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1. Introduction.

The theme of this work is the construction of univariate prewavelets that are generated by translates
of a radial basis function, where the translates are defined by a sequence of non-equally spaced
centres. We first explain why radial basis functions are useful for the construction of prewavelets.

The purpose of wavelet and prewavelet decompositions of univariate square-integrable functions
is to decompose those functions both into their different frequency components, much like Fourier
analysis does, as well as with respect to time, which is not possible with standard Fourier analysis.
Every such decomposition of a given square-integrable function f, say, into a time/frequency series
starts with establishing an initial approximation f; to f from a linear space Vj that is an element
of a nested sequence of spaces

VoCV1CV2C"'CL2(R) (1.1)

from which the (pre)wavelets are taken. One requires that
Uvi=1m, (1.2)
=0

so that every f € L?(IR) can be approximated arbitrarily closely in the L?(IR) norm by an f; € Vi
if k is sufficiently large. Then, orthogonal complements W; C V;4 of V;, j € Z are studied. In
other words, one seeks spaces W; C V;4q such that W; L V; and V; @ W; = V;4;. In fact, the
sequence of spaces (1.1) is usually biinfinite, but for the results of this paper it is more appropriate
to restrict it to an infinite sequence.

By constructing the W; in the outlined fashion, we get an orthogonal decomposition of f
into an fy € Vp plus a series of g, € Wy, £ = 0,1,...,k — 1. Therefore a decomposition of any
square-integrable f into mutually orthogonal components, corresponding to the different frequency

components in Fourier analysis is found. This can be viewed as a spatial orthogonal decomposition
L*(R) = Vo + Wo + Wy + Wa 4. (1.3)

The prewavelets are functions that generate such W;. It is preferable that those prewavelets have
local support or that they decay, so that the expansion of f’s components in each W is a localized
decomposition (with respect to time). The prewavelets are called wavelets if they are orthonormal
bases of the W;s, but we are only dealing with prewavelets here. It is always the function f;, € Vi,
which may for instance have been obtained by quasi-interpolation (e.g., Buhmann, 1993c), that

is actually decomposed computationally by the so-called fast wavelet transform. Therefore it is
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important to the effectiveness of the decomposition that the spaces V} allow fi to be a sufficiently
accurate approximation to f, even if k is moderate. This is the point where the efficacy of radial
basis functions can be exploited.

We want to explain this point further. Radial basis function methods are generally known
to be useful and accurate for the approximation of functions; cf., e.g., the review paper by the
author (1993a) which also includes an extensive list of references to other people’s work. The
key idea is to approximate from a space spanned by translates of a single function p, usually
of global support, where the translates take the form p(] - —z;|) and the z; are given “centres”.
They were first introduced as interpolatory schemes but, because they were found to provide high
quality approximants, they are now used for many different approximation tools. In this paper, we
submit another one in the shape of prewavelets. Radial function methods are easy to implement,
and so is the approach proposed here, as we shall see, although special considerations are needed
for the matrix computations involved and evaluation of approximants if the amount of data is
large (Powell, 1992). Among all radial functions currently in use, the multiquadric radial function
o(r) = \/m is probably best understood, both theoretically and from a practical point of
view, and also it is the one most frequently used, partly by virtue of the variable real parameter 7.
Therefore, we shall focus on it in this article.

Up to now, the most frequent choice for the aforementioned V; are spline spaces with equally
spaced knots (Chui and Wang, 1992, for example), i.e. spaces of piecewise polynomials with
knotspacing 277 for the V;. These spaces are spanned by B-splines which have compact sup-
port. This works well except that the resulting approximations are always of limited smooth-

ness. However, if one takes spaces V; spanned by the multiquadric functions centred at 277k,

