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Abstract

Most commonly used schemes for unsteady multidimensional systems of
hyperbolic conservation laws use dimensional splitting. In each coordinate
direction a scheme for a one dimensional system is used. Such an approach
does not take in account the infinitely many propagation directions which are
present in a system in several space dimensions. In 1992 M. Fey introduced
what he called the Method of Transport, MoT, for the Euler equations of
gas dynamics. It is a finite volume method which uses the transport along
characteristics. It does not compute fluxes across cellsides but from one cell to
another. These type of schemes can be developed by first rewriting the Euler
equation as a sum with integrals of infinitely many transport equations. One
of these terms is related to the transport by the velocity while the integrals
reflect the acoustic waves. In the numerical scheme the integrals are replaced
by finite sums. The method can be modified such as to become a second
order scheme. The technique can be applied to the magneto-hydrodynamic
equations and the shallow water equation. Numerical examples for the shallow
water equation are given.
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1 Introduction

The traditional approach for the development of schemes to solve numerically sys-
tems of m hyperbolic conservation laws in several space dimensions was the following.
First one develops a scheme for the one dimensional problem. For a good introduc-
tion to a large class of one dimensional schemes see [15]. All these schemes use in
one way or another that, all the propagation speeds are finite. This fact is due to the
hyperbolicity of the differential equations, i.e. the Jacobian of the flux function can
be diagonalized. There are m real eigenvalues and a full set of eigenvectors. In the
large class of Godunov-type schemes propagation speeds are computed implicitly by
solving a Riemann problem exactly or approximately across a cell boundary. This
approach is then extended to several space dimensions using the one-dimensional
Godunov-type methods at each cell intervall.

One has to compute fluxes across cell sides and this is done as in the one-dimensional
approach. The numerical approximation on each side of the cell is considered to be
constant and the one-dimensional scheme is applied. Hence if one has a triangular
mesh, information from one cell travels in the three space directions given by the
normal vectors of the sides of the triangles, see Figure 1.

T Ty Ts
T To Ty
17 15 Ts

Figure 1: Discretization of space with triangles and rectangles

The triangle Ty has only three neighboring triangles Ty, Ty, T5 into which information
travels in the next time step while the other nine neighbors don’t get any information
in one time step. In fact it needs three time steps to move information from 7Tj to its
neighbors Tho, T11, T12. One has a similar effect in a mesh with quadrilaterals. If the
control volumes are of hexagonal shape each neighbor has one cell side in common
with Ty. Thus, there is no neighbor which does not get information in one time step.
Our approach here is different. Since most multidimensional systems propagate
their information in infinitely many directions we try to model this situation. Fey
considered in particular the Euler equations of gas dynamics. The sound waves
propagating in all directions was the guide for his approach. He decomposed the
state vector U in what he called three waves in each computational cell. Then he
propagated them as sound waves in all directions u + nc, where u is the velocity



of the fluid, ¢ the speed of sound and m runs over all unit vectors. This lead to
rather complicated and thus computationally complex integrals, for details see [4],
[9]. For these reasons, in [8] a simplification was introduced. It turns out that this
simplification can be interpreted as a “linearization” or better decomposition of the
Euler equations into a finite number of transport equations. This new approach
has the advantage that it shows the freedom to select certain directions and that
this selection can be done independently of the mesh. Moreover any scheme for the
linear advection equation can be applied to these transport equations. In addition
one can add correction terms such that the overall scheme becomes second order
accurate.

In Section 2 we derive the decomposition of the Euler equations into infinitely many
transport equations and give ways how to reduce these infinitely many equations to a
finite number of equations in Section 3. In Section 4 we show in one space dimension
how correction terms can be incorporated such as to create a second order scheme.
In Section 5 we describe the overall scheme and then give numerical examples in the
last section.

