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Abstract
We investigate some asymptotic spectral properties of the collocation matrix
arising in interpolation by pure radial sums, and we provide some theoretical
results that can be used for knot removal.
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§1. Introduction

Given an arbitrary finite subset X = {x;}V of R?, where d > 1, of pairwise
distinct points called “centres” and a set of real valued data A = {2}V, the
interpolation problem by radial basis functions consists of finding an inter-
polant of the form

o) = Zai&:i # oI 11*) +pr() o pe € e(RY), (1)

such that Ef\;l a;by, L Hk(IRd) and (0,0,,) = z;,1=1,2,..., N, where ¢ is
a prescribed real-valued function in C(IR4), Hk(IRd) is the space of d-variate
polynomials of degree less than k, and || - || denotes the Euclidean norm on
R".

In matrix notation, solving the interpolation problem is equivalent to
solving the linear system

(o) (5)-(0), @
where

o A= (gb(Hxl — :chﬂz))fvj:l is the so-called collocation matrix and

o U = (q](xl)>f\;1 ?il is the matrix associated with a given basis {qﬁ?il

of TTy(R?) and M = dim Ty (R?) = (k o d).
Obviously, a unique solution exists if
rank(U) =M < N (3)

and ca’Aa >0, |e|=1, whenever UTa =0, a#0. (4)

Given a basis function ¢ and a fixed d, it is not always easy to see whether
(4) is valid or not. In 1986, Micchelli [7] characterized certain smooth functions
¢ in terms of their derivatives for whom there exists M such that (4) holds
for any d. The two main results of that paper are as follows. In order to state
them, we begin with a definition.



Definition 1. A function ¢ € C[0,00) is a conditionally strictly positive
(negative) definite radial function of order k on IR? if the condition (4) holds
with ¢ = +1 (¢ = —1) for any subset of centres X in R,

We will denote the classes of such functions by Pk(IRd) and Dk(IRd), respec-
tively, and, trivially, ¢ € Pk(IRd) if and only if —¢ € Dk(IRd).

Theorem 1 [3,7]. The function ¢ is in Py = ﬂdzlpk(IRd) if and only if
¢ ¢ Ixy1(R4) and ¢ is k-th order completely monotonic, i.e., ¢ € C[0,00)N
C(0,00) and (=1)7 ¢ () > 0,1 >0, j > k.

Theorem 2 [7]. Suppose that ¢(0) > 0 and ¢ € Dy (we denote the set of

all such functions by DY by Df from now on). Then, for any set of centres
X = {z;}V, and any d,

— N
(=D det(g(f|xi — 24]1)), ,_, > 0.
Moreover, we obtain from [9], denoting the i-th eigenvalue of the collocation
matrix A, when the eigenvalues are ordered by size, by A;,

AM>0> X > > Ay

It follows from the fact that the trace of the collocation matrix is the sums of
its eigenvalues that

N
M= max (A>3 L
1=1,2,...,.N P

A2 = min |\l
i=1,2,...,N
From now on we will focus on functions in the spaces Py and Di" which
allow interpolation by pure radial sums, ie., without a polynomial term
added in (1), according to Theorems 1 and 2.

§2. Spectral behaviour when the number of centres increases

Let X = {z;}¥ and X' = {2;})¥" be two sets of centres in R? for some d,
where N' > N > 2, and let A, A’ be the associated collocation matrices with
respect to a function ¢. We will denote by pi1, p2 (respectively p}, py) the
maximal and minimal eigenvalues of A (respectively A') in modulus.

Lemma 1. A is irreducible whenever ¢ is in Py or in Dy .

Proof: As a nonnegative matrix is irreducible if and only if its digraph is
strongly connected, a sufficient condition for irreducibility is that the off-
diagonal entries are all strictly positive. Clearly, ¢ € Df implies that ¢ is
strictly positive on (0,00), thus A is irreducible. Now, if ¢ € Py then ¢ does
not have a zero on (0,00) (in other words, ¢ is not compactly supported).
Otherwise, the Laplace—Stieltjes representation of ¢ (see [11]),

o(t) :/0 e "da(u) , t>0,
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where da is a positive finite Borel measure on [0, 00), would lead to ¢ = 0,
contradicting the fact that ¢ € P,. W

Theorem 3. If ¢ is in Py or in Di" then conds(A') > condy(A), where
condz(-) denotes the spectral condition number (the condition number with
respect to the Euclidean vector norm).

