stopped when the error is of the
order of the discretization error. Assuming that u € B,(T'), this is the case if ¢/ < exp (—bNé/ 4).

Hence, for j > bN}J/ */|Ing| iterations an approximate solution of the linear system with (33)
can be obtained. Since each step requires one matrix-vector multiplication, the total work for
the iterative solution of the linear system is O(N?-*%) operations. For the optimal convergence
rate (37) of the postprocessed solution at an interior point, twice the number of iterations
needed for optimal L?(T')-convergence is necessary (since then, b is replaced by 2b in the above
argument).

12



3 Quadrature error analysis

The purpose of this section is to develop and analyze a quadrature scheme such that the
resulting numerically integrated stiffness matrix A’ satisfies the consistency estimate

AL — Afu| < N Lo™". (42)

By Theorem 12, this will ensure the exponential convergence rates (33), (37) for the fully
discrete scheme, provided that the exact solution u belongs to B,(I'). The parameter p defined
in Theorem 7 will be explicit in the quadrature error estimates. By Theorem 12, (42) will ensure
the exponential “energy” convergence (33) of the solution ul of the fully discrete problem. In
order to achieve the optimal convergence rates (37) at an interior point z € €, one should
replace o by 2p in our estimates for the quadrature points.

In the following we will work out the quadrature methods only for quadrilateral meshes.
One possbility to treat triangles is to map the quadrilateral reference domain to the triangular
one by a degenerate mapping. Then the techniques presented below can be applied also to this
case while then the number of quadrature points has to be increased by one in each direction.

3.1 Some auxiliary results

We begin with a classical quadrature error estimate in one dimension. It goes back to Davis
and Rabinowitz, see, e.g. [4, Eqn. (4.6.1.11)]. Throughout, we denote by Gf, , the n-point
Gaussian quadrature formula in (a, b). If no confusion is possible we skip the integration interval
and write simply G™. Let 557,, C € be the closed ellipse with foci at z = a, b, semimajor axis
a > (b— a) /2 and semiminor axis b > 0. The semiaxis sum is p=a+b. Fora = —1 and b = 1,
we write also £7 instead of €7 ;. A classical estimate for the error in Gaussian quadrature is
(see, e.g. [4])

Proposition 13 Let f(z) be analytic in [—1,1] and admit an analytic continuation f(z) into
the ellipse £, C €. Then

B = 115 = G| < Cp ™ max | £(2)]. (43)
Higher dimensional analogs of (43) can be obtained by a tensor product construction. In

tensor products Gaussian formulae we denote by GZ,, the n-point quadrature formula scaled
on (a;, b;) with respect to the ith variable.

Proposition 14 For a;,b; € R, b; > a; we define the cuboid D = @, (a;,b;). Let f(x) €
C°(D). Then

d d
[ sne = ({T62.) 1) < 0 3101 a0 ) (11
where
d d
l‘s = (l‘l,...,l‘i_l,$i+1,...,l’d), ch: ®(ai,bi), |ch| = H |bJ —aj| (45)
I =
and

b;

(Bif) () = [ f(@)dw; = Gii g 1]

a;

13



Proof. We only consider the case d = 2. The case d = 1 is trivial while, for d > 2, the
result follows by induction. We use a classical tensor })roduct argument. Let = Q) x €,

If = LI, f where I f = [o, f(2:)dz; and Qif = X7, w; ) are quadrature formulas in Q;
with positive weights w( ) ,t=1,2. Then

I-Q)f = (Iils—@QiQ2) f = (L1l — Qs+ Qs — Q1Q>) f
= L[([2—Q2) fl+Q2([1 —Q1) f

and we estimate
N2
(=11 < Il mag (= @a) £ o + 2w (= @) F (%)

9 max [(F2 = Qa) f (w1,7)| + |0a] max (5 = Q) £ ().

IN

|
To apply the estimate in Proposition 13 to the transformed integrands, we will also require
estimates on the growth of Legendre polynomials on 9€,,.

Proposition 15 Let £, C € denote the ellipse with foci at £1 and semiaxis sum p > 1. Let
further L,(x) denote the Legendre Polynomial of degree n on (—1,1), normalized such that
L,(1) =1, for n € Ny. Then, for p > 1,

< 7
max | Ln(2)] < o, (46)
and
L,(v) - L, 1) .
max max (v) (v) < n(n+ )p" L (47)
ucl, ve&, V—U 2

Proof. The conformal map z = (w+w1')/2, |lw| > 1, maps € \[—1, 1] into the exterior of the
unit circle. Circles of radius p > 1 in the w-plane correspond to £”; ; in the z-plane. Moreover
(see [28], (8.3.1))

Ln(Z) = Z gmgnfmwnizm =w" Z gnfmgmwizm

m=0 m=0

2
gm=4""< m)
m

Inserting this into the representation formula, we obtain

max |Ly,(z)] < p" Enj Gn-mGm = p"4 " Enj <2m> (2 (n = m)> =p".

P
z€€0, m=0 m=0 \ "

where the numbers g, are defined by

Next, let v = (t+¢ ') /2 and u = (s + s ') /2. Then

Ln(U) _ Ln (U) n tn—Qm o sn—Qm
= 2 nggnimt—{—t*l—s—sfl

v—1Uu

m=0
LnT_lJ n—2m —n+2m __ n—2m ,—n+2m
t +1t s s
= 2 ) gmbnm T —
m—0 +t"—s5s—5

14



For r > 0 we obtain

tr t—r el _ T _ t r_ 1 tr T
+ S S — (tS)l T (( S) )( S )
t+t 1 —s—st

From 1 < |s|, |t| < p, it follows that

tr+t " —s"—s5" 1— r—t i -1 ! 1—r+4j _ 92 p_
<t T t] T — t TT] T‘].<..T'1‘
| ST = X ) T e

holds. Consequently

n—1
Lo(o)— L. |25 ]
max (v) () < 2 guguom (n—2m)° pn it
(u7v)€g€_171)xg€_171) vV—Uu m=0
n—1 LnT_lJ 2 n(n+1) n—1
< P2 ) gmguem (= 2m)" = ———p"
m=0

|
For later purpose we define the scaling function 7y := (p{f (p{K + 1) + pk (péK + 1) + 1) /2

1/2 1/2
and in view of (16) the function 7x = (p{( + 1/2) / (pg( + 1/2) ? for K € L.

3.2 Surface integrals in Ap-BEM: The basic cases

Let 77, denote the hp-mesh generated by the geometric refinement algorithm presented in Section
2.3. We recall the definition of the set Z;, (see (21)) and use the notation of Subsection 2.1. In
order to assemble the stiffness matrix AL one has to compute integrals of the form

Aﬁp =lim [k, xx, k(z,y) o1 (z) or (y) dydz. (48)

e0 ) —y|1>e

In the following we present quadrature methods for the approximation of A} ;. The strate-
gies will depend on the singular or near singular behaviour of the kernel function. As already
mentioned the arising kernel functions have a special, characteristic behaviour which can be
(globally) expressed by (7). What is more important for the quadrature methods is the behav-
iour of the integrands in the local coordinates. We have to distinguish between the following
three basic cases. From the assumption on the initial parametrization (1) and the algorithm
for the geometric refinement, it follows that there exists a constant C'; depending only on I, L,
on the function 7 : I - I, and on 7, such that for all pairs of panels K, x Ky € 7, one of the
following conditions is satisfied

1. K, = f(y, “case of identical panels”.

2. Condition 1 is violated and dist (Kgg, f(y) < (, max diam f(z holds. Furthermore, there

ze{w,y}
exist two plane quadrangles K7, K C I' which share exactly one common edge and have

the property that, at least, three edges of K, belong to Gf(; and, at least, three edges of
K, belong to OK;. “edge-parallel case”.

