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Abstract

In this paper we give a summary of the main results in [Pir92]
concerning the inverse Sturm-Liouville problem. We emphasize a con-
vergence result for a Newton method based on finite difference ap-

proximation together with a correction technique first introduced by
Paine, de Hoog and Anderssen [PdAS81].
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1. Introduction. The Sturm-Liouville problem is an eigenvalue problem

—y"+qy=Xy,  y,q€ L*0,1). (1)

For simplicity we only consider the boundary value problem with Dirichlet
boundary conditions

y(0) = y(1) = 0. (2)
Thus, the SLP is the problem of finding, given a potential ¢ € L*(0,1), a
strictly increasing sequence A(q) = (M(q), A2(q), As(q), . . .), called the spec-
trum of ¢, each value of which satisfies (1) with a corresponding eigenfunction
y € L*(0,1) satisfying (2).

The inverse Sturm-Liouville problem (ISLP), in which we are particularly
interested, can be stated as follows: Given a spectrum A of real numbers
we want to find a potential ¢ having A as its Dirichlet spectrum. Borg, in
his fundamental paper [Bor46], was the first to analyse the ISLP. He pointed
out that for the case of symmetric potentials, i.e. ¢(1 — ) = ¢(z), a.e.,
g 1s uniquely determined by its spectrum. The question whether the ISLP
is well-posed was first partially answered by Hald in [Hal78]. He proved
that if two spectra A and A are not too far away from the null spectrum
A0) = (K*x% k > 1), i.e. if both numbers ||\ — A(O)Hl2 and Hz — A(O)Hl2
are sufficiently small, then for the corresponding, uniquely determined, sym-
metric potentials ¢ and ¢

lg =l < SIA—= Al (3)

holds for a suitable constant 5. An alternative proof for this local well-
posedness result with explicit constants is also given in [Pir92, Theorem
4.2.16]. Poschel and Trubowitz in [PT87] proved well-posedness for the
ISLP in the most global context. The spectral data A must no longer be
near the null spectrum. The remaining conditions are solely A\ < Ay < ---
and

M=k 4+ s+, sER,a€l? (4)

in order that the problem A — ¢,q symmetric in L?*(0,1), is well-posed.
They also gave explicit formulas for the inverse problem. Nonetheless, they
did not quantify the Lipschitz constant S of the inverse mapping which
makes it difficult to apply their ideas on convergence proofs for numerical



methods, such as finite difference or finite element methods, which also pro-
vide faster algorithms for the ISLP.

Numerical methods usually transform the ISLP in a matrix inverse eigen-
value problem. Therefore, many authors worked on properties and algorithms
of matrix inverse eigenvalue problems. For a survey of the earlier papers
see [Hal72]. A survey of more recent results is given in [BG87]. But many of
these discretizations, especially those providing sparse matrices such as finite
difference or finite element discretizations, have higher eigenvalues differing
significantly from those of the SLP. Consequently, inverse algorithms based
on such discretizations either failed completely, when applied on the ISLP,
or gave very poor results. In the early Eighties Paine, de Hoog and Ander-
ssen [PdA81] overcame in this context the problem of accurately computing
higher SL— eigenvalues by a simple correction technique. They showed, for
the case of central difference discretization with an equidistant grid, that even
higher SIL— eigenvalues can be accurately computed by adding the errors for
the null potential — which are explicitly known — to the corresponding eigen-
values of the discretized problem. It turned out that the same correction
technique can also be successfully applied to other discretizations, such as
Numerov methods [AP85], finite element methods [AP86, Mar90] and mul-
tistep methods [VD91].

Based on this correction technique Paine [Pai84] and Marti [Mar90] de-
veloped convergent and fast algorithms for the ISLP. But there still was a
lack of theory and convergence proofs for such algorithms.

In this paper we want to present a convergence result for an inverse algo-
rithm based on a finite difference discretization with an equidistant grid.

2. Finite Difference Discretization. We discretize the SLP on an
equidistant grid {x; : @; = th,i = 0,...,n+ 1, h =1/(n + 1)} and apply
central difference discretization on (1), (2). This yields a matrix eigenvalue
problem, here called the discrete Sturm-Liouville problem (DSLP),

[—A+ diag(g)]lu = Au, u€ R, (5)

where A = h™%tridiag(1,—2,1) € R™" and ¢; = q(z;), 1 =1,...,n.

