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Abstract

We investigate the error of the shock location which occurs in
numerical solutions of hyperbolic conservation laws with source terms.
For our theoretical analysis we consider a scalar Riemann problem. We
compute its solution using a splitting method. This means that in each
time step the homogeneous conservation law and an ODE (modeling
the source term) are solved separately. We show that the local error of
the shock location can be considered to consist of two parts: one part
introduced by the splitting and another occurring because of smeared-
out shock profiles.

Numerical examples show that these error-estimates can be used
to adapt the step size so that the error of the shock location remains
sufficiently small. The numerical examples include one-dimensional
systems.

!Talk at the Fifth International Conference on Hyperbolic Problems, June, 13-17, 1994,
University at Stony Brook, New York.



1 Introduction

When computing numerical solutions of hyperbolic conservation laws with source terms,
one may obtain spurious solutions — solutions which seem to be correct but which are
totally unphysical such as shock waves moving with wrong speeds [3][1]. Therefore it is
important to know how errors of the shock location can be estimated. This is the aim
of our investigation in the first part of this paper. We are interested in the errors of the
shock location of numerical solutions which are computed using a splitting method. This
means that in each time step the homogeneous conservation law and an ODE (modeling
the source term) are solved separately. We consider a scalar Riemann problem in Section 2
to get error-estimates. First we analyze the local error considering solutions with sharp
shock profiles and then we look at solutions with smeared-out shock profiles. In Section 3
these error-estimates are used to construct an adaptation of the step size so that the
error of the shock location remains sufficiently small. The numerical examples which
include a scalar problem (Burgers’ equation with a linear source term) and the simplified
combustion model introduced by A. Majda [1] show that the adaptation based on the
error-estimates for the scalar Riemann problem derived in Section 2 gives satisfactory
results.

2 Theoretical analysis

In this section we investigate the local error of the shock location considering a one-
dimensional scalar Riemann problem:

ug + f(u)e = q(u)

u, T <o
Uy, T > T

)~ {

f and ¢ are assumed to be smooth functions of u where u(x,t) : IR x IR, — IR and
¢ =: ug"™ with ¢ = O(1), n = 0,1,... . This restriction on ¢ is not necessary to get
the error-estimates — it just determines the higher order terms. The conditions for the
existence of a shock (at least in the time interval [t,,t,41]) should be fulfilled.

Solution operators:

The solution operator for the homogeneous conservation law u; + f(u), = 0 is called
"L and the one for the ODE w; = ¢(u) ’L,’. The numerical solution is computed using
the Strang splitting which is defined as follows:

ut = (%Lq Ly %Lq)u”. (1)

Here %Lq signifies that L, is applied for half a time step and u” is the numerical solution
at time ,. In a Riemann problem a step function u(x,?) is given. The values of u(x,t)
on the left resp. right side of the discontinuity only depend on t. We denote them by u;(t)
resp. u,(1).



o If we apply L, then L, only changes the quantities u; and u,. Of course, in solutions
with smeared-out shock profiles, L, would influence the intermediate values, too.

u u
Uy

/

o If we apply Ls then just the discontinuity is propagated. If L; produces smeared-
out shock profiles, we can determine the shock location using the ’equal area rule’
due to conservation.

u u

2.1 Solutions with sharp shock profiles

Now L; and L, are considered to be the exact solution operators. Then the shock profiles
are not smeared out and the quantities w;(¢) and u,(t) are exact. In this case the local
error of the shock location can be considered to be the local splitting error because the
solution operators are exact.

To investigate this local splitting error, we assume the shock location " of the nu-
merical solution at time ¢, to be correct. We use the Rankine Hugoniot jump condition

oy ) = f ()
=T e ) .

where o(t) is the shock location of the exact solution. The function h is the shock speed
and we denote h™ to be h" := h(u},ul).

Defining Ao as the difference Ao := o™ — 6" and noticing that

n+1 n ] o [O_n—l—l n ]

-0 exact — Tezact

n+1 n+1
num num -0

AUnum - Ao-eacact - [U = Ophum exact
we write the local error as Ao, um — ANGepact. By means of the Taylor series expansion we

find that local splitting error is

gspl = AUnum - Ao-eacact

= (3= 0O)A2 R q(uf) + ki q(ul)] + (53 -0)- O AtY) (3)

where 6 € (0,1).




Remarks:

o If L, is not the exact solution operator but one with a local truncation error of the
order p: u"t' — u(t, 1) = O((pAt)?) then an additional error O(u? AtP*!) occurs

in gspl-
o If L, is any consistent solution operator in conservation form then no additional

€IrTor OCccurs.

