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Abstract

In this paper, radial basis functions that are compactly supported and give
rise to positive definite interpolation matrices for scattered data are discussed.
They are related to the well-known thin plate spline radial functions which are
highly useful in applications for gridfree approximation methods. Also, en-
couraging approximation results for the compactly supported radial functions
are shown.



1. Introduction.

The theme of this work is the construction of a new class of radial basis functions. Their special fea-
tures are compact support and good approximation properties when they are used for interpolation
(or other approximations). Radial basis functions and their applications have been comprehen-
sively reviewed in several recent papers (Buhmann, 1993a, 1995, Schaback, 1995, to name just
three). Therefore we will not dwell much on explaining radial basis functions here. Be it sufficient
to mention that radial basis function schemes are multivariate approximations from linear spaces
generated by translates of the form ¢(- — z;) = ¢(|| - —z;||) : R® — R, where ¢ : Ry — R is the
radial basis function, ||-|| : R™ — R is the Euclidean norm (the modulus function in one dimension)
and z; € R™ are prescribed points (called centres or sometimes knots) in the underlying space. The
usual way to approximate by these functions is through interpolation at the centres, giving rise to
question of the invertibility of the interpolating matrix {¢(z; —z;)}; ; that we shall address, among
other issues, in this article. We also call ¢ by the name of radial basis function.

In this paper, we will study approximation spaces generated by a novel type of compactly
supported radial basis functions ¢, in contrast to most of the work reviewed, for instance, in (Buh-
mann, 1993a), where globally supported functions are taken. The advantage of compact support
for radial function methods, as studied in related papers with different approaches (Schaback and
Wendland, 1994) and (Wu, 1994), is, on one hand, that the linear systems resulting from interpola-
tion from these spaces are easy to solve, and, on the other hand, that the resulting interpolants can
be evaluated very fast. Frequent evaluation is, indeed, often desired in applications. An example
for this is the visual rendering of twodimensional functions. The various well-known globally sup-
ported radial functions, such as thin plate splines and multiquadrics, have many good (especially
approximation-) properties, but they need much extra attention for solving the linear systems of
interpolation efficiently, because the interpolation matrices are full and can be badly conditioned.

Further, radial basis function with compact support are especially interesting in the context of
solving partial differential equations, for examples with boundary element methods, because they
can be integrated easily with numerical quadrature since the integrals involved are finite. On the
other hand, several of the globally supported radial functions are fundamental solutions of elliptic
operators. As such they can even be integrated analytically. For example, the thin plate spline

function qg(r) = r?logr has in two dimensions the property

167? logr = A(r4 logr — %7‘4).



Here, r = ||z|| and A is the Laplace operator. Our new functions unite these advantages because
they are in many cases piecewise fundamental solution functions with finite support. Therefore
they are useful for creating the trial spaces for such numerical methods for differential equations.
A further reason for this interest from the differential equation point of view is the possibility to
perform gridfree approximations for finite elements with radial basis functions. The assumption of
gridded centres just for the convergence analysis in this paper is no contradiction to this statement,
since its precise purpose is the identification of the general approximational efficacy of the radial
function spaces.

To comment further on the work of the two papers mentioned before, (Wu, 1994) shows
how to find compactly supported radial basis functions ¢ which are positive definite on ambient
spaces of fixed dimension (degree and admitted dimension are interrelated). Viewed as functions
&, they are piecewise polynomial functions which have nonnegative, nontrivial Fourier transform,
when transformed as functions ¢ in R™ This means by a famous theorem of Bochner that the
interpolation matrices for interpolation at the centres are positive definite if the centres are distinct
and lie in R™. Therefore they are called positive definite functions. For his purpose, Wu makes
essential use of nonnegativity of the Fourier transform of ¢, if é is from a set of certain multiply
monotone functions, see also (Micchelli, 1986), (Buhmann, 1989). Specifically, he creates positive
definite radial functions ¢ in one dimension first, and then uses a certain differentiation operator
applied to ¢ to lift these univariate functions that give rise to positive definite interpolation matrices
to higher dimensions (and lower smoothness). This shows how degree, smoothness and dimension
are related. It is a fundamental new contribution in that article to identify differentiation as the
link between positive definite radial functions in spaces whose dimensions differ. In (Schaback
and Wendland, 1994) radially symmetric functions with positive Fourier transform are obtained by
convolving characteristic functions of balls with themselves or by using tensor product splines and
radialising the result, mainly in two and three dimensions (the former are called “Fuclid’s hats”).
Finally, Wendland (1995) finds functions that are closely related to Wu’s radial basis functions but
proves that these have minimal polynomial degree, given the support size and the smoothness.