In a first attempt to set up a well-posed discrete inverse eigenvalue prob-
lem (DISLP) analogously to the ISLP we may seek, given n real numbers
Ay < Ay < oo < Ay, a vector ¢ € IR" satisfying the symmetry condi-
tion ¢; = ¢ny1-i, ¢ =1,...,n, (henceforth called a symmetric vector) and



having A = (Ay,...,A,)T as its DSL- spectrum. A simple comparison of
dimensions yields that the DISLP stated as above cannot be well-posed. As
a necessary condition for well-posedness of the DISLP the dimensions of the
underlying domain and the range of the mapping must be equal.

In fact, the full DSL.— spectrum contains, in a sense, too much information
(although this seems to be a paradox at the first glance); namely information
of both the SL— spectrum of the potential ¢ and of —¢, as has been shown
in [Pir92, Theorem 2.2.8]:

Proposition 1 For the DSL— eigenvalues of (5) we have

4
Ap(—q) = 7oh Appik(q) k=1,....n.
We thus modify our DISLP as follows: Let n = 2m be even. Given
m = n/2 numbers Ay < Ay < -+ <A, we seek a symmetric vector ¢ € IR"
(i.e. satisfying the symmetry condition ¢; = ¢ny1-:, ¢ = 1,...,n) having
Aq, ... A, as lowest m values in its DSL— spectrum.

3. Well-posedness for the DISLP. In order to be consistent with (3)
we define the discrete L*~ norm for ¢ € R™ by

gl :=+/hqTq.

For the DISLP the />~ norm has to be replaced by the 2- norm | -
IR™. Having in mind that

g in

4 h
Ar(0) = ﬁsim2 (kﬂ'g) , k=1,...,n,

we may state our well-posedness result for the DISLP analogously to (3) and

(4T

Theorem 1 Let n = 2m and the given half spectrum Ay < Ay < -+ <A,
shall satisfy the condition

IA = A(O)|lgm < p,  with p=0.0091, (6)

[

T For the DISLP we set s, the spectral shift, to zero. The case with arbitrary spectral
shift s makes no difficulties and can be treated analogously.
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then the DISLP is well-posed.

More precisely, if Ay < -+ < A,, is another half spectrum satisfying
(6) then A and A are the DSL— half spectra of two uniquely determined
symmetric vectors ¢, ¢ € R™ having discrete L*— norms < R = 0.0259 and
satisfying the inequality

lg = all, < 2v2[A— Allyn- (7)

This result is proven in [Pir92, Theorem 4.3.17].

We shall refer to (7) as the stability equation of the DISLP with stability
constant S = 2/2 and stability thresholds R and p = R/S. It is a crucial
point, in order to prove convergence for algorithms based on the DISLP,
that the constants S, R and p are independent of the grid size h and that
the discrete norms converge, in the limit, to the norms (i.e L?*- norm and
>~ norm) considered in the ISLP. For further information on this problem in

nonlinear stability see also [Ste73], [Kel75], [LMSS88a], [LMSS88b] or [Pir91].

4. A Newton Method for the DISLP. Given a half spectrum A € IR™

we want to find symmetric solutions ¢ € IR",n = 2m, of the equation

Mg — M
F(q) = : =0, (8)

where A(q) is the half spectrum of the DSLP (5). The Newton method
for the half spectrum was first proposed by Hald [Hal72, p.151]. It yields a
sequence of symmetric vectors g(j) € R" satistying

, , @17 ,
[g(“l)]m:[g(])] _l%] F(¢9y, j=1,2,.... (9)

Here [-],, : R*™ — IR™ denotes the canonical projection defined by [q],, :=

(q1,- -+, ¢m)TT. The partial derivatives can be easily computed from the eigen-

vectors u_,(¢q) € R" of (5): aFk/agj =2u’(q), j,k =1,...,m, (see [Hal72,

t Clearly, in reverse, every vector [¢]m € IR™ can be extended to a unique symmetric
vector ¢ € R?™.



p.141] or [Pir92, p.9]). However, we still do not know whether the Jacobian
JF/0q is always invertible according to a conjecture of Hald [Hal72, p.145].
But now, we know it for small potentials by the stability inequality (7). In
addition, we have:

Theorem 2 Let A € R™,n = 2m, be a half spectrum satisfying the con-
dition (6) of Theorem 1 with stability threshold p = 0.0091/2. Then, for
every choice of the initial symmetric vector g(o) € R™ with discrete L*-
norm < R = 0.0259, the sequence g(j) of (9) is well-defined and converges
quadratically, in the discrete L?>— norm, to a symmetric vector ¢ € IR".
The vector q is the unique symmetric solution of (8) with discrete L*~ norm

< R/2.

