Restarted GMRES preconditioned by deflation

J. Erhel !, K. Burrage 2 and B. Pohl 3

Research Report No. 94-04
July 1994

Seminar fur Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Zirich

Switzerland

1INRIA, Campus de Beaulieu, 35042 Rennes, France.
2Department of Mathematics, University of Queensland, Brisbane 4072, Australia.
3Seminar fiir Angewandte Mathematik, ETH Ziirich, 8092 Ziirich, Switzerland.



Restarted GMRES preconditioned by deflation

J. Erhel !, K. Burrage 2 and B. Pohl 3

Seminar fur Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Zirich

Switzerland

Research Report No. 94-04 July 1994

Abstract

This paper presents a new preconditioning technique for solving lin-
ear systems. It is based on an invariant subspace approximation for the
restarted GMRES algorithm. It uses the flexible GMRES scheme by de-
signing a new preconditioning after each restart. Numerical examples
show that this approach may converge almost as fast as fullGMRES at
a, possibly, much lower cost.
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1 Introduction

The GMRES algorithm 1s commonly used to solve large sparse nonsymmetric
linear systems. The convergence behaviour of GMRES is related to the eigen-
values and also to the pseudo-eigenvalues (eigenvalues of closed matrices) [11].
Recently, the convergence behaviour of the full-version has been analyzed [6]
and superlinear convergence has been related to the convergence of Ritz values.
However, because of memory requirements, a restarted version must be used
in general. It has been observed that the convergence of the restarted algo-
rithm depends heavily on the dimension of the Krylov subspace and may be
slower than in the full case [7]. It appears as if the restarting procedure loses
information on the smallest Ritz values. An adaptive procedure is proposed
in [10] to choose the restart frequency according to the convergence and work
requirements.

This paper presents a preconditioning technique which aims at keeping the
information when restarting. The idea is to estimate the invariant subspace
corresponding to the smallest eigenvalues. Indeed, the rate of convergence is
mostly governed by these smallest eigenvalues.

Many authors have proposed preconditioners or hybrid methods based on
eigenvalue estimations. For the Conjugate Gradient algorithm, polynomial pre-
conditioning aims at minimizing a certain norm. Two classical choices lead to
the least-squares polynomial or to the minimax polynomial [9; 13]. The quality
of the minimax polynomial depends strongly on the eigenvalue estimations. An
adaptive procedure which is based on a recursive estimation of the eigenvalues
is designed in [1, 2] for both definite and indefinite systems.

Polynomial preconditioning is closely related to hybrid methods which com-
bine, for example, a GMRES algorithm with a Richardson iteration. The idea
is to use first GMRES to approximate both the solution and eigenvalues and
then to use Richardson iteration using a polynomial derived from the estimated
eigenvalues. A survey of hybrid methods which rely on eigenvalue estimations
can be found in [12]. These estimations are usually done by the power method
or by the Arnoldi technique but they can also be computed from modified mo-
ments [5]. Other hybrid solutions do not rely on eigenvalue estimations but use
directly a polynomial generated by GMRES itself [12]. An alternative approach
discussed in [17, 15] is to build a preconditioner based on the application of
GMRES.

In this paper the eigenvalue technique is not used, but rather an invariant
subspace approach. This idea has been developed in [8, 16] for the solution
of nonlinear parameter-dependent systems of equations, in which a Newton
method is used in the invariant subspace corresponding to the eigenvalues of
the Jacobian near the unit disk and the usual fixed-point scheme is used in
the orthogonal subspace. Therefore, the convergence is accelerated since the
eigenvalues in the orthogonal subspace can be made small enough by a deflation
approach. This idea has been applied in [4] in the linear case to the iterative



methods based on various splittings of the matrix such as Jacobi or Gauss-
Seidel splittings. It is shown there in numerical experiments that the relaxation
methods can be dramatically accelerated.

However, the GMRES algorithm cannot be easily described as a fixed-point
scheme. Here the convergence is related to the smallest eigenvalues. The full-
GMRES version behaves as if the smallest eigenvalues were removed after some
iterations. But this is no longer true in the restarted case. Therefore, the aim
of this paper 1s to remove them by a preconditioner. After each restart, a new
preconditioner is built and the flexible GMRES method can be used [15]. At
each restart, new eigenvectors are estimated in order to increase the invariant
subspace. The preconditioner is almost equal to the matrix on the approximated
invariant subspace and is taken as the identity on the orthogonal subspace.