15



3. Conditions 1 and 2 are violated. “vertex-singular, near-singular, and regular farfield case”.

The mtegral over the surface pieces K, and K, has to be pulled back onto suitable parameter
domains K, and K in R?. The transformations have to be chosen such that the geometric

situation of the parameter panels KM is the same as on the surface, e.g., Kgg,K share an
edge if this is the case for K, and K,. In the following we will discuss the three cases above
separately.

3.3 Identical panels
3.3.1 Regularizing coordinate transforms

In the first step we will apply certain coordinate transforms which render the integrand tractable
for automatic quadrature methods.

Let K, = K, =: K € 11. The corresponding flat panel on [ is denoted by K := n! (K) €
7. We first have to transform the surface panel onto a suitable reference element in IR Let
{Xi},<;-, denote the vertices of K (counterclockwise ordering) and ¢; := || Xiy1 — X;]|| the side
lengths. The reference domain is given by K := (0,¢;) x (0,¢,). The mapping &z : K — K is
affine bi-linear:

U1 U2

- u U
Fp(u) = X1 4+ — (X — X1) + — (X4 — X1) +

(X1 —Xo+ X3 — Xy)
€1 €9 E1€9

and depends only on the angles of K but not on the side lengths. The composite mapping
Kk = 10 RKj transports K onto K. The kernel function in local coordinates on K x K is given
by

kioe (u,v) :=k (kg (u), kg (v)) .

The product of the basis functions in local coordinates takes the form
Kok (ki () 08 (5 (1) = (8 0 x5 0 i) (w) - (0% © Xz 0 i) ()
= (803 ° RK) (u) - (@gf ° RK) (v) .

Since K is a rectangle and Qg := (—1,1), the transformation Ax := Y% © kx mapping K onto
Qo is given by kg (u) = (j) + 2("1/61). In local coordinates, the integral (48) takes the form

uz/e2

I, .= lin% sk Fioe (u,v) B (u, v) dvdu (49)
T a2
with
B (u,v) = Baw (u,0) = gi (u) g5 (v) (0, 0 &) (w) - (6 0 ) (v) / K]
1/2
Here, g (u) := |det {<‘?9’“Tfj, ?T?>}1<ij<2 can be extended analytically into a neighborhood

of K . Note that g (u) does not depend on the side lengths of K but only on the angles. For
u € K, define the shifted rectangle K, by

Ku:{z€|R2|3v€K:z:v—u}. (50)
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Then
I, = ll—r}(l)/u ) /zef(u kioe (u,u + 2) B (u, u + z) dzdu. (51)

€K 1z >e

The domain of integration is given by the system of inequalities of the form

0 < wup <ey,

0 < wuy < ey,
—uy < 21 <€ —u,
—uy < 29 < €2 — Us.

This system can be reordered. An equivalent description of this domain is given by

—€1 z1 < €1,

—€&9 zy < €3,

max (0, —27) uy < min (1,1 — 21),

VAN VAN VAN VAN

max (0, —z3) us < min (g9,69 — 23) .

Splitting the domain in four sub-domains

0< 1 <¢eg ) 0<zn<=a

0< 2 <e —£9<29<0

D1: SN 22 S €9 D2: 2 > <2 >
0<u;<e;—2 0<wu; <e—2

[ 0<up <9 — 22 —z9 Sug < e
1<z <0 ) -1 <21 <0
0<2<e —e9<29<0

Dy — < 29 < €9 Dy — 2 <2z <
—z1<up <ée —z1<u1 <&
0<us<eg—2 | —2z9 Sug < &

we avoid the min / max -expressions and I; takes the form

4
I, = lin(l)Z/D,- ioe (u,u + 2) B (u,u + 2) dudz.
V=1 el ze

We transform the integration domains D; onto D; by the following transformations

Uy 111 u% 111
A~ 2 A~ ~
. u% U9 . 15 Uy + 22
D, : 1 = ~ N ) D : 2 = ~ N )
V] U + 21 vy Uy + 21
v% o + Z9 U% Uy
3 S s 4
uy U1 + 21 Uq Ul + 21
u;’ U9 ) u% ilo + Z2
D3 . 3 = ~ , D4 . 4 = ~
v% o + Z9 U% Uy
The integral takes the form
4 . . . .
I. = lim / " kioe (4!, o) B (uf,v') didz (52)
=0 p, =

12]>e
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with the functions v* = v®(2,4) and v* = u’ (2, 4) defined above. The integrand in (52) defines
the function H (4, 2).

To apply tensor product Gaussian quadrature, we transform the region of integration in
(52) to a 4-dimensional cuboid by the substitutions

77,‘(8,‘ — 22) = Uy, 1= 1, 2. (53)

Thus, integral (52) takes the form

= lim /| £ / / (M=), 2) (o1 — 1) (2 — 22)dmdz. (54)

The singular behaviour of the integrand is analyzed in

Proposition 16 The function H (1, %) defined by the integrand of (54) is weakly singular at
2 =0 and, for any Z # 0, analytic in n and, for any n, analytic in Z # 0.

Proof. It is sufficient to show that |H (@, 2)] < C'||2|| " for |2| sufficiently small. Consider in
(52) the sum of the terms with ¢ = 1, 4:

hia(6,2) @ = ke (ul, ut + zl) B (ul, ul + zl) + Kioe (u4 ut + z“) B (u“, ut + z4)

Z,0) Bgff (4 + 2,a)
with
ko (4,0 + 2 = Kioe (U, 0+ 2) + kioe (4 + 2, 4)
ki (4,0 + 2 = ||2]| kioc a,a+z),

(@ a)) /o —al,
(2,9)) /o —all.

Inserting the local parametrization kg into the global representation it follows with Proposition

2.1 that
C

1Z]I

holds (see also [20, Lemma 4.2]). Due to the analyticity of B (u,v) the assertion follows from

ko (G, %+ 2)| + |k1 (@ + 2,0)| + |k (@, 0+ 2)] <

|B (@, 4+ 2) = B(a,a)| +[B(d+2a) - B(a,a)| < C[[Z].

The remaining terms in the sum corresponding to ¢ = 2,3 defines the function hy 3 which can
be treated analogously. W
Proposition 16 implies that

1—/ / // 5) dnds (55)

exists as an improper integral.
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Remark 17 Before proceeding in deriving a representation of the integral I, which is appropri-
ate for numerical quadrature, let us first motivate our strategy. At Z = 0, the integrand H (n, 2)
has a weak singularity. The common strategy for such kind of integrals is to split (0, 1) x (0, £2)
into two triangles and to apply the so-called Duffy transformation which removes the singu-
larity and renders the integrand analytic (see [26] and [1]). Gaussian quadratures would then
yield exponential convergence. The problem with this strategy, however, is that, due to the
possibly high aspect ratio €1 /e5 of the domain of integration, the size of the region of analyticity
of the transformed integrand will not be uniform in ¢;. More precisely, the exponential rates
of convergence of Gaussian quadrature applied to the transformed integrand H (n, 2) deterio-
rate for high element aspect ratio. We show next that a wvariable order composite quadrature
[24] can achieve exponential convergence with algebraic work independently of the elemental
aspect ratio. The key to our strategy is, as in [24], an appropriate splitting of the domain of
integration such that for each subdomain the distance to the singularity versus the diameter
of the subdomain is bounded uniformly from above and below. This ensures uniform domains
of analyticity for the integrands and, by Proposition 13, uniform exponential convergence of
Gaussian Quadrature. The situation is illustrated in Figure 2.

X
4 X,
5 0 0 0,
€11 €11 €10

Figure 2: Subdivision of the domain K = (0,&;) x (0,5) into Q;. Singular Vertex is X;.