ie. \/(-—277k)2 + 42, k € Z, then the known theory of radial functions (Buhmann, 1993c, for
example) provides essentially the same approximation order as splines and infinite differentiability
as well. Sometimes better (spectral) approximation orders are obtained too (Buhmann and Dyn,
1991), but this depends strongly on f’s smoothness. The price of these advantages is giving up
compact support of the basis functions, but there are generating functions for the V; from radial
basis function spaces that diminish very fast toward infinity. Such generating functions in the
univariate multiquadric setting with scattered centre points are found in (Powell, 1990), so that
a theory of prewavelets on non-equally spaced data may be established for radial basis functions.
Therein lies the purpose of this work. We therefore study prewavelets that stem from nested spaces
V; spanned by a radial basis function, using in particular the multiquadric function and allowing

the centres to be scattered. A very general account of generating prewavelets from shift-invariant
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spaces (including radial function spaces with gridded centres) is given by de Boor, DeVore and Ron
(1992) but their technique cannot be applied to scattered data. The main focus of that paper lies
in compactly supported prewavelets (mainly from box-spline spaces) which do not exist in spaces
spanned by radial functions, other than ¢(r) = r?**1 k € Z,, in one dimension.

We will show how to find prewavelets 1»; € V; that are orthogonal to V; and generate

WOI{ Z Cj¢j

j=—o0

c = {c]’}?’;_oo € ﬁ2(Z)}, (1.4)

with Wy L Vg, where Vg and V; are spaces generated by non-equally spaced translates of a radial
basis function such as the multiquadric function o(r) = \/m Here, Vo C Vj is obtained by
demanding that these two spaces be produced by way of two sets of scattered centres, one a subset
of the other. The “finer” set generates Vj, of course. Our principal example is the multiquadric
radial function but the setup in this work is sufficiently general to admit other choices of radial
functions.

Once it is demonstrated how Vg, V1 and the prewavelets that generate Wy are found, the same
principles can be followed to establish a whole sequence of nested subspaces V; of L*(R) and to
decompose the space as in (1.3). Incidentally, wavelets can be obtained from those prewavelets by
a standard orthonormalization procedure.

Prior work to this paper are the papers about radial basis function prewavelets due to (Buh-
mann, 1993b), (Chui, Ward and Stéckler, 1994) and (Micchelli, Rabut and Utreras, 1992) which
treat the case of equally spaced centres only (some of the preliminary results in the first paper
mentioned also apply to scattered centres, and, on the other hand, the results in the third paper
apply to the multidimensional setting too).

There now follows a section with preliminaries where the spaces V and V; are defined. There-
after, there is a section containing the principal results of this paper, where the prewavelets are
explicitly constructed and some of their fundamental properties established. Several examples to

which our analysis applies are stated at the end of that section as well.
2. Preliminaries: The spaces V;, and Vj.
Let two sequences of real numbers

X = {"'<$_1 <o <21 <9 < }

and

z:{"'<T_1<T0<T1<T2<"'}
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with 79,1 = ¢;, ¢ € Z, be given. We assume that these points satisfy the boundedness conditions

Ki=sup(Tiy1 — ) < 00, 6 := inf(1i41 — 7)) > 0.
=Y/ 1€L
f .
We let {BS}%2_  and {B;}52_ . be the sequences of B-splines of degree n on the knot-sequences

x and 7, with supports [2;, 2 j4n41] and [7;, Tj4,41], respectively, normalized to form a partition

of unity. Let ¢ € C(R) with ¢(z) >0, 2 € R,
#(z) = O0(Jz|7""17%), a — +oo, for some positive ¢, (2.1)

</3(t) >0,t € R, and ffooo ¢ = 1 be given. For instance, we may take ¢(t) = %g”(t) where p(?) is
the multiquadric function /t> + 4%, n = 1 and ¢ = 1. We consider the functions

Cj:=BS+¢, jeLI,

. (2.2)
In (2.2), * denotes convolution. We immediately record the two important identities
Y Fi@) = Y Fi(z)=1,
= = (2.3)
Yo ICi@) =Y Cia)=1.
j=—o0 j=—o0

They are a result of the fact that the B-splines form a partition of unity and that the integral
of ¢ is one. With the example of ¢ as suggested above and n =1, C'; and F; are second divided
differences of the multiquadric function with respect to the sequences x and , respectively (Powell,

1990). We define

Vo = { Z C]'C]'

j=—o0

=) e L),

o0

Vl = { Z C]'F]'

j=—c0

c={c;}_. € £2(Z)}.