Numerical results strongly suggest that this technique cannot converge faster
than the full-GMRES version since it does not recover all the information kept
in the full scheme. But numerical experiments show that for some matrices, it
can converge much faster than the restarted version and almost as fast as the
full scheme. Moreover, the preconditioned scheme can be faster in CPU time
thanks to a lower complexity. It also requires less memory than a full version.

Of course, this technique can be combined with any preconditioner, estimat-
ing the invariant subspace of the preconditioned matrix. This approach can be
used also to solve consecutive linear systems with the same matrix, as frequently
happens in scientific computation. Thus at the convergence of the first linear
system, a quite accurate invariant subspace may be computed and used to build
a robust preconditioner for the subsequent resolution.

Another advantage of this method is the readily parallelizable use of the
preconditioner by means of level 2 dense BLAS operations. Moreover, the al-
gorithm only requires a matrix-vector product and can be applied to so-called
matrix-free versions of GMRES where the matrix is not stored.

Thus this paper is organized as follows. In section 2, the GMRES variants
are given. Section 3 is devoted to the design of the preconditioner and to
implementation issues whereas section 4 describes numerical experiments.

2 Definitions and notations

In this section we recall the basic GMRES algorithms [14] and the new flexible
version [15].

Thus consider the linear system Az = b with z,b € IR" and with a non-
singular nonsymmetric matrix A € IR"*". The Krylov subspace K(k;A;rg)
is defined by K(k; A;ro) = span(rg, Arg, ..., A¥~1ry). The GMRES algorithm
uses the Arnoldi process to construct an orthonormal basis Vi, = [vy, ..., v] for
K(k; A;rg). The full GMRES method allows the Krylov subspace dimension to
increase up to n and always terminates in at most n iterations. The restarted
GMRES method on the other hand restricts the Krylov subspace dimension to



a fixed value m and restarts the Arnoldi process using the last iterate z,, as an
initial guess. It may stall if it gets a residual r satisfying r” Ar = 0. Below is
the algorithm for the restarted GMRES.

ALGORITHM : GMRES(m)

€ 1s the tolerance for the residual norm ;
convergence:= false ;

choose xg ;
until convergence do
rog = b— Axg;
8= lIroll;
v1 =10/
for j=1,---,m do
p = Av;;
fori=1,---j do
hij ==vlp;
p:=p— hijui;
endfor
hjyij = Illpll2;

Vi1 = p/hjy1 s

if [|b — Azj|| < € then
solve min, gy ||Ber — H;y;ll;
zj = xo + Vjyj;
convergence := true ;

endif’;

endfor;

solve miny, er~ ||Be1r — HmYml| ;

T =20 + Vinlm ;

if ||b — Az || < € convergence := true;
Lo = Tm ;

enddo

For 1 < k < m, the matrix Hy = (hi;) is a upper Hessenberg matrix of order
(k4 1) x k and we get the fundamental relation

AVk == Vk+1H_k.

The GMRES algorithm computes x = zg + Viyr where y; solves the least-
squares problem min,, (g ||fer — Hyiyell. Usually a QR factorisation of Hj,
using Givens rotations is used to solve this least-squares problem.

The linear system can be preconditioned either at left or at right solving, re-
spectively, M =1 Az = M~*bor AM~!'(Mz) = b where M is the preconditioning
matrix.

The flexible GMRES version allows the use of a variable preconditioning
matrix. There is currently no general convergence result here because there is



no relationship with a polynomial. In this algorithm the preconditioning matrix
M is updated at each restart.

ALGORITHM : PRECGMRES(m)

€ 1s the tolerance for the residual norm ;
convergence:= false ;
choose xg ;
choose M ;
until convergence do
ro = M~Yb— Axg);
Arnoldi process applied to M~'A4 to compute V,, ;
solve miny, cr~ ||fe1 — HmYml| ;
L = Lo+ Vintm ;
if [|[M~1(b— Az,,)|| < € convergence := true;

Lo = Tm ;
else
update M
endif’;
enddo

3 The construction of the preconditioner

In this section, we describe how to build and to update the preconditioner and
we also discuss the convergence properties. In the sequel, it will be assumed
that all eigenvalues of A are nondefective. Let |A1| < |Az| < ... < |An| be the
eigenvalues of A.