Without loss of generality, we assume that €5 < &; and define j, = L‘logz 21|. Due to

the geometric subdivision algorithm in Section 2.3.1, we know that €5 > o’¢; holds implying
Jo < L |logo|. Then

Jo—1

I, = Z/ (n, 2 dndz—i—/ / / / Z)dndz (56)

where the domains Qj are given by

Q= (e1511,215) X (0,2) x (0,1)*, 0<j<jo— 1. (57)

with e;; := 277¢;. Note that the aspect ratio of the last integration domain in (56) (where

H (7, 2) is singular) is now bounded and that H (7, 2) is analytic over Q; with size of the domain

of analyticity proportional to that of Qj. In order to apply Duffy coordinates for the singular
integral we split (0, &1 j,) X (0,e2) into two triangles

[0 L Lwaws - 45 [




L s

For the first integral we substitute

while for the second one we put

and obtain

/81]0/ // 2)dndz = /5110// lizlA(n,é(z))dndz
+/0/0 /0/06—’:22ﬁ(77,2(z))d77dz. (58)

Summarizing the above transformations we have shown that

Jo—1

Z / Z)dndz

—l—/sl]O///azlA dndz—l—// // “LIo o0 H (n, 2(2)) dndz

holds with analytic integrands as we will show below. This representation of the integral I, is
now well-suited for numerical approximation (cf. Remark 17).

3.3.2 Quadrature and error analysis

We approximate the integrals above by properly scaled tensor Gaussian rules of possibly non-
uniform order for the different variables. First, we consider the integrals over Q);. The quadra-
ture error is given by

= ‘/ H(n,2)dndz — GRGRGRGHH|, j=0,..,5 —1, (59)
Qj
where G” denotes a (properly scaled)A n-point Gaussian quadrature in the variable x and n; =

m(g),l =1,..,4,0 < j < jo. Since @, is a tensor product domain, we use Proposition 14 to
bound the quadrature error as follows:

4 Jjo—1 jo—1 4
E;<CY By, ZE <CY S Ey (60)
=1 7=0 I=1

where El,j are one-dimensional quadrature errors to be estimated. The details are in the
following
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Theorem 18 For alll and j, the quadrature errors Elﬁ- in (60) can be estimated by

B < Cryfiges (14 )\1’7)2(1){(7”’)”’ , 1=1,3
By < Ondiiges (14 \)2 08t =9 4 (61)

with constants C' and v depending only on the mapping n and the angles of K. The numbers
A and v; are given by

)\ o 1/€l ;i;))?) . _1 l: 1,2,
L - T 0 otherwise.
61,j+1/€2 l: 4,

Proof. Let us consider the error of the Z;-integration. We use the splitting of the proof of
Proposition 16, H = h1 4 + ho 3, inducing an analogous splitting of H = h1 4+ h2 3. We first
consider the function h1,4. Let @; := @; (n, 2) := (¢; — 2;) m;- Using the notation of the proof of
Proposition 16 we obtain

illA (77, 5) = (61 - Zl) (52 - Zz) {ko (ﬁ,ﬁ

We scale the Z;-integration to (—1,1) by 2, := 21 (t) = €141 (¢t + 3) /2. The quadrature error
is then given by

7 €1,5+1€2
3,7 =

maXx maXx
n€(0,1)% 22€(0,e2)

/ h14 777 G t(— 11)h14 (77’ (Zl(t)))"

From [20, Lemma 4.2] we know that there exists vy > 0 depending only on the global kernel
function, the initial grid 7y and the mapping 1 such that h; 4 can be extended analytically onto

D =€l 1, % (0,e2) x (0,1)°

with p := (1 + v dist (Qj, O) /51,j+1) = 1+~. We will estimate the terms in (62) separately. In
[20, Lemma 4.2] it was shown that

max |k (u(n,2),2)| < ——"7——
(t,éz,n)eD’1’| (@ (m2),2)l (1+7)€1,j+1

where M is independent of the discretization parameters €; 9, L, and K. The proof of

M
max_|ko (4 (n,2),2)| < 7
(t,22,m)ED? (1+7) e

is completely analogous.
We turn now to the estimates of the products of basis functions, i.e., the function B. From
the definition of B it follows that

7.‘.2
max |B(4.4)] < C—E  max |L.. okrq (i \L o hpeq (10 \
(t,22,n)eD§| ( ) )| =Y (tém)eDH a1 K,1( 1)| o) K,l( 1)
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Tracing back the coordinate transform it follows that &g (41) = —1 + 2 (1 — 277 (¢ + 3) /4)
is contained in the ellipse 5(”_171). Using Proposition 15 we obtain

2 .
max | B (a,4)| < OZE (14 4)%1 |
(t,22,m)eD? €1€2

Let q, (4;) := (La,; © fk,i) (4;). In order to estimate the difference quotients we write

@+ 2)— B(u,4))
1/2) (p5 + 1/2) 9 (@) s (1) P (2) -
2)

oy (1 + 21) Py (@12 + 52) — gic () Pay (i12) Pay (112) } -

[ K2 Basgy (6,0 + 2) = |K|( (@

gK(

The expression in the parenthesis can be rewritten in the form

{.-} = (9 (@+2) — gx (@) oy (U1 + 21) Qo (G2 + 22)
9k () { @ay (81 + 21) = @ay (1) } u, (2 + 22)
+9x (@) oy (1) (%’z (42 + 22) — @ay (ﬁ2))

Using the analyticity of gx, the estimates of Proposition 15 and the boundedness of \|27]|| on Df*
we obtain

~

S 1)

S CT('.%(ﬁ'K
€189

max
(t7£2 7"7)€D{'

The estimate for By (@ + 2,4) follows in the same fashion. Estimating the leading factor
|(e1 — 21) (62 — 22)| by €162 (1 + v) we obtain the error bound

QpK
g1 (L+9)™ 22
K"K

B, < C 14+7) ee
3 ( ) =2 2 261,]'_1_15182

= 071'%(7?[(52 (1 + ’7)2(1){{7713) .

The estimates of the quadrature errors corresponding to the remaining variables are just a
repetition of the arguments. Note however that due to the scaling @; := n; (¢; — 2;) the semiaxes
sum p for the n;-integration error can be chosen as p = 1 + 7/¢; and for the z;-integration as
p = 1+4+~¢ey j11/€2. Furthermore, for the n-integration, the leading factor (e; — 21) (g3 — 23) can
be estimated by £ - €5 yielding the different values of v; in the assertion. B

To achieve (42), it is sufficient that

jo—1

Z Elj S NglLO'gL
j=0

with ¢ from Theorem 7. This estimate is guaranteed for quadrature orders n; ; satisfying
By < N7'Lo®™ [y (63)

with Ey; from (61).
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Remark 19 We have seen that only the z-integration depends on the index of the block @;
which is expressed by Ay = 277 "te; /ey. On the other hand, we recommend not to use a variable
order quadrature with respect to j in an implementation of the hp-quadrature but rather to
employ the estimate Ay < 1 since, for practical problems, the administration overhead for this
additional case dominates the asymptotic gain. This is done in the implementation discussed
in Section 4.

In any implementation of Ap-boundary element methods one should choose quadrature order
n directly from relation (61) and (63). For a bound on the asymptotic complexity we further
simplify this relation.

Proposition 20 For large L, condition (63) is guaranteed for
n(j) = O (oL |log ) . (64)

Proof. For L large enough we put N = L*, jo, = L |logo|, pf = L, e, = 1 and obtain, for all
[ and j
2nlog (1 +v) = oL |logo| + log |log o| + 2L log (1 + 7).

Neglecting the second term and the constants log (1 + 7) we obtain
n = O (oL |logal).

|
We consider now the first integral of the right hand side of (58) approximated by Gaufl-
Legendre tensor formulae.

