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1. Introduction.

We consider strictly hyperbolic systems of two conservation laws in one dimension:

(1.1.a) WU +0,f(U)=0, (2,t)€ RxR™T;

_ [ n _{ filur,u2)
(1.1.b) U= (u2) und f(U) = (fg(ul,m))
with the intitial data
(1.2) U(z,0) = Up(z),

where R = (—o00,+00) und RT = [0, +0).

Here the condition of strict hyperbolicity means that the Jacobian <7 f of f has two real
and distinct eigenvalues:

o (U) < a3(U)
and the function f is in C3(Q) for some open set Q in R2.

The system (1.1) is genuinely nonlinear, if for each ¢ with i = 1,2
T\ 0 7£ 07

where r; denotes the right eigenvector of <7 f corresponding to ;.

A bounded integrable function U(-,-) is called a weak solution of the Cauchy-Problem:
(1.1) and (1.2),if U satisfies (1.1) and (1.2) in the sense of distributions, i.e.,

//ngR+(U8t¢+f(U)a$¢)dwdt+/RUO(QCW(%O)dw:0

for any smooth function ¢ with compact support in ¢ > 0.

It is well known that uniqueness is lost in the class of weak solutions. Thus we consider
uniqueness in the following subclasses of the weak solutions. |- | denotes the Euclidean

norm in RZ.

Definition 1.1 A weak solution U(-,-) is called a solution in the class 1, if it satisfies

the following conditions:

(1.4) U is bounded in the sense of Lebesque’s measure, i.e.,

esssup

(v,t)ERX R* |U(z,t)| < +o0.
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. as a finite number ot curves ot discontinuity in each compact set in 2 X .
1.5) Uh fini b f f di inuity i h in Rx Rt
(1.6) Each curve of discontinuity is smooth.
. 18 Lipschitz continuous in the region between any two curves ol discontinuity.

1.7Y U is Linschi . in the region b £ di _
(1.8) Across any discontinuity = = v(t) the weak solution U satisfies Laz’s entropy con-

dition:

(18@) O'1(U+)<’}/I<O'1(U_)

or

(18b) O'Q(U+)<’}/I<O'2(U_),

dr(t
where U* = U(2 £ 0,¢) and 7' = %.

Remark The condition (1.5) refers to the count of the number of discontinuities. We
consider the discontinuities after the intersection of two discontinuities as new discontinu-
ities.

Definition 1.2 A weak solution U(-,-) is called a solution in the class 2, if it satisfies
the conditions: (1.4)-(1.7), and

(1.9) For any curve of the discontituity z = 7(¢) there is a number ¢ > 0 independent of ¢,

such that across @ = v(t) the weak solution U satisfies the strong enropy condition:
o (UT) <9
0<o<o(U7)—+

or

{7’ <o (U7);

0<o<vy —o(UT).

We show in this paper the following two theorems.

Theorem 1.3 : Suppose that the system is genuinely nonlinear. For every positive

number ' there exists a number # > 0 depending only on f and C with the following
property.
If U und U are two solutions in the class 1 and satisfy

esssup

(z,t)ERX R* |U(z, )| < C;

esssup

(v,t)€RX R+ |U(z,1)| < C

and for any discontinuity

U+ —U~| < 6;
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Ut -U"| <8,
then U = U in R x Rt.

For a general system we have

Theorem 1.4 : For every weak solution U in the class 2 there exists a number 8 > 0

depending on f und U with the following property.

If U is a solution in the class 1 with

(x,t{rel?%)ilﬁ \U(z,t)— U(z,1)] <90,

then U = U in R x RT.

DiPerna [1] has shown

Theorem D : Suppose that the system (1.1) is genuinely nonlinear and admits an

additional conservation law:

(1.10) W)+ () = 0.

For every U € R? there exists a number 6 > 0 depending on f und U with the following
property.

If U is a solution in the class 1 and U an another weak solution with

n(U)i+q(U), <0

in the sense of distribution and U and U satisfy

—U)(z,t)| < 0
e U= U )] <

and

—U)(z,1)| <6
(m{relg;ml(U Uz, 1) <6,

then U = U in R x Rt.

Here DiPerna requires: (i) Since U is a fix vector in R?, U(z,t) and U(z,t) are almost
constant. They have to stay in a ball with the sufficiently small radius  und the center
U. (ii) The distance between U and U is sufficient small.

