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Abstract

In this paper a semilinear elliptic boundary value problem in the exterior
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1. Introduction

Let Ω be a bounded domain in lRN , N ≥ 3 and Ω∗ the exterior of Ω. We consider the
boundary value problem

∆u = γ2 f(u) in Ω∗

u = 1 on ∂Ω
u → 0 as |x| → ∞





. (1.1)

Here x is a generic point of lRN , γ is a given positive parameter and the nonlinearity
is assumed to satisfy

f(0) = 0, f ′(0) > 0, f ′′(u) ≥ 0 for u ≥ 0 . (1.2)

The assumptions on f(u) guarantee that the solution decays to zero when |x| → ∞
at least as fast as the solution of the linearised problem. Two possible backgrounds for
problem (1.1) are described in the following:

(a) Poisson-Boltzmann problem:
With this application in mind u represents the potential of a charge distribution.
Important choices for f(u) are then

f(u) = sinh u or f(u) = u (Debye-Hückel approximation) .

The parameter γ then involves a number of physical constants (see e.g. Garrett &
Poladian [2]).

(b) Reaction-Diffusion:
In this interpretation u is the concentration of a reactant. The reactant is fed
into Ω and diffuses through ∂ Ω into the reaction region Ω∗ where a simultaneous
diffusion-reaction process takes place. The concentration inside Ω is held constant
by a continuous supply of reactant. An important case is again f(u) = u (e.g. for
a first order degradation process). Another frequent choice is (Michaelis-Menten
kinetics)

f(u) =
u

a+ u
, where a is a positive constant .

Especially with the second interpretation of problem (1.1) in mind one is mostly not
interested in the values u(x), but rather in some functional of the solution. If (1.1)
describes a diffusion reaction process then one has the relation

γ2 =
k

D
,

where k is the reaction rate and D the diffusion coefficient. Very often then (see Aris [1]
one is interested in a pure number characterizing the influence of diffusion in the chemical
reaction. One such possible number may be defined as

η :=

∮

∂Ω
|∇u| dσ

γ2|Ω|
. (1.3)
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Here dσ is the surface element of ∂Ω and |Ω| the volume of Ω. We will concentrate
mainly on optimal estimates for η in terms of geometrical data of Ω.

Note that for γ = 0 and the condition u(x) = O(|x|2−N), for |x| → ∞, N ≥ 3, (1.1) is

the classical electrostatic problem and
∮

∂Ω
|∇u|ds is up to normalization the electrostatic

capacity of Ω.

2. Bounds derived from optimal sub- or supersolutions

Suppose we can find a function u(x) with the properties (subsolution)

∆u ≥ γ2 f(u) in Ω∗

u ≤ 1 on ∂Ω, u(x) → 0 for |x| → ∞

}

. (2.1)

For the limiting case γ = 0 we have to replace the boundary condition at infinity by

u(x) = O(|x|2−N), N ≥ 3 (N = Number of dimensions .

Then one has u(x) ≤ u(x) for any x ∈ Ω∗. For a supersolution u(x) one just has to
reverse all inequality signs.

In the following we construct an optimal subsolution in two steps. First we define ϕ(ρ)
as the solution of problem (1.1) for the exterior of an N -ball of radius R. It is easy to see
that we can take ϕ(ρ) as the solution of (prime denotes d

dρ)

1

ρN−1

(
ρN−1 ϕ′

)′
= (γR)2 f(ϕ) for ρ ∈ (1,∞)

ϕ(1) = 1, ϕ(ρ) → 0 for ρ → ∞




 . (2.2)

The second important ingredient is the (exterior) distance function d(x) = min
y∈∂Ω

|x−y|,
x ∈ Ω∗. We then set

s(x) =
(
1 +H0 d(x)

)2−N
, N ≥ 3 . (2.3)

Here

H0 = max
y∈∂Ω

{
1

N − 1

N−1∑

j=1

kj(y)
}
,

where kj(y) denote the principal curvatures at a point y of ∂Ω. Thus H0 is the maximum
of the mean curvature, which is assumed to be finite. Note that for the N -ball H0 = 1

R .
The next result will enable us to derive optimal bounds for η as defined in Eq. (1.3).