The proof is essentially the same as in [Pir92, Theorem 4.3.20].

5. Consistency and Rate of Convergence. Now the question that
arises is: Can the Newton method for the DISLP also provide an algorithm
for the ISLP? In other words: Can the solutions q of (8) converge, in a
sense which has to be specified, to a true solution ¢ of the ISLP?

The data of the ISLP are a spectrum A satisfying the asymptotic condi-
tion (4)T. But the data for DISLP, in order to be well-posed, have to satisfy
the asymptotic condition (6) of Theorem 1 which reads

4 h
Ap & 75 sin? (kﬂ'g) ,  for k large enough.'t (10)
Since the two asymptotics are not the same the data for the DISLP must be
adjusted. And it is exactly the correction technique introduced in [PdA81],
performed in reverse, which does this adjustment. Thus, the half spectrum

A of F in (8) must be defined as

4 h
Ak:)\k—k%r?—l-ﬁsinz (lmg) , k=1,...,m. (11)

Now the data A are consistent with condition (10) and our Newton method
may be applied.

T Again, for simplicity, we set the spectral shift s = 0.
T For more details on this subject see [Pir92, DSL-Counting-Lemma, Theorem 3.5.1
and Korollar 3.5.7].



Definition 1 A sequence of vectors g(m) € R*" is said to be convergent to
an element q € L*(0,1) iff

Hg(m) - (q)hHh - 07 as m — 00,

where (q), := (q(z1), ¢(z2), .., q(w2m)) "
Together with this definition, we may now state our main theorem:

Theorem 3 Let the data A of the ISLP satisfy the condition HA—A(O)HZ,Z <
p = 0.0091/2 and belong to a solution q € L*(0,1) being twice continuously
differentiable. In addition, let the data A for (8) be corrected according to
(11). Then the Newton method (9) supplies uniquely determined approxima-
tions g(m) € R*™,m sufficiently large, which converge to the solution ¢ with
order not smaller than 1/2, i.e.

g™ = (@), ll, = O(Vh).

Proof. Let A be a SL- spectrum and A be the half spectrum corrected
according to (11). For a continuous potential ¢ we introduce the truncation

M) — M
mw(q) = F((g),) — =
Anlq) = Am

M((q),) — Mlg) — A(0) + Ai(0)

Anl(@)) = Anl@) — A(0) + A (0)

We may now apply the result of Paine, de Hoog and Anderssen [PdA81]
which states that for ¢ twice continuously differentiable

(@) = O(kh?) < MER*, k=1,...,m, (12)

where the constant M = M(]|q]|., l¢'||.s|l¢"|l..) depends on ¢ but not on
k or h. It follows immediately that

m

Hmwmﬁﬂzm@z

k=1

< MVh.




Now let ¢ be a twice continuously differentiable solution of the ISLP. Our
truncation error then reduces to 7,(¢) = A((¢),) — A. We have

1A = AO)][gm < (1A = AO)][, < p-

g
In addition, [|A((¢), = M)llgm < 1A = AQ)l[gn + [7(0)llgn < p + MV
Thus, for h sufficiently small, both Theorem 1 and Theorem 2 apply. The
stability inequality (7) yields

g™ = (@), 1l < 2V21F(¢")) = FU@) )l = 2V2]70(0) | = O(VR),

since F(g(m)) = 0. This completes our proof.

6. Numerical experiments. Our Newton method has been tested in
three qualitatively different examples and with different L*- norms R of
the solution ¢ of the ISLP (see next three pages’). The data A of the ISLP
have been computed, from the solution ¢, with a Galerkin method that yields
good approximations for the SL— eigenvalues (see [Pir92, Kapitel 5]).