We note that if ¢ is the d-distribution, then we get the spline spaces considered in (Buhmann and
Micchelli, 1992). We shall now prove two elementary facts about these spaces. In the next section,

we shall proceed to constructing the prewavelets that generate the orthogonal complement Wy as

in (1.4) of Vj in V5. We begin with
Proposition 1. The space Vy is contained in the space V.
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Proof. This proof has already been presented in (Buhmann, 1993b), but we repeat it here for the

convenience of the reader. Let ¢ = {c¢;}°2 € (*(Z). Hence the function f € V; defined pointwise

by
for= Y o [ Bwew-ndy  sem (24

is defined by an absolutely convergent series and bounded in modulus by ||¢||, because ¢(z—y) > 0
and the B-splines form a partition of unity. Now recall that there exists a positive constant A that

depends only on n (de Boor, 1976, p. 37) so that

o0

2: Cj( n+1 )UPB§

Mell, < L
j=—o00 Jjtn+1 J

el 1<p< (2.5)
P

where || - ||, denotes the (P(Z) or the L?(IR) norm as is appropriate. If only p = oo is admitted into
(2.5), A is bounded below by 27"7%\/7n/(2n + 1) (this is a recent result due to Scherer; de Boor,
private communication). It follows from (2.5) with p = 2 and from the Cauchy-Schwarz inequality

that we may exchange summation and integration in (2.4). It is the same as

= [ % Bt -

j==—o0

which can be re-written by the Curry—Schoenberg theorem (de Boor, 1976, p. 36) as

S = [ 3 GBiwe -y

j==—o0

with ¢ € K2(Z). Hence, reverting back to the form of f with the sum outside the integral, f € V7,

as required. [

It will be convenient in the sequel to write the spaces Vy and V; as Sk, ¢ and S, , 4, respectively,
so that Sy , 5, for example, is the space of splines of degree n on the knot sequence x that are in
L*(R) (by (2.5) with p = 2).

Of course it is relevant to our discussion that (1.2) can be satisfied in the present set-up.

Indeed, we have
Theorem 2. Let {7%}32, be a sequence of nested knot sequences in R, i.e. 70 C 1 C - -+, where

the nesting is in the same sense as in X C 7, that satisfy

K 1= sug(rf+1 —7F) =0, k — oo,
j€



and become dense in R for k — oo. Here 7% = {T

. Let Vi = Sk 4. Then

G Vi = L*(IR). (2.6)

Proof. As the Fourier transform is an isometrical isomorphism L?(R) — L*(R), we may prove (2.6)
in the Fourier domain. Let h € C.(R), C.(IR) denoting the space of compactly supported continuous
functions on the reals. This is dense in L2(R). We need to show that & can be approximated
arbitrarily closely in L?(RR) by a function of the form 3"~ ’[k]qb if k is large enough, where

¢ ={¢;}52_., € (*(Z) and where the {B; ’[k]}

j=—00 ]
are the B-splines in STk .6 Since (/5( ) >0
[k]

]_ o0

h/(b € L*(R)and it can be approximated arbitrarily closely by 37 if k is large enough.

j=—00 ]

This shows that the theorem is true. ]

3. A prewavelet on non-equally spaced centres.

In this section we shall construct prewavelets on non-equally spaced centres with the aid of certain
“fundamental functions” of splines of degree 2n + 1. Precisely, suppose that there exist d’ =

{di}se e (Y(Z)\ {0}, { € Z,such that

Z d[/ B @ —y)dy)dy,  a€R, (3.1)

k=—0c0
where B£’2n+1 € S;on41,s are the B-splines with support [74, Tet2n42], gives the identity

0o 1 if £ =7 and n odd,
/ Y — Tjgpns1)Ve(y) dy = { 1 if£=j45+4+1and n even, i, Le 7. (3.2)

0 otherwise,

We call these ¥, “fundamental functions” because their construction is related to the use of fun-
damental functions of interpolation for constructing prewavelets in (Chui and Wang, 1992) and in
(Buhmann and Micchelli, 1992). We define 1, := \IJ(nH) This is in Vj because (n+1)-st derivatives
of B-splines of degree 2n + 1 are expressible as finite linear combinations of B-splines of degree n
(see Schumaker, 1981, p. 121, for instance, but recall that the B-splines we use are normalized). In
order for the differentiation to result in an absolutely convergent series here we need that 7,41 — 7;
is bounded away from zero by é > 0 uniformly in ¢, because the formula for the derivative of a
B-spline involves division by differences of 7;s. We have already required that this be true.