Proof: We show the result when ¢ € D}, the same arguments being valid in
the other case. The matrix A is the leading principal submatrix of order N
of A'. By Cauchy’s interlacing property, pj > p1 > 0 > ph, > ps, and, using
Lemma 1 and the Frobenius theorem which states that the maximal eigenvalue
of an irreducible matrix is (strictly) greater than the maximal eigenvalue of
any of its principal submatrices, we obtain

PL _ P1
condg(A') = —,1 > — =condz(A). W

P2 P2

Theorem 4. The inequalities

0 < p2 < ¢(0)=¢(gn) < max(¢(0) + ¢(gn), (0) + (N —1)¢(Dn))
< p1 <(0) + (N = 1)o(gn)

hold for ¢ € Py, and, for ¢ € Dy,

0 < p2 < ¢(gn)—¢(0) < max(¢(0) + ¢(Dn), #(0) + (N — 1)¢(gn))
< p1 < 9(0) + (N —1)é(Dn),
where Dy =  max  |jz; — :L’sz, gy = min |lx; — :1jo2.
1<istj<N 1<i#j <N
Proof: We obtain the required bounds using that A is a nonnegative matrix

which implies

N N

i N AP < | b4
i E 145(!\% zi||*) < p1 < max § 145(!\% 2|7,
]: ]:

and with Cauchy’s interlacing theorem applied to the two principal submatri-

(s S00) =0 (oy) )

Corollary 1. If ¢ € D}, then condy(A) is not bounded from above as N

increases.

ces

Proof: It is a consequence of Theorem 4 that

o 90)+ (N = 1)d(gn)
conda( ) = T ) = 4(0)

3

(N —1)o(gn)
o(qn)

> —N-1. ®H



Theorem 5. Assume ¢ € Py. Then condy(A) is bounded independently of
the number of centres if and only if there exists gy such that qn > gqo > 0 and

Sore  kTLG(R?) < oo

Proof: The necessity of the condition follows directly from Theorem 4 and
the continuity of ¢ at the origin. For the converse, we use first a result of

Narcowich and Ward [8] (see also [10]) which states that
p2 > O(gn) = / P(u)da(u) > 0,
0

where J(u) = Cd(qu)_% exp(—6*(ugn)™!), C4 and § being parameters de-
pending only on d. So, if we add a centre z¢ to the set {z;}V in such a way
that

Ogll(r;gnSNHxi — l’sz = ¢o, we would have py > ph > O(qp) > 0, where p},

denotes the minimal eigenvalue of A" = (¢(||z; — :chﬂz))N The rest of

irj=0"
the proof which we omit consists of finding an upper bound for the spectral
radius p; independently of N, using the assumption that ¢ decreases and an

argument similar to the one in Jetter [4]. W

§3. On the eigenvalues of matrices depending on a parameter

Theorem 6. Let X C IR? be a fixed set of centres {21V, Let (¢v)ver, E C
IR be a family of functions in Py or in Di" depending on a real parameter v.
We denote the collocation matrix associated with ¢, by A,. If there exist v
and vy in F such that

&, (1) # ¢, (1) and (=1)[¢,,") — ¢, V)(t) >0, t>0, j >0,

then the eigenvalues of the collocation matrices satisfy /\i’sz > /\i’AvN 7 =
1,2,..., N, and condy(A,,) > condy(A,,) whenever ¢, € Dy. Moreover, if
(¢y)y is (uniformly) continuous with respect to v € E for the (simple) uniform
convergence topology, then \; 4, and condy(A, ) are (uniformly) continuous

with respect to v.