2.2 Solutions with smeared-out shock profiles

To complete the analysis we now consider numerical solutions with smeared-out shock
profiles. Therefore we assume Ly to be a conservative solution operator which produces

smearing. L, and o" are exact.
Let us look at one time step of the Strang splitting procedure:

o We start with the function ™ with a smeared-out shock profile:

u

The shock location is determined by the equal area rule.

e Then a half time step L, is applied. We get un e

N

n+

\\Aal

L, works on the values on the left and on the right sides of the shock but it also
works on the intermediate values. This causes a change in the shock profile and
therefore, in general, a change in the shock location: Aoy.



e Now one time step Ly is applied and we get unt s

u
uts
unts
t X
o ts 5t
AO‘f
Ly changes the shock location due to conservation — according to the (exact) values

1
n+3

ntt . . .
u; 2, ur T2 The change in the shock location is denoted by Aoy.

e Again a half time step L, is applied. We get u"*!:

u

\A 09

The change in the shock location is denoted by Aos.

The numerical shock location changes over one time step by
DNCpym = Doy + Doy + Doy

and the formula for the local error of the shock location calculates as

£ = Ao-num - Ao-eacact = AO—I + AO—? + AO’f o Ao-egmd (4)

£

spl

where the difference of the last two terms is already known: It is the error that occurs in
the solution with sharp discontinuities. So only the quantities Aoy and Aoy are left to
be determined.

Influence of smearing:
Considering the numerical solution at time ¢, we assume the shock location to be
correct and determine it by the equal area rule:

o+e
/ u"dr = e(u] + u).
a

n—e¢

Here € is assumed to be the width of the smearing of the shock profile.



After applying %Lq we get

o te 1 n+i n+i nti nt+i
/ u"Tide = qu; 2 4 eup 2= (e+ Doy P+ (e — DNoy)uy 2.
a

n—e¢

By definition of € we have Aoy < e. Taking into account that

! At At?
't =t = —mq(u”) + —=(u")q(u") + O(P AL)
and defining
At VAV
8(u) = —-q(u) + ——q (u)q(u),

we get

o™ 4e 1 o +te
[t e = [T e+ O 1) = 268(u2) + O(en’ B8 (5)

n_¢ n—e¢

where v € (max, u"(x), min, u"(x)). Rearranging terms and summing up all the higher
order terms in the expression O(...), we get the following result:

_20(uy) = (up) — é(uy) 5 A3
Aoy = eu? T 60 — (ur) + O(ep” At7). (6)

_|_

It we replace u™ by u” %, we get Aoy. So the error analysis is complete.

3 Numerical applications

In this section we test by means of numerical examples how far the error-estimates derived
in the previous section can be used to adapt the step size so that the error of the shock
location remains sufficiently small. We show two examples — a scalar problem and a
simplified combustion model.



3.1 The scalar example
We consider Burgers’ equation with a linear source term:

et (5u%)e = —p(u—a)

where
1L u=025
TN 0, w<0.25

The initial data define a Riemann problem

1, <0
M%®={0 ©>0

The source term shifts values of v which are greater than 0.25 towards 1 and values
which are less than 0.25 towards 0. With the given initial data the source is equal to zero
on both sides of the shock. The exact solution is

u(z,t) =u(z — 1t,0) .

3.1.1 Numerical wave speeds

The numerical solution is computed using the Strang splitting. The homogeneous con-
servation law is solved with an upwind scheme and the ODE is solved with the implicit
Euler scheme. Because the solution does not depend on At but on u/At, the step sizes
are fixed and only the relative time T, := pAt is varied. We get the following results
(see Fig. 1):

e For T,. small the shock speed is correct.
o If we increase T, the shock speed becomes wrong.
o If T, is large enough, two phenomena occur:

— For ratios of the step sizes % < 0.5 the discontinuity does not move at all.

— For % > 0.5 the discontinuity moves one grid cell per time step.

These phenomena occur because of the smearing of the shock profile. Let us look at
the single steps of the Strang splitting procedure (see Fig. 2):

e In the first step nothing happens:  ¢(u?) =0 Vi.



Figure 1: Shock curves of the numerical solutions for different T, 2L = 0.45 or % =

ely Az
0.55, and At = 0.01.
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e In the second step the upwind scheme produces one intermediate value. For ratios
% < 0.5 this value is less than 0.25 and for % > 0.5 it 1s greater than 0.25.

We consider the first case.

o For % < 0.5 the intermediate value is less than 0.25 so L, shifts this value towards

Z€ro.

e In the next time step %Lq is applied first. The intermediate value is shifted again
towards zero.

It T, is large enough, the intermediate value is shifted so close to zero that after one

At

time step the discontinuity has not moved at all. The case T > 0.5 behaves analogously.