We assert that the desired orthogonality conditions ¢, L Vp hold, i.e. that
/ o(2)Cy(z)dz =0, k,lecZ.
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Together with (1.4), they imply Wy L Vi. This orthogonality is settled by a simple argument using
integration by parts: Suppose (3.2) holds for a suitable d* € (}(Z). Let, for any integer £, s; be

deﬁned by
so(x) = ™ E di.B f2n1 (z) reR (3.3)
L xn—l—l ? : :

We get, using the fact that C'; and ¥y, and all their derivatives up to degree n 4 1 are absolutely
integrable and vanish at infinity, due to (2.1) and the B-splines’ compact support,

/ / B(a — )6 ()dy/ s26(e — y)(y) dyda

- n+1/ Z ppd(e — zp)Va(x)de =0, jeZ, (34)

OOk_

because the (n + 1)-st derivative of B is a finite collection of delta functions é(- — ), k € Z, with

real coefficients p). Before we state our principal theorem, we introduce some notation, namely

- / T oy — ) dy.  BeR,

in other words ® = ¢ * ¢(—-). This is a continuous function because of (2.1).

Theorem 3. The functions (3.1) exist as desired and they are such that 1, € Vi and Vi = Vo & Wy,

if the three sufficient conditions

Tit2n42 — Tj Tk+2n+2 — Tk :
sup ———  su (t—71) <21nf7 inf ®(0),
jeg 2n+2 - ogoo) k_z;oo “ g €L 2n+2  6€(Th—Thin+1,Th42n+2 ~Th4nt1) @)
(3.5)
_ _ 2
sup T2kt2nt1l — T2k—1 < Qmin{l, inf (Tokt2ntr ZM_I) inf (I)(O)} (3.6)
ker n+1 kEL (n—l— 1) 6€(0,Tokon+1 —T2k—1)
and
. Tk4+2n+2 — Tk . 1
inf —4——-~ inf o(0) > = 3.7
kel 2n + 2 OE(Th —Thtn41,Th42n+2—Th+n+1) ( ) 2 ( )

hold. In other words, the 1, are prewavelets, since they generate Wy L Vo with Vi = Vo & Wy.

These prewavelets satisfy the summability properties

Z |the(x — ;)| < const. < oo uniformly inz € R and { € ZZ (3.8)
j=—o00
and

Z |1e(z)| < const. < oo uniformly in z € R. (3.9)

If=—0c0



It follows from our proof of the theorem that (3.5), (3.6) and (3.7) may be replaced by three weaker
but harder to verify conditions. (That is the reason why we have opted to mention them now rather
than in the statement of the theorem.) In order to state them, it is convenient to adopt yet another

notation, viz.

Dy = / / oy — Tk+n+1)B§’2n+1(y — 2)p(z) dz dy, j. ke . (3.10)

This is well-defined because of (2.1). The new conditions are

Y Dj < 2inf Dy, 3.11
j'Egk:—oo " llﬂléZ * ( )
Tokt2n+1 — T2k—1 . { R Y N VN T~ P }
sup 2L g win{1uf - [ GRIBR )P dy (3.12)
€ o]
and
inf D 1 1
rer Bk > %) (3:13)

respectively. Note that there are sets = that satisfy these conditions, because, for instance, any
small enough pertubation of r = %Z does for the multiquadric function ¢ = %g", o(r) = \/m,
n = 1, if v is small enough. For that choice, the difference between the right and the left-hand
sides of (3.11) is a § for small v, and so is the difference between the right and the left-hand sides
of (3.12). The left-hand side of (3.13) is ~ 2 when 7 is small.