Lemma 1 Let Ω be a convex domain, i.e. kj ≥ 0 for j = 1, ..., N − 1. Then the function
u(x) = ϕ̃(s(x)), s(x) defined by Eq. (2.3) and where ϕ̃(s) = ϕ(ρ), ϕ(ρ) being the solution
of (2.2) and s = 1

ρN−2 , is a subsolution to problem (1.1).

In order to prove Lemma 1 it is convenient to prove first an auxiliary result stated as:
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Lemma 2 Let Ω be a convex domain. Then the function s(x) defined in Eq. (2.3)
satisfies ∆s ≥ 0 in Ω∗.

Proof: We have

∆s =
(2−N)H0

(1 +H0 d)N−1
∆d+

(N − 2)(N − 1)

(1 +H0 d)N
H2

0 · |∇d|2 .

But one has (see e.g. Gibarg-Trudinger [3], p. 355)

∆d =
N−1∑

i=1

ki
1 + ki d

, |∇d| = 1 ,

so that

∆s =
(N − 2)H0

(1 +H0 d)N
{(N − 1)H0 − (1 +H0 d)∆d} .

We now rewrite the term{(N − 1)H0 − (1−H0 d)∆d} putting the expression for ∆d
over a common denominator. Then we may write

∆d =
A(d)

B(d)
,

with

A(d) =
N−1∑

j=0

j · Pj d
j−1, B(d) =

N−1∑

j=0

Pj · dj .

Here we have used the abbreviation Pj, where P0 ≡ 1 and Pj = sum of all products
with j different factors k# and 1 ≤ j, ' ≤ N − 1.

With this notation we can write

∆s =
(N − 2)H0

(1 +H0 d)N B(d)

{
(N − 1)H0B(d)− (1 +H0 d)A(d)︸ ︷︷ ︸

f(d)

}
.

The expression f(d) can be put into the form

f(d) =
N−1∑

#=0

C# · d# ,

where
C# = H0 P#

(
1−

'

N − 1

)
− (' + 1)P#+1 .

We finally show that C# ≥ 0 for all '. It is clear for ' = 0 and ' = N − 1, noting that by
definition

P1 =
N−1∑

j=1

kj ≤ (N − 1)H0 .
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We consider C# as a function of the N − 1 variables kj . Since C# is symmetric in all
variables the minimum is attained for values kj such that

k1 = k2 = ... = kN−1 = k0 .

But
P#(k

0, ..., k0) =
(

N − 1
#

)
(k0)# ,

and hence
C#(k, ..., kN−1) ≥ C#(k

0, ..., k0) = 0 ,

which implies that ∆s ≥ 0.

Remarks on Lemma 2:

(a) For the special case γ = 0 Lemma 2 shows that

s(x) = (1 +H0 d(x))
2−N

is a subsolution in the “capacity problem”, i.e.

u(x) ≥ (1 +H0 d(x))
2−N , N ≥ 3 , (2.4)

and the equality sign holds in (2.4) if Ω is the N -ball of radius R = 1
H0

. Inequality
(2.4) was derived by Payne & Philippin [4] by a different method.

(b) The convexity assumption is needed in order to ensure that ∆d is finite for all
x ∈ Ω∗. Inequality (2.4) however holds without the convexity assumption, as shown
by Payne & Philippin.

Proof of Lemma 1: We have

∆u =
dϕ̃

ds
·∆s+

d2ϕ̃

ds2
· |∇s|2 ,

and

|∇s|2 =
((N − 2)H0)2

(1 +H0 d)2N−2
|∇s|2 =

((N − 2)H0)2

ρ2N−2
. (2.5)

Furthermore
dϕ̃

ds
=

1

N − 2
ρN−1 dϕ

dρ
, (2.6)

and hence

∆u− γ2 f(u) ≥
((N − 2)H0)2

ρ2N−2

d2ϕ̃

ds2
− γ2 f(ϕ)

=
H2

0

ρN−1

d

dρ

(
ρN−1 dϕ

dρ

)
− γ2 f(ϕ) = 0 .
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On ∂Ω we have ρ = 1 and thus
u = ϕ(1) = 1 on ∂Ω
as well as
u(x) → 0 as |x| →∞ .

