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Abstract

Tterative methods for solving linear systems of equations can be very
efficient in a sequential or parallel computing environment if the structure
of the coefficient matrix can be exploited to accelerate the convergence of
the iterative process. However, for classes of problems for which suitable
preconditioners cannot be found or for which the iteration scheme does
not converge, iterative techniques are inappropriate. This paper proposes
a technique for deflating the eigenvalues, and associated eigenvectors, of
the iteration matrix which either slow down convergence or cause diver-
gence. This process is completely general and works by approximating the
eigenspace IP corresponding to the unstable or slowly converging modes
and then applying a coupled iteration scheme on IP and its orthogonal
complement @.
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1 Introduction

Computational techniques for solving linear systems of the form
Ay=10b, yeR™ (1)

can be divided into two broad categories: direct and iterative methods. In
the direct case, elementary row operations are performed on the augmented
matrix (A,b) in order to reduce the system to a simpler form which can be
more easily solved by exploiting the architecture (sequential or parallel) of the
target machine. If pivoting techniques are used then this process is usually a
stable and reliable one, although in the case of sparse systems the underlying
algorithms and data structures can be complicated (see Duff et al. (1988)). For
problems which have certain structures, pivoting may not be necessary, as in
the case for symmetric positive definite matrices.

There have been many attempts to adapt direct schemes to parallel archi-
tectures (see, for example, Saad (1986), Ortega (1988) and Bisseling and van
der Vorst (1989)), but these approaches are very much architecture dependent.
Thus Saad (1986) has considered LU algorithms for bus and ring topologies
with distributed memory, while the approach of Ortega (1988) is very much a
fine-grained one suitable for SIMD machines. Bisseling and van der Vorst (1989)
have investigated how to distribute the rows and columns of A in order to achieve
good load balancing and small communication overheads. Their conclusion is
that in certain circumstances cyclic distribution of rows and columns is an ap-
propriate strategy. Other parallel direct schemes include blocking techniques
which produce matrix-matrix algorithms rather than matrix-vector algorithms,
thus introducing parallelism at the level 3 BLAS layer. This offers greater scope
than level 1 or level 2 BLAS for exploiting parallelism and is the basis of LA-
PACK.

Another difficulty with the use of direct schemes in a parallel environment
is that efficient algorithms are heavily dependent on the structure of A with
algorithms for banded systems (see Dongarra and Johnsson (1987), for example)
being entirely different to those for sparse systems (Duff et al. (1988)), which in
turn are entirely different to the full dense case. Iterative schemes, on the other
hand, have a very simple and conceptually appealing algorithmic structure in
that they can often be written very simply in terms of level 1 and level 2 BLAS,
as 1s the case for the Jacobi and Conjugate Gradient methods, for example. Such
iterative schemes are readily parallelizable and the structure of the algorithm
does not change if A is full, banded or sparse.

On the other hand a different type of structure often has to be imposed on A
(such as diagonal dominance or symmetric positive definiteness or an M-matrix)
in order to guarantee the convergence of some iterative algorithms. Furthermore,
even if convergence is guaranteed it may be slow and may have to be accelerated
by a preconditioning process which itself may not be readily parallelizable. A
notable example of slow convergence occurs when solving Laplace’s equation by



the use of finite difference techniques on some mesh. If the region is square and
the mesh is uniform with a grid size of h = ﬁ then the spectral radii of the
Jacobi and Gauss-Seidel iteration schemes are given by

p(H;) = coshmm1l— %(hﬂ')2 + O(h")
p(Hg) = (coshm)* 11— (hm)? 4+ O(h?Y),

respectively. As the grid size is reduced both the convergence of the Jacobi and
Gauss-Seidel schemes slow dramatically.

In order to overcome some of these difficulties associated with iterative
schemes, we present here a completely general technique for deflating those
eigenvalues of the iteration matrix, which either slow or cause divergence. This
process takes place while the iterations are proceeding.