Proof. Condition (3.2) means that the d* are the (-th row of the inverse of the bi-infinite matrix
D = {Djr}5%=_o, when n is odd, otherwise it is the inverse of D shifted by one. This matrix D
is a continuous linear operator D : (P(Z) — (P(7Z) for p € {1,00} (thus for all p € [1, 0] by the
Riesz convexity theorem) as we shall see now. Indeed, the matrix D has ('(Z) norm one because
the B-splines form a partition of unity and because it was a condition on ¢ that its integral be
one. Further, the matrix D has bounded (°°(Z) norm. This is a consequence of Schumaker’s (1981)

formula on p. 128 for the zero moment of a (normalized) B-spline, namely

Ti+2n42 — T
D[] < sup % te(SUP Z At — 13). (3.14)
J — 00,

The expression on the right-hand side of (3.14) is finite because k < oo and (2.1), together with
the boundedness condition 7441 — 71 > 6, k € Z. Thus, under the conditions stated in the theorem,

|D]|co < oo. If (3.11) instead of (3.5) is demanded, the (*°(Z) boundedness of the operator D

becomes, in fact, trivial.



D may be inverted in (*°(7Z) by a Neumann series approach, because ||[D — I||o < 1, as we
shall now derive from (3.5) (or (3.11)). (Here [ is the identity matrix on Z x Z.) To explain this
point in detail, observe that there is a 8 € (Ty, — Thpnt1, Tht2nt2 — Thtnt1) Such that

Dkk = / @(Z)B£’2n+1(7’k+n+1 + Z) dz

— 00

Tk+2n+42 ~Tk+n+1
= / <I>(2)B£’2n+1(7'k+n+1 + z)dy
T,

k—Tk+n+1

Tk+2n+2
®(0) / B () dz

k

— Tk—|—2n-|—2 — Tk @(0)
2n + 2 '

Nonnegativity of D’s entries and || D]|; = 1 imply Dgr < 1 and so
1D —1I|s < \’D\’m+1—2iH%Dkk- (3.15)
€

The penultimate display, (3.14), (3.15) and (3.5) give the desired estimate ||D —1||s < 1. Therefore
D is a homeomorphism on (°°(Z), whence the coefficients df exist with sup,¢s ||d*||1 < co. That the
weaker requirement (3.11) may replace (3.5), with D’s invertibility by Neumann series remaining
intact, can be seen from (3.15).

It is a direct consequence of d* € (1(Z) and our conditions in the statement of the theorem

that

OO N Tk+2n+2 — Tk
Uole —15)| < sup &(t — ;) sup ||d*||; sup =22 =%, 3.16
3 W)l e 3 ol wp T (3.16)

J=—00 jI—OO

The right-hand side is finite because the right-hand side of (3.14) is. In order to deduce (3.8) from
(3.16), one uses the fact that (n + 1)-st derivatives of B-splines of degree 2n + 1 are finite linear
combinations of those of degree n (Schumaker, 1981, p. 121). Precisely, the left-hand side of (3.8)
is bounded above by
% sup i Pt — Tj)supHdzHl supw(%é) o (3.17)
Cer k€L

tE(—o00,00) n+1

j=—o0
according to Schumaker’s differentiation formula. If (2.1) holds also for derivatives of ¢ of order at

most n + 1, then the bound (3.17) may be replaced by
sup i ¢(”+1)(t—Tj)supHd[Hlsupw,
te(—00,00) 1/ kez  2n+2

j==00
which is a bound that does not contain the increasing factor §="~1 as the spacing of the 7;’s

decreases.