We do not require the assumption of existence of an additional conservation law (1.10). In

the theorem 1.3 both solutions can have a large variation and there is no restriction for
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the distance between U and U. In the theorem 1.4 both solutions can have an arbitrary

large, but bounded variation and the system must not be genuinely nonlinear.

In our view the technique applied here to show the identity of two weak solutions is
more important than the results. With this technique we can consider furthermore the

rarefaction waves and the n X n systems. This will be confirmed in our next papers.

For more information on uniqueness we would like to refer to the papers: [Liu], [FX], [DG]

and the references cited there.

2. Localization.

We show in this section that it is sufficient to prove the identity of two weak solutions in
a small trapezoid, in order to prove the identity in the halfplane: (z,¢) € R x RT. In this

trapezoid the discontinuities can be easily described.
Let M > 0 be a given constant,

K(a,b,c,d):= {(w,t)eRx [0, 7] M(t—a)+b<z< —M(t—a)—l—d;}

a<t<e

with 0 <a < e,b<dand M(c—a) < % a trapezoid and U and U two weak solutions.

Then we introduce a class of trapezoides depending on f, U and U.

Definition 2.1 : A trapezoid K(a,b,c,d) is called a trapezoid in the class T(M), if

K(a,b,c,d) satisfies the following conditions.

(2.1) The weak solutions U and U are almost everywhere identical in the ground line:

{(2.t) € K(a,b,c,d)‘b <z <dt= a}.

(2.2) There is no or a finite number of discontinuities that run from one point in the

ground line and don’t intersect with the side lines:
r=M{I—-a)+b and 2=-M(t—a)+d, a<t<ec.

They don’t intersect each other in the trapezoid K(a,b,c,d)either and each of them

intersects with the upper boundary
{(w,t) € K(a,b,c,d)‘b—l— Mc<z<d—-Mc,t= c}

at only one point.



Definition 2.2 : A trapezoid K (a,b,c,d)in the class T(M ) has the property Ty, if for each
(z,a) € K(a,b,c,d)withb < z < d thereise > 0withb <z —e<z+e<d,sothat U and

U are almost everywhere identical in the trapezoid K(a,» —e,a + ¢,z +¢) C K(a,b,c,d).

Lemma 2.3 : Suppose that U/ and U are two weak solutions satisfying the conditions

(1.4)~(1.7).

If there is a number M > 0, so that any trapezoid in T(M) has the property Ty, then
U=Uin RxRT.

Proof: Suppose that U # U in R x RT. Let W := U — U and

D(0,b,¢c,d) = // |W|? da dt.
K(0,b,c,d)

Then there are by, cg and dy, so that
D(O, bo, co, do) > 0.

Let
to == sup{t € [0,¢] | D(0,bo,1,do) = 0}.

It follows that

to < co;
(23) D(O,bo,t,do) >0, te€ (to,Co);
D(07b07t07d0) =0

and U and U are identical in the segment
{($,t) S K(a,b,c,d)‘bo + Mty < <dy— Mty,t = to}.
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Since U and U satisfy the conditions (1.4)(1.7), it is obvious in the geometric views, that
there is in the class T(M) a finite number of trapezoides {K(to,b;,to + €,d;)}7=; with
€ > 0, so that

Uisy K (to, biyto +¢,d;) = K(to,bo,t0 + ,do).

It follows from the property Ty and compactness that
D(t07 bOvtO +e€ dO) =0.

Thus
D(O,bo,to + €,d0) = D(O,bo,to,do) + D(to,bo,to + €,d0)

=0.
This is a contradiction to (2.3).1

Without loss of generality we assume that the trapezoid
(2.4) K:={(z,t)| Mt—1<a<-Mt+1,0<t<c}

is in the class T'(M ) and any discontinuities in K start from (0,0). Then we shall show the
identity of U and U in K.

With the help of the entropy condition we can reduce the number of discontinuities in the

trapezoid K.

Lemma 2.4 : Suppose that U and U satisfy the conditions (1.4)~(1.7). Then U (resp. U)
has in K at most two discontinuities. One of them a(-) (resp. a@(-)) satisfies (1.8.a) and

the another 3(-) (resp. 3(-)) satisfies (1.8.b).