2 Linearization of the Euler equations

We consider the Euler equations in two space dimensions which have the form

2.1 —+ — KU — GU)Y=0
(2.1 s PO+ £ G =0,
where
p é)u pU
(2.2) U=|" , F = pusTp , G = p2vu
pv puv pv°+p
E u(F + p) v(E +p)

Here, p is the density, u, v the velocities in = and y directions, F is the total energy
and p is the pressure. The system is closed with the equation of state

(2.3) pz(v—l)(E—pu“rvz)-

By introducing the matrix
(2.4) F(U)=(F, G)
we can write the Euler equation in the more compact form

(2.5a) U, + div(F) =0,
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where the divergence acts on each row of F. Using the velocity vector u? = (u,v)
one obtains the formula
(2.5b) FU)=Uu" +cL(U),
where
OT

p
(2.5¢) L(U)=- I

C ’lLT

Here, ¢ is the speed of sound given by ¢* = py/p, 0 is the zero vector and I is the
identity matrix. Observe that (2.5) represents a formulation of the Euler equations
which is independent of the number N of space dimensions. U and L have to be
modified in the obvious way, e.g.. u! = (u,v) is replaced by u? = (u,v,w) in three
space dimensions. Then F becomes a 5 x 3 matrix. In what follows we shall use the
dimension independent notation (2.5) and only if we want to exemplify formulas we

shall do this using the case of two space dimensions.

In [4] Fey used physical arguments to motivate his decomposition of U in three parts.
Each portion was then moved according its own propagation velocities leading to
what he termed U, Ct and C~-waves. While the U-wave is related to the advection
by the fluid velocity w the C*- and C~-waves are related to the acoustic waves. It is
the aim of this section to decompose the Euler equation (2.5) directly in a similar
fashion. One can write

(26) U - R1 —|— R2 5

where R; and R, are functions of U given by

N p N
(2.7) Ry,(U):= —— pu , RiU):=— | pu
i pulu/2 T\ pH

Here, H is the total enthalpy given by H = (F + p)/p. The functions Ry and R
are natural extensions of the right eigenvectors of the Jacobian of the flux function
in one space dimension, see [5], [8]. In this case the eigenvector Ry is transported
by the speed of the fluid and hence in several space dimensions it is advected by the
fluid velocity w. In the original scheme by Fey [4] the transport associated with R,
from a computational cell 2y to any point @ in space was given by the U-wave

Ung(@,t+ A1) = [ Ru(Uly, 1) o(e — (y + Atuly,1)) dy
where 6 is the usual delta-function. Here we observe that the transport by « can be
written by the transport equation

OR,

pm +div(Ryu’) = 0.

(2.8) G 1=




In one space dimension R, is associated with the acoustic waves. In N space di-
mension the acoustic signal is propagated by w4+ ¢n where m is a unit vector in RV,
This leads to the transport equation

R
ot

(2.9) d1(n) = — + div(Ry(u” +en”)) = 0.
Since the acoustic waves move in all directions we have to split Ry in (2.6) in all
directions and integrate these portions over the unit sphere. With the identities

| |
2.10 ——/d —1 (1——/ ds =0,
(2.10) 57 Js s an 5] | mds

where S is the unit sphere in IR and |S]| its surface, we can rewrite (2.6) as
1

2.11 U=FRy+ o [[Rid

(2.11) 2 + 5] Js 1ds

and combine equations (2.8) and (2.9) in the same way, i.e.
1
S

Here we have used the identities in (2.10) and (2.11). Comparing (2.12) with the
FEuler equation (2.5) we observe that they differ by the term ¢L(U) in the flux
function. This missing term is associated with the C™-wave of Fey. We make the
Ansatz aLn for the vector to be transported where « is a scalar to be determined.
The corresponding transport equation is

(2.13) (aLn); + div(aLn(u” +en’)) =0 .
Clearly
1

2.14 o [ Inds=0
(2.14) oy JsImds
and

1 1
2.1 o [nlds =T
(2.15) 5] ands =

Hence, we rewrite (2.11) as
(2.16) UR+1/Rd+O‘/Ld
: = — 5+ — nds
SIS TS s
and combine the equations (2.8), (2.9) and (2.13) in the same way, i.e.