Thus this paper is organized as follows. In section 2 the deflation process is
presented. Tt is based on an idea due to Shroff and Keller (1993) for solving non-
linear parameter-dependent problems, which in turn represents an extension of
an adaptive condensation technique proposed by Jarausch and Mackens (1987)
for symmetric nonlinear problems. In addition, two new iteration schemes are
introduced based on a Gauss-Seidel approach. In section 3, this algorithm and
the underlying iteration schemes will be described in full for linear problems,
and convergence and complexity results given for various splittings of the ma-
trix A. In section 4 some numerical results will be presented on problems which
are either full or block banded together with a discussion on implementation
techniques. The paper will conclude with some comments on the parallelization
of this approach and its application to other areas of scientific computing such
as differential systems.

2 Nonlinear systems

As mentioned in section 1, the process of accelerating the convergence of iter-
ative methods by a deflation process which progressively extracts the largest
eigenvalues ( in magnitude) associated with the Jacobian of the problem has
been studied by Jarausch and Mackens (1987) and Shroff and Keller (1993). Tt
was applied by Shroff and Keller (1993) to the numerical solution of nonlinear
parameter-dependent problems of the form

y=F(y,A), F:R"xR—-R"

by a coupled iteration process which forces or accelerates the convergence of a
fixed-point iteration scheme and represents an extension of the technique pro-
posed by Jarausch and Mackens (1987) for solving symmetric nonlinear prob-
lems. Jarausch (1993) has considered a different approach which uses singu-
lar subspaces for splitting the fixed point equation associated with systems of



parabolic partial differential equations. Jarausch (1993) claims that this ap-
proach is an efficient one since the systems are effectively decoupled by the
construction of right singular subspaces associated with the Jacobian of the
problem. In addition the use of invariant subspaces is avoided by transforming
the system by a so-called rotator matrix. This approach is called the ’ideal
normal equation approach’ in that it avoids the squaring of the singular values
by the usual approach of normalizing the equations. In this case the singular
values of the transformed problem have the same singular values as the original
problem. In spite of considerable applications of these projection techniques to
nonlinear parameter-dependent problems, little appears to have been done in
applying these techniques computationally to linear systems of equations, and
this is the focus of this paper. The notation that will be used is the notation
used by Shroff and Keller (1993) which is very similar to the notation used
by Jarausch and Mackens (1987) and Jarausch (1993). Furthermore, we will
only consider applying the techniques used by Shroff and Keller (1993) to linear
systems, although the approach of Jarausch (1993) also seems a fruitful one.

The approach of Shroff and Keller (1993), known as the Recursive Pro-
jection Method, is based on the fact that divergence or slow convergence of
the fixed-point iteration scheme

YD = Py, )

is due to the eigenvalues of Fy+ (the Jacobian of F' evaluated at the fixed-point
y*) approaching or leaving the unit disk. The Recursive Projection method
recursively approximates the eigenspace (IP) corresponding to the unstable or
slowly converging modes using the iterates of the fixed-point iteration. A cou-
pled iteration process takes place by performing Newton iteration on IP and
fixed-point iteration on @ (the orthogonal complement of IP) where fast conver-
gence is assured. The scheme will be particularly effective if the dimension of
IP is small.

We will now give a brief outline of this process assuming that the problem
to be solved is parameter independent and can be written as

y="F(y), yeR™. (2)
Defining
y = p+q, p=Py ¢=Qy=(I-P)y
flp,e) = PF(p+4q), 9(p,q9)=QF(p+q) (3)
fopoa) = PFy(y),

where P and ) are the orthogonal projections of R™ onto IP and @), respectively,
and letting

hp, ) =p+ (I - fo(p, @) (f(p,9) — p);



then the coupled iteration scheme of Shroff and Keller (1993) is given by

pEtD = h(p®) B k=0,... N-1
gFH = g(p® ¢®) k=0,... N1 (4)
y = pN 4.

The overall iteration represents a Jacobi-type process in which the iterations
are coupled by a Newton iteration and a fixed-point iteration. Clearly r, the
dimension of f,(p, ¢), should be kept as small as possible in order to minimize
the linear algebra costs. Ultimately, however, the size of r depends on how
quickly convergence takes place. Here it should be noted that the fixed-point
solution (p*, ¢*) of (4) satisfies

f",a)=p", 90", ¢")=4q¢", h(p".¢)=p",

while F* will denote the Jacobian of F' evaluated at p*, ¢*.
The projectors P and @) can be computed by observing that if Z € IR™*" is
an orthonormal basis for IP then

P=2z2", Q=I1-22", Z'Z=1,.