FE =

L Lot 2 5 n n n n 2 ~
(/0 0/0 /0 /0 le(ﬂ,Z(z))dndz—GmlanszGZ;le(n,z(z))>

€2

€150
Since €1 j, is of the same order as €3 we may assume for the quadrature error analysis that
€1,jo = €2. The quadrature errors are estimated in the following

Theorem 21 The one-dimensional quadrature errors E; corresponding to the ny,ms, 21, 22-
integration can be estimated by

El < CT(%(%KEQ (1 + )\Z,Y)Z(P{{-I-Pé{—nl)-i-ul

with constants C' and v depending only on the mapping n and the angles of K. The numbers
A1, vp are given by

1/e; 1=1,2 0 forl=1,2,
N =1 1/ey forl =3, vp=14 2 forl=23,
1 otherwise, 1 forl=4.

Proof.  Let us first consider the error corresponding to the Z;-integration. We scale the
interval to (—1,1) by 21 (t) = &2 (t + 1) /2 resulting in

Lo @ (n (G50)) a = Gt [ 0 (0, (0))]

-1

E; .= — max
(32,m)€(0,1)3
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In [26] it was shown that the integrand above can be extended analytically with respect to ¢
onto an ellipse 5(”_171) with p =1+ /e, while

max |Z1ko (@ (n,2),2)| < M.
(tvm)ED,l,l 1ko (@ (n,2), 2)] <

and
max_||Z|| |Z1ko (@ (0, 2),2)| < M
a2l ko (2 (1,2),5)] <
holds with 2, = 2, (t) and Df := &, ;) x (0, 1)®. Again, the constant M depends only on the
global kernel function, the initial mesh 7, and the mapping . The corresponding combinations
of basis functions can be estimated as follows. Let ¢, (4;) := (La, © Rk,i) (4;). Then

2
max |B(€L,ﬁ)|<C7T—K max

(t,22,m)€DF? €1€2 (t,52,m)€D]

Pay (1) oy (82) Pay (1) oy (@2)‘ :

Tracing back the coordinate transform it follows that

A

Fri(l) = —142m —mey/er(t+1)
Rro () = —142m —zem (t+1)

are contained in the ellipse 5(”_1’1). As in the proof of Theorem 18, it follows that

2
max  |B (4, a)] < O£
(t,22,m)eDP! €1€2

1+ —
€2

< 0% >2(p{(+p§)
and o
(1 + 1)2(”1 2E)1

€2

max
(taZAQ JI)ED;H

€1€2

The leading factor (g1 — z (¢)) (€2 — 21 (t) 23) can be estimated by e1e5 (1 +7)>. Altogether,
we obtain

Z(P{(+p§*n3+1)

E3 S CEQ <1+l
€2

The estimates for the remaining variables are just a repetition of the arguments. However, the
size of the ellipses changes due to the different scaling of the variables. For the zs-integration
the interval is (0,1) and hence, p, = 1 + 7. For the 7; integration, we may choose p; =
1+ 7/e; due to the scaling @; = 7; (¢, — 2;). The different values of v; stem from the fact that
(e1 — 21 (1)) (€2 — 22 (t) 2z2) can be estimated for the n; and 7, integration by ;5 while for the
2z, integration we have 165 (1 + ). B

Corollary 22 The estimates for the second integral of the right hand side of (58) are the same
as in the previous theorem but the roles of z1 and zy have to be interchanged.

To ensure (42) the quadrature orders have to be chosen such that E; < N;'Lot. We
strictly recommend to use this condition in any computer realization of the hp-BEM instead of
the following asymptotic consideration, analogous to Proposition 19.
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Proposition 23 Asymptotically, i.e., for sufficiently large L, the quadrature orders have to be

chosen according to
m = O (oL |loga|) (65)

where O (-) is uniform in L and o and o is as in (14).
We sum up the foregoing considerations in

Proposition 24 If the singular integrals (49) are transformed as in (54), the integration
domain is subdivided according to (56), and Gaussian Quadrature is applied to the result-
ing integrals with orders (64),(65), the consistency estimate (42) holds. The total work for
the consistent quadrature of all singular integrals is bounded by Wy < CL*(o|log 0|L)5 =
C (o [logo])® N225 kernel evaluations.

3.4 Singular and near singular, edge-parallel case

The singular and near singular, edge-parallel case is characterized by the following condition.
Let K, K, be two non-identical panels of 77. The pull-backs on 7, are given by K,:=n! (K,)
and f(y :=1n ' (K,). We assume that there are plane quadrangles with disjoint interior f{;,
K, C I' which share exactly one edge and have the property that, at least, three edges of K,
belongs to dK* and the same holds for K, and f(; . We use the following conventions and
notations. For z € {z,y}, let {P?},_,, denote the vertices of K* with Pf = P/ and P§ = P}.
Let e, := ||Py — PF||, ds := ||Pf — Pf||, and d,, := ||P{ — P||. Furthermore, let X;, Y; denote
the vertices of K, and K, with X3 = P¥ X, = Pf and Yo = Py, Y3 = P}. f K, N K, # () we
assume that K, = K* and f(y = f(; Figure 3 illustrates the situation.

X_
P4_ X, P3x= X3
€, K,
X Ky—X,
o)
X_ y X x_ y
b= h g, Fy=F
d
y 0
K*
Y, y Y,
€
y Ky
y_ y_
K=Y K=Y

Figure 3: Near-singular, edge-parallel case.

We have to design the quadrature formula such that they are robust with respect to any
possible aspect ratio of £1,d3, and df. Let the extended reference domains be defined by
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A~

K} :=(0,¢1) x (0,d,) and f(; :=(0,e1) x (—d,,0). The affine bilinear mappings

T

~ e, Yl /e @ Uz Ha p U2 e @ p p

“m(“) : :—P1+E_1(P2_P1)+d_(P4_P1)+€1d (Pl_P2+P3_P4)

~ ¢, Y1/ pa P U2 P N2 5y .

"fy(v) : :P1+€_1(P2_P1)_d_(P2y_P1)_€1d (P1_P2y+P§/_P2)
y y

transporting K’ 2y Onto K »y define the reference domains kmy = Ky, ([?my) Due to Assump-
tion 4 we may assume for the following that

K, = (0,e1) X (64,0s +€42)
K, = (0751) X (_53/ — &y _6?1)

with e, = || X4 — X4||, &, == ||Y2 — Y| and 6,, = d,, — €,,. The composite mappings
Kpy =1 0 Fyp, map K, onto the surface elements. Note that, due to the chosen scaling, &,
does not depend on the side lengths of f(w but only on the angles of f(m,y and the mapping n.
The kernel in local coordinates is given by

Kioe (4, 0) 7= k (ka (u) , £y (v)) (66)

and the combination of the basis functions defines

K,

B (u,0) = Baw (u,0) 1= g, (u) g, (v) (¢ 0 fixe. ) (u) (0, © fixc, ) (v) /]| Ko

with the affine linear mapping & defined as in the previous section. The integral in parameter
coordinates takes the form

Ie:/ . / _ kioe (u,v) B (u,v) dvdu. (67)
uEK,; JvEKy

3.4.1 Regularizing coordinate transformations

As in the previous section, we will first transform the integral into a sum of integrals over
domains @); having a proper distance from the singularity and a further domain where the
kernel function is singular in a vertex such that simplex coordinates render the integrand
analytic. Due to the choice of the local coordinate system and the assumption that 7 is bi-
Lipschitz continuous it follows that the kernel function is singular if and only if u = v, i.e.,
v1 — u; = us = v2 = 0. Hence, we employ here one-dimensional relative coordinates and write

21 = V1 — U, Z2 =72, Z3= U3 (68)

The domain of integration is described by the following system of inequalities

0 < wp<¢g
by < 23<b;+¢e,
—u; < 21 S€1— U
—by —gy < 29 < —0,.
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We exchange the order of integrations in uq and 2 ( this is justified by Fubini’s theorem; observe
that k.. in (66) belongs to L'(K, x K,) for 6, + 6, > 0, see [21]). An equivalent description of
the parameter domain is given by D; U D,

—e1 <2 <0, 0< 2z <ey,
—by — ey < 22 < =6y, Dy = —by — ey < 29 < =0y,
5m§23§5m+5m7 6w§Z3§6$+€$7
—z1 S uy < gy, 0<wu; <e;— 2.