Figure 2: The three steps of the Strang splitting (over one time step) for 7, = 100 and

2L = (.45,
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3.1.2 Local errors

First we have to decide how the changes of the shock location over one time step are to
be computed in this example. For the exact solution we have

1
ANOerger = =
2

and for the numerical solution we can write

NCum = DT Z(u?"’l —ul)

K3

where u! is the numerical solution at time ¢,, and location z;. The local error of the shock
location is the difference of these two expressions

E:= Nopum — DNOepaey = DY (ulT —ul) — %At- (7)

K3

K3

Now we want to test if the error-estimates derived in Section 2 are sufficiently exact
when the remaining terms of higher order are neglected. The local error can be written
as in (4). It reduces in the considered problem to

g == AO’l + AO-Q
because with the special choice of the source term &,; = 0. Also Aoy reduces to

Ny = 2e8(ul) + O(ep® At?)



as 6(ul) = 6(u”) = 0 and u — u” = 1. The same holds for Aoy (replacing u™ by u"*+

To compute Aoy and Aoy we remember (5)

2e6(uy) = /

o"—e¢

ol +te

o(u")dx.

Because of

) = (u— ) [ (w50 — S

(a depending on u) we have

o"+e z
/ 5(u”)d:1;:/ '

Defining u? to be the cell average

o(u”)dx

, forany x_ < o0" —€ and x4 > 0" + €.

we get

K3

Ao+ Aoy = Ax Z [5(uf) + 5(u?+%)] + O(e,uSAtS).

Dropping the higher order terms, we calculate the estimated error as

bt = DY [5@;) + 5@?*5)] .

K3

.

(9)

In our numerical computations the relative time 7, is varied. The step sizes At and
Ax are fixed and we look at the solutions at time T' =ty = 1. The relative (global) error

rel =

o —a(tn)l
lo(tn)]

Y

the maximum of the local errors, and the maximum of the differences between the esti-

mated and the exact local error are shown in the table below:

Trel

Erel

max(&)

max(Eest)

Difference

0.1 E-02
0.2 E-02
0.3 E-02
0.4 E-02
0.5 E-02
0.6 E-02
0.7 E-02
0.8 E-02
0.9 E-02
1.0 E-02

0.159448E-02
0.317808E-02
0.4761761F-02
0.633019E-02
0.806836-02
0.929683E-02
0.110235E-01
0.125525E-01
0.138511E-01
0.157083E-01

0.146037E-04
0.288762F-04
0.435261F-04
0.577346E-04
0.731136E-04
0.842295F-04
0.101773E-03
0.116287E-03
0.128711E-03
0.144855E-03

0.146037E-04
0.288762F-04
0.435261F-04
0.577346E-04
0.731135E-04
0.842294F-04
0.101773E-03
0.116287E-03
0.128710E-03
0.144854F-03

0.608730E-12
0.481385E-11
0.163281F-10
0.385089E-10
0.762074F-10
0.126439E-09
0.207968E-09
0.310409E-09
0.434888E-09
0.604318E-09




The errors depend linearly on T, — this is obvious as the spatial step size is not
refined. All the differences between the estimated and the exact local error are so small
that we conclude that the estimation formula is sufficiently exact.

3.1.3 Adaptation

Now we are ready to test if an adaptation based on & gives satisfactory results. This
adaptation works as follows: The estimated local error of the shock location & is ex-
pected to be smaller than a certain upper bound B. If this assumption is not satisfied,
the step sizes At and Ax are bisected so that the ratio % stays constant.

We define the upper bound for the local error to be

1, by < 3
B:05At00001, [ bo, 4§bo§8
bo+1, 9<bo

where by is the number of bisections. Notice that the factor 0.5 is the shock speed. We
choose € = 0.1. As before we look at solutions at time 7" = 1. In the table below you
see the various step sizes At? at time ¢ = 0, the number of bisections and time steps, the
resulting smallest At, and the relative error of the shock location.

At #(bisections) #(time steps) Resulting At B

0.01 4 1601 0.625000E-03  0.100392E-01
0.10 8 2554 0.396250E-03  0.676327E-02
0.20 8 1278 0.761250E-03  0.129742E-01
1.00 11 2020 0.488281E-03  0.945125E-02
2.00 12 1901 0.488281E-03  0.128107E-01

The resulting step sizes are all about the same size and the relative error remains less

than 1.3%.

3.2 The combustion model

We consider a simplified model for the inviscid reacting compressible Euler equations in
one space dimension. This model is a (2 x 2) - system, given by Burgers’ equation coupled
to a chemical kinetics equation. It has analogues in the Z-N-D theory and the structure
of the reacting shock profiles (see [1] or [4] for more details). Therefore we use it as a first
test example to investigate if an adaptation based on the estimation formula (4) would
also work for combustion problems.

