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Abstract
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1. Introduction.

The purpose of this article is to summarize briefly recent work on (mostly) univariate
prewavelets from spline or radial basis function spaces that are based on non-uniformly
distributed knots or “centres”. This is by no means a comprehensive review of the state-of-
the-art in wavelet research; instead we will attempt to give a reasonably complete overview
about this very particular aspect of research into prewavelets. We begin with outlining
the purpose and the usefulness of prewavelets. As it is well known that spline spaces are
useful for constructing prewavelets, see, for instance, the book (Chui, 1992), we shall then
describe why radial basis functions are also very useful for this.

Prewavelet expansions of L%(IR) functions are decompositions into different phase com-
ponents, much like Fourier expansions, as well as space (or time) components, unlike the
familiar Fourier analysis. This is useful for signal processing, image analysis and com-
puter vision, as well as sound analysis and the numerical treatment of partial differential
equations by microlocalisation (DeVore and Lucier, 1992). Each such decomposition of a
given f starts with establishing an initial approximation f; to f and continues by approx-
imating on successively finer scales of resolution. This initial f; is from a linear subspace

V; C L?*(IR) that is an element of a bi-infinite “nested” sequence of spaces with V; C Vj41

for all integers j, from which the prewavelets stem as well. The {V]};X:’_OO represent the
different scales of resolution and form the multiresolution analysis underlying the decom-

position, where one requires at a minimum that
U Vi=Lw) M vi={o) (1.1)
j=—o0 j=—oo

The desire to expand f into an orthogonal decomposition with respect to phase or frequency
leads one to study subspaces W; C V41 such that W; is orthogonal to V; (in short:
W; LV;) and V; & W; = V4. Thereby, indeed, an orthogonal series

is found by virtue of (1.1), and therefore also a decomposition of f into mutually orthog-

onal components, corresponding to the different frequency parts in Fourier analysis. The
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prewavelets are the generators of the Wjs, their coefficients always square-summable. The
prewavelets are usually required to form a Riesz basis of W; but need not be an orthog-
onal basis like wavelets. (More about this in Section 3.) It is desirable that they decay
quickly at infinity, so that the expansion of f’s components with respect to time is well
localized. In case the V; contain nontrivial compactly supported functions, the prewavelets
should ideally have compact support too. Since it is the function f; € V; that is actually
decomposed, it is important to the effectiveness of the decomposition that the spaces V;
allow f; to be a good approximation to f for a reasonably sized j. (Fast computation of
the prewavelet expansions is made possible by the so-called fast wavelet transform [Chui,
1992, for instance].) This is the point where the efficacy of radial basis functions can be
exploited. Indeed, radial basis function methods are well-known to be efficient and ac-
curate for the approximation of functions (Powell, 1991, Buhmann, 1993a). Radial basis
function methods were first introduced as interpolatory schemes but, because they provide
such high quality approximants, they are presently used for many different approximation
schemes, such as least-squares approximations (Buhmann, 1993b) and prewavelets. Among
all radial functions currently in use, the multiquadric radial function o(r) = Vit 42 is
probably best understood and most successful in practical applications. We shall therefore
focus on it in this review at various points. Indeed, several of the results we present are
taillormade for spaces spanned by translates of the multiquadric function, including the

case ¢ = 0 which is especially important for more than one dimension.

On the other hand, the most frequent choice for the aforementioned V; in current
applications of prewavelets are still spline spaces with fixed degree and equally spaced
knots (Chui, 1992, or Chui and Wang, 1992, for example) of spacing 277, j € Z. This
provides good approximations which are, however, always of limited smoothness. This
should be contrasted with approximants from spaces V; spanned by 27/ translates of the
multiquadric function which are C*°(IR). According to the known theory of radial functions
(Buhmann, 1993¢, for example), they provide essentially the same approximation order as
splines give, if the centres have the same spacing as the knots of the splines. There are no
non-trivial compactly supported functions in those spaces, as there are in spline spaces, but

there are generating functions for the V; from radial basis function spaces that diminish
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at a high algebraic rate toward infinity. Those functions replace the familiar B-splines of
univariate spline spaces (see, e.g., Powell, 1990, and the recent paper by Beatson and Dyn,
1994). Improvements can also be expected if one stays with the spline prewavelet ansatz,
but lets the knots vary and be unequally distributed according to the local smoothness
properties of f. That is the reason why, before radial function prewavelets were introduced,
spline prewavelets on non-equally spaced knots were investigated as a further development
in the theory of prewavelets. This is the point where we start our review. After describing
it in the following section, we shall in Section 3 describe the various approaches to radial
function prewavelets that have been offered in the literature. This includes several papers
that deal with multiple dimensions, but gridded centres, as well as work in one dimension
where the centres are no longer equally spaced but satisfy a weak, natural regularity

condition.