In this paper, we deal first, in the next section, with the creation of a new class of radial
functions that have compact support and positive Fourier transform, thus giving rise to interpolation
matrices which are positive definite for distinct centres. In the third section, convergence orders
for these radial functions which resemble the well-known thin plate splines (Duchon, 1977) are
discussed. The approximation results obtained rely on either implementing a scaling of the radial

function that is different from the spacing of the centres, or letting the “degree” of the radial function
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tend to infinity. In the latter case, which is studied in the final section, a spectral convergence result

is obtained.

2. The radial basis functions.

We require compactly supported radial basis functions with positive Fourier transform, and pursue
an altogether different tack than (Wu, 1994) to obtain functions related to the well-known thin plate
splines. We want to apply the results in (Misiewicz and Richards, 1994) about positive integrals of

Bessel functions. Therefore the radial basis functions we seek are generally represented by integrals

oo

o) = [ (1= el/5) o) ds, a e, (2.1
where g € C.(Ry), the space of compactly supported continuous functions on Ry. Thus the result
is clearly of compact support. Similar radial basis functions that are related to multiply mono-
tone functions and their Williamson representation (Williamson, 1956) were already considered in
(Micchelli, 1986), (Buhmann, 1989), but they were not of compact support there, i.e. the weight g
was not compactly supported. We require (/5 > 0 everywhere. The compact support, and therefore
the integrability of ¢ and the existence of a continuous (in fact: analytic) Fourier transform are
guaranteed by the compact support of g in (2.1). Our ansatz yields the following Fourier transform
which is amenable to an application of the work in (Misiewicz and Richards, 1994). In the sequel,

(' denotes a generic positive constant whose exact value is immaterial.

Sy = Cllal = [ [ (= 21502 s (sl dsg () d
0 0
= Cllel 2 [ g alal VB g (5)
- C —n—2 - J . n/2—x+1 2 -2 d
Jall = [ Dnpapa 2 g (o] ) a

= el [ a2 (- )

Here we have taken g(3) = (1 — 3#)5. The letter .J denotes the Bessel functions (Abramowitz
and Stegun, 1972, p. 358) of the order according to the index. This Fourier transform is positive
by (Misiewicz and Richards, 1994, Corollary 2.4, using items (i), (ii) and (vi)), and the strict
inequalities (1.1) and (1.5) in (Gasper, 1975) if 0 < u < 3 < ¢ and

en=1 A2 % or

en>2and A= 1(n—1).
An example is u = % and p = 1, and we shall further on always take y = %, whereas higher powers
o are admitted. As a simplifying assumption we suppose A, p € N, although that is not necessary

and entails no limitation to the generality of the results. We have thus proved



Theorem 1. For g(3) = (1 - "), 0 < pu < 5 < o, the Fourier transform of (2.1) is everywhere

well-defined and positive whenever A\ satisfies one of the two itemized conditions above. [

3. Properties of the radial basis functions.

We study some of the approximation properties of our newly constructed radial functions in this
section. Notably, we discuss in several dimensions and for equally spaces centres which approxima-
tion properties are obtainable, if only the scaling is chosen judiciously. For this, the scaling of the
radial function has to tend to zero at a different rate than the spacing of the centres. In practice
this can be useful when scattered centres are distributed with unequal density, so that the scaling
of the basis function should be locally adapted. Compact support radial basis functions seem to be
very amenable to this case. This work incidentally appears at the time of writing and when it was
presented at conferences in Cancun, Montecatini and Oberwolfach to be the first specific discussion
of approximation orders of compactly supported radial functions. The author apologizes if this is
an oversight.

The first interesting fact we observe is that, if A and p are integral, u = % and o > A,

¢()

[ (= lelis) 1= Vg as
[ VB

= pll=ID) + gll=[*)log || ]I,

for ||z|| < 1, where p and ¢ are polynomials, the latter of degree A, and p(1) = ¢(0) = 0.