1 o ) T o
(2.17) ¢2+E/5¢lds+ﬁ/sLndS_Ut—l_le(Uu —I-WCL)—O.
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Comparing this equation with the Euler equation (2.5) we find that they are identical
for « = N. Observe that this factor NV for the C™-wave had already been derived
by Fey [4] to make his scheme consistent with the Euler flux.

In conclusion we collect the result using the decomposition

1 N
2.18 U=R —/Rd —/Ld
( ) 2+|S| : 1 S+|S| : nds

and the linear advection equations

OR
(2.19a) ¢y = af +div(Ryu’) =0
8R1 . T T : T
(2.190) ¢,(n) = 5 +div(Ri(u" +en”)) =0 forall n withn' n=1
NL
(2.19¢) y(n) = w +div(NLn(u” + en)) =0 for all n with n” n =1

we obtain the Euler equations back by composing the equation (2.19) in the same
way as U was decomposed, i.e.

| 1 .
(2.20) bt g /qul(n) s+ 17 /S¢3(n) ds = U, +div(F) = 0.

Since the equations (2.19) are all linear transport equations we say that the equations
(2.18), (2.19) represent a certain linearization of the Euler equations. In the next
section we shall make use of this representation to create a numerical scheme. Finally
observe that we could have combined (2.19 b) and (2.19 ¢) in one acoustic wave by

defining
(2.21) R,(n):=Ry+ NLn

which is transported by the advection equation

_ R, (n)

(2.22)  ¢@,(n): En + div(R,(u” +en™)) =0 foralln with n"n =1,
Hence
1
(2.23) U =Rt g /SR“(") ds
and
1 .
(2.24) b2+ 15 /qua(n) ds = U, + div(F) = 0.

Observe that in one space dimension the integrals have to be replaced by sums with
two terms since the unit sphere has only the two elements 1 and —1. We leave the
details in this situation to the reader.



3 Decomposition in finitely many advection equa-
tions

If we would want to solve the Fuler equations the disadvantage of the formulation
(2.18), (2.19) or of (2.22), (2.23) and (2.24) is that we have to represent U by an
integral and we have to solve infinitely many advection equations. We shall now try
to replace the integrals by a finite sum of k& terms and replace (2.22) by k advection
equations. Hence, let us choose k unit vectors n; € IR”. We replace (2.22) and
(2.23) by

1 k
(3.1) U=R,+ z ZRa(ni) and

=1

(3.2) o, (n;) = 6R57(tm) +div(R (i) (u’ +enl)) =0, i=1,2,... k.

We want the equation

k
(3.3 Bot 1 300 (m) = Uyt di(F) =0

to hold exactly. This sets certain requirements on the choice of the n;. Using (2.6)

we find that (3.1) only holds if

1 & N &
(34) R1 = E ZRa(nz) :R1—|——LZTL2 .

=1 k =1

Hence we need that
k

=1
In order that (3.3) holds we need that
1

- 3" Ry (i) u! + en])

=1
N k
= UuT 4+ ¢L m Znin»T.

i
=1

Uu’+cL = R,u’ +

Therefore we obtain the additional equation

N k
(3.6) - Y nn!l =1
=1

for the n,;. Collecting these results we can represent the Euler equations (3.3) by a
combination of the k£ + 1 advection equations (2.8) and (3.2) if (3.5) and (3.6) hold.

Let us look a different choices for the n;’s.
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a)

One dimensional case: N = 1. Since the unit sphere has two elements we
can choose k =2 and ny = (1) and ny = (—1). One obtains three advection
equations which transport the three eigenvectors of the Jacobian of the flux
function, R, R,(n), R,(ny) with the characteristic speeds, u, u + ¢ and
u — c. Applying Fey’s scheme to this choice of n;’s leads to the scheme of
Steger and Warming.