Proof: The difference function ¥ = ¢,, — ¢,,, is nonconstant and 0-th order
completely monotonic. Hence, as a consequence of Theorem 1, the collocation

. N
matrix 64 = (Q(Hxl - xjHZDi,j:l
Using Weyl’s theorem on perturbations of eigenvalues of Hermitian matrices,

= A,, — Ay, is strictly positive definite.

we obtain that
/\i,Ay2 S [/\i,AV1 + /\N,M,/\i,AV1 + Aisal . ¢=1,2,... N,

which implies that A\; 4,, > A\; 4, ,7=1,2,..., N. In particular, for ¢ € D,

vy ?

A, > A4, >0>X4, > A4

vy ?
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hence condz(A4,,) > condz(A,,). For the second assertion, we use the as-
sumption that

Vt>0,ViyeFE Vex>0,dnp>0,VvekEk

o — v <n = [6u,(t) — du(t)] <e.

Using successively the values ||x; — z;||* for ¢, we obtain that Vg € E, Ve >
0, 3 Ni,j > 0

lvo — vl < iy = o, (|2 — 25]1?) — du(flwi — 25 ]1*)] < e.
With n = minn; ;, we have
2,7
v —v|<n= II;E;XI%O(H%‘ —zj|1?) = ¢u(|lzi — 2 |*)] < e.

This implies, for the Schur matrix norm || - || s, that

1/2
l0A]ls = { Y uolllzi = 25l1*) = ¢u(llwi — xsz)]z} < Ne.

6]

Now, from Weyl’s theorem,

max [Aia,, = Aia, [ < A = [[0A4]lz < [0 A]]s.

Hence A; 4, and consequently conds(A,) depends continuously on v. The
uniform continuity is shown in the same manner.

Theorem 7. Let ¢, be a function depending on a real parameter v € (a,b)
and satisfying for any vy > 171,

¢, (t) # ¢, (1) and (=1)[¢,," —¢,, V(1) >0, t>0, j>0.

If ¢, € Py and if there exists a function ¢ such that ¢,(t) < @(t), t > 0,
then condy(A,) is uniformly bounded as v — b. Moreover, if ¢, € D and

Vilb{?>0 ¢,(t) = 00, then ilir%) condz(A4,) = 0.

Proof: For the first assertion, suppose that lirr%) $,(0) = ¢4(0) < co. Then

1/2
A2 < [[Av]ls = {Z[%(Hwi - fL’jHZ)]Z} <Ngw(0) ., vel(ab),

i,]
and, according to Theorem 6,
0 <[4 s < A4 2 v >0 >0,

S



Now if lirr%) ¢,(0) = oo, then for any v € (a,b) we have max |); 4 -1¢9)4, —1| <

1/2 1/2
{6 00— < {07 Ol - a2} and
17 17
the last expression tends to 0 as ¥ — b showing that

condz(A4,) = condg(qb,,_l(())AV) — condz(I) =1

as v — b (I denotes the identity matrix of order N). For the second statement,
we invoke Theorem 6 again, together with the inequality

1/2
HAVM3=‘{§:P#(er—$ﬂVH2} <NV Al

6]

Example: These results, when applied to the families of Hardy multiquadrics
(6u(t))>0 = ((t + 1/)1/2),,>0 and inverse multiquadrics (¢,(t)),>0 = ((t +
%)_1/2),,>0, show that condz(A4, ) becomes unbounded with v in the first case
and tends to 1 in the second case. In the latter case, although it seems in-
teresting that the condition number increases with v, this is not a practically
relevant case, since the matrix is going to be quasi-diagonal and the interpo-

lating function is going to exhibit undesirable oscillations.

64. Knot removal with radial basis functions

In this section, we study the effect of removing one centre at a time from a
given interpolant or, equivalently, inserting one centre to a given interpolant.
Due to a lack of space, we are not able to present the proofs of the results
that follow. Instead, they will be published in [2].

Now, given points {z; }IV and z¢ ¢ {z;}V, all in R? and pairwise distinct,
we compare the uniform distance between the radial function interpolant o'
to {f(z;)}Y at {z;}¥, and the interpolant ¢* that interpolates fnew = f(70)
at xz¢ as well.

The result gives an upper bound on the uniform distance between o'
and ¢* that depends in a simple way on xy and f,en. Of course it depends
on properties of the interpolation matrices A’ = {¢(||z; — x||*) ‘]j\,fk:l and
A = {é(||zj — xx]]*) ﬁk:oa and on the spacing h of the centres too. From
now on, || - ||s,o always denotes the uniform norm restricted to a compactum
0 c R? which contains all the centres including the new one.

In the following theorem, which provides an a prior: error bound, we
restrict ourselves to radial functions of the form

oty =(t+v)? —d<B<0, v>0. (5)

Theorem 8. Under the stated conditions and for the radial function (5), we
have the estimate

o' = 0" lloo.2 < Cpy | frcw — o' (o) R, (6)



where h = maxi < j<n miny<p<n ||z; —z||, A is the collocation matrix includ-
ing the centre x( standing for xg, po is its smallest eigenvalue, M is arbitrary
but integral and C' is a positive constant independent of h, xo and fpeqw, but
dependent on M.

This theorem gives a way to estimate the effect of inserting a knot z¢ to o'
which of course also allows to estimate the effect of removing a knot from o*.

More general results which give error estimates of the type (6) are avail-
able too. They apply to all polyharmonic splines where

= tN=4/21ogt, deven, N > %,N an integer, .
#(t) = {tN_d/z, otherwise with N > %, (7)
and their shifted versions ¢(t + v), of which (5) is a special case, but negative
exponents are admitted in (5) because the shift avoids the singularity of (7)
at the origin. Those results will be published elsewhere, as will computational
experiments regarding the theoretical results. It should be noted that (7) and
their shifted versions cover all of the most commonly studied and used radial
functions.

This theoretical result allows us to decide when it is possible and when it
is not possible to remove a given centre from the data set keeping a prescribed
tolerance, for it is now sufficient to see whether the upper bound found in each
of the cases is less than the prescribed tolerance. Unfortunately, this result is
not constructive and, for practical purposes, we use the following technique
which was tailor made for multiquadrics.

Theorem 9. We define discrete norms || ||4,, and || - ||4,0c on the set of radial
functions spanned by multiquadrics, i.e., such that o = Ef\;l ;b % o(|| - 11*)
with [[ofla, = llallay = (XL, [l?)/? and |[o]laee = [lallaece = max|ag].
Those norms are equivalent to the uniform norm || - || .

Now, let ¢ be the multiquadric interpolating all the data and o' the one
interpolating all the data but in one point, say ;.

Using some well known results on matrix norms and associated vector
norms, we obtain the following upper bound for the relative error:

lo = 0"lloc,0

[]loc.2

—0'llaz

g
< @A,
ol

where A is the collocation matrix, N is the number of centres associated with
o, and C(£2) is a geometric constant related to the diameter of €, specifically:
C(Q) = (diam(Q)? + v)'/2, v being the parameter in the basis function ¢.

Let A" be the collocation matrix associated to o'. A careful evaluation
of the norm ||A'||2 leads to the upper bound

lo = o"llaz2 < faig {1+ [ 4']|2(N = 1)(v + D*)}'/2

7



where D = max; ; ||z; — «;||. Now, using again the results of Narcowich and
Ward, with p = ¢*(1 4 (1 + ¢*)"/?)™" and ¢ being the separation distance
between the centres, we obtain an upper bound of the form

vy, |

_ !
o= 'l _ gl
ol ol

Here, the constant K is
1/2
K =5.95C(Q)Np~! exp(?)p_l){l +5.95(N —1)(v + D*)p~* exp(?)p_l)} .

This is more suitable for practical knot removal using multiquadrics, because
it implies that for any 72¢ such that

vy, |

| )

<
lafl — I

~
Al

the relative error for o is less than a given tolerance ¢. Now, the usual tech-
niques [5,6] for knot removal can be invoked.
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