2. Spline prewavelets on non-equally spaced knots.

The initiative to study univariate spline prewavelets when the knots of the splines are
scattered came from (Buhmann and Micchelli, 1992). Starting with two prescribed knot
sequences

X:{---<:1;_1<:1;0<:1;1 <:1;2<---}C}R

and

Z:{"'<T_1<T0<T1<T2<"'}CR,

where 79,1 = x;, ¢ € Z,so that x C 7, they construct prewavelets that span the orthogonal

complement Wy of Vy in Vi, where

Vo ::{ Z C]‘B;

j=—o0

=) € L),

Vi ::{ i C]‘B§

j=—oc0

=)z € L)),

and B} and B§ are the B-splines of fixed degree n on the knot sequences x and 7, respec-

tively. Their supports are [z, & j4n+t1] and [T}, Tj4n+t1], respectively. They are assumed to
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be normalized so that they form a partition of unity. It is clear from this how to construct

(e @)

in general a whole nested sequence of V;s for a given nested sequence of knots {zj}j:_oo,

say, with 7/~ C 77 for all integers j.
Using in particular the fact that Vg and V; are precisely those splines of degree n on

x and 7, respectively, that are also in L?(IR), the following two theorems are established.

Theorem 1. There is a unique (up to a sign) sequence of functions {1y} 72 in V1 and

— 0

orthogonal to Vo of minimal support [xk, Tptant1] and ||r]l2 = 1 each which also admait

representations

Bj‘ = Z A]k@bk‘F Z B]‘sz, J € L. (2.2)

k=—c k=—c
They have no open interval of zeros within thewr support. If the T are N -periodic for some
N € N, then the coefficients in this representation (2.2) decay exponentially. Therefore,
every g € Vi can be written as a sum g1 € Wy and g2 € Vi, 1.e. Vi = Wy B Vy, whence the

{r )72 _ . are prewavelets. Here

Wo ::{ Z ¢

j=—oc0

c={cj}j2_ € KZ(Z)}. (2.3)

The assumption of periodicity is, in practice, no real restriction, because matrix multi-
plications have to be performed in the fast wavelet transform at each level of the pre-
wavelet decomposition or reconstruction of the function, and one does not want to have
infinitely many different multiplications of this kind. More specifically, for a given g € Vi,
g = E;o:_oo CjB§, the coefficients of its prewavelet part g; are > oo cjAjr, k € Z, and

j=—o0
>0
j=—o0

those of its part ¢ in Vj are )| cjBj, k € ZZ. Since these series are infinite, it is use-
ful for computations to have coefficients A;;, Bj; that repeat periodically when j varies,

instead of infinitely many different ones.
Theorem 2. If the T satisfy a bounded global mesh ratio condition

Ti+1 — T3
sup 1t < oo, (2.4)
LJE€L Tj+1 — T

there is a sequence of prewavelets {1y }52 _ _ in Vi and orthogonal to Vi that decay exponen-

tially and which also admit representations (2.2) with exponentially decaying coefficients.
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The case where several knots are inserted into each interval (z;, 2;41) when passing from
Vo to Vi is considered in the paper too. Regarding the prewavelets of Theorem 1, the

following fact about the sign changes of the prewavelets is also shown in the paper:

Proposition 3. Suppose ¢ € C([xy, Trt+9]) has a zero set of measure zero on [Ty, T p44]
and is orthogonal to all Bf defined above. Then v has at least n + 8 sign changes in
(g, xp+e) and, if it has ezactly that number of sign changes, they lie in the intervals

(Thentj—1,Tht;), 7 =1,2,...,n+ 8, respectively.

It is a corollary of this proposition and the variation diminishing property of B-splines
that the ¢, of Theorem 1 have exactly 3n + 1 sign changes each and that their coefficients,
when the prewavelets are viewed as a linear combination of B?s, alternate in sign.