The integral takes the form

=3 [ b (2, (02)) B (). (2)

The integrand above defines the function H (uq,z). Replacing z; by —2; and u; by 4y + 21 in
the first integral maps D; onto D,. We obtain

Iesz H (@ + 51,00, 5, 23) + H (@1, — 51, 29, 5) diyd2
2

We henceforth omit the hat from the variables v and z and denote D,. In order to obtain a
four-dimensional tensor product domain we replace u; by wuq (1, 2z1) := n(e; — 2z1) and obtain

£1 —0y [ o 1
I, = /0 [ / /0(51—Zl){H(Ul(n,Zl)+Zl,—21,22,23) (70)

by—ey

+H (uy (1, 21), —21, 22, 23) } dnd2.

The integrand above defines the function H (n, 2). The region @ of the z—integration is depicted
in Figure 4.

) £
yii
8x,l QO I Sx
Q.
€12 €2 €1 Sy
fe)
2
v %

Figure 4: Subdivison of the domain @ into @, Q]I-’H and Q.

dist (Q,0) > /82 + 62 =: 6. (71)
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The integrand H in (70) is analytic on @ x (0,1) but has a (near) singularity at z = 0 (see
Figure 4). This and the problem of high aspect ratio are overcome by a judicious subdivision
of @ which we describe next (see also Figure 4 and Remark 17). Our aim is to split @ into
subdomains @; such that diam @; ~ dist (Q;,0) and, for § = 0, a cube @, which contains the
singularity at a vertex and have sides of similar length.

Without loss of generality we assume that e; > ¢, > ¢,. Otherwise, one has to permute the

indices in the formulae below. Let M; := max (6, ¢,) and M, := max (6, ), g := {log2 ]f/l—llJ -1

and jo := {log2 ]f/I—EQJ — 1. For z € {1,z,y}, we put e,; := 2 %,. Define a sequence of domains
fori=0,1,2,...,5 and j = 0,1,2, ..., jo.
Qi = (erit1,€14) X (=0, — €y, 6y) X (04,64 + €4),
Q; = (enjriote E1griort) X (=8 = €4,8,) X (62,6, + €4,5)
Q' 1 = (0,1 4ip42) X (=6 — £y, 6y — €y) X (6 + €u i1, 6o + Eay)
Qi 1 = (0,81 jgrig+2) X (—6y — €y, 8y) X (8a, 6z + € jo+1)

If ip < 0 and/or jo < 0, no subdivisions in the respective direction are performed. One verifies
that dist (D, 0)
is ,
“diam D > C >0, VD € {Qza JI,QJH} (72)
for 0 < i < 45, 0 < j < jo where C' does not depend on ¢; and 6. Due to the geometric
refinement algorithm we know that (72) holds also for D = @, if § > 0. The integral takes the
following form

Z/ / (n, = dndz+2(/ / (n, 2 dndz+/ / dndz>
—l—/*/ z)dndz. (73)

We remark that some of the sums in (73) may vanish, depending on the size of §. For 6§ = 0
the integrand of the last integral of (73) is singular. We have to apply additional coordinate
transform in that case. This is discussed in the sequel.

As mentioned above the side lengths of @), are of the same magnitude, namely, ¢,. Hence,

2 €1jo+io+28x,50+1 75 €1,50+i0+2 €a,jo+1
H (777 Z) = H n, c 21, %2, z3 (74)

2
&y y Ey

has the same behaviour as H. We split Q, furthermore according to

// (n, 2 d"dz—/ / // 2) dndz
/ ! / / / (n, z) dndz + / / / / ) dndzydz3dzy
[T 2 dndesdeaz,

The simplicial integration domain for the z-integration contains 0 as a vertex. Hence, we apply
simplex coordinates

A0 (3
0 (3) =
23 (3) =

2 (1, 2, 25)" for the first integral,

Q>

~

(21,1, 23)" for the second integral,

l\z >
N

3 (21, 22, l)T for the last integral

l\z>
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and obtain

L[ A= [" [ 5 (20 ) dna (75)
+ / / ST (0,29 (2)) dndzdisdzs + / ' / CEA (n, 29 (2)) dndzadz dzs,
0 (0,1) 0 (0,1)

It will turn out that the integrands above are analytic and can be approximated by Gauf-
Legendre formulae. Summarizing the transformations above we have shown that I, can be
written in the form (73) with analytic integrands for the integration over Q;, Qf, Qi" and either
analytic integrand for the integration over ), or, in the case of 6 = 0, analytic integrands in
the representation (75). Up to now no numerical approximation has been applied but only
regularizing coordinate transforms. The splitting (73) and (75) is an ezact representation of
the initial integral. In the next subsection we will discuss numerical quadrature along with the
corresponding error analysis.

3.4.2 Numerical quadrature and error analysis

For the approximation of each integral we employ tensor product Gauf-Legendre formulas
GUIG2GR2Gh* of orders ny possibly different for different variables and different integration
domams For t=0,1,...4, we define the quadrature error F;; by

€ Ji
= QS| max o
(#5m)€Q5x(0,1)

Y

H(n,z)dz — G:117(617i+1,61,i)]j] (n, 2)

€1,i+1

with Qf = (=6, — &y, X —§6,) X (8,6, + &;), while the remaining errors, Ey, EJ,, El, Ef,
[ € {1,2,3,4}, are defined analogously. The total quadrature error £ will be estimated, using
Proposition 14 as in (60), by a sum of 1-dimensional quadrature errors:

4 i0—1 jo—1
<Z Ei,l) + Z Z Eﬁ +Ef 5. (76)
=1 i=0 j=0 Re{III}

In the singular case, i.e. § = 0, the error Ef has to be split into Ef = 33_, Ej; where, for
k € {1,2,3}, E}, corresponds to the kth integral of (75). We estimate these errors with the
aid of Propositions 13 and 15.

Theorem 25 Let 6 > 0. This implies in particular that 6 > Ce,. Then the quadrature errors

can be estimated by
Eiy < O, mie,my |22 (14 Apy) ™2™
s

where the constants v and C depend only on 1, 7y and the angles of K., f(y. The numbers n,
q and A are given by n =¢,/1,; and

P+ p{{‘” + 1 zi-integration, 1 =1,
p¥ 29-1ntegration, crir1/ey, =2,
qr = K . . )\l = .
D zg-1ntegration, 61’,‘+1/6x =3,
ple 4 plty n-integration, 1/e1 [=4.
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. . I.IT . .
The quadrature errors corresponding to the domains Q;"" are given by replacing €111 and €,

by €4 j+1. The quadrature errors for the domain Q, are given by replacing €111 and €, by €.
In all those cases, n equals 1.