Since ¢ is of compact support and not a piecewise polynomial, its multiinteger translates,
failing to be a partition of unity, cannot generate a space that contains nontrivial polynomials.
Hence, by a theorem of (Buhmann, 1993a, p. 44), approximation orders of cardinal interpolation
with these functions and the usual, stationary scaling cannot be expected. (Other, much more
general theorems delivering this result are available, but we require no more than a special case
of that assertion in the present work.) The stationary scaling is the one which keeps the relative
support of the radial function with respect to the shrinking gridsize constant.

Hence we consider the approximation properties of scales of such radial functions that are made
so as to enlarge the support of the scaled function relative to the spacing of the translates (i.e. the
gridsize A > 0). This growth should be slow, by h=7"1  say, where 0 < v < 1. We shall see that

faster growth gives better approximation orders, but as we normally intend to keep the support
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small, it should be as slow as a reasonable approximation order allows. Therefore, whenever A and

o are integral, we consider here properties of spaces generated by

a(|Ih= (2 = im)||*)togl|n (e = )l +p (2@ = jm)]),  GEz" h>0. (31

An example is A = p = 1, u = £, which gives ¢(&) = 2%, p(¥) = + + 7> — 33°, i.e
¢@p{%+WW—ﬁMMﬂMM%WHﬁ0@MKL (3.2)
0 otherwise.

Another exampleis A =1, 0 =4, p = %, which gives

R R L A R e A R
0 otherwise.
(3.3)
These ¢ € C'(R). The idea of studying scales of radial functions not proportional to the gridsize
occurs already in (Buhmann, 1993b), where discrete least-squares approximations from spaces of
radial basis functions scaled by another quantity than the gridspacing were analysed in much detail.
These radial functions have the additional advantage that they can be integrated easily against
piecewise polynomials. This is important when, for example, inner products of the radial functions
as trial functions against splines as test functions are required for the numerical solution of differ-
ential equations (by finite element or similar methods). As a simple example just for illustration,

we consider their convolution with constant B-splines, i.e. characteristic functions of the shifted

unit interval. This preserves their general form, but increases the polynomial degree. For example,

using (3.2),
min[z+1,1] polynomial + % v+ 1)P3log(z +1) if =1 <z <0,
/ % + 12 — %tB + 2t*log t dt = { polynomial — 22t loga fo<z <1,
max|[z,0] 0 otherwise,
where z € R.

We continue with the convergence analysis for the radial functions of Theorem 1. Those will
be the only ones we deal with. As alluded to above, we must give attention to the scaling of the
radial function which is not going to be the same as the scaling of the grid of centres we use. The
latter we denote by h > 0, the former from now on by ¢ > 0. This generalises (3.1), where § = A"
was used. Hence we consider ¢s = (/5(5), the radial function ¢ scaled in the described way. As in

(Schaback, 1995), we call the linear space of tempered distributions f that fulfill

1F113, = /R |££2|; dz < (3.4)



the native space Fy, of the (scaled) radial function. Spaces of this type are first considered in the
important work (Duchon, 1977) and several later continuations of the seminal work by Golomb and
Weinberger (1959). We also consider F;, = Fy,. Note that this semi-norm is well-defined since ¢5 is
absolutely integrable due to its limited support, so the Fourier transform exists, and we may divide
by (;35 because it is positive by construction. The theorem we are going to prove is as follows. In its
statement we use the familiar notation D="/2=1[2(R"™) for F,, where ¢ = ||-[|"~2. We note that
due to the Sobolev embedding theorem D~"/2=1[2(R") C C(R") for all n € N. Moreover, §(-) is

the well-known delta-distribution or, in case of a discrete argument, the Kronecker delta-function.