The goal of the paper (Lyche and Mgrken, 1992) is to extend this work by searching
for minimal support bases for the spaces Wy that are the orthogonal complement of Vj
in V1; more generally than Buhmann and Micchelli, they consider non-decreasing knot
sequences X and 7 that are subsets of each other and may contain knots repeatedly, i.e.
knots of multiplicity higher than one. They construct minimally supported prewavelets for
such knot sequences and include explicit formulae using determinants. There is a concrete
algorithm given in that paper to construct such prewavelets and it is shown that the thereby
obtained prewavelets are nonzero within their support, except for a specified number of
sign changes. We mention, finally in this section, the work by Lemarié (1992), where also
nested sets of spline spaces whose knots satisfy global bounded mesh ratio conditions (2.4)

are used to construct multiresolution analyses.

3. Radial basis function prewavelets.

The research pursued in this field is manifold. There are, firstly, several papers on pre-
wavelets from radial basis function spaces spanned by a radial function and its integer
translates, even in more than one dimension. On the other hand, there are approaches
to prewavelets from radial function spaces where the centres of the radial functions are
scattered (so far only in one dimension). This appears particularly suitable because radial

functions show most of their effectiveness when the data are not any longer confined to
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grids, several alternative methods (in the simplest case: tensor product [spline] methods)
being readily available for the regular grid case.

We begin with discussing results of the paper by Micchelli, Rabut and Utreras (1991),
whose work was extended by Micchelli (1992), where the construction of multivariate
prewavelets is performed for spaces spanned by shifts of fundamental solutions of iterated
Laplace equations. Those functions belong to the class of radial basis functions most widely
studied and have the form

2X—n . .
o(r) = { ifnisodd, s g, (3.1)

r2A~"logr if n is even,

where A > %n is an integer, || - || the Euclidean norm on R™. Actually, their work is more
general, in that not just radial functions as in (3.1) are treated, but fundamental solutions
of general elliptic partial differential operators. We shall restrict ourselves, however, to
(3.1) for the purpose of illustration.

The main reason why this ansatz works is that those radial functions (unlike, for
example, the multiquadric radial function) have distributional Fourier transforms which are
reciprocals of even order homogeneous polynomials with no roots except at zero. Indeed,
up to a nonzero constant whose value is unimportant here, qg corresponding to (3.1) is
| - ||72*. The transforms are therefore analytic in a tube about the real axis except at the
origin. This has three very important consequences. Firstly, one can construct quickly
decaying finite differences of these radial function, because symmetric differencing in the
real domain amounts to multiplying the Fourier transform of the radial function by an even
order trigonometric polynomial with roots at zero. The trigonometric polynomial resolves
the singularity of ¢ at zero (e.g. Buhmann, 1993c¢) if the differences are of high enough
order. The rate at which these differences decay depends only on the order of contact of

|=2* at the origin. It can therefore be arbitrarily

the trigonometric polynomial and || -
high. For instance, a difference ® of ¢(|| - ||) can be conveniently defined by its Fourier

transform as follows:

(I)(y): Hz)\ ) y:(y17y27-"7yn) e R". (32)



Note especially that $ e C(IR™). It can be shown that this function ® satisfies the decay
estimate |®(z)| = O((l + H:I;H)_"_2>, so that, in particular, ® € L*(IR"™).

Secondly, these differences are able to generate a multiresolution analysis because, on
one hand, they satisfy a refinement equation and, on the other hand, can approximate
L?(R™) functions arbitrarily closely if translated by integers and dilated by powers of

two. We want to explain this point in detail. The multiresolution analysis has the form

{V;}2 where the V; are defined by

V= { > a2 —k)

kenn

c = {Ck}kEZ" - KZ(Z")} (33)

That the differences satisfy a refinement equation means that there exists a € ¢'(Z") such

that

O(x)= Y a;®(22 —j), wER"
JEL™

where a = {a; };ez». This implies in particular that the spaces defined in (3.3) are nested,
as desired. (For this, a € ('(Z") is not a necessary condition but suffices.) The refinement
equation is satisfied due to the homogeneity of qAﬁ In our case, the a; are a constant
multiple of the Fourier coefficients of 6(2-)/60, where 6 : T — IR is the numerator in (3.2).
Here T = [—n, w]. The first condition of (1.1) holds because the translates and dilates of

® provide approximations to at most linearly growing f, say, of the simple form

Qa-i f(x) = Y f(h277)@(22 — k), weR"

kenn

that are exact on linear polynomials f and converge uniformly to f as 7 — oo for f from
a class that is dense in L%(IR™). The second condition of (1.1) holds because the translates
and dilates of ® form Riesz bases of the V; which we will explain now.