Let P be an invariant subspace of dimension r corresponding to the smallest
r eigenvalues of A, and let Z = (U, W) be an orthonormal basis of IR" where U
is an orthonormal basis of P. In this basis, A4 is similar to a matrix A which is
written in the Schur form as

1= (o) 2

where 7' = UT AU is the restriction of A onto the subspace P.
Let M be a matrix defined by

Vv - Z( T/(I)/\n| IHO_T )ZT’ (2)

where I,,_, is the identity matrix. M is nonsingular and its inverse is easily
computed by

-1
M~ = Z( |A"|0T Ino_r )ZT. (3)



In practice, the basis W is unknown so that this matrix form of M ~! cannot
be used. Therefore M~1 can be written as

M=t = Tt (1, —UUT),
= L+U(MT ' =1)UT, (4)

which is very easy and cheap to compute.
The preconditioned matrix M 1A is therefore similar in this basis to

_ AnlLy [An|T™ A1
Bo= ( 0 Ass ’

so that its eigenvalues are |A,| and the remaining eigenvalues of A, that is to say
the eigenvalues of Ass. In particular, the condition number is now |A,|/|Ar41]
instead of |A,|/|A1]. Hence the GMRES algorithm applied to M ~'A4 converges
faster than when applied to A.

However, we do not know exactly the invariant subspace P but only an
approximation P. Using an orthonormal basis (U, W) we get now the same
preconditioner M but a nonzero block in the (2,1) position of the matrices A

and F:
~ T A12 |An|Ir |An|T_1A12 )
A= FE = 5

( Agy Az ) ( Agy Ass ’ (5)

where T'= UT AU and |An| approximates the largest eigenvalue of A. This gives
a perturbed matrix where the perturbation is given by the block As;. If this
block is small enough, the eigenvalues of M~1A are close to |A,| and to the
eigenvalues of Asa (recall that the eigenvalues are supposed to be nondefective),
and we can still expect an improved convergence rate for this preconditioned

GMRES.

3.1 Computing the invariant subspace

The GMRES algorithm provides the Hessenberg matrix Hy = VT AV which is
the restriction of A onto the Krylov subspace K (k; A;rg). The eigenvalues of
Hj are called the Ritz values. It is well-known that the extremal Ritz values
approximate the extremal eigenvalues of A.

Let us assume that Hy is decomposed into the Schur form with the eigen-
values ordered by increasing values with the Schur vectors S corresponding to
the m smallest eigenvalues. Then the vectors U = V3.5 approximate the Schur
vectors of A corresponding to the smallest eigenvalues of A. Since the largest
Ritz value approximates the largest eigenvalue of A, we can therefore construct
a matrix M.

After each restart we estimate new Ritz values which approximate the eigen-
values of M~'A which in turn approximate the eigenvalues of A5 and hence



the remaining eigenvalues of A. We increase the size of the invariant subspace
to get a more powerful preconditioner by adding new Schur vectors. In order to
avoid loss of orthogonality, these vectors are orthogonalized against the previous
basis U.

Thus a flexibly-preconditioned-restarted GMRES version is built. In some
sense, this algorithm recovers the superlinear convergence of the fulll GMRES
version which behaves as if the smallest eigenvalues were removed. This ap-
proach has some merit when dealing with a restarted version. In this case, the
preconditioner keeps the information on the smallest Ritz values which would
be lost by the restart. Moreover, this preconditioner is cheap and easily paral-
lelizable, so that it can be faster in CPU time than a full scheme.

Currently a fixed number r of eigenvalues are extracted after each restart.
More precisely, if H, has complex conjugate eigenvalues or eigenvalues of the
same modulus, then all the corresponding Schur vectors are extracted. Hence
the number of extracted eigenvalues may vary in some extent from one restart
to another.