Two dimensional case: N = 2. A very natural choice for the n;’s would
be to choose n; in direction of the coordinate axis, i.e. k =4 and

370)  m=(y )= (] )ma=( " )m=( )

Note, that this choice is not related to the dimensional splitting approach.
The final propagation directions (w4 mn;c) are in general not alligned with the
coordinate axes. The advantage of the linearization presented here is that we
can also choose another set of n;’s, e.g. £k =4 and

ey (s (D)o (o )

If we apply Fey’s approach using the m;’s given in (3.7b) we are lead to the
so called simplified method of transport by Fey. Observe that due to equation
(3.5) we can write the acoustic transport equations as

(3.8) aRgigﬁi) +div(R, () (uT +enl) =0  i=1,2,3,4
where

(3.9) R,(7) =R, + Ln

and

(3.10) ,=vVNn; i=1234.

Three dimensional case: N = 3. Again we could choose the n;’s in direc-
tion of the coordinate axis which would lead to & = 6. For a Cartesian grid it
would however be better to choose n; = \/Lﬁ - 1; with

1 —1 1 —1 1
=1 | =] 1| A= =1 | =] =1 |, 5= 1],
1 1 1 1 —1
—1 1 —1
o= 1|, =] -1 |.7s=] -1
—1 —1 —1

Hence k = 8. One obtains eight transport equations (3.8) with (3.9).
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Before we end this section let us generalize the above approach slightly. The choice
of R,(n) in (2.21) was motivated by the exact Euler equations. For the numerical
modelling of the acoustic waves we make the Ansatz

(3.11) R,.(a,v) =R +alv,, aclR, veRY

and combine these waves such that

k
(312) R1 = Zwi Ran(ozi, Vi) .
=1

There seem to be some redundant parameters in (3.12) since v; needs not to be a
unit vector any more. However we want to be able to have an advection equation
of the form

aRan(Og, Vi)

(3.13) @, (vi) = + div(Ryn (e, vi)(u’ +evl) =0, i=1,2,...,k,

i.e. we want to be able to advect by u” + cv?. Let us derive the conditions on w;,
«; and v; such that

k
(3.14) U=R;+> wi Rylaiv)
and . =
(315) (,bz + sz ¢an(aivyi) — Ut + le(F) =0.
=1

Clearly, (3.14) directly implies that

k
(3.16) dwi=1
=1

and .

(3.17) Zwi o v =0.

(3.15) holds if =

(3.18) Zk:wi aivivi =1

and B

(3.19) iwi vi=0.
i=1

Since the Ansatz (3.11), (3.13), (3.14) is more general than (2.21), (3.1), (3.2) all
representations of the Euler equations discussed so far are included in the approach

(3.11), (3.13), (3.14). For example with the choice

(320) w; = vi=—m,;, o= N



we get the formulas (3.1), (3.2), (3.3), (3.4). With the choice

(3.21) w; =

we obtain the formulas (3.8), (3.9), (3.10). However the new approach gives more
freedom to counteract the geometric imbalance introduced by the mesh. For exam-
ple, in two space dimensions we could choose k = 8§,

v, = (1,0)T7 Vo = (0, 1)T7 V3 = (—1,0)T7 V4 = (0, —1)T7

3.22
( ) vs = (1, 1)T, ve = (—1, 1)T, vy = (—1, —l)T, vs = (1, —l)T,

and the weights

w 1< 4
(3.23) w¢:{1 :

T —w 1>4

4
and

2 1 <4
(3.24) ozi—{ | s

With this, choice (3.16), (3.17), (3.19) are satisfied. (3.18) reduces to

o 20+ (7 —w) AT =1 .

Hence, the formulas based on (3.22), (3.23), (3.24) are valid for all real w. If w =0
one obtains the case (3.7a) while for w = 1 one obtains (3.7b). We get therefore
a class of representations for the Euler equations with a free parameter w. This
freedom is even more important in view of the high order extension. Special choices
of a; and w; will reduce the number and amplitude of the correction terms introduced

in the next section.