We have to show (3.9). By the same arguments as in the penultimate paragraph,
|1D =11 <||D|x+1=2inf Dyy.
kEL

Hence, under our assumption (3.7) or, in its weaker form, (3.13), ||D — I|j; < 1. So the coefficients

d% are also absolutely summable over ¢ € Z. Using the fact that the B-splines {Bi’m—'—l}?:_oo form
a partition of unity, we may conclude from dy = {d{}2__ € (1(Z), k € Z, and (2.1) that
> 1We()] < sup [|d]s (3.18)
Py kEL

This inequality implies (3.9) because Schumaker’s differentiation formula for B-splines supplies once

more the explicit bound

© —n—1
> L)l < Fsuplldnl(38) (3.19)

If=—0c0

A remark as the one after (3.17) applies here as well: in this case, (3.19) may be replaced by

S lee)] < sup el / ).
k€L — 00

t=—0c0
The claim Vi = Vo & Wy is established as follows. Recall that every g € V; is expressible as an
infinite linear combination of Fjs with square-summable coefficients. We require a decomposition
of each F; € V; first. To this end, we seek coefficients Bjj, j,k € Z, such that the orthogonality
conditions

n; = F]'— Z B]ka Ly, L e, (320)

k=—0c0

hold for all integers j. In other words, we require that

> BilCr,Co) = (F;,Cy),  LET, (3.21)

k=—0c0

where (-,-) is the standard L*(R) inner product. Once such Bj; are found, we shall expand 5; in
terms of the ;s to reach the desired conclusion F; € Vo @ Wy.

As the entries of the symmetric matrix x = {(C%, C) }x rez are nonnegative and the B-splines
form a partition of unity, the matrix has (!(Z) and (*°(Z) norm sup,cz(Tost2nt+1 — T2k—1)/(n+1).
This is finite because x is. More importantly it is true that, under condition (3.12) or (3.6),
I — xli = |l{ = x||]ec < 1. The specific argument is as follows: Firstly, we note that

Tok+2n+1 — T2k—1
n+1

I = x]l, < sup —|—max{—1,1—21nf<0k,0k>}, p=1,00, (3.22)
rer ken

10



and then

(C, Cr) = / / O(z)Bi(z + z)dx dz
7'2k+2n+1 [e'e]
/ / O(2)Bi(z 4 z)dx d=

2k—1 — o0
T2k-|-2n+1 — T2k— 1)2 (0)
(n+1)

for a suitable 8 € (0, Tag42n4+1 — T2k—1). Thus, according to the conditions in the statement of our
theorem, the right-hand side of (3.22) is less than one. Hence x is a homeomorphism with inverse
x~!in (1(Z) and in (*°(Z). That the weaker requirement (3.12) is appropriate follows from the
last display and from

(i = 5= [ 1P dy

21 J_ oo
by the Parseval-Plancherel identity. (The latter may be applied by (2.5) [for p = 2] and the
integrability of ¢.)

The desired coefficients are Bjj := E[€Z<Fj,0g>xgkl; we denote the matrix {B;x}75_

=—00

by
B. The matrix B is well-defined and ||B||1, || B/« are finite because of (2.3) and y’s invertibility.
Hence, in particular, n; € V; by Proposition 1 and Theorem 275 on p. 198 of (Hardy, Littlewood
and Pdlya, 1934).

To advance the proof, we require

Lemma 4. Letn;, j € Z, be defined by (3.20). There exists, for each j, H; such that H](.nH) = ;.

Moreover,
sup > [{@(- = man), Hj)| < o0 (3.23)
JEL T

and
su =T | < oo. 3.24
ke%];m' 20). 1) (321)

Proof. We note first that there is such an H; for each integer 7. We can provide it explicitly:

Hy(z) = — /_Oo (@ — (6 dt, =€, (3.25)

n! J_ o

where ()7 is a truncated power. It follows from 7;’s definition, ||B||. < oo and the upper bound

(2.1) that H; is well-defined. We observe

(Hj,¢(- = 720-1)) = 0, teZ. (3.26)

11



In order to prove (3.26), we note that, by integration by parts and (3.20),
0= <77]7 C[>
= [ Bl ) dy)

— 00
o0

:<Hj, Z uﬁ¢(-—72k—1)>7

k=—0c0

where the {u§}%2 __ are fixed multiples of the coefficients of the (n + 1)-st order divided difference
operator based on the knots associated with B§’s support. The last display implies (3.26) as
(Hj,¢(- — 71)) is bounded but not constant, whereas there are no nontrivial bounded sequences
(except constants) in the kernel of the aforementioned difference operator.