Proof. Let us first consider the error £ of the z;-integration for the domain @);, i.e.,F;;. In
order to apply Proposition 13 we have to transport the integral to the unit interval (—1,1) by
7 =2 (t) = 242 (t + 3) yielding

€1,i+1€z€
E’i,l =y max

1 [ ~
H(n,z)dt —G™_,  H(n,2)].
2 (25m)€Q5x(0,1) / t(—1,1)

-1

The integrands above were defined in (70) by

H(n,z)=(e1 —21) {H (w1 + 21,u1, 22, 23) + H (u1, —21, 29, 23) }

with u; = n(e; — 2z1). In the following we consider only the first summand above since the
second one has the same behaviour. Tracing back the coordinate transform we obtain

Ay (m,2) = (o1 = =) ke (7). (2)) B((757): (2)) ()

In [20, Lemma 4.2] it was shown that H; (7, z) can be extended analytically to Dt := EM 1 X
Q5 x (0,1) with p; =1+ U901 4~ while k. can be estimated by

€1,i+1
u z u C
e (75 ()] < 5
The estimate - K, | K,
max |B((m17), (4))] £ ORI (14 4 (78)

(t:2g.m) €D €14/E2Ey

follows as in the proof of Theorem 18. The leading factor (g1 — 21) is estimated by e; (1 + 7).
Summarizing we have shown that

VEay (1+ 7)p{"ﬂwrp‘fy+1—znl ‘

€1,i+1

Ei,l = C?TKzﬂ'Ky

The proof for the remaining variables is the same. However, due to the possibly different
side lengths of @Q; as, e.g. ¢, < ¢1, the sum of the semiaxes might be larger. We have
ps =1+ 7%?“0) =1+ 7518—;1 and analogously, p3 = 1 + =25, py = 1+ v/e1. The leading
factor (e; — 21) in these cases can always be estimated by ;. The different powers ¢; of the
assertion correspond to different exponents in (78) for the different variables.

The estimates for the integrals over Qf’H are just a repetition of the arguments taking the
modified side lengths and distances into account. H

In order to adapt the quadrature error to the required consistency one has to chose the orders

of the Gauf§ formulae such that E < CN;'Lo¢l. In view of the sum (76) this is guaranteed if
E;; < CN;'Lo®" Jiy, E;{' < CN;'Lo®*/jy, E.<CNj'Lo*". (79)

Together with the above error bounds, this gives rules for the minimum number of Gauss points
to be used. We recommend to use these conditions together with the error estimates above
to determine the precise quadrature order. However, for an investigation of the asymptotic
complexity, we simplify the bounds on the quadrature orders as follows.
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Proposition 26 For L large enough, the orders of the integration have to be chosen according

to
n=0 (¢llogo|L).

Proof. The assertion follows by the same arguments as in the proof of Proposition 20. B
We come now to the integral over ), in the case that 6 = 0. As mentioned before, this
integral is approximated by replacing the integrals in (75) by GauB-Legendre formulae.

Theorem 27 Let 6 = 0 and consider the approzimation of the integrals (75) by Gaufi-Legendre
formulae GT1GT2GTGRt. The corresponding errors are denoted by Ej;, | € {1,2,3,4} and
k € {1,2,3}. Then the estimate

By, < Cmg, i,y | i—y (1+ )\lv)q’fznl

holds with
K K.

c+ptr+1 I =1,

1/e, z-integration, ‘pK p
. . v l — 2
=<1 29 3-integration, Q= p%(m ,
1/e1  n-integration, B l=3,
P +p’ [ =4.

The estimates of Ej; are the same as above but the indices of Z; have to be interchanged
appropriately.

Proof. Due to the chosen scaling we may assume for the quadrature error analysis that, in
view of (74), €, = €1,ig+jo+2 = €xjo+1 holds. Let k& = 1 and consider the Z-integration. We
scale the domain of integration onto (—1,1) by 21 (t) := % (t+1). Analogously as in the
case of identical panels, one proves that the determinant of the simplex coordinates, i.e. 32
cancels the ||z|| > singularity of the kernel function rendering the integrand analytic in any
compact neighborhood of the integration interval. Hence, we choose the domain of analyticity
by Dt = E74 1 x (0, 1)° with p; =1+ 7v/ey. As in the previous proof it sufficient to consider
the function 22H, (77, 2 (2)) of (77). The factor k. (+,-) is bounded on D** by a constant
independent of €1, ¢,, and £,. We have to investigate the arguments of the basis functions. All

of them lie in the ellipse £} ; yielding with Proposition 15

max
(t:25.m)eDP1

B ((n(el—zl)-l-n), (77(61—21)))‘ S CL::(;! (1 + V/Ey)pKz—i—pKy . (80)

2123 Z921 €1

The factor (e; — 21) can be estimated by &; (1 + v/¢,) yielding

[€ Kg K _
Ef,l S C7TK17TKy 6_3/ (1 + ,y/&.y)P +ptY4+1—2n, )
€T

The estimate for the other variables is just a repetition of the arguments above. However, due
to the scaling of the Z; and Z;-integration, the sum of the semi-axes is only ps 3 = 1 + v, while
for the n-integration we have py = 1+ 7v/e;. On the other hand, the powers of p; in (80) are
reduced. We obtain

o 1B ((58), (95| s emm (a1 = 1,284
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with ¢ = pfy, g3 = pre, qs = pi= + pfy. The leading factor (1 — 21) can be estimated by &;.

The estimates for the error Ey;, k € {2,3} can be derived by a cyclic permutation of the
indices of the Z;-integration. W

As already mentioned the quadrature orders have to be chosen such that £y, < CNp LLoet
holds. Repeating the arguments of Proposition 20 it follows that, for L large enough, the
quadrature orders n behave like n = O (oL |log o]).

In summary, we have shown

Proposition 28 All singular and near singular integrals Arp in (67) can be computed with
variable order, composite quadratures based on the subdivision (73) and (75) with quadrature
orders given, for the non-singular cases, by Theorem 25 in combination with (79) and for
the singular case by Theorem 27 to the accuracy (42) with work W < CL® (oL |logo|)® =
C (o|logo|)’ N325 kernel evaluations. Here C depends on o and o, but is independent of L.

3.5 Singular, near-singular and regular farfield case
3.5.1 Regularizing coordinate transforms

Let K,, K, € 71 be two panels which are neither identical nor belong to the edge parallel
singular or near singular case discussed before. This implies in particular that K, N K, is either
empty or a vertex. In this section we will consider the approximation of the integrals

L= [ k@) el (@) o (v) dyds.
K xKy

Let the pullbacks on T' be denoted by K,, = n ' (K,,) while {Xiticicar {Yiticicy ave the

vertices of K +y (counterclockwise ordering). The following definitions are illustrated in Figure
5.

Figure 5: Singular farfield case.
Without loss of generality we assume that 6 := dist (f(gc,f(y) = || X1 —Yi|. Let & :=

[ X2 — Xu|, 5 == || Xy — Xu||, and &f = [|Y2 = V1|, €5 := [|Y2 — Yi[|. The parameter domains
in the plane are given by K, = (0,¢7) x (0,e%) and K, := (=6 — &7, —=6) x (0, —¢3). The affine
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bilinear mappings <., : K., — K, , are given by

U1U2

~ u u
Ro () = X+ — (Xy— X))+ — (X4 — X)) + (X1 — Xo 4+ X3 — X3),
€1 €3

£1€y

. v+ 0 v v+ 90)v
Ry (u) = Yl—(lgy )(H—H)—E—;(X4—X1) (163,#()(1 Xy + Xp — Xa).
1 2 1

The transformation onto the surface panels is then given by £, , :=no £, , and is independent
of the side lengths of K, ,. It depends only on the angles of K,, and the mapping . The
kernel in local coordinates is defined by

Kioe (w0, v) ==k (kg (1) , Ky (v)) -

The local kernel is analytic if 6 > 0. For 6 = 0, k. is singular if and only if u = v, i.e.,
u = v = 0. Hence the relative coordinates in this case reduces to a renaming of the variables.
For [ = 1,2 we set

2 =Up, 2241 =1y
The combination of the basis functions with the determinants of the Jacobi matrices defines the
function B (u,v) as in the previous section. In order to simplify the notation we write ki, (2)
instead of k.. ((Zl), (22)) and B (z) is defined analogously. In local coordinates the integral I,