As a consequence of Lemma 1 we have

Theorem 1 Let Ω be a finite convex domain in lRN , N ≥ 3. Denote by H0 the maximum
of the mean curvature of ∂Ω and by η0 the effectiveness of a ball of radius H−1

0 (as defined
by Eq. (1.3)). Then the effectiveness η of Ω satisfies

η ≤ η0
|∂Ω|

NH0|Ω|
(2.7)

and the equality sign holds if Ω is a ball.

Proof: Since the subsolution u defined in Lemma 1 satisfies the boundary conditions
required in problem (1.1) we have

∮

∂Ω
|∇u|dσ ≤

∮

∂Ω
|∇u|dσ . (2.8)

But from Eq. (2.5) and (2.6) we find

∮

∂Ω
|∇u|dσ = −H0 ·

dϕ

dρ

∣∣∣
ρ=1

· |∂Ω| . (2.9)

From (2.2) it follows that (R = H−1
0 )

η0 =
NH2

0

γ2
|ϕ′(1)| . (2.10)

Eqs. (2.9) and (2.10) then imply inequality (2.7).

Remarks on Theorem 1

(a) An important case for applications is N = 3 and f(u) = u. Then the subsolution
can be written down explicitly and one has at distance d from ∂Ω

u(d) ≥
e−γd

1 +H0 d
. (2.11)

Inequality (2.7) then takes the form

η ≤
(H0 + γ)|∂Ω|

γ2|Ω|
. (2.12)
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(b) We can also derive an explicit lower bound for η from Lemma 1 in the case
N = 3, f(u) = u. From the differential equation and the boundary conditions
it follows that

η =
1

|Ω|

∫

Ω∗

u dx ≥
1

|Ω|

∫

Ω∗

u dx .

We integrate over Ω∗ using parallel surfaces to ∂Ω. One has for the surface area
S(δ) of a parallel surface at distance δ from ∂Ω (see e.g. Polya-Szegö [5], p.66)

S(δ) = S(0) + 2M · δ + 4π δ2 . (2.13)

Here M is the Minkowski constant of ∂Ω defined by

M =
∫

∂Ω
H dσ, H = mean curvature , (2.14)

and of course S(0) = |∂Ω|.

Hence we have

η ≥
1

|Ω|

∫ ∞

0

e−γδ

1 +H0 δ
(|∂Ω| + 2Mδ + 4π δ2) dσ . (2.15)

The evaluation of the integral gives after some routine calculation

η ≥
1

ν

{4π

µ
+ λ+ µ(H2

0 |∂Ω| − λ) eµ · E1(µ)
}
, (2.16)

where the following abbreviations have been used:

ν = H2
0 γ|Ω|, µ =

γ

H0
, λ = 2M H0 − 4π . (2.17)

E1(µ) denotes the exponential integral defined by

E1(µ) =
∫ ∞

µ

e−t

t
dt .

Inequality (2.16) is again isoperimetric since the equality sign holds if Ω is a ball.

(c) One could also derive a version of Theorem 1 valid for plane domains Ω. However
then the limiting case γ = 0 does not make any sense. In addition problem (1.1)
seems less interesting in the two dimensional case.

Next we derive an estimate for η which is based on the construction of an optimal su-
persolution u. For this purpose we use as an auxiliary problem the “electrostatic problem”
(N ≥ 3)

∆h = 0 in Ω∗

h = 1 on ∂Ω

h(x) = O(|x|2−N) as |x| →∞





(2.18)

In order to get an explicit inequality we restrict our attention to the special case
f(u) = u.
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Theorem 2 Let f(u) = u in problem (1.1) and Ω be a finite domain with boundary of
class C2+ε, but not necessarily convex. Let τ = max

∂Ω
|∇h|, h being the solution of (2.18),

and C = w−1
N

∮

∂Ω
|∇h|dσ the “capacity” of ∂Ω(wN = (N − 1) dimensional surface area

of the unit N-sphere). Then we have

η ≥
[
1 +

κ

N − 2

KN−4
2
(κ)

KN−2
2
(κ)

]
C · wN

γ2|Ω|
(2.19)

where κ = (N − 2) γ
τ and Kp(κ) denote Bessel functions. The equality sign holds if Ω is

the N-ball.