Below is the new flexibly-preconditioned-restarted GMRES:

AvLGorITEM : FLEXGMRES(m,r)

€ 1s the tolerance for the residual norm ;
convergence:= false ;
choose xg ;
M :=1,;
U:={};
until convergence do
ro = M~Yb— Axg);
Arnoldi process applied to M~'A4 to compute V,, ;
solve miny, cr~ ||fe1 — HmYml| ;
T =20 + Vinlm ;
if [|[M~1(b— Az,,)|| < € convergence := true;
Lo = Tm ;
else
compute 7 Schur vectors of H,, noted S, ;
orthogonalize V,,, S, against U ;
increase U by VS, ;

T:=UTAU ;
M=t =L, +U(M|T = DHUT;
endif
enddo

Here S, denotes a set of r Schur vectors in the Hessenberg matrix H,, of
order m corresponding to its r smallest eigenvalues. The basis U is increased by
adding the new Schur vectors V,,, S, after they have been orthogonalized against
the previous basis U.



3.2 Implementation issues and complexity analysis

This new scheme involves the computation of the preconditioner after each
restart and the resolution of the preconditioned system at each iteration. As-
sume that at each restart, until convergence, always r vectors u = (uy,...,u,)
are added to the basis U of the approximate invariant subspace; then at the j**
restart the matrix 7' = UT AU is of order s = r x j and the matrix U has s
vectors of size n. The total cost for P restarts in the scheme FLEXGMRES is

P-1
CTotal — Z (CArnoldi + CPrec + CBasis)a (6)

j=0

where C'arnorg; represents the cost for one restart, Cp,.. 1s the cost to solve
the preconditioned system and Cpggsis 18 the cost to increase the basis at each
restart.

All costs are evaluated in number of floating-point operations. For simplicity,
we neglect the terms which are independent of n. The cost for a matrix-vector
product is 27n where 7 is the mean number of nonzeros per row.

The cost for ) restarts of the classical GMRES(m) is then

Q X Carnotai = Q*2(rnm+nm(m + 1) + 2nm)
Q * 2nm(r + m + 3).

The preconditioned system can be solved using dense BLAS2 primitives,
which gives a complexity of about

Cprec = 4nms. (7)

At each restart, the new vectors u must be computed and orthogonalized
with the previous set of vectors in order to increase the basis U. Also, the matrix
T = UT AU must be updated and factorized, using the block decomposition

o UTAU UT Au
- uWT AU wTAu /-
This gives
Cpasis = 2nr(r+m+r+4s). (8)

The global complexity for P restarts of the new scheme is
Crotat = Px*2n(m(r+m=+3)+r(r—r)+r(m+2r)P). (9)

Hence, the scheme will perform better than the classical restarted GMRES
scheme if

Crotar < @ X Carnoldi- (10)



Figure 1 plots the curve where both costs are the same for m = 10 and
r = 1 and for two values of 7, 7 =7 and 7 = 50. Under each curve, FLEXGM-
RES(m,r) is more efficient than GMRES(m) and above the curve GMRES(m)
is more efficient. It can be seen that a modest acceleration in convergence is
sufficient to obtain good performances.

m=10 - r=1
300 T

VAl

2501 7 nonzero per row

2001 4
50 nonzero per row

150 7

100 J

number of iterations in FLEXGMRES(m,r)

50 b

1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900
number of iterations in GMRES(m)

Figure 1: Cost evaluation for GMRES(m) and FLEXGMRES(m,r)

4 Numerical Results

We have tested the algorithm using Matlab and the template of GMRES pro-
vided in netlib [3]. The matrices are taken from [7] and have the form A =
SDS-1 with 4,5, D € R*'%% and with S = (1, 3) a bidiagonal matrix with
1 on the diagonal and 5 on the upper subdiagonal.

The system Az = bis solved for right-hand sides b = (1, ..., 1)T and GMRES
starts with 2y = 0. In both cases, the restarted and the flexible version, GMRES
is restarted every 10 iterations, except otherwise stated.