Lemma 2.5 : Suppose that U and U satisfy the conditions (1.4)~(1.7). Then the discon-

tinuities satisfy

for any t € (0,c¢).

The proof is trivial and we omit it.

3. Hyperbolicity and Symmetrizer.

Lemma 3.1 : For every C' > 0 there exists 8 > 0 depending on € und f, so that for each
V with |V| < /2 there is a neighborhood of V'

(V)= {U e R*||U-V|<0,|U| < C},
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in which there is a smooth, regular and real matrix L with the following properties:
(3.1) It holds that

g1 0

vf=L"1 ( 0 )L for all U € Qq(V).

g2
(3.2) Let A:= L7L. There is a positive constant depending on f and C with
< W, A(UYW >> const < W, W >

for all U € Qq(V) and all W € R?, where the notation < -,- > is the scalar product
in R

(3.3) the Matrixes L and A are uniformly bounded in U € Q4(V'), i.e., there is a positive
constant depending on f and C' with

max{|L|,|A|} < const

for all U € Q4(V) and all W € R2.

(3.4) The derivatives of I and A uniformly bounded in U € Q4(V'), i.e., there is a positive
constant depending on f and C' with

max{|0y, L|,|0u, L|} < const

and

max{|0y, A|, |0u, A|} < const
for all U € Q4(V) and all W € R2.

Note that (3.1) implies
AVJ‘:LT(UO1 O)L

and

(A f)T=Av [

The row vectors of L are the left eigenvectors of \7f. We can prove this lemma by di-
rectly calculating L. In order to show the properties (3.1)-(3.4) we must apply the strict
hyperbolicity of 7 f. We omit here the deteils of proof.

A matrix A is called a symmitrizer of the Matriz 7 f, if A is positive definite and (A 7
f)T = A</ f holds. With its help one can show the existence und the uniqueness of
classical solution of conservation laws (1.1). We refer to [KL]. We apply in this paper
the symmetrizer to show the uniqueness of solution with discontinuities and avoid the

assumption of existence of the entropy pair (7, ¢) [Dip].
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4. Local Estimation.

Let t1, 1o with 0 <t <ty < ¢

Iz = ’yl(t), t € [tl,tg]
Upraw=,.(1), t€][tr,ts]

be two smooth curves in K and
Gi={(e, ) e K | (1) <a <7e(l), 1 <t <to}
be a subset of K.

In this section we assume, that there is a symmetrizer satisfying (3.1)—(3.4), there is no
discontinuity in G and U and U satisfy the condition (1.7) and

esssup

(v,t)€RX R+ |U(z,1)| < C

and
esssup

(z,0)€RX R+ |U(z,t)| < C.

We measure the distance between U and U in (i by the integration

vr(t)
J(1) ;:/ < W, AW > dde, 1€ [, 1]
yi(t)

with a strictly positive smooth function ¢. Let
(70,6 = // [< W, A(UYW > (0:0)
G(7)

+ < W, AU) 7 f(D)W > (0:9)
_|_C<W7W>¢]d$dt,

where 7 € [t1, 1], G(7) := {(2,t) € G|ty <t < 7}, W = U — U and ¢ > 0 is a real number.
Then we have

Lemma 4.1 : There is ¢ > 0 depending on f, U and U, so that for any 7 € [t;, 5]
J(r) < I(rye,0)+ S (1) = J(Li by, 7) + J (D 1, 7)

holds, where

It = [ < WAL B - 7AW > 6

dt,

73:'77‘(7“)

dt

z=(t)

ﬂnmﬂwz/ <W,AR1) - E— 7 f]W > 6
t1
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and F is the unit matrix.

Proof: Let U, :=V,+U and U, := ¥, + U, where ¥, is a é-function. U, (resp. U,) is

smooth, if U (resp. U) is Lipschitz continuous. We estimate the integral:

// < Wi, sV > 6]+ Bul< Wy An(7 f)aWW > 6] da dt,
GT
where W,, = U, — U,, A, := A(U,) and (7 f), := f(U,). By use of Green’s theorem and

the definition of weak solutions we can take apart this integration by the integrations along
the boundaries of G(7),1i.e., by J(7),J(t1), J(I'1,t1,7) and J(I';, 1, 7). The remaining term

can be estimated by
// c < W,W > ¢dadt.
G(7)

Then the conclusion follows, when n — oo.