The matrix Z can be recursively updated by noting from (4) that

Agt) = B — g8 = g(p8) ) — g(ptF D), g7 1)
= g(p 4 AP gD g Ay — g(ph D g Y)
= g AP 4 g AT 4 O(e?). (5)

Here ¢ represents terms that are hopefully negligible compared with the linear
terms in the expansion and

g9 = $®,q) = QFP

(6)
9, = 9,0"¢) = QFQ.
This implies, that in the case of invariant subspaces g; = 0 holds. Thus (5) and
(6) imply that (5) is the power method

AgH) = grAgk=D (7)

and asymptotically {Ag*)} will lie in the dominant eigenspace of g, (assum-
ing A¢(® has a nonzero component in this direction). (7) can now be used to
approximate the dominant eigenspace of gy by forming a window of ¢ differ-
ence vectors S = {Aq(k)}g_t_l_l as the fixed-point iterations proceed and then
computing an orthogonal basis U for span(S) by the modified Gram-Schmidt
process. The eigenspace B = UTF*U is then formed and the eigenvectors



along with the Schur vectors of B are computed. For efficiency reasons Shroff
and Keller (1993) therefore suggest taking ¢ = 2 in which case S is factored as
S = §T, where S is orthogonal of dimension m x 2 and 7' is upper triangular
of dimension 2.

If 711 > 10375 then just the first column of S is appended to the basis Z.
Alternatively, if convergence 1s deemed to be slow due to a complex conjugate
pair the first two columns of S are appended to Z.

As more eigenvalues are removed the basis Z will become increasingly in-
accurate due to the loss of orthogonality in the Gram-Schmidt process and
QF*P # 0. Hence Shroff and Keller (1993) suggest performing a subspace
iteration on the columns of 7 every so often. This takes the form

7 — orth(F*7),

where orth(F*7) denotes computing an orthonormal basis for the columns of
F*Z by the Gram-Schmidt process. Of course F'™* is not computed directly, but
can be computed by

F*Zim= —(Fly+eZ;)—F(y), i=1,...,n

™ | =

The convergence properties of this approach can be analyzed by examining
the Jacobian of (4) evaluated at (p*, ¢*). It is given by

_ ( hy h ) (8)
Ip Y4

where
g9, = QF'P, g;=QFQ, h;=0
(9)
f; = PF*P, f;‘ = PF*(Q), hz = (I—f;)_lf;‘.

If the orthonormal basis is computed exactly then g; = 0 and

a(J) ={0,0(gy)},

and so the convergence of (4) is governed by the spectral norm of ¢* which is
progressively made smaller by the deflation process described above. On the
other hand it should be noted that if a modified Newton process is used to
compute p then hy # 0, but is nevertheless small. In fact up to order O(€?) in
(5), the global error for (4) can be written as

D) = geh) (k) = (p(k)T T, q(k)T B pT)T, (10)

so that the error behaviour is determined by the behaviour of the power method.
The ramifications of this when dealing with multiple or closely clustered eigen-
values of F'* will be discussed in more detail in section 4.



Tt is possible to modify the Jacobi type iteration scheme described in (4) to
produce Gauss-Seidel or SOR schemes. In the former case there are two possible
iterations, a Gauss-Seidel and Reverse Gauss-Seidel iteration, of the form

= h(pt), ¢ M)

¢t = g(p ) ¢ (11)
and

¢F = ("), ¢

pFHY = a(pt), gD, (12)
respectively.

Clearly these two processes should be very similar since they both compute
the same sequence but with different starting and finishing procedures,; and this
is borne out by the following analysis of the spectra of the Jacobians associated
with these schemes.