4 Second order extension of the decomposition

In Section 2 we have decomposed the Euler equations in infinitely many transport
equations and in Section 3 we have approximated the Euler equation by finitely
many transport equations. Numerically we shall use this approximation to find
a numerical solution at time ¢ + At given that the solution at time ¢ was exact.
The error committed by this process is of the order At?. We shall illustrate this
statement in this section and then show how one can modify the finite number of
advection equations to get an error which is of order At? only. To do this we shall

9



restrict ourselves to the one-dimensional case and to the density variable. We shall
expand the exact solution p(x,? + At) in a Taylor series and omit the argument if
it is @, . For the exact solution we have

2

At

Using the conservation of mass and momentum we obtain

Pt = —(pU)x )
(4.2) p = =lpu)ee = (e +p)es = (0 + D))

To transport the solution by the finite number of transport equations (3.2) we have
to choose first the n;. In the one-dimensional case there is only one choice namely
n; = (1) and ny = (—1). The first component p of U has to be decomposed
according to (3.1) in

(4.3) p=p1+p2+ps

where p; = p3 = % p and py = Ww;l p. For each part we have the transport equation
(4.4) (Prya)e + ((uEe)prys)e =0 and  (pa)i + (up2)e = 0.

If we sum up the Taylor expansions

(At)? 3
pil,t+ At) = pi+ (pi)e At + (pi)u —5— + O(AL)

and use
(pya) = (((wte)((ute)piya))
(p2)ee = (ul(p2)s)e
we obtain for the solution p constructed using (3.1), (3.2)
2

_ At
(4.5) Flast+ At) = p+ p A+ (i + g (qu, + ce,)) S+ O(AF).

Comparing (4.1) and (4.5) shows that the solution of the Euler equation and the one
by the “linearized” system (3.1), (3.2) differ by O(A#?) after time At has passed.
The idea is now that we modify the equation (3.1), (3.2) such that the solution of
these modified equations approximate p(z, ¢+ At) up to a term of size O(At?). Let
us replace R,(n;) by

(4.6) R.y(ni) =Ry + (L +K)n; .

10



Hence (3.1) is transformed into

1 k
(4.7) U=R;+ > R, y(n;)

=1
and (3.2) into

aRa,Q(ni)

(4.8) -

+div(Rao(ng)(ul +enl)) =0, i=1,2,... k

It turns out that in the 1—D case with n; = (1), ny = (—1) the solution constructed
by (4.7), (2.19 a) and (4.8) gives an error term of size O(A¢?) if K is chosen as follows

t
e —%(vuugg +cey)
t
(4.9) K=|F |= —%p((fy —2)cuy +ucy) +ukf
2
27(7—1)( ) 2

The advantage of this approach is that the structure of the advection equations is
not changed. Hence, the implementations in a numerical scheme is the same as
without the correction term. Clearly in the multidimensional case the Taylor series
expansions corresponding to (4.5) depend on the choices of the w;, a;, v;,. However
correction terms K can always be found. For example in the Euler case in two space
dimensions see [6] and for the shallow water equation see [10].

5 The numerical realization of the transport

So far we have replaced the nonlinear Fuler equations by a finite, k + 1, set of linear
advection equations such that if one starts with the same solution at ¢ the solutions
differ by O(A#?) at time ¢ + At. Hence if the linear advection equations are solved
exactly we obtain a second order scheme in time and space. Clearly it is enough to
have a scheme to solve the scalar equation

(5.1) Uy + div(uaT) =0

where a is the local advection velocity which is a function depending on the space
variable only. Schemes to solve this problem have been around for a long time, [2],
[14], [3]. Here, we follow the approach of [11]. For simplicity we restrict ourselves to
the two dimensional case. Assume we have a Cartesian grid with the step size Az

11



and Ay in @ and y direction. Let x; = iAx and y; = jAy and (x;,y;) is the center
of the finite volume V;; = [J}Z»_;,J}H_;] X [yj_;,yj_l_;]. Let
2 2 2 2

1
5.2 ur =
(5:2) 5= Wl

/ u(x,y,nAt) dzdy
Vij

be the average value of u over the cell V;;. We assume now that in each control
volume the solution is constant and has the value uf. If we assume that a(z,y)
is also constant in this volume, e.g. has the value a(z;,y;), and we ignore effects
from neighboring cell then we can say that the quantity » in Vj; is transported by
Ata(x;,y;), see Fig. 2