Let
In(T,c,0) = //G( )[ < W, A(U)YW > (0:¢)
+ < W AWAD) - J()] > (0.0)
+e< W, W > ¢|dux dt,
Iallntr)i= [ < WA W -0 = S0 o|
and -
IalTitnr)i= [ <W AR W = (RO = 00 >0 an

Similarly we have

Lemma 4.2 : There is ¢ > 0 depending on f, U and U, so that for any 7 € [t;,1,]
(1) <Ia(Toe,0)+ J(t1) = Ja(lt1, 7) + Ja(ly, b1, 7)

holds.

We omit here its proof.

Lemma 4.3 : Let ¢ be the positive number determined in the Lemma 4.1 and the Lemma

4.2. Then there exists a positive constant My, so that for the testfunction

with ¢ > ¢ the estimates:



J(T) S J(tl) — J(Fl,tl,T) + J(FT,tl,T)

and

J(T) < J(tl) — JA(Fl,tl,T) + JA(FT,tl,T).
hold.

The conclusion follows from using ¢ as a testfunction in the Lemma 4.1 and the Lemma
4.2.

5. Proof of the theorems.

At first we show the Theorem 1.3. According to the conclusions in the section 2 we shall
show, that the trapezoid K determined in (2.4) has the property Tp. We set the constant
M in the section 2 by

2

M:=  max {>"|o(U)| + |oi(U)]}.

(@) ERX[0,T] P

Lemma 5.1 : For every point (z,0) with —1 <z <0 or 0 < 2 < 1 there exists € > 0, so
that U = U in the trapezoid K(0,z — ¢, ¢, + €).

Proof: We choose € so small, that thereis in the trapezoid K(0,z—e¢, €, 24¢€) a symmetrizer

A having all properties in the Lemma 3.1. Then we use the Lemma 4.3 and obtain
J(T) < J(O) - J(Flv 0, T) + J(Frv 0, T)

for any 7 € [0,¢], where I'; : « = Mt + 2 —eand I, : @ = —Mt + = + € are the two side
line of the trapezoid K(0,z — ¢, e,z + ¢). Since U = U on the ground line ¢ = 0, we have

J(T) < _J(FlvovT) + J(FTvovT)‘

We investigate the sign of the integrand of J(I';,0,7) and find

< W A1) - E = (V)W > ¢
r=Mit+zr—c¢

_ - M—O’l 0
=W'L ( 0 M_U2)LW

r=Mit+zr—c¢
> 0.

It follows that
—J(I'1,0,7) < 0.
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Similarly
J(I';,0,7) <0.

Thus J(7) < 0. This implies that U = U in the trapezoid K (0,7 — e, e,z 4 €). I

In order to show that K has the property Tp, we have to show furthermore that U and U
are identical in a neighhood of (0,0). Before we do this we consider two small trapezoides
on the right and left side of (0,0).

Let y,(t) := min{a(t), a(t)}, n(t) := max{A(1). 5(1)},

1._ ' 77’_€§$§77’

Gli={(z,1) € K| 0<i<c }
and

2. A< <y te

Gr = {(w,t)elx 0<1<e }

Remark: From the Lemma 2.5 it follows that v,(¢) < 7(¢) for ¢t € [0, ¢].

Lemma 5.2 : There exists € > 0, so that U = U holds in G! and G2.

Proof: We show here only that U/ = U holds in the trapezoid G'! and choose ¢ so small,
that there is in the trapezoid G'! a symmetrizer A having all properties in the Lemma 3.1.

Then we use the Lemma 4.3 and obtain
J(T) S J(O) - J(’)/T - 67077_) ‘|’ J('}/TvaT)

for any 7 € [0, €]. Similarly as in the proof of the last lemma we have J(0) = 0, —J (7, —
€,0,7) < 0. Then
J(1) < J(7.,0,7).

It remains to show that

(5.2.1) J(¥7,0,7) < 0.

As in the last lemma we investigate the sign of the integrand of J(~,,0,7) and find

<W Al (t) - E = (VHIW > ¢

73:'77‘(7“)

ea— MO 0
- (M )Y

73:'77‘(7“)
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The curve v,(-) consists of two curves of discontinuities: a(-) and a@(-). In the case that
(7-(1),t) = (a(t),t) it follows from the entropy condition (1.8) that

0> [y:(1) = o1 (V)]

l’:'yr(t)_o
> [y(1) = a2(U)] -
l’:'yr(t)_o
and
J(v,,0,7) <0.