Results for four different examples of dimension 100 are presented with the



following characteristics:

No. p D condition number £(.5)
1 09 diag(1,2,...100) 18.334
2 1.1 diag(1,2,...100) 151570
3 09 diag(1,100,200...,10000)
409 diag(—10,-9,...,—1,1,2,...,90)

Figures 2 and 3 show the convergence rate for the fullGMRES version, the
restarted version with no preconditioning and the restarted version with the
flexible preconditioning estimating one or two eigenvalues at each restart. For
Examples 1 and 3 all the methods converge whereas for Examples 2 and 4 the
restarted method does not converge. It is interesting to note that the presented
flexible scheme does converge. Tables 1 and 2 compare the CPU times for the
various schemes.

A=S*D*inv(S) - order 100 - D=diag(1:n) - beta=0.9
10 T T T

log(residual)

flexible

-12 L L L L
0 20 40 60 80 100 120
iterations

10

Figure 2: Convergence rates for Example 1



log(residual)

As shown in Figure 4, the restarted method does not converge for Example

method restart | nb. of eig. | iterations | CPU time
full 100 0 60 6.4000
restarted | 10 0 120 5.4833
flexible 10 1 118 5.5167
flexible 10 2 89 4.4667
flexible 10 3 85 4.3833
flexible 10 4 75 4.0500
flexible 10 5 76 4.3833
flexible 10 6 69 4.0833
Table 1: Results for Example 1

A=S*D*inv(S) - order 100 -

D=diag(1:n) - beta=1.1

restarted

flexible

I
60

I
100

20 40 80 120
iterations

Figure 3: Convergence rates for Example 2
method restart | nb. of eig. | iterations | CPU time
full 100 0 69 7.7667
restarted | 10 0 00 *
flexible 10 6 00 *
flexible 10 8 120 6.6500
flexible 10 14 103 7.8833

Table 2: Results for Example 2
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3, but the flexible method converges slightly slower than the full method. Table

3 gives the CPU time.

log(residual)
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A=S*D*inv(S) - order 100 - D=diag(1:10000) - beta=0.9
T T

flexible

restarted

107+ ! 1
10-120 20 40 60 80 100 120
iterations
Figure 4: Convergence rates for Example 3
method restart | nb. of eig. | iterations | CPU time
full 100 0 71 8.2667
restarted | 10 0 00 *
flexible 10 8 90 5.5667

Table 3: Results for Example 3

The convergence curves in Figure 5 show a drop of the residual in the full
case when the Krylov subspace 1s almost of size n, the order of the linear system.
The restarted method is very slow and the flexible scheme converges in about
300 iterations. Table 4 shows the CPU time.

method restart | nb. of eig. | iterations | CPU time
full 100 0 88 32.6667
restarted | 10 0 00 *

flexible 10 7 00 *

flexible 10 8 788 20.9500
flexible 10 17 179 6.6167

Table 4: Results for Example 4
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) A=S*D*inv(S) - order 100 - D=diag(-1:-10;1:90) - beta=0.9
10 T T T T T T T

log(residual)

flexible S

. . . . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
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Figure 5: Convergence rates for Example 4

These examples show that the flexible scheme converges almost as fast as
the full scheme. Moreover, in the above examples, the flexible scheme converges
when the restarted version stalls, provided the size of the invariant subspace
is large enough. For a fixed frequency of restarting, the CPU time achieves a
minimal value when increasing the size of the invariant subspace then increases.
However, this size must be large enough to guarantee convergence in difficult
cases. A good tradeoff seems to keep this size increasing when memory space is
sufficient.

5 Perspectives

This paper presents a new flexible GMRES scheme defining a variable precon-
ditioner based on the estimation of Schur vectors and on deflation techniques.
Examples presented here show that this preconditioned restarted scheme con-
verges whereas the unpreconditioned restarted scheme may sometimes stall. In
the above examples the convergence rate of the flexible scheme was slower than
the full scheme but faster than the restarted scheme. Preliminary timings in-
dicate however that the flexible scheme requires less CPU time than the two
other schemes.

Further work needs to be done in considering different strategies for updating
the preconditioning matrix, including the development of an adaptive approach.
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Other possible approaches include a version where the dimension of U does not
increase very much but approximates an invariant subspace more accurately.

Finally, it is intended to extend this work to a parallel implementation in a
MIMD environment.
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