Theorem 2. Let f € L*(R") N D~"/2"1[2(R"™). Suppose also o > In+3+2u — \. Then there

s a cardinal interpolant for h > 0
s(w)= Y f(Gh)uf(z),  w€R, (3.5)
JEL"
from the linear space generated by hZ"-translates of ¢s, where the Lagrange functions are
wi(z)= > exnsds(e —jh—kh), @ eR" (3.6)
keZr

and the Lagrange conditions
uip(kh) = 0(5 — k), J,keZ", (3.7)
hold. This interpolant satisfies the uniform error estimate
1F = sllso < CRETH(E" (I f Nl + 811 fllw),  h>0, B8 €(0,1). (3.8)
In (3.8), C' does not depend on either h, 6, || f|l2 or || f|l-

Proof. The existence, uniqueness and other properties of cardinal functions (3.6) for basis functions
of positive Fourier transform have been extensively discussed in the literature. What interests us
here is the existence of the cardinal functions. They can be expressed in terms of their Fourier

transform. According to (Buhmann and Dyn, 1993, eqn. (2.1), p. 322), for instance,

a(z) = o) r € R, (3.9)

Z]EZ" ¢($ - %)7

when 6 = 1. This Fourier transform is continuous. It is absolutely integrable too, since it decays

like 4%(z) = O(||z||=""%) for large argument as ¢(z) does. However, we postpone the proof of
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the latter fact to the proof of the next proposition, because we shall require even more detailed
properties of qAﬁ Nonetheless, we conclude already at this point that the Fourier transform (3.9)
defines ug which is at a minimum continuous. The other u%, are just translates u%, = ug(- — jh)
thereof. The uj decays faster than any negative power. This can be seen from the fact that its
Fourier transform (3.9) is infinitely often continuously differentiable, since the compact support of
¢ implies analyticity of qAﬁ Therefore all tempered distributions f that are also continuous functions
are admitted into the interpolant (3.5), and, of course, the hypotheses about f in the statement of
the theorem restrict it to that class. The cardinal functions for § # 1 are found by simply scaling
¢ in (3.9) by 6.

For all radial functions with compact support and a Fourier transform that is positive, the
following error estimate holds. This is going to be the basis of the rest of our proof. It applies
to any f for which an interpolant s on hAZ"™ by the radial function in question is well-defined.
(We admit in the estimate || f||4, = oo, so it remains true if f & F,,, but we shall see later that
I fll¢s < oo under the hypotheses of the theorem.) The inequality is

h
(@) = s(@)] < o) Fo (5 ) (3.10)
as shown in (Schaback, 1995, eqn. (4.8)). Here, F is the so-called power functional
. - h
W(h) = sup ‘¢ J=2 Y wh@)ele - k) + Y D w (e (0)etkh - b, h=3 > 0.
|| lleo < j€r kezr jerr

In this power functional, g;ﬁ can be a priori any function that satisfies the Lagrange conditions
and for which the sums are well-defined. A convergence result can be obtained by estimating the
two factors that appear on the right-hand side of (3.10). Of course the estimate must be such that
is tends to zero when both ¢ and h vary, albeit at different rates. We begin with the second one.

It is well-known that the aforementioned power functional in (3.10) is minimized if u, are the
Lagrange or cardinal functions v}, from the radial function space spanned by the hZ"-translates of
¢ (Schaback, 1995, for example; other references are available). We assume that choice from now
on.

Using these facts we can prove the following first result on our way to bounding (3.10) uniformly

from above by a decaying term.

Proposition 3. The quantity in (3.10)

h
7(5)
can be uniformly bounded by a fixed multiple of h/6 so long as h/é € (0,1). The multiplier is
independent of 6 and h, but depends on ¢ and n.



Proof. We need an auxiliary result to prepare for the proof. A straightforward generalisation of
Proposition 6 in (Buhmann and Dyn, 1993, p. 328) to general radial functions with positive Fourier

transform (not multiquadric radial functions) and, for our purpose, compact support, gives

Lemma 4. For the radial functions constructed in Theorem 1, it is true that the cardinal inter-

polant to the radial function itself recovers the latter:

> (kb — jhyui,(z) = ¢(x — jh), = €R", €L, h>0.

kezZm
What we are using here, and what is proved in the proposition in the paper referred to, is the
projection property of radial function interpolants on the scaled integer grid. As the proof of this
fact for our compactly supported radial functions with positive Fourier transform is even easier
than the proof for the multiquadric function, we omit it.

Therefore the power functional can be reexpressed by

Fy(h)= sup |$(0) = > uip(2)d(x - jh)|. (3.11)
Izl oo <A JEIN
In the notation for this equation we have replaced % by h for reasons of notational convenience.
The back substitution at the end of the proof of the proposition will be trivial.
An application of the Poisson summation formula (Stein and Weiss, 1971, p. 252) transforms

the expression inside the modulus signs in (3.11) into a multiple of

/ Z (1 — exp(2mika/h))¢ ( QFk)uo (E) dt.