In the case that (y.(¢),t) = (a(t),t) we have also according to the entropy condition (1.8)

0> [7,(0) = o1 (T)]

l’:'yr(o)_o

> [7,(0) = 03(U)]

l’:'yr(o)_o

Since U(a(0) —0,0) = U(a(0) — 0,0) = U(a(0) — 0,0), we have

0> [7,(0) = o1 (U)]

l’:'yr(o)_o
> [7(0) = o2(U)] :
l’:'yr(o)_o
Then we can find € > 0, so that for ¢ € (0,¢)
0> [y,(t) = o1 (V)]
l’:'yr(t)_o
> [y(1) = o2(U)] :
l’:'yr(t)_o

This implies also (5.2.1).1

et 51(1) := max{a(t), a(t)} and (1) = min{8(1), 5(1)}.
Lemma 5.3: For every positive number ' there exists a number # > 0 depending only

on [ and C with the following property.

If U und U are two solutions in the class 1 and satisfy

esssup

wiyensrs | U@ < C,

12



esssup

(v,t)ERXR¥ |U(z,1)| < C
and for any discontinuity
Ut U <9,
|U+ - U_| <8,

then there exists € > 0, so that v1(¢) < 72(¢) hold for ¢ € (0, ¢).

Proof: Let V,, := lim;_o U(a(t)+0,t) = lim;_o U(8(t)—0,t) and V,, := lim;_o U(a(t)+
0,t) = limy_o U(B(t) — 0,t). We shall show here that

(5.3.1) Vi = Vin.

Then it follows from the Rankine-Hugoniot jump condition that a/(0) = @'(0) and §'(0) =

£'(0). This implies the conclusion because of the Lemma 2.5.

We show now (5.3.1). Let
Uy := U(a(0)—0,0)= U(a(0) - 0,0)

and

U, := U(B(0) + 0,0) = U(B(0) + 0,0).

We obtain from the Rankine-Hugoniot jump condition that V,, and V,, satisfy the equation

with the unknown V:
< LZ(V),V— U >=0
< L,(V),V-U,>=0,

where L;(V') is the left eigenvector corresponding to the second eigenvalue of the matrix

/1 VOV =U)+ Up) dé

and L.(V') the left eigenvector corresponding to the first eigenvalue of the matrix

/1 GOV = U,) + U,) ds.

Then we consider a mapping

== () (SEV i)+

and estimate |d®| by use of the estimations in the Lemma 3.1. If |V -U;| < 8, |V -U,| < 6

and
esssup
(z,t)ERX R+ Vi<c

13



then |d®| < konst 6 holds, where the constant depends on f and C'. We choose 6 so small
that |d®| < 1/2 holds. It follows that

_ 1 _
[O(Vin) = @(Vin)| < 51Vin = V.

Then (5.3.1) follows from ®(V,,,) = V,,, and ®(V,,,) = V., .1

In order to continue the proof we require the following lemma.

Lemma 5.4 : Suppose that the system is genuinely nonlinear. For every positive number

(' there exists a number 8 > 0 depending only on f and C' with the following property.

If U und U are two solutions in the class 1 and satisfy

esssup
(v,t)ERXR¥ U(z,1)] < C,
esssup |-
(z,t)ERx Rt ‘U(xvt)‘ <C
and for any discontinuity
vt —U-| <9,
|U+ - U_| <8,

then there exists € > 0, so that J(y1 +0,0,%) > 0 and J(v2 — 0,0,%) < 0 hold for ¢ € (0, €).
We shall show this lemma in the next section.

Lemma 5.5 : Suppose that the system is genuinely nonlinear. For every positive number
(' there exists a number 8 > 0 depending only on f and C' with the following property.

If U und U are two solutions in the class 1 and satisfy

esssup
(v,t)ERX R+ Uz, )] < C,
esssup |-
(z,t)ERX R+ ‘U(w,t)‘ <C
and for any discontinuity
Ut —U~| <8,
o — 0] < 6,

then there exists € > 0, so that U = U in

3._ ;
GE._{(x,t)EIx 0<i<e

71§96§72}
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This conclusion is a direct corollary of the last lemma and the Lemma 4.3.