That the translates and scales of ® can form a Riesz basis of each V; for a suitable 6 is
the third consequence of the shape of qg Namely, there exist constants 0 < p; < M; < oo
so that

pillel < [ 30 ad@ =B <Mllll, o= {edresn € B2, (34)
kenm



for all j € Z. Here | - || is the (2(Z"), || - || the L?*(I]R™) norm. This is an important
property that is usually incorporated into the requirements of multiresolution analysis as
well. Indeed, it can be viewed as a suitable replacement for the orthonormality condition
that is imposed on the translates of wavelets (as compared to prewavelets) at each level j
of scaling. Indeed, if the k translates in (3.4) are orthonormal, y; = M; = 1 are possible in
(3.4). The reason why (3.4) holds here is that ¢ has no zero and that our chosen 6 exactly
matches its singularity at zero without having any further zeros. For j = 0, the upper and

the lower bounds in (3.4) are the maximum and the minimum of

et +27k)?, te T,
kelm

respectively. For other js, (3.4) follows from scaling. That (3.4) and the decay of ® lead
to the second property in (1.1) is shown in the paper by Micchelli, Rabut and Utreras and
is not spelled out here, although it is not a difficult argument.

In this set-up, the prewavelets are found which are described in our next theorem.

Their construction is related to the construction that led to Theorem 2 and to the work

in (Chui and Wang, 1992).

Theorem 4. Let ® be as above and define Yy by its Fourier transform

25y’
Ykenn |®(zy + 27k)P

Further let E be the set of corners of the unit cube in R™ and define

%Eo(y) = ||y| 2 y € R™
Ye(y) = 1o (y — %e), ycR" ecE. (3.5)

Define finally

Wie = { D erthe(2 - —k)

kenn

¢ ={cktrenn Eﬁz(Z")}, ecE\{0}, €7, (3.6)

and

W= P W jer.
ecE\{0}



Then we have W; L Wy for all integers j # ( and

0
k"= g w;.
j=—co

In Micchelli (1992), this work is generalized by combining it with results on prewavelets
from “box-" (or “cube-”) splines and by admitting scaling factors other than 2. (In fact,
scaling by integer matrices M with |det M| > 1 is admitted and it is also required that
lim; o M7 = 0. This is usually achieved by requiring that all of M’s eigenvalues are
larger than one in modulus. In this event, |det M| — 1 prewavelets and their integer shifts
span each W;.). Utreras (1993) constructs prewavelets in the same way as in Theorem 4
and points to the important fact that no multiresolution analysis can be found for shifts
of (3.1), i.e. when ¢ is replaced by ¢(v/r? + ¢2) for ¢ > 0. More generally, he shows that
it is the exponential (that is, too fast) decay of the Fourier transform qg of the resulting
basis function ¢ that prohibits the existence of a multiresolution analysis generated by
shifts and scales of ¢ or a linear combination of translates of ¢. (It is the refinement
equation that fails.) This applies for example to the multiquadric radial function for odd
n and A = %(n + 1). This statement, however, only holds if the multiresolution analysis
is required to be stationary, i.e. results from the dilates and shifts of just one function as
in (3.3). On the other hand, several authors have studied non-stationary multiresolution
analyses, where the generating function of each V; may be a different L?(IR"™) function ¥,

say. Hence, the V; are of the form

V= { > e®i(-— Mk)

kenn

c={cr}rern € gz(zn)}

where, as in Micchelli (1992), a general scaling matrix M with integer entries is admitted.

The nesting property of the V; is ensured by the non-stationary refinement condition
Oj(x)= Y ar®jp(z—M7TE),  zeRM (3.7)
kenn

with a € ('(Z"). For illustration, we concentrate on the work by Stockler (1993) first.