Therefore, by taking an (n 4 1)-st divided difference of (¢(- —y), H;) with respect to y at the

n+ 2 points Tog—1, Toky Tok+1s T2k+3s T2k+5s - - s Tok+2n—1, and by the Peano kernel theorem,

(6 = 72 H)I < {00 = 7o) [ranranos = masma] " i) (3.27)

for a suitable positive constant C'. Here, 7o), € (T2k—1, Takt2n-1). If we sum (3.27) over j € Z, the
result is bounded independently of k, because Z;’;_Oo |n;] is uniformly bounded due to (2.1), the
compact support of the B-splines and ||B||1 < oo. By the same token, if (3.27) is summed over k,

the result is again bounded, independently of j, since n; € L*(IR) and x < oc. [

We continue with the proof of Theorem 3 and recall that it is still our aim to expand each 7;
in terms of the v, which proves F; € Vo @ Wy. Equipped with Lemma 4, our goal is precisely to

show the following lemma:
Lemma 5. Let n;, j € Z, be defined by (3.20). Then

nj = Z Ajptbr, Jj €L, (3.28)

k=—0c0

for coefficients A;y, which are absolutely summable over j € 7, as well as over k € 7.

Proof. We observe immediately that it suffices to prove instead of (3.28) that
Hj= Z Ajp Vo, JEL, (3.29)
k=—00

for suitable coefficients A;; and for an f{j with f{](.n-i'l) = 7;, because we may differentiate on both

sides of this identity (n+ 1)-times. We claim that, due to the form of the ¥ and due to properties

12



of H;, the following choice is suitable:

Hj = E;oz—oo<¢( - TZk—I—n—I—l)v Hj>\112k7 n Odd7

H; = Z:O:—oo<¢('_7—2k+n)vﬂj>\p2k7 n even,

the series being absolutely convergent because the Wy, are uniformly bounded by sup,cy ||d||: and

jez, (3.30)

because of Lemma 4. Theorem 275 on p. 198 of (Hardy, Littlewood and Pélya, 1934), Lemma 4 and
|d*||; < oo imply that the right-hand sides of (3.30) are in V>"*!, where we let V"' = 8, 5,11 4.
By taking inner products (-,-) with ¢(- — 7,) on both sides of (3.30), we observe that (3.2)

implies for odd n
(S = Tatansr). M) = (60 = maepnin), H), L EL,

while (3.26) implies
(@(- = Taepn)s Hj) = (@ = Taeen), Hj) =0, L€ L.

There are analogous identities for even n.

Nonsingularity of D as an operator (*(7Z) — (*(7Z) means that the implication
few, FeVit FUt) = f(¢(-—7), F)=0VLeZ = f=0

holds. Hence f{](.nﬂ) = H]('RH) = 1;, as required.
We have thus found the coefficients A;, j,k € Z. They are not only absolutely summable over

k, but also over j because of Lemma 4. Therefore Lemma 5 is settled. ]

Nowlet g€ Vi, g=> 02 ¢;Fj, for c = {c;}2 € (*(Z). Then, according to Lemma 5,

j=—00 j=—00

g = Z Z CjAjk¢k+ Z Z chjka

k=—co j=—0c0 k=—co j=—0c0

with
2

i ( i chjk)Q < o0, i ( i Cijk) < . (3.31)

k=—o0c0 j=— k=—o0c0 j=—

The second inequality in (3.31) follows from the fact that > ,- _ |B;x| < const. < oo and

— 00

Z;’;_Oo |Bjir| < const. < oo, uniformly in j and k, respectively, and from Theorem 275 on p.