It remains to show the identity of U/ and U in the regions between a and a and between

(3 and /3. In the following lemma we prove that o = @ and 8 = j3.

Lemma 5.6 : Suppose that the system is genuinely nonlinear. For every positive number

(' there exists a number 8 > 0 depending only on f and C' with the following property.

If U und U are two solutions in the class 1 and satisfy

esssup

(z,t)eERXR* ‘U(xvt)‘ < C,

esssup

(miyerxrr U@ )] < C

and for any discontinuity

Ut - U <8,
Ut -U"| <8,

then there exists € > 0, so that & = @ and 3 = /3 hold for ¢ € [0, €].

Proof: If a # a, there is a region

G = {(x,t) €K

(1) <@ < (1)
t1 <t <t

with the following properties:

(5.6.1)  The two side lines v; und 7, are either o or a.

(5.6.2)  The weak solutions U und U are identical on the left side of 4, and on the right
side of 7, i.e., for ¢ € [ty,15]

U(ni(t) = 0,1) = U('Vl(t) —0,1)

and

U(vr(1)+0,1) = U(%’(t) +0,¢)
hold.

(5.6.3)  The left and right side lines don’t intersect for ¢t € (#1,13), i.e., for ¢ € (#1,t2)
Yi(t) < 7e(1)

holds.

(5.6.4) U and U are Lipschitz continuous in .
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(5.6.5) (1) = 7,(t1).

According to the Lemma 4.3 we have in GG
J(1) < J(t) = Ja(T by, 7) + JA(lr by, 7).

It follows from (5.6.5) that J(¢1) = 0. By using (5.6.1), (5.6.2) and the Rankine-Hugoniot
jump condition we have

JA(Fl,tl,T) = JA(FT,tl,T) = 0.
This implies that U = U in . Then it follows from (5.6.2) that 4, and <, are not the
discontinuities of U or U. This is a contradiction to (5.6.1).4

Proof of Theorem 1.3 : By putting the Lemma 5.2, the Lemma 5.5 and the Lemma
5.6 together we show that there is a neighhood of (0,0), in which /' = U. This means that
the trapezoid K has the property Tp. Then the theorem follows from Lemma 2.3.

Proof of Theorem 1.4: We show here the identity of the discontinuities, i.e., @« = a
and = 3. The rest is similar with the proof of the last theorem.

Proposition. For every weak solution U in the class 2 there exists a number 6§ > 0
depending on [ und U with the following property.

If U is a solution in the class 1 with

(x,t{rel?%)ilﬁ |U(2,t) = Ua,1)] < 6,

then the discontinuity of U is also the discontinuity of U.

Let Ut := U(a(t) + 0,t) and U~ := U(a(t) — 0,t). The strong entropy condition (1.9)
implies that
O'l(U_) — O'l(U+) >0 > 0.

We assume that U is continuous across the curve af-).

Then U(a(t),t) = U(a(t)+ 0,t) = U(a(t) — 0) = U(a(t) — 0) and

‘O’l(U_)—O'l(U)‘ = 0.

(z,1)=((0),0)

Since o1(-) is Lipschitz continuous, there is a constant depending on f und U, such that

o (UF) = oy (U) <const|Ut = U|

(z,1)=((0),0)
—jur+ -]

(z,1)=((0),0)

(#,t)=(2(0),0)
<const 0
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holds. Then we have

0<o<[o(U7)— o (UT)]

(z,t)=((0)—0,0)

= o1 (UF) = 01 (0)]

(z,t)=((0)—0,0)
< const 6.

Then there exists ¢ > 0, so that for ¢ € [0, €]

o < const 0

holds. We choose § < —2— and obtain a contradiction. Thus the proposition is shown.

We continue showing that @ = @ and # = 3. According to this proposition @ is identical
either with « or with .

If @ and 3 are identical, the curve 3 is on the right side of 3 because of the Lemma
2.5. Applying the Lemma 2.5 again we obtain that 3 is on the right side of a. This is a
contradiction to the proposition, that 3 is identical either with a or with §. This implies

that a and @ must be identical.