Tt is easy to show that the Jacobians associated with (11) and (12), denoted
by Jg and Jg, are given by

h h*
Jg = ( *p* * *q * )
gphy 950G + 9y

A RROERNES
Jr = q P - + .
w= (ol i )= ()G s+ (50
Under the assumption that hy = 0 (so that a Newton iteration is used for solving
for p), the spectra of the associated Jacobian matrices are, respectively, given

by

and

a(Ja) ={0,0(g5 + 9,h)} = o(Jr) (13)
while in the case of (4) the eigenvalues of J satisfy

Det(A*I — Mgl 4 grhy) = 0. (14)

If the orthonormal basis 1s computed exactly, the spectral radii of all three
schemes are exactly the same but in the presence of inaccuracies in 7, Gauss-
Seidel and Reverse Gauss-Seidel and Jacobi behave differently, as will be seen
in section 4.

FEquations (11) and (12) can be modified to give corresponding SOR schemes
of the form

= ), ¢ )
gF ) = g((1 = w)p® 4 wpFFY, ¢h)



and

g B = g(p™) )
P = h(p, (1= w)g™) 4 wg D),

but again if the orthogonal basis is computed exactly, these SOR methods will
behave in exactly the same way as their Gauss-Seidel counterparts.

3 Linear systems

The main thrust of this paper is to apply the schemes introduced in (4), (9)
and (11) to linear systems of equations of the form given in (1). Tt should be
noted that these schemes can be applied with very general iteration schemes
such as Conjugate Gradient or GMRES techniques. GMRES was introduced
by Saad and Schultz (1986) and is commonly used to solve large nonsymmetric
linear systems, and Erhel, Burrage and Pohl (1994) have adapted these deflation
techniques to produce a new variable preconditioning based on an invariant
subspace approximation for the restarted GMRES algorithm. However, in this
present paper only iteration schemes of the form

MyF+D = NyF) 4 (15)

will be considered, where A = M — N represents a splitting of A.
In this case the fixed-point formulation of (2) is given by

y="F(y), Fly)=M 'Ny+M'h (16)

Using the formulation of section 2, let IP be the invariant subspace of dimension
r for
H=M"'N,
I, be the identity matrix of order r, and Z the orthogonal basis of IP. Thus
with
Q=1-22", P=z7", I,=7Z"Z QP=0
and writing
y=(P+Qy=Py+q=Zu+q, u=27"y,
then (2) and (16) imply

(I, —ZTHZyu = ZTM~'b+ZTHgq
¢ = QWM b+ Hq+ HZu) (17)
y = ZJu+gq.

The Jacobi, Gauss-Seidel and Reverse Gauss-Seidel schemes can then be written
in the general iterative form

ub D) = (I, = ZTHZ)"'ZT(M~'b+ Hq¢®)

(18)
¢*tY = (T =ZZ"Y M=o+ H¢™® + HZul))



where the relationships between ¢, j and the method is given by

1 j method
k k Jacobi
k k+1 Gauss-Seidel
k+1 k Reverse Gauss-Seidel.

In the last case it is understood that the ¢ iteration is performed first.

It can be seen from (18) that Gauss-Seidel and Reverse Gauss-Seidel have
very similar properties in that they both compute the same sequence but with
different starting and finishing values. The spectra of these iteration schemes
are again given by (12) and (13) with

g = (I-ZZ")H(I-227)
gy = (I-ZZ")HZ
he = Z(I,—Z"HZ)'ZTH(I-2Z7Z").

In the case that IP is invariant then the spectral norm of all three iteration
schemes is p((I — ZZT)H). We recall here that H is the iteration matrix
of the underlying iteration scheme, and this underlying scheme can be chosen
depending on both the problem and the architecture. In the case of a parallel
environment a Jacobi or block Jacobi iteration may be appropriate in which
case M will be diagonal or block diagonal; while in a sequential environment
Gauss-Seidel or block Gauss-Seidel or SOR, schemes may be more appropriate
as this will lead to faster convergence but less parallelism.

The two different ways in which Z can be computed are described in section
2. The number of eigenvectors that are appended to Z depend on the nature of
the desired convergence properties, and this involves the development of a cost
function which can be interrogated every so often to see if it is worthwhile to
increase the dimension of Z. In the following we show how the implementation
of our algorithm proceeds and at the same time an attempt is made to develop
a cost function which will allow for adaptive deflation.