" kezn

Using the form of u$’s Fourier transform (3.9), we get that this is the same as

/R (1~ exp(2rike /1)t - 22’“ )é() di (3.12)

keZn \ {0} 2 iezn ¢(t - %)

We require an auxiliary result in order to bound this expression. The following lemma which is a

consequence of Lemma 7 in (Buhmann, 1989) shows that we get ¢(¢) ~ (1 + ||¢]) "2
Lemma 5. Suppose we are given ¢ € N and £ € CYRso), and suppose that for J € N we have the
asymptotic expansion

J-1
ds
£9(1) dtQZdtMO( 8), 1—0,0<e<q,



with real numbers d; and reals eg < €1 < --- < ey, where eg > —v — 1 and where v = X\ + %n,

A>0,g>2e;5+v+2. Let
Sy = [Caesmas, >0,
0
where {h(t) = J,(t)\/t |t > 0} and where
£(3) = 2" 23, B> 0,

be well-defined for every positive r. Then it satisfies for any 0 < ¢ < 2min(eg+v+1,e7—es_1, %1/)

the asymptotic expansion

— 1 d —%e. —2y—
Z U gy e g, (3.13)

For our purpose, we invoke Lemma 5 with ¢ = p— 1 2 21+ v+ 2, J =1, a0 = 1, ¢¢ = —A,
e1 = 1 — A and £(B) a constant multiple of the compactly supported function g(3)3~*. It follows
that () = O(||t||="~2) for large ||#||. Moreover, we see that the Fourier transform can be bounded
below for sufficiently large argument by a small constant multiple of ||-||~"~2: Indeed, a consequence

of (3.13), that is,

for a small positive ¢ implies for large enough r
P(r) > +Cr=" 7%, r — oo.

This means that ¢(t) ~ (14||t[|)~"2, because we already know that ¢ > 0 always. The asymptotic
estimate will help us with the rest of the proof.

To continue, we remark that (3.12) can be bounded above by a constant multiple of

21k dt
1+ [t = ==l N e —
/R K€z \{0} ) O I
dt
h2/ Z h—|— |t — 27k|| (h+ 1t]])~ "2 —
" kezn \{0} ) Yz (h+ Ht - QMH) ’
The right-hand side expression is for h < 1 at most
—-n—2 dt
Y (e erl) T e gy
B pemn \{0} ) Yseze (14|t = 2m]]) ’
<O Y (b |l2ekl) T < on?t Y |l2nk]| T = 0(k?),
keZ» \{0} kezZr \{0}



as required.
According to (3.10) we are now only left with bounding || f||4, uniformly in order to prove the

convergence result. There is a small constant €' such that

; STl Tm T i Caf| > 67!
> b
o(éa) > © { 1 if Cllaf| < 671

Therefore we can use the dominated convergence theorem to estimate

e, = [ P

<C [ NH@P + el )P do = ISR + CE A

This, in connection with the previous proposition and our assumptions about f in the statement

of the theorem, proves the assertion. [

An application of the theorem we just proved shows that, if for instance h = O(§3%/2%3), then
we get convergence order O(h%) for the approximant in any dimension. Faster decay of & relative to
0 results in higher rates of approximation, and we might also increase ¢ instead of letting it tend to
zero. In other words, the support size is in competition with the accuracy, and the approximation
order stated in Theorem 2 cannot, incidentally, match the orders obtainable with the globally
supported radial functions, e.g., reviewed in (Buhmann, 1993a).

However, it should be noted that the estimate in the last display also means that the native
space of our radial functions is not a “small” space, in the sense that the weight function in the
definition of its semi-norm does not increase fast. (In particular, the weight in the semi-norm ||-||4,

has no singularities since the Fourier transform, by which we divide, has no zeros, in contrast to

the transforms of the radial functions in (Wu, 1994).)