Similarly one show that 3 and 3 are identical.g

6. Proof of the Lemma 5.4.

We show here that J(y1 4+ 0,0,t) > 0 holds for ¢ € (0,¢) and one can obtain the other
estimate in the Lemma 5.4: J(y2 — 0,0,7) < 0, in the same way. We investigate the sign
of the integrand of J(vy; 4+ 0,0,1):

< W, AU)nE = 7 f(U)IW >

z=7v11+0

The curve y1(+) consists of two discontinuities: a(-) and a(-). From now on we assume
that v1(¢) = a(t), a(t) < a(t) hold for t € [t1,t5] and a(ty) = a(ty). Then we shall show
that for t € [t1,15]

(6.1) [ <wawpie v | 2o

r=a+4+0

holds, if 1 and 3 are sufficiently small. In the other case where v1(¢) = a(?) we can obtain

[ <wawpiE-viomw | o

r=a+4+0
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in the same way.

We introduce the following notations:

and

Wot = Uozi - Uoziv

Obviously Us := Usy = Us— and U, = Ua-|— = U,_ hold. According to the Lemma 5.2
there exists € > 0, so that Uy_ = Us_ = Ua+ and W,_ =0hold,if 0 <#; <t <ty <e.

We introduce a new function ¢ : R? x R*> — R
(V1 V) =< Vi = Vo, A(Usy )@ - E = 7 f(Uas)J(V1 = V2) > .

Instead of the proving (6.1) we prove that for ¢ € [t1, 2]

t
(6.2) L/wahﬂUﬁyhzo
t1

holds, if t; and t; are sufficiently small.

Let Vo € R* and S(Vp) be the shock set [Liu]

S(Vy) == {V c R2‘f1(v) - 1) _ (V)= (V) }7

U1 — Vo1 Vg — Vo2

where V' = (v1,v2)7 and Vp = (vo1,v02)7. Let

s(v.vy) = AV =A%) _ (V) = fo(Vo)

U1 — Vo1 Vg — Vo2

It is not difficult to show that S(V, V) is either the first or the second eigenvalue of the
matrix

/ LV — V) + Vo) di.

iV £ Vo. Let
Si(Vo) == {V € S(Vo)|S(V,Vp) is the i — th eigenvalue.}
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with ¢ = 1,2. Then S(Vy) = S1(Vo) U S2(Vp). By using of the standard method [Smo] we
can show that S7(Vp) and S3(Vp) are two oneparameter families and for any ¢ € [t1,13]
there is U € S1(Us—), so that

Oél — Ul(Uoz—) = S(ﬁ, U@_) — Ul(U@_)
holds, if [UT — U~| and |U+ — U~| are sufficiently small.

In the following lemmas we show the estimate (6.2) with the help of the intermediate state

U. Without special explaination the positive constants in this section depend only on C,

f and f.

Lemma 6.1. Suppose that the system is genuinely nonlinear. For every positive number

(' there exists a number 8 > 0 depending only on f and C' with the following property.

If U und U are two solutions in the class 1 and satisfy

esssup ‘
(wiyerxnt | U@ 0] < C;
esssup | -
(v,t)€RX R+ |U(z,1)| < C
and for any discontinuity
Ut —U~| < 6;
|U+ - U_| <8,

then there is a constant, so that

WU, Usy) > const|U — Usy|®.

Proof: Let R:= U — Uy, and L = (L1, L3)7 be the left eigenvectors of 7 f(Usy) with
1L =1,i=1,2.

From the Lemma 3.1 follows that

(U, Usy)
dl—Ul(U@+) 0

< ey (T L),

= [RI* Y _[a" = iU+ )](cos pi)°,

=1
where p; with ¢ = 1,2 is the angle between L; and R.

In order to show the conclusion we show that

(6.1.1) > @' = 0i(Usy))(cos pi)* > const > 0

i=1
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holds.

Since the system is genuinely nonlinear,

a'—o1(Usq) > konst|Usy — Us_|

Then it follows from the entropy condition that

a' —o1(Usy) > konst|Usy — Us_| >0
holds. The equality (5.3.1) means that Us4 =Usst holds. It follows that

a' — a1 (Usy) > konst|Usy — Ugs_| > 0.
A short estimate shows that there is a constant, so that

| cos p1| > const > 0.
t=0
Then we have
[@' — 01(Usy)](cos p