Qs 0y
3 i 0y
| o .
Vii = i
Qs i o
Ata
\/* ”””””””””” ’
Yi_1
Qg Q7 Qg
J}Z»_% xH—%

Figure 2: Movement of all points by At a(x;,y;)

Let
Qét — QO + At a/(xiv y])

& {0 € R ()= Avatr) €0},

Hence, the contribution of cell g to the flux between cell )y and 2, is

o3
JQ09; Zj/otn ] Y

(5.4)
Q5 Ny

— n
= u]

Collecting all these fluxes gives the final formula

1 8
(5.5) 1 g
= Jaoq; -
Vi ]Z:;)

12



Figure 3: Abrupt expansion in a channel. Plotted are 10 contours lines of the
geopotential h.

Here €y denotes the control volume V;; and €, are the eight neighboring cells.
Moreover we have assumed that At is restricted such that Q5% C U?:o ;. Clearly,
replacing u locally in space by a piecewise constant leads to a first order scheme.
Hence to get a second order scheme one replaces u by a piecewise linear function.
This does not affect formula (5.5). However a(x,y) should locally be replaced by
piecewise linear functions. Hence Q3% is no longer just a shifted rectangle but
becomes in general a quadrangle. Moreover formula (5.4) for fq,q, has to be replaced
by a more complicated integral. This can be done and for details see [10], [5]. If
we apply this scheme to each of the transport equations (2.19a), (4.8) we obtain an
overall second order scheme. At this point we have omitted to discuss the piecewise
linear reconstruction. See [7] for details.

What has been done here for the Euler equations one can equally well do for the
shallow water equations. In the next section we give some numerical examples.
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6 Numerical results

6.1 Expansion in a channel.

We consider the supercritical flow of an abrupt expansions in a channel of lenght 8 m
and width 1.5 m. The opening is one third of the total width and the flow arrives with
a height of 96 mm and a Froude number of 2. Figure 3 shows solutions at time ¢ =
5sec. The space discretisation uses a cartesian grid with 240 x 45 points and a time
step At = 1072, The upper picture shows the solution with the first order method
using the formulas (5.4), (5.5). The lower picture shows the solution of the second
order extension using the four vectors n; € {(1,1)T, (=1, )T, (1,-1)T,(=1,-1)T}
with coefficients w; = 1/4 and o; = 1 in (3.13). The curved shock structure in
the lower picture is well captured and coincides with measuments by Hager and
Mazumder [12].

6.2 Explosion test

Solving a sperical symmetric problem on a Cartesian mesh causes a lot of problems
for any kind of numerical method as shown in [16] for the Euler equations. In the
case of the shallow water equations, we compute the circular explosion problem as
defined in [1]. The initial values are given as

[ 1)g if x| <035
hx, 0) = { 0.1/¢g else ’

where ¢ is the gravition constant, % is the geopotential and u(x,0) = 0 where u is
the usual velocity vector. The two-dimensional calculations were done on the square
domain [—1.5,1.5]* with 500 points in each direction. The CFL-number was 0.8.
Figures 4 and 5 show the solutions along the line y = 0. The dotted line in Figure 4
shows the geopotential h (left) and the velocity |u| (right) for the first order method
and Figure 5 shows the results for the second order approximation. For comparison,
the solid line indicates the solution of the one-dimensional radial symmetric problem
using a spacial discretisation of 20000 points on the same interval.
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0350 |-

0.300 |-

0.250 |-

0.200 |-

0.150 |-

0.100 . v v 0.00 . v
-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5

Figure 4: Explosion test problem at the time ¢t = 0.5, y = 0. First order solution
for geopotential (left) and velocity (right).

0350 |-
0.300 |-
0.250 |-
0.200 |-

0.150 |-

0.100 . v v 4 0.00
-1.0 -1

Figure 5: Explosion test problem at the time £ = 0.5, y = 0. Second order solution
for geopotential (left) and velocity (right).
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