This cost analysis 1s presented only for the dense case and it is also assumed
that at most two eigenvalues are extracted at any given time. It will also be
assumed that the implementation 1s a Jacobi implementation and that only
multiplicative operations will be counted. These counts will, where possible, be
written in terms of level 1 and level 2 BLAS in order to give an indication of
likely parallel performance.

The cost function that will be developed will attempt to determine whether
a method given by (18) with » extracted eigenvalues should be replaced by a
method with r 4+ s extracted eigenvalues. Thus let Zy be m x r, Z; be m x s
and 7 = (Zy 7Z1) be m x (r + s).

Under the assumption of a Jacobi implementation and an increase in the
number of eigenvalues by s, the steps to carry out a single iteration of (18) are
as follows



I. Form H = HZ. Since H = (HZy HZ}), this requires an additional cost of
Cy = (ms) level 1 BLAS of dimension m.
II. Form D = ZTHZ. Since

D:ZTHZ:<ZOTHZO ZOTHZl)

ZVHZy ZIHZ
and using the already formed matrix from I, this requires an additional cost of
Cy = (52 + 2rs) level 1 BLAS of dimension m.

ITI. Form Hgq.
C3 = (m) level 1 BLAS of dimension m.

IV. Form Hu.
Cy = (m) level 1 BLAS of dimension r + s.
V. Form @ (update).

Cs = (r+s) level 1 BLAS of dimensionm

_|_
(m) level 1 BLAS of dimension r + s.

VI. Form ZT (update).
Cs = (r+s) level 1 BLAS of dimension m.

VII. Solve (I — D)u(k‘l'l) = 0.
The LU factors for I — Dy = LgUy can be used when factorizing 7 — D in

the form
Lo O Upg X
E Vv 0 Y /-

This can be done with the cost
Cr = (rz) level 1 BLAS of dimension s + 53/3.

The final cost factor is that arising from the formation of the new basis.
Numerical testing has shown that in most cases it is sufficient to extract at
most two eigenvalues at any given iteration. This can be done by the modified
Gram Schmidt process. Thus only

wi = AW/ AT
wy = AP —wiwf AgtTY



need be computed. In this case

71 = (wy), ||wall<<]] w |

Wa .

= (wy, —— otherwise
T

and the cost of this 1s
Cs = (6) level 1 BLAS of dimension m.

The costs estimated so far represent additional costs if extra eigenvalues are
deflated. We now estimate the costs to implement (18) given that the dimension
of Z is r and that no more eigenvalues will be extracted. This of course implies
that the LU factorization of I — D has already been completed. Suppose now
that p(QH) = A,. If a desired tolerance to be achieved in some norm is €, then
the number of iterations, k., needed to achieve this accuracy is given by

_ log(e)
" log(Ay)” (19)

Thus the total cost over k, iterations will be
C, = (m* + 4mr 4+ r%)k,,

with the factor r? denoting the number of operations needed for the forward
and back substitutions in solving for u given that the LU factors of I — D have
already been formed.

On the other hand if at the same stage in the iteration process s additional
eigenvalues were to be extracted so that p(QH) is now A; and the number of
iterations to achieve accuracy is ks then in the case of s = 2 the cost function
would be

14
Cs = (m* + 4rm 4+ (r 4 2)* + 8m)ks + m(2m + 4r 4 10) + grz.
Thus the 2 eigenvalues would be extracted if

Cs<0C,., <1

where 0(m 0.9) is a safety figure that prevents too many eigenvalues being
extracted.
Ignoring the terms r%k,, (r + 2)%k, and L2, this gives

8 10 — 4r
k(1 2 Ok, .
( ( +m—|—4r)+ +m—|—4r)<

Assuming 7 is small compared with m, this gives

(ks(l +

8
2 Bk, .
1 )+ )<

m 4+ 4r

10



It should be noted that this analysis only holds if the iterations are converg-
ing. If at any stage in the iteration process the spectral norm is greater than
one, then all the eigenvalues outside or on the unit disk should be deflated as
quickly as possible.

4 Numerical results and conclusions

In this section a number of results are presented to show the efficacy of the
deflation process previously outlined. In particular, three different problems
are chosen for which extensive results are presented. We will also give some
comments on the behaviour of the deflation process on other test problems that
have been run.