The model equations are given by

uy + (%Uz —qZ), =0
Zy =®(u)Z

10



with initial data
1.0, =2>0

M%m:{—ﬂﬁ © <0

We use ignition temperature kinetics so that the function ®(u) is given as

I, w>0
MW:{O u <0

7 is the mass fraction of unburned gas with lim,_., Z(z,t) = 1. We set ¢o = 0.935 where
¢o 1s the heat release.

The initial data are chosen such that the speed of the combustion wave at time ¢t = 0
is 6(0) = 0.15 and a traveling wave solution evolves with a fixed speed &(t) = 0.7. The
solution u exhibits a combustion spike. In Figure 3 the solution profiles of v and Z at
time T'= 10 and also the shock curve are shown.

Figure 3: Reference solution of the simplified combustion model showing u, Z at time
T =10 and the shock curve.
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3.2.1 Numerical wave speeds

The numerical solution is computed using the Strang splitting where the equations

ug + (%uz)w = 0 (10)
Z, = @)z (11)
u = qoP(u)”7 (12)

—_

are solved separately in each time step. Equation (10) is solved with an upwind scheme
as in the case of the scalar example, equation (11) is solved by trapezoidal approximation
of the integral in the exact solution formula, and equation (12) is solved exactly. For
different step sizes At (with % = const.) the solution shows the following behaviour for
the combustion wave speeds (see Fig. 4):

e For At small the shock speed is correct.
o If we increase At, the shock speed becomes slower than the correct speed.

o If At is large enough, the shock speed remains unchanged: &(t) = &(0) = 0.15.

This phenomenon occurs because the combustion spike of the solution decreases when the
step size is increased.

12



Figure 4: Numerical solution of the simplified combustion model showing u after 1000
time steps and the shock curve for different At.
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3.2.2 Local errors

Again we have to decide how the local error of the shock location (given by (4))

£ = AUnum - Ao-eacact — AO—I + AO—Z + AO-f - Ao-eacact

£

spl
is to be approximated. Let us first consider . In (3) we drop the higher order terms.

Equation (10) defines

1 1
h(ug,u,) = §(ul +u,)  with  hy, = hy, = 5

Equation (12) gives

where, for the sake of simplicity, Z is assumed to not depend locally on ¢. Dropping higher
order terms in (3) we set the following inequality for &,

Eaptl = 1€t + (5 = 0)- O(2 AF))]
_ 1 _ 2.1,
- |(2 G)At 2 q0| (13)
< quAtz .
To approximate Aoy and Aoy we define the region of the smearing (2, xg) as
Tr = Tky TR = Tkp
where kj,, kr are defined such that
kr : ur, = maxu; and kg:=min{i|u; = u, }.
Using ¢’ = 0 we get
1
o(u) = §At b(u) go . (14)

For @ > o(t) we have Z = 1 and we approximate Z by Z = 1 over the region of the
smearing (xp,xg). Then (14) gives

LaoNt >0
)= { 050 UZD e e (15)

We use the equal area rule to compute the shock location o := x, (where the values of

u on the left and right sides of the shock are uy, and uy, and k, € IR). We define kq to
be the largest index for which u; > 0.

14



Now we are ready to compute Aoy and Aoy as

L(ky — k) qoANa At

gl a1
up, — U, + %qut ’ '

1
_n+3

AO—I = n+i

AO-Q =

Summing up the above results we estimate the local error of the shock location by

(16)

1
gest = |A81 —|— A82| —|— ZQOAtQ

3.2.3 Adaptation

Now we test if an adaptation based on &4 gives satisfactory results. If & is not smaller
than a certain upper bound B, the step sizes /At and Az are bisected so that the ratio

A

i
~, stays constant.

We set the upper bound for the local error to be
B :=0.01- At.

We look at solutions at time 7' = t5 = 10. Listed in the table below are the various step
sizes AtY at time ¢ = 0, the number of bisections and time steps, the resulting smallest
At, and the relative (global) error of the shock location which is now defined by

_ |Z£1V:_01(A0-num - AUeaﬁaclﬁ)n|

ET@ =
’ o™
At #(bisections) #(time steps) Resulting At B
0.1 5 3199 0.312500E-02  0.550740E-02
1.0 8 2560 0.390625E-02  0.694970E-02
2.0 9 2560 0.390625E-02  0.694970E-02
5.0 11 4090 0.244141E-02  0.432801E-02
10. 12 4090 0.244141E-02  0.432801E-02
20. 13 4090 0.244141E-02  0.432801E-02

The resulting step sizes are all about the same size and the relative errors remain less

than 0.7%.

4 Conclusions

We have analyzed the local error of the shock location for a scalar one-dimensional Rie-
mann problem and computed two numerical examples. We have estimated the local errors
of the shock location in the numerical computations and shown that an adaptation of the
step size based on these estimates works well.

Using our experiences with the simplified combustion model we are next going to
test an adaptation for the inviscid reacting compressible Euler equations in one space
dimension.

15
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