In Example 1 the solution

¢(z) = RV2cos2rz, 0<az <1,

is the potential of the Mathieu equation and is infinitely often differentiable.
In Example 2 the solution ¢ has a discontinuous first derivative and in Fz-
ample 3 ¢ 1s discontinuous itself. In all three examples the parameter R
denotes the L?- norm of the solution ¢. We see that in all three cases the
Newton method yields good approximations even if ¢ is large. For Example
1 and Fzample 2 the observed order of convergence is 1.5. This is not too
surprising, since one can also observe that in (12) the error term O(kh?)
is not strict. We rather have an O(h?) error (a observation which is still
unproven) which implies this order of convergence.

T We henceforth omit subscripts for the L?- norm.
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Example 1.

Plot for R=1, m=32,h =1/65:

computed potential

0.2 03 04

0.5 0.6 0.7

0.8 09 1

| x10+4 relative error of the computed potential

ol

alb

20 o1 02 03 04 05 06 07 08 09 1

(q_exact-q_comp)/lig_exactll
Further results for Example 1:
‘ m H Newton steps ‘ err = ||gecomp — Gexact||n/ R ‘ err/h?

Numerical values for R = ||¢exact|| = 1:
2 2 4.05967 - 1073 4.53877 - 1072
4 3 9.38247 - 1074 2.53327 - 1072
8 3 3.00717 - 10~ 2.10780 - 1072
16 3 1.00799 - 104 1.91086 - 102
32 3 3.42074 - 107° 1.79263 - 10~2
64 3 1.76485 - 10~° 1.72374 - 1072
Numerical values for R = ||¢exact|| = 25:
2 ) 4.11258 - 1071 4.59801 - 10 °
4 4 2.75162 - 1072 7.42938 - 10!
8 4 7.79034 - 1073 5.46047 - 107!
16 4 2.53686 - 1073 4.80914 - 107!
32 4 8.54439 - 10~ 447766 - 1071
64 4 2.93570 - 10~ 4.30126 - 107!




Example 2. Plot for R=1, m=32,h =1/65:

2 computed potential

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

0.005 ‘ ‘ rqlative error of thq comput§d solutign
0 |
-0.005 -

-0.01
0

(q_exact-q_comp)/llq_exactll

Further results for Fxample 2:

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

‘ m H Newton steps ‘ err = ||gecomp — Gexact||n/ R ‘ err/h?

Numerical values for R = ||¢exact|| = 1:

2 2 7.98441 - 1072 8.92684 - 107!
4 3 3.40742 - 1072 9.20004 - 107!
8 3 1.29612 - 1072 9.08486 - 107!
16 3 4.70356 - 1073 8.91656 - 107!
32 3 1.67895 - 103 8.79848 - 107!
64 3 5.95863 - 10~ 8.73034 - 107!
Numerical values for R = ||¢exact|| = 25:

2 4 1.27800 - 107! 1.54065 - 10 ©
4 4 3.55341 - 1072 9.59420 - 107!
8 ) 1.27161 - 1072 8.91391 - 107!
16 4 4.63696 - 1073 8.79031 - 107!
32 4 1.65700 - 103 8.68343 - 107!
64 4 5.86915 - 10~ 8.59924 - 107!
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Example 3.

computed potential

Plot for R=1, m=32,h =1/65:

20 01 02 03 04 05 06 07 08 09 1

06 ‘ ‘ rel‘ative error of the‘compute‘d solutiqn

04F

02f

0,
02 : : : : : : : : :
o 01 02 03 04 05 06 07 08 09 1
(q_exact-q_comp)/llq_exactll
Further results for Fxample 3:
‘ m H Newton steps ‘ err = ||gecomp — Gexact||n/ R ‘ err/h%?

Numerical values for R = ||¢exact|| = 1:

2 2 3.83697 - 107! 8.57972 - 107!
4 3 2.82619 - 107! 8.47858 - 107!
3 3 2.01128 - 107! 8.29273 - 107!
16 3 1.42035 - 107! 8.15928 - 107!
32 3 1.00246 - 10! 8.08207 - 107!
64 3 7.07968 - 1072 8.04097 - 107!
Numerical values for R = ||¢exact|| = 25:

2 4 2.87705 - 107! 6.43328 - 107!
4 4 2.65356 - 107! 7.96068 - 107!
3 4 1.90924 - 10! 7.87199 - 10!
16 4 1.36622 - 107! 7.84833 - 10!
32 4 9.78500 - 1072 7.88892 - 10!
64 4 6.98430 - 1072 7.93264 - 107!
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