The first problem comes from the solution of a two dimensional Poisson
equation on the unit square with Dirichlet boundary conditions. This leads to
the solution of a system of linear equations of order m = N? given by (1) in
which A is block tridiagonal of the form A = (I,T,T). Here I is the identity
matrix of order N and 7' is the tridiagonal matrix 7' = (1, —4,1). Tt is known
that both the Jacobi method and the Gauss-Seidel method will converge for
this problem and that the spectral norms of the amplification matrices are,
respectively,

T T
p(Hjz) = cos N p(Hg) = (cos N)Z

The second problem is artificially constructed so that the amplification ma-
trix associated with Jacobi iteration has evenly distributed eigenvalues.

The third problem arises from the fitting of surfaces to a set of sparsely scat-
tered meteorological stations in Australia (Burrage et al. (1994) and Williams
and Burrage (1994)). The problem size can vary from a few hundred to almost
20,000. Here just three test sets are chosen of dimension 550, 1025 and 1500.
These matrices are symmetric positive definite and the condition number 1s cho-
sen by the addition of a positive scalar to the diagonal elements of the influence
matrix.

In each case the problems are solved to very high precision and then using
the ‘exact’ solutions, iteration takes place until a certain tolerance condition is
satisfied which is based on a relative error criterion using the 2 norm. For the
first two problems calculations are performed in Matlab on a Sparcl0, while for
the third problem calculations were performed on a Cray YMP-2D sited at the
University of Queensland. Sparse Matlab techniques were used where appropri-
ate.

Problem 1: 2D Heat Equation, m=144, tol = 1070

For this problem we investigate how the convergence depends on the number of
eigenvalues extracted (‘numeig’) and the frequency with which the eigenvalues

11



are deflated (‘freq’). Tt is assumed that at most two eigenvalues are deflated at
any given time.

The results are given in the next four tables, and represent the number of
iterations needed to achieve convergence. The results in the first three tables
correspond to Jacobi, Gauss-Seidel and Reverse Gauss-Seidel, respectively, given
that the underlying iteration (defined by the matrix M) is the Jacobi method.
The fourth table was calculated using the same three deflation techniques but
with an underlying Gauss-Seidel iteration and with eigenvalues being deflated
every 15 iterations.

The number of iterations required to obtain convergence for the unaccel-
erated Jacobi and Gauss-Seidel, respectively, are 772 Tterations (2.42 seconds)
and 389 Iterations.

Table 1: Jacobi method

numeig 1 2 3 4 5 6 7 8 9 10
freq =5 o0 o0 o0 oo 262 252 169 169 134 134
freq = 10 541 464 464 169 169 99 99 77 77 66
freq = 15 444 302 302 121 121 93 93 73 73 73

Table 2: Gauss-Seidel method

numeig 1 2 3 4 5 6 7 8 9 10
freq =5 599 599 391 391 193 193 100 100 78 78
freq =10 529 18 18 169 169 111 111 71 71 62
freq =15 432 326 326 116 116 89 8 71 71 71

It can be seen from these results that in the case of an underlying Jacobi
iteration only about 8 eigenvalues need to be deflated at a frequency of one every
10 iterations to reduce the number of iterations by a factor of 10. In the case of
an underlying Gauss-Seidel iteration only b eigenvalues need to be deflated at a
frequency of every 15 iterations to reduce the number of iterations by a factor
of 9.

Another important point to note here is that the eigenvalues when deflated
are often fairly inaccurate (this is why the Jacobi technique diverges if only a
few eigenvalues are deflated too quickly) but that as the iterations proceed these
eigenvalues themselves become more and more accurate.

12



Table

3: Reverse Gauss-Seidel method

numeig 1 2 3 4 5 6 7 8 9 10
freq =5 600 600 380 380 176 176 99 99 72 72
freq =10 532 215 215 151 151 98 98 74 74 64
freq = 15 438 254 254 119 119 92 92 72 72 72
Table 4: Gauss-Seidel iteration, freq = 15
numeig 12 3 4 5 6 7 8 9 10

RGS 167 86 86 69 47 47 47 47 4T 47
GS 169 82 82 64 46 46 46 46 46 46
Jacobi 169 88 88 70 47 47 47 47 4T 47

The first three tables show that there are some differences between the three
techniques especially if eigenvalues are deflated too frequently but that as the
frequency becomes longer there is very little difference between these techniques,
which 1s to be expected from the theoretical results given in section 3. There
is of course a considerable difference between using an underlying iteration of
Jacobi compared with Gauss-Seidel as can be seen from comparing table 4 with
the first three tables.