) z3
I,:= / ke (2) B (2) d2.
K xKy

takes the form

We first have to split the integration domain into subdomains @; such that either (diam @Q;) ~
dist (Q;,0) or 0 is a vertex of @;. Without loss of generality we assume that e > &f > &5 > &¥.
Let M := max (6,Y), My := (6,£%), M3 := (6,¢%) and define

ip 1= [log2 %J -1, Jo:= [10{%2 ]%J -1, ko= [10g2 %J -1

. i1 [I1,IV,V

and define the domains {Q;};<;, {Qj }ogjgjo’ {Qj }nggko’ Q. by
Qi = = (Eglc,iﬂ,gf,z) (0,€3) x (=6 — &7, =6) x (—¢3,0),
Q! 0,7 1) X (0,69) x (=8 — ¥, =8 — &l ;41) x (—¢4,0),

= (
(5””+10+2, ;+m+1) x (0,€5) x (—6 — &l —5) X (—e35,0),
i = (0 €k+j0+i0+2) X (€§,k+1’6920,k) X (_5 - 631/,k+j0+1?_6) x (—€3,0),
(0,28 4jorinrs) ¥ (0085 41) % (=8 = ¥ ppjorn, =8 — ¥ hpjora) X (—€3,0),
(5”,§+j0+i0+3, 5”,§+j0+i0+2) X (O, sg,kﬂ) X (—5 — €1 kot —5) X (—e3,0),
(0 5i0+jo+i0+3) X (0,5§,k0+1) X (_5 - 531/,k0+j0+2?_6) x (—€3,0),
with e} ,, := 27™¢j for 2 € {z,y} and k € {1,2}. The integral I, takes the following form

I, : :ij:/,kloc(z) dz+§22/ kioe (2) B (z) dz

j=0 R=I

+§j Z / e )dz+/Q*kloc(z)B(z)dz. (81)

k=0 R=III
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By our splitting strategy we have guaranteed that

diam @
dist (@, 0)

where 7, j, k range as explained above. This estimate also holds for @, for 6 > 0. If 6 = 0, then,
all side lengths of Q, are of order £5. Note that, if the distance ¢ of the panels is large compared
to the side lengths, i.e. § > &7, the splitting (81) reduces to the integral over @, = K, x ky.
All integrands in (81) are analytic except the last one if § = 0. The integrand is singular in @,
if and only if § = 0. In that case we have to split the integration furthermore.

For the following, we assume that 6 = 0. Since the side lengths of @), are of equal magnitude,
the function

<, vQe{Q,Q" Q"]

T s €1 iotjotkot3E2 ko-+1E 1o +jo+2 . .
H() @ = ) kioe (2 (2)) B (2 (2))
2
T
2z (2) - (Eiio-l-;(;-l-ko-l-?»é ’ 5920,;6;4-1 22, 531/71'06-1;13'0-1-2 23’ 21,>
2 2 2

has the same (singular) behaviour as the integrand of @,. The integration domain is split
according to

/ Koo (2) B (2) dz = /( Oﬁg)ﬁ(z) dz

*

:/62 /21 /Z1 /21 H dz+/ / / / 2) dz1dZ4dZsd 2,
0 0 0 0
+/ / / / d22d21d24d23 +/ / / / d23d22d21d24

For the kth integral, k € {1,2, 3,4}, we introduce 4-dimensional simplicial coordinates by

(k) _ & fori =k, .
G (8) = { &€ otherwise, forl<e<4.

This leads us to the representation

/Q* Fioc (2) B (2) d= = Z / / o1y o 2 (6)) dégdes (82)

with & defined by (45). We will see that the integrands on the right hands side are analytic and,
hence, Gauf}-Legendre formulae will converge exponentially. Summarizing the transformations
above we conclude that the initial integral I, can be split into (81) where either all integrands
are analytic or, in the case of § = 0, after replacing the integral over @, by (82) all integrands
are analytic. Again, we emphasize that, up to this point, no numerical approximation of the
integral has been applied, but only regularizing splittings and coordinate transforms.
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3.5.2 Numerical quadrature and error estimates

All integrals in (81) except the last one are approximated with tensor Gauf-Legendre quadrature
with possibly different orders for different variables and integration domains. The integral over
Q. is replaced by GauB-Legendre quadrature, too, if § > 0. Otherwise the representation (82)
is employed and the four integrals are replaced by Gauf-Legendre quadrature. The convergence
of the formulae are considered in the following. For ¢ = 0,1,...%y, we define the quadrature
error F;; by

Eii

H(z)dz — G™

21 ( €1 1,+1’El i

Eir = 1@ max

Y

)H(z)

E1 i+l
with Qf = (0,e%) x (=6 —&f, x —§) x (—¢3,0) and H (2) := ki (2) B(z). The remaining
errors, E;, EI 1t E,ZI’IV’V, Er, 1 € {1,2,3,4}, are defined analogously. The total quadrature
error ' will be estimated, using Proposition 14 as in (60), by a sum of 1-dimensional quadrature
errors:

wiiser{(Bm) - (B 5) (8 5 )] o

In the singular case, i.e. § = 0, E has to be split into B} < 37_; Ej, where, for k € {1,2,3,4},
By, corresponds to the kth integral of (82). We estimate these errors with the aid of Propositions
13 and 15. The details are in the following

Theorem 29 Let 6 > 0. Then the quadrature errors can be estimated by
Ei,l S C?TKwﬂ'Kyﬂ (1 + )\l,_y)ql—Zn (84)

where the constants C' and v depend only on 7, n, and the angles of K, f(y. The numbers n,
q1, and \; are defined by

Qi { pie 1=1,2, ~ dist (@;,0)

n= - ~ ) q = Ky . )\l =
K| || dist? (Q:,0) py 1=3,4, D,

where D; denotes the length of the integration interval of z;. The estimates of the remain-
ing errors are given by just replacing Q; and D; in the formulae above by the corresponding
integration domains and interval lengths.

Proof. The proof is the same as the proof of Theorem 25 by taking into account the arising
scales of the sides of the cube @); and the arguments of the basis functions. Hence, we skip the
details. H

Remark 30 From definition of the domains Q);, QlT T and QIH V-V it follows directly that

the constant n in (84) always can be bounded from above by \/e%eh/ (e¥e¥). Furthermore, due
to the assumption on the side lengths €75, we get the (possibly rough) estimate n < 1.

For § = 0, it remains to consider the quadrature error for (82).
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Theorem 31 Let 6 = 0 and Ef; as defined above. Then the error corresponding to the z
integration can be estimated by

Yy
T Tk € o
By < KB (14 ny)t
K,||K,

with A\; = 1/¢4 and \; =1 for 1l > 1. The powers q; are given by

e 5| 1=1,
"= pyr =2,
P [=3,

Py’ l=

The estimates of the remaining errors Ey; are given by a cyclic permutation of the indices.

Proof. Again, the proof is just a repetition of the arguments in the proof of Theorem 27.
Hence, we skip the details. B
In order to satisfy the consistency requirements the orders have to be chosen such that

E;y < Nj'Lo¢t /iy, E}T < N'Lo®t/jo, E™Y < Ny'Loet/k,
Ef < N 'Lo¢t for >0, Ef, < Np'Lo?" for 6 =0.

The asymptotic behaviour is considered in the following
Proposition 32 Asymptotically, i.e., for L large enough, the quadrature orders satisfies
n =0 (oL |logo|)
while the total work for all singular, near-singular and reqular farfield integrals s bounded by

W < CL® (oL [logo|)® < C (o|loga])® NZ2.

4 Numerical Experiments

In this section we present the numerical results of an implementation of the fully discrete hp-
Galerkin BEM. The domain 2 was chosen as the half tube depicted in Figure 1. The initial
grid consists of 10 panels. The geometric grading parameter was chosen as ¢ = 0.5 (this will
be justified ahead). The polynomial degree vector was determined by the choice p = 1 and
Ly = 0 resulting in a “relatively” small dimension of the space V¥ := V55 . We have used the
procedure “geometric refinement” of Section 2.3.1 for the mesh refinement and the procedure
“polynomial refinement” of Section 2.3.2 for setting up 6p, the polynomial degree distribution.
The following table lists the number of elements, the maximal polynomial degree p,;4., and
the number of unknowns Ny (i.e. the dimension of V), the number of iterations used by the
solver and the overall CPU-time (i.e. the time for quadrature and linear system solution) used
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for this example.