4. Spectral convergence orders.

Another point of interest is the result of letting A — oo in the construction of ¢ given in the
penultimate section and not scaling. We contend that the radial function becomes an approzimate
identity, meaning its Fourier transform tends to a nonzero constant, whence the radial function,
as a distribution in the real domain, to a multiple of the ¢-distribution. As such, approximations
with its translates by the centres on hZ", say, can provide at a minimum local uniform convergence
of best uniform approximations to continuous functions, when the “degree” A goes to infinity in

tandem with A — 0. The reason for this is that the é-distribution is the identity operator with
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respect to convolution. Approximations from shifts of the radial function can then be viewed as
a discretization of the approximand f convolved with the radial function. In fact, we can even
show a spectral convergence result for that continuous convolution, i.e., exponential convergence,
the radial function still staying unscaled. For the reader’s convenience, we outline the argument
before embarking on the proof of the next theorem.

The key ingredient is that, when A — oo, Bessel functions satisfy the convergence estimate

\/7?(2/\ + n)A+n/2+1/2
exp(A + n/2)

n+1
a1 41| = 0( ) s 0 (4.1)
n IA+n ) )

uniformly (Watson, 1952, p. 225). Still setting g(5) = (1 — 8*)5, one concludes that the limiting
expression of the suitably normalized Fourier transform qBA, where we here and subsequently denote

its dependence on A by the index, is a multiple of
pn? / R O S O L / L = )8 de, r >0, (4.2)
0 0

due to (4.1). This integral is constant and independent of r. Thus, remembering the work of
Section 2, ¢y must tend to a multiple of the 4-distribution. This statement is made precise in the
following theorem, where the separation radius of {z;} C R™is h = 2sup,cgn inf; ||z — 2| Which
we assume to be positive and finite. Observe that this means there are infinitely many centres.

The separation radius, e.g., for hZ"™ is h.

Theorem 6. Every continuous function f : R™ — R can be arbitrarily closely, locally uniformly
approzimated by linear combinations of (- — x;), if h and A=" are small enough, where ¢ is the

radial function of Theorem 1 and h is the separation radius of the centres.

We immediately state another result that will follow from the proof of Theorem 6, where * denotes

convolution.

Corollary 7. Suppose f € L'(R") N CY(R™) with N3 v > n and that all of f’s derivatives are

integrable as well up to total order v. Then
lga* f = fllo = OATT), A= o0,
where vy is arbitrary and g is defined in (1.7).
Proof of Theorem 6. Let a v € N be given. Our first assertion is that there exists a

p=cx(l+di+dy+---+dy_q)dn (4.3)

11



with ¢y, d; € R so that for any f € L'(R™) with integrable Fourier transform
llgx * = fHoo = 0N ") (=0(1)), A — o0. (4.4)
To prove this, we take Fourier transforms and estimate by Hdélder’s inequality

() — 170 dt

s 1
v+ F =l < e [

1 = R
< W/ ) dt sup 1ga(1) — 1.

teR?

Now, according to (Watson, 1952, p. 225), (4.1) can be stated more precisely as

Intny2 (1) /2170 =

"t exp(A +n/2) (1 . aq as

VA £ e U T

) s
where a; are real coefficients. This, (4.2) and the penultimate display imply that (4.4) can be
obtained by judicious, on A depending choice of each d;, where ¢y is a fixed constant multiple of

exp(—A — n/2)/T(2) + n) M7/2+1/2 Indeed

) =1 =|Cex(l+di+ -+ dy_y)r "2 / Tapnya (2L — 20y =20)8 dt — 1]
0

<Op 2 /OO #(1 — T8 dt
o (A+3)

o 00 tn—l—l 20 p
= —(1 -1 t
[ -t
<O, A — 00,

can be obtained. When v = 3, for instance, our choices for d; and d, are _Ai—lg and —%,
respectively. This establishes (4.4).

Because f can be locally uniformly approximated by f with the required properties up to any
desired accuracy, the theorem follows now from (4.4) through application of any suitable quadrature

rule that uses the z; as points to evaluate the integrand to the (finite) integral ¢ * f. [

Proof of Corollary 7. The same arguments as in the previous proof apply, except that we may di-
rectly take f instead of f, because our assumptions imply, by a standard argument using integration

by parts, | f(2)] = O([l2l|="~") for [Ja]] — oo, i.e., f € L*(R"). .

Remark. The convergence of the approximant from linear combinations of z;-shifts of ¢, can
also be formulated in a distributional sense, using the notion of weak convergence. This is straight-

forward since ¢, tends to the ¢-distribution, and it is therefore not detailed here.
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