He uses only an infinite sequence of nested spaces Vo C Vi C --- and has two additional
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requirements on ®;, 7 € Z. The first one is that the translates of those functions be Riesz

bases uniformly for each Vj, i.e. that the inequalities

illell < || Y0 ey = M) < MLell, e = {erdrenn € L"), j € Ly
kenn

be satisfied for positive finite constants i and M that are the same for all j. The second

S (@)% (B5(—)) (2 + k)| < o0 (3.9)

almost everywhere (a.e.) for ©+ € R™. Here, * denotes convolution. A general theorem is

given that guarantees the existence of |det M| — 1 prewavelets for each j whose translates
1
1

prewavelet is required —, prewavelets for radial function spaces can be found if qg is positive

span W;. In the special case n =2 and M = < _11> — so that det M = 2 and only one

almost everywhere and satisfies

qg y+ 27k 1+ |y "
Wy 208 _ o 2L e ze ) < bl (3.9)
o(llyl) ly + 27k]|
a.e. for some m > 1. Here |- | is the ¢! norm. This holds, for instance, for the shifted

versions of (3.1) that have been mentioned above, exactly because their Fourier transforms

decay so fast. We let Ci{,‘ = qAﬁ(H )/\/@;, where

oi(y) =2 3" d(lly + 2 M k|, teT
keL?

~

Because the translates of ®; are orthonormal, they are, in particular, Riesz and ft = M = 1.

It can also be shown that they decay fast enough to satisfy (3.8). Then we define

~ 0']‘_|_1(y —|—27TMjT/i)

¢U(y):: exp(—dﬁ;-ﬂf_{j+1yry)x/ 0”(y) éj+1(y)7 Y EJRz'
J

The 7Z? translates of v; span W, with Vj41 = W, & V;. Here, & is the vector (1,0) which
gives 72 = MT72 3 MT(KL + Zz).
A general treatise on prewavelets is given in (de Boor, DeVore and Ron, 1993). While

their approach deals only with equally spaced centres and scaling by 2 instead of a general
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M, it does apply to all the radial basis function spaces that have been mentioned so far
in this section. No assumptions about stationarity of the nested spaces are made, so we
have spaces V; that are the L*(IR"™) closure of the span of 277k, k € Z", translates of a
function ®; each. They are assumed to be nested, however, and to satisfy (1.1), but no
refinement equation like (3.7) with summable coefficients is required. Of course, the ®;
must be in L?(IR™), but they need not have a concrete rate of decay at infinity. For radial
basis functions, differencing gives the square integrability as before. The authors show
the sufficiency of supp Ci{,‘ = IR™ in order that the W; are finitely generated shift-invariant
spaces, 1.e. generated by the multi-integer translates of just finitely many functions, and
that there are specific basis functions ., e € E \ {0}, in V41 that generate the desired
spaces W;. This support assumption holds for all radial basis functions that are mentioned
in this review. It suffices to study Vg, V3 and Wy, because the other spaces are obtained

by dilation. An instance of the basis functions that produce Wy are the expressions
the = . — PP, ecE\ {0},

where &, = $¢(- + %e) and P : V4 — Vj is the orthogonal projector. The translates of
these 1, may not, however, satisfy a Riesz stability property. It is generally true that, if
the Z™ shifts of ¢ € V; generate V7, the integer shifts of (- + %e), e € E\ {0}, are a basis
for Wy if additionally

S7 B+ 4mj)dol- + 4r)

JEL™
is 2m-periodic. In one dimension, we are led to the following result that specifies the

prewavelets.

Theorem 5. Suppose ®; € L*(R), j = 0,1. Assume supp dy = supp ;=R and define

b = exp(—%i-)fi)l Z P ( +47(j + %))Ci)l ( +47(j + %))
JEL

If@[) € L*(R), then its inverse transform i has 7 translates that generate Wy. If the integer

shifts of ®¢ and the half-integer shifts of ®1 have a Riesz basis property, so do the integer
shifts of 1.

11



In several dimensions, the following result is true which is originally due to Riemenschneider

and Shen (1991) but de Boor, DeVore and Ron give a new proof.

~

Theorem 6. Suppose supp ®; = R", j = 0,1, and that each ®; is real-valued and

symmetric about 0. Let
B:= ) &o(-+4mj) 1 (- + 4mj).
JEL™

Suppose ®g’s multi-integer shifts satisfy a Riesz stability condition and that the half mults-
integer shifts of ®1 do as well. Assume finally that there is a 1-1 map « : %E\ {0} —
27E \ {0} that satisfies

(i) exp(ize-a(ie)) = —1 for alle € E\ {0},

(i) exp(i%(el —ez)- a(%(el —e3))) = —1 for all er,e2 € E\ {0} with e; # es.

Then the integer shifts of the functions . that are defined by
Je = expl—ie)B(- + a(teNdi, e e B\ {0},

provide a Riesz basis for Wy.