Of course a reduction in the number of iterations by a factor of 10 does not
imply a similar reduction in time because of the additional overheads imposed
by the deflation process. Table 5 gives the number of iterations and times using
Reverse Gauss-Seidel and an underlying Jacobi iteration with a frequency of 10.

Table 5: Reverse Gauss-Seidel method, freq=10

numeig 1 2 3 4 5 6 7 8
its 532 403 192 172 102 99 81 78
time 4.36 3.62 167 1.70 1.18 1.26 1.22 1.32

The speed-ups in both time and iteration over unaccelerated Jacobi are
given in Figure 1. The speed-ups in time are somewhat disappointing compared
with the iteration speed-up, but it should be recognized that Matlab is not

13



an appropriate vehicle for comparing times of different codes as there are high
overheads associated with loop structures within Matlab.

In order to see the performance of the deflation process on a larger problem
the dimension of the heat equation problem was increased to m = 900 and
a tolerance of 107% used as a relative error convergence test. The results are
given in table 6 and speed-ups in time and iteration over unaccelerated Jacobi
are given in Figure 2.

Table 6: unaccelerated Jacobi: 3519 iterations, 95.78 seconds

freq 5 10 15 20 25 30 35 40 45
numeig 52 33 25 21 19 17 15 15 13
its 132 172 196 240 253 272 294 332 356
time 75.3 48.9 36.7 339 316 29.1 29.8 325 29.8

Here speed-ups in time close to 3.5 are achieved, but again this speed-up
is underestimated due to the way Matlab is implemented, and also due to the
sparse matrix representations. (See problem 2 for further comments on this.)

Problem 2: Jacobian with evenly distributed eigenvalues, m=200, tol
=10"%

For this problem Reverse Gauss-Seidel was used with an underlying Jacobi
iteration. As many eigenvalues as necessary are extracted in order to attain
convergence with either 1 or 2 eigenvalues being extracted every ‘freq’ iterations.

The unaccelerated Jacobi method took 4208 iterations and a time of 102.3
seconds to attain convergence. All calculations were again done in Matlab.

Table 7: Reverse Gauss-Seidel with Jacobi iteration

freq 2 4 6 8 10 12 14 18 25 50
eigs 160 84 62 50 46 39 37 31 27 17

its 161 170 188 204 232 251 272 292 352 452
time 61.6 226 17.1 15.0 14.7 14.8 146 133 168 16.3

The speed-ups in timing and iteration are presented in Figure 3. In this case
a speed-up in time of about 8 is much better than for Problem 1. One reason for
this is that the iteration matrix is dense whereas for Problem 1 it is sparse and
in Matlab there are additional overheads for sparse linear algebra techniques

14



which are not apparent in the dense case.

Problem 3: Surface fitting problem, m = 550, 1025, 1500

For this problem a series of dense linear systems of the form (1) where
A = @ 4+ M are solved which arise from the fitting of surfaces to rainfall data
obtained from irregularly scattered meteorological stations sited in Queensland,
Australia. Here A >> 0 is a surface fitting parameter which is minimized
within a cross-validation algorithm ( see Williams and Burrage (1994)), but
in the results presented here it will be used to control the conditioning of the
problem, with a large A implying a well-conditioned problem.

Three different weather data sets of dimension 550, 1025 and 1500 were cho-
sen and 1nitially solved on a Cray YMP-2D sited at the University of Queensland
using a Cray library routine for LU factorization. The only reason for a limit of
m = 1500 is due to memory limitations on the Cray. Solving these systems using
the Cray routines for LU factorization and backward and forward substitution,
the following timings in seconds were obtained:

Table 8: A =5

m 550 1025 | 1500
time | 0.377 | 2.3535 | 7.443

The deflation process of Reverse Gauss—Seidel with an underlying Jacobi
iteration was then run for these three different sets each with two different
values for A, A1 = 5, Ay = 65—4. The second value for A gives a problem of
modest ill-conditioning, with a condition number for A in the range (160 — 425)
depending on the size of m. For each of these six problems ‘eig’ eigenvalues are
extracted at every ‘freq’ iterations and iterations and timings are presented for
three different cases corresponding to eig = 2,3,4. the results are presented in

tables 9 and 10.