Proof: We use the solution of (1.1) with f(u) = u and Ω the unit ball as an auxiliary
function:

1

ρN−1

(
ρN−1 ϕ′(ρ)

)′
= c2 ϕ in (1,∞)

ϕ(1) = 1, ϕ(ρ) → 0 for ρ → ∞





. (2.20)

The value of c will be chosen later. The solution of (2.20) is

ϕ(ρ) = ρ
N−2

2 ·
KN−2

2
(cρ)

KN−2
2
(c)

. (2.21)

We then set ρ = h− 1
N−2 , h being the solution of problem (2.18). It is convenient to

write
ϕ̂(h) = ϕ(ρ) and to use the relation

d

dh
= −

1

N − 2
h− N−1

N−2
d

dρ
= −

1

N − 2
ρN−1 d

dρ
.

(2.22)

We now choose u(x) = ϕ(ρ(x)) = ϕ̂(h(x)) and calculate

∆u =
dϕ̂

dh
·∆h+

d2ϕ̂

dh2
· |∇h|2 =

d2 ϕ

dh2
· |∇h|2 . (2.23)

At this point we use a result of Payne & Philippin [4] stating that in N dimensions
the solution h of (2.18) satisfies (the smoothness of ∂Ω is used here!)

|∇h|2 ≤ τ 2 · h
2(N−1)
N−2 . (2.24)

Hence

∆u− γ2u ≤ τ 2
d2ϕ̂

dh2
· h

N−2
2(N−1) − γ2 ϕ̂ ,

but because of Eq. (2.22) this can be put into the form

∆u− γ2u ≤
τ 2

(N − 2)2
1

ρ2(N−1)
ρN−1 d

dρ

(
ρN−1 dϕ

dρ

)
− γ2 ϕ(ρ) = 0 ,
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if we choose c = (N−2)γ
τ in problem (2.20). It is easy to see that u satisfies the boundary

conditions. We therefore have
∮

∂Ω
|∇u|dσ ≥

∮

∂Ω
|∇u|dσ . (2.25)

The relations

u =
√
h
KN−2

2
(κ hp)

KN−2
2
(κ)

, κ =
(N − 2)γ

τ
, p = −

1

N − 2

together with well known identities for Bessel functions then show after some routine
calculations that inequality (2.25) leads to the statement of Theorem 2.

Remarks on Theorem 2

(a) Inequality (2.19) is still not quite explicit. It is not hard to check that the function

s
KN−4

2
(s)

KN−2
2
(s)

is increasing for s > 0. Hence we need an upper bound for τ and a lower bound for
the capacity C. It was shown by Payne & Philippin [4] that

τ ≤ (N − 2)H0 . (2.26)

For the capacity C one has the classical result of Poincaré-Szegö (see [6]) that

C ≥ (N − 2)
(
N |Ω|
wN

)N−2
N

. (2.27)

Inequality (2.19) therefore implies the weaker but still isoperimetric inequality

η ≥
(

1 +
γ

H0
·
KN−4

2
( γ
H0

)

KN−2
2

( γ
H0

)

)
(N − 2)

γ2(N |Ω|
wN

)2/N
(2.28)

which for N = 3 reduces to

η ≥ 3
( 1

γ2
+

1

γH0

) ( 4π

3|Ω|
)2/3

. (2.29)

(b) For N = 3 the supersolution u can be written as

u(x) = h(x) exp
{
−

γ

τ

( 1

h(x)
− 1

)}
. (2.30)

An explicit upper solution h(x) for h(x) would then lead to an explicit upper bound
for u(x). However for general domains it seems difficult to give an optimal choice
of h(x).

8



3. Concluding Remarks

(a) The method of integration over level surfaces (see Sperb [7]) could also be used in
order to derive an optimal inequality for the “effectiveness” η. One can show then
that for given N -volume of Ω η is a minimum for the N -ball. In order to keep this
note at a reasonable length we mention this result without proof.

(b) A number of additional bounds could be proven by exploiting the fact that the
function

P := |∇u|2 − 2γ2 F (u) + βu ,

where F (u) =
∫ u

0
f(v)dv and β is chosen appropriately, is non positive in Ω∗. Here

techniques described in Sperb [7] can be used.

(c) The case N = 2 has been excluded here since it is of less interest in applications. It
is however not hard to extend Theorem 1 (but not Theorem 2) to this case. Also
for the remarks (a),(b) above the two-dimensional case is no exception.
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