It should be noted that (i) and (ii) above can be met if and only if n = 1,2 or 3.

In the setting of both theorems above, general W;, j € Z, can be found so that

r’rhy= g w;
j=—00
if (1.1) is true. Characterisations of the multiresolution properties (1.1) are provided too.

The first property is fulfilled by the above construction if and only if

U supp Ci{,‘ = R"

J€EL
which is one of our requirements anyway. (The second condition of (1.1) is true if the nested
set of spaces Vj is stationary, but {0} may have to be replaced by a set of dimension at most

one otherwise.) Examples that fulfill this requirement exist in abundance: all radial basis

function that we mention in this article have globally (IR™) supported Fourier transforms.

12



In the author’s paper (1993b), a different tack is pursued. There, univariate pre-
wavelets from spaces spanned by (integer) translates of multiquadric and related functions
are constructed. In order to get a square-integrable basis function first, derivatives of
multiquadric functions are taken and convolved with B-splines. This is the same as taking
divided differences of the radial function but is more amenable to analysis because one can
make use of the positivity of ¢’s Fourier transform. After all, convolution of functions in
the real domain means function multiplication in the Fourier domain. This fact is exten-
sively used in the proofs of the results that follow. The work considers, in fact, not just
decompositions of L?(IR), but (discrete) Sobolev spaces of arbitrary integer order, although
we only formulate the results for continuous Sobolev spaces Hy*(R ), m € Z, here. That
is the space of all L?(IR) functions all of whose derivatives up to order m are also in L*(IR).
It shall be equipped with the norm that is the sum of the L?(IR ) norms of the function and
all those derivatives. Let & € C™(IR) with

8O (2)| = O(J2['7%), @ — 4o, (=0,1,...,m, (3.10)

Ci>(t) > 0, for all t € R, and &)(0) = 1 be given. The quantity ¢ is fixed and positive.
We restrict ourselves here to the example ®(z) = &¢®*N(z), where 2\ = n + 1, & is a
suitable normalization parameter, ¢(x) = q;(\/m), ¢ > 0, and ¢ is one of the functions
qz(r) = 221X\ € N, but the theory in (Buhmann, 1993b) is more general. Nevertheless,
this covers the multiquadric example (for A = 1). We consider the functions
Cj:==Bj+®, jcl,
(3.11)
Fj:=Bix®, jeL.
The B-splines are the same as those in Section 2. Thus, C; and F} are in L'(R) N L*(R),
because the B-splines are and because ® € Ll(}R). We now define V; and V| as

Vo := { Z C]‘C]‘

j=—o0

=) )

(3.12)

Vi = { Z c; F;

j=—oc0

c={¢}52_ € 62(2)}.
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Then, for 7 = %Z, the following theorem is true.

Theorem 7. Let ® be as above and let P : Vi — Vi be the orthogonal projection with
respect to the Sobolev inner product on HJ'(R). Then vy := Fy — PFy, ( € 7, 13 a
prewavelet, 1.e. 1t satisfies

(a) e € Vi, ¢ L Vi with respect to the Sobolev inner product on HJ'(R),

(b) Vi = Vo & Wo.

It s furthermore true that the prewavelet decays at least as fast as

e(2)| = O((1 4 |z —0)7%), =z cRk.

In contrast to this work, (Buhmann, 1994) covers the case when x and 7 are no longer
equally spaced. They still have to satisfy a global bounded mesh ratio condition (2.4).
The spaces Vy, V4 and Wy are defined as above. The assumptions on ® are the same
except that (3.10) is only demanded for m = 0, and we are back in L*(R), but ¢ > n is
needed additionally, as well as ® > 0. The prewavelets are now constructed on the basis

of functions
U(x)= Y dpF" N e), weR, (3.13)
k=—c
where F,?""H = BZ’Z"—H * & and BZ’Zn—H are the B-splines on the knot sequence 7 just
as above but with degree 2n + 1 and support [Tk, Tk+2n+2]. The coefficients df; of these
functions are supposed to be such that
1 if ¢ =7 and n odd,
(CI)(—-) * qu)(Tj_|_n+1) = { 1 if¢{=7+1and n even, j, b e L. (3.14)

0 otherwise,

n+1)

Then we define ¢, := V., /. This is in V; because (n + 1)-st derivatives of B-splines of

(
2
degree 2n 4 1 are expressible as finite linear combinations of B-splines of degree n.