Table 9: iteration count

550 1025 1500

freq Al Az Al Az Al Az
5 16 | 46 | 21 | 66 | 21 | 71
5 14 1 34 | 16 | 66 | 16 | 62
10 |21 | 41|21 |76 |21 )81

»-kawq%~

For a given value of ‘eig’ a number of runs were performed for different values
of ‘freq” and only the optimal values in terms of timings are presented here.
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Table 10: Timings in seconds

550 1025 1500

elg freq Al Az Al Az Al Az
5 0.105 | 0.247 | 0.410 | 1.116 | 0.863 | 2.467
0.097 | 0.212 | 0.386 | 1.247 | 0.809 | 2.560
10 | 0.123 | 0.214 | 0.406 | 1.910 | 0.848 | 2.666

= o N
ot

However there seemed to be little difference between the timings for a given A as
long as the eigenvalues are deflated on average between 0.8 and 0.25 eigenvalues
per iteration. But if the eigenvalues are deflated sufficiently frequently the
performance can be significantly affected. Nevertheless the timing speed-ups
over the Cray library LU factorization routine is substantial, especially when
bearing in mind that the problems here are dense. The speed-ups in time for
the eig=3 case are plotted in Figure 4.

It should be noted that the conditioning of the matrix can also affect the
performance of these accelerated iterative techniques, but it is likely in this case
that further fine tuning will improve the results in the modestly ill-conditioned
case.

Some additional testing has been performed on problems which have multiple
eigenvalues or clustered eigenvalues. The convergence behaviour of the deflation
process is described in (10), and because it is essentially the power method it
is important to realize that the deflation process works differently in both the
case of multiple eigenvalues and clustered eigenvalues.

Thus for example, on a problem of dimension 100 with 99 eigenvalues at
0.95 and one eigenvalue at 0.2 the deflation process will converge in a very
few number of iterations by deflating only one eigenvalue. For this example the
deflation process behaves as if the problem is of dimension 2 with one eigenvalue
at 0.99 and another at 0.2. This is entirely consistent with the way the power
method behaves on problems with multiple eigenvalues.

For problems which have clusters of eigenvalues, the behaviour of the de-
flation process depends on how finely the eigenvalues are clustered within each
cluster. If the clustering within each cluster is very fine then the inherent errors
in the deflation process will cause all the eigenvalues within the cluster to be
treated the same and the process will behave as in the multiple eigenvalue case
(without any noticeable loss of accuracy). As the clustering becomes less fine
then the deflation process will extract a small number of eigenvalues from each
cluster and consider the rest in that cluster as being multiple eigenvalues. Fi-
nally, at a moderate clustering the process may well attempt to extract nearly
all the eigenvalues from the clusters which are near the unit disk.
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As an example of this, a problem of dimension 100 with 10 clustered sets
with 10 eigenvalues in each cluster was solved. In the two clusters closest to the
unit disk the eigenvalues were equally spaced in the interval (0.990, 0.9987) and
(0.892, 0.901). For this problem the Jacobi method could not converge in 5000
iterations, while the Reverse Gauss-Seidel technique with an underlying Jacobi
iteration converged in 81 iterations. In this case up to 4 eigenvalues could be
extracted every 5 iterations and 68 eigenvalues were extracted in total, with 9
eigenvalues being extracted from each of the first two clusters and 7 eigenvalues
from the next cluster.

In conclusion it can be seen that the deflation process is a remarkably robust
procedure working on a variety of pathological cases. The number of eigenvalues
that have to be extracted is usually modest and the speed-up in time can be
impressive. It is hoped to implement these procedures in a parallel environment
in later papers, in a truly adaptive manner. It should also be noted that the
deflation process can be used to extract an arbitrarily-sized set of eigenvalues
in an efficient manner.
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