198 of (Hardy, Littlewood and Pélya, 1934). The first inequality in (3.31) is true by Lemma 5. m

We remark that the assertions of Theorem 3 remain true if ¢ is no longer positive so long as it
is explicitly demanded that [|D — I||oc < 1, |[|[D = I|l1 < 1 and ||y — I]|ec < 1, in order that the

Neumann series argument can be applied.
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Theorem 6. Given the set-up of Theorems 2 and 3, there are prewavelets {1y} ;2 _ ., k € Z4, in

Vit1 and spaces Wy, spanned by sums of those prewavelets with square-summable coefficients such

that Vg1 = Vi @ Wy, k € Z4, and

LY(R) = Vo & @ Wi, (3.32)
k=0

if the assumptions of Theorem 3 hold for all T*.

Proof. Let f € L*(R) and let a positive ¢ be given. Due to Theorem 2, there are k € Z, and
fr € Vi such that

If = fill3 <e.

Further,
fexrr=fotge, [ €V, g€ Wi, VO L < E.

Therefore, the arbitraryness of ¢ > 0 and the orthogonality between different Wys imply (3.32). m

We point out that, according to the requirements of Theorem 3, it may not be possible to construct
prewavelets that span W) for arbitrarily large k depending on 7%, the prescribed radial function
and its parameters. Therefore, in practice and when using multiquadrics for instance, v must be
chosen suitably to allow that the sufficient conditions for the existence of prewavelets with small
stepsizes in Theorem 3 are met, where the stepsize should be according to the resolution we wish
to obtain.

Further examples to our theory can be obtained by applying it, for example, to (7‘2 + 72) %ﬁ
(where 8 € Z\ 2Z4). Quickly decaying radial functions with positive Fourier transforms ¢(r) =
exp(—72r?), ¢(r) = exp(—77), etc. can be used too, in this case directly as ¢ without any differen-
tiating. The essential feature that admits derivation of suitable decaying functions from the radial
functions by differentiation is that o be positive and integrable outside a neighbourhood of the
origin, with perhaps an integer order singularity at zero. It is the purpose of the differentiation to
resolve this singularity. More specifically, o(r) = \/m3 with ¢ = o™ or ¢(r) = 7,2_|1_—W2 are both
suitable choices for n = 3 and n = 0, respectively, except they have to be normalized to integrate
to one.

It is highly relevant to the computation of the prewavelets that, if ¢ = o("*1) as in our initial
multiquadric example for n = 1, the entries of the matrix D are a constant multiple of

/_Oo o(y — )0k (y) dy, (3.33)

o0
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where ¢F is a (2n + 2)-nd order divided difference of the function p based on the centres that are

f 27’L+17

associated with B’ s support. The formula (3.33) is derived from (3.10) by integration by

parts. By the same token, the prewavelets themselves can be expressed as constant multiples of

o0

Y difeky),  yeR,
k=—o0

instead of (3.1). This observation has been used to create the image of the multiquadric wavelet
for n = 1 that is attached to this paper. It uses integer data randomly perturbed (by at most 0.4)
and v = 0.1. The positions of the centres are indicated by crosses. So we see there a multiquadric
prewavelet for scattered centres, probably for the first time in the literature. It remains to add,
however, that the theory presented here is far from complete, which reflects the fact that the
approach to scattered data prewavelets is substantially different from that of prewavelets on gridded
data. For instance, no Riesz basis properties are shown of the prewavelets presented here nor are
there concrete estimates for their asymptotic behaviour at infinity.

In order not to end on a downbeat note, we point out that it was shown in (Buhmann, 1993b)
how to derive explicit decay estimates for prewavelets and decomposition coefficients A;;, Bjj, if
¢ is a derivative of a radial basis function from the class discussed in that paper and the centres
are equally spaced. In this context it is also important to note that, when the centres are equally
spaced, Riesz stability for the (*(Z) norm can be shown, so that the prewavelets here form a Riesz
basis for Wy. We do not elaborate on this point, however, because the subject of this paper are
prewavelets on non-equally spaced centres. (This claim is actually easily established using (2.5) and
the fact that D is a homeomorphism on (*(Z)—the latter follows from D being a homeomorphism
on (P(Z), p € {1,00}, and from the Riesz convexity theorem.) The subject of Riesz stability will

be one of the main topics in the forthcoming paper (Buhmann, 1994).
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