Level # of panels pp. Np=dim V" # of iterations CPU][sec]

1 10 0 10 22 5.4e-2
2 40 0 40 26 1.135
3 128 1 160 29 21.48
4 264 2 576 30 430.2
) 448 3 1624 30 4264
6 600 4 3784 29 29778

We have used the precise panel-wise quadrature error bounds together with the consistency
requirements derived in the previous sections to determine the optimal quadrature orders. We
avoided, however, the use of variable order quadrature on subdivided panels in order to reduce
the number of case statements in the code. Instead, we used slightly pessimistic estimates as
outlined in Remark 19 and Remark 30.

To verify the sharpness of our estimates, we have considered the boundary value problem

Au=01in Q, u = ¢ on 0

with ¢ (z) = x;. Clearly, the exact solution is given by u (z) = x;. We have employed the
double layer ansatz

1 n(y),y—=z
w(@)= o [PV ) g, )
Tl =yl
leading to the following integral equation for the density f
1 n(y),y—x
2p) - o [P D gy =) wer (50
Tz =y

Note that although the solution u(x) is smooth in €2, the density f exhibits singularities due
to the nonsmoothness of the domain making an accurate solution of (86) nontrivial. We have
solved this integral equation with the fully discrete Galerkin BEM. We know that under As-

sumption (14) the Galerkin solution converges exponentially in interior points x 6(02. To avoid
cancellation errors due to symmetry effects we have chosen the points P, = (1.06, 1.9, 4.95)T
and P> = (1.06,1.75, O.5)T for the evaluation of the potential v and the approximation u; which
was obtained by inserting the fully discrete Galerkin solution f; of (86) corresponding to the
subspace V¥ into (85). Then, for i = 1,2, we put

ey, = |u (P;) —ug (P)].

The discrete system was solved by an iterative solver of generalized conjugate residual type.
The precise definition of the algorithms can be found in [14]. We emphasize that the time for
solving the linear system is completely negligible compared to the CPU-time for generating the
system of linear equations. As predicted by our theoretical results, the number of iterations for
the solution process does not increase for increasing problem sizes since the condition number is
bounded independently of L. About 30 iterations in each level were needed to get the residual
in the Euclidean norm (and, by Lemma 9, also in the [[o[| o -norm) smaller than 1.0e-13.

The following plots show the convergence history of our method. We expect a convergence
behaviour with respect to the refinement level L as

P~ oL
e; ~ Lo
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and, hence, a plot of loge? versus L should be approximately a straight line as shown in Figure
6.

Pointwise error at P1 and P2 versus refinement level
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Figure 6: Pointwise error versus refinement level.

By Theorem 7, the error as a function of the work should behave like
ety ~ v/ No? YN

and hence a plot of loge’, versus the fourth root of the degrees of freedom should be approxi-
mately a straight line. The corresponding graph is depicted in Figure 7.

The main result of our investigation, however, is the error versus the CPU-time. The
convergence with respect to the CPU-time should be exponential as well. We have shown that
the CPU-time is bounded by L3 resp. N3-%5. To verify the sharpness of this estimate, we plot
log et . versus the 13th root of the CPU-time in Figure 8.

In order to show the superiority over algebraic convergence behaviour, we have added a
plot of €’,,,, versus work in a log-log scale in Figure 9. The exponential convergence is clearly
visible.

We emphasize that a comparison with other codes as, e.g., the results reported in [21] for the
h-version Galerkin BEM, show that the Ap-method is a fast method also for moderate problem
sizes and moderate accuracies. We further point out that, due to the high convergence rate
of the method, the size of the stiffness matrix is moderate and its storage is not as severe a
problem as in the h-version of the BEM.

We close with a comment on the sharpness of the work estimate given in Proposition 31.
Figure 10 shows that the upper bound of C'N3?5 given in Proposition 31 is actually sharp
and already attained for a moderate number of degrees of freedom N, as could be expected
from Figure 8. This allows heuristically to give an optimal selection of the grading factor o.
We have from Theorem 7 (omitting terms algebraic in L) that error < C'o?" holds and from
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Pointwise error at P1 and P2 versus DOF(1/4)
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Figure 7: Pointwise error versus N/4,

Proposition 31 that W ~ L'3(g|loga|)5. Ignoring constants (which depend weakly on o), the
work to achieve a certain (small) tolerance tol can be determined in terms of tol, o, to be
W ~ |Intol|*3/|oIlna|”. This clearly indicates that in order to optimize error versus work, it is
advantageous to select o = 0.5 rather than o = 0.15, as suggested by approximation theoretic
considerations alone [9]. This was also clearly visible in our numerical experiments.

5 Concluding remarks

In summary, we have presented quadrature methods for all types of integrals arising in hp-
Galerkin BEM in 3-d. They were based on relative coordinates, an geometric splitting of the
integration domain, regularizing coordinate transforms, and tensor product Gaussian quadra-
ture. We showed how to compute exponentially convergent approximations of the system matrix
satisfying (42) with work growing algebraically with the degrees of freedom. The quadrature
methods are fully automatic, i.e., independent of the explicit form of the kernel function, the
parametrization and the shape function. We have presented the double layer potential in Sec-
tion 1 merely as an example of a kernel which satisfies our abstract requirements on the kernel
function. It follows that an integrator based on our strategy will integrate a much broader class
of integral equations by just replacing the subroutine which evaluates the kernel function at
certain surface points. This class includes, for example, the kernel functions of the Helmholtz
equation, the Lamé equation and the Stokes equation and in particular all weakly singular
kernels for second order elliptic problems in R®.

We analyzed here in detail the impact of the quadrature errors on the convergence rate
of the overall boundary element discretization only for second kind integral equations, i.e.
integral operators of order zero. The quadrature error estimates apply, however, with minor

39



Pointwise error at P1 and P2 versus CPU-TIMEA(1/13)
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Figure 8: Pointwise error versus (CPU — TIME)Y/*3.

modifications also to weakly and hypersingular integrals. In the latter case, the regularization of
the hypersingular integrals has to be done on the continuous level, i.e. prior to discretization (cf.
[10, Section 8.3], [12], [15], [19]). These regularizations render the integrand Cauchy-singular
and hence, the techniques presented above can be applied directly.

The implementation of the coordinate transformations can be checked for simple test kernels
as, e.g. polynomials, and should then work for all kernels which satisfy our assumptions. The
selection rules for the number of Gauss points based on our quadrature error estimates are
somewhat complicated at first sight. However, we found it essential that the lowest possible
number of quadrature points sufficient to ensure the consistency is used, since simplified (upper)
bounds for them result in substantially larger CPU-times at essentially no improvement in
accuracy.

The estimates for the asymptotic complexity of the quadrature orders are rather rough. The
effect of increasing distance from the singularity has been neglected and the different orders
for the different variables as well. In practical implementations, however, it is essential to
choose the quadrature orders directly from the error representations to obtain a method that
is competitive also for practical problem sizes.

The numerical experiments fully confirmed our error and complexity estimates and indicated
strongly that they are sharp. We obtained in particular that in order to achieve a given tolerance
tol with this method in minimal work, it is best to utilize geometric meshes with grading factor
o ~ 0.5 rather than ¢ = 0.15. This is due to the strong dependence of the quadrature work on o
and confirmed by our work estimates as well as by numerical experience. This is important since
geometric meshes with grading factor 0.5 are typically generated by adaptive mesh-refinement
algorithms.
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Pointwise error at P1 and P2 versus CPU-TIME
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Figure 9: Pointwise error versus work in a log — log plot.
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