We show that the desired orthogonality conditions ¢, L Vy hold by integration by

parts: Suppose (3.14) holds for a suitable d* = {d4}%2___ € (}(Z). Thus, using the fact
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that C'; and ¥y, and all their derivatives up to degree n + 1 are integrable and vanish at
infinity,

<B§>|<<I>, Z dizB£,2n+1(n+1)*q>> = n+1< Z /,L‘;CCI) \I/2g> 0, j €,

k=—o0 k=—o0

(where (-,-) is the standard L?(IR) inner product) because the (n + 1)-st derivative of B
is a finite collection of delta functions 6(- — ), k € Z, the /,L‘,i being some real coefficients.

The central result is as follows.

Theorem 8. The functions (3.13) ezist as desired and they are such that vy € Vi and
Vi = Vo & Wy, where Wy is defined in (2.3), if

1 Tj+2nt2 — 75
max|s,sup ———— sup (t+ 7k ]
[27j€Z 2n+2 tel Z

(3.15)
2 inf / (CI)(—-) * @)(Z)B£’2n+l(rk+n+1 + z)dz,
ker J,
To2k+2n+1 — T2k—1 . 1 < s 2| Do 2
2 {1 f &(y)2| B d}. 3.16
up PSP {1t o [ eI B R4} (316)

In other words, the ¢y are prewavelets, since they generate (2.3) with Wy L Vi and Vi =
Vo & Wy. Further, these prewavelets satisfy the summability properties

Z |te(2z + 7;)| < const. < oo, reR, (e, (3.17)
j=—o00

uniformly in x and € and, uniformly in x,

Z |the(2)| < const. < oo, r € R. (3.18)

{=—co

We remark that there exist sets 7 that satisfy the conditions (3.15)—(3.16) of the theorem,
because, for instance, any small enough pertubation of 7 = 7Z does for the multiquadric
function ® = %g”, o(r) =Vr? + % if ¢ is small enough.

The following theorem is easily established using the positivity of ®’s Fourier transform

and the fact that the Fourier transform as an operator L*(IR) — L?(R) is an isometry.
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Theorem 9. Let {zj};?;’_oo be a sequence of nested knot sequences in R that each satisfy
a global bounded mesh ratio condition and become dense in R for j — oo. Suppose also
SUPgey, 7',‘3_1_1 —T]‘g — 00, ] — —oo. Let Vj be defined according to this setting and in analogy

to (3.12). Then (1.1) holds.

oo
l=—00’

Corollary 10. Given the set-up of Theorems 7 or 8, we can form prewavelets {1)¢;}
J € Z, i Vijy1 and corresponding spaces W; spanned by sums of the prewavelets with

square-summable coefficients such that Vip, =V, @ W;, g € Z, and

apm = @ W,

j=—o00

for the set-up of Theorem 7 and

L*(R) = éé W

j=—oc0

for Theorem 8.

In the recent paper by Jetter and Stockler (1994), a Riesz basis property for a set
of functions which result from a univariate symmetric preconditioning of a radial basis
function ¢ with a positive generalised Fourier transform qg is found that satisfies certain
lower bounds on compact sets. Concretely, the basis functions take on the following form

— up to normalization —, where we use the Fourier transform to define them:

where Bf are the same B-splines as used before. The points x have to satisfy x; — +oo
as ] — £oo and a uniform minimal separation distance property. Hence the inner product
matrices with entries (®;, ®;) correspond to preconditioned interpolation matrices with
entries ¢(x; — x), where the preconditioning is performed by taking divided differences
of degree n 4+ 1 both with respect to rows and columns. Jetter and Stockler prove the
important result that the spectrum of this Gram matrix is bounded below and above, so

that the ®; are a Riesz basis for the space they generate.
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In (Chui, Ward and Stoéckler, 1994), radial basis function wavelets for equally spaced

centres in one dimension are constructed and particular attention is given to the size of

their time/frequency localization windows. The construction is of the same type as the

construction of prewavelets for non-stationary multiresolution analyses of Stockler outlined

above. Apart from the important estimates for the size of their time/frequency localization

windows, it is shown that the prewavelets on all scales j = 0,1,... together with the

generator of Vj define an orthonormal basis of L*(IR), and estimates are given for the

distance between any f in the Sobolev space HJ'(IR) (the m is the same as in (3.9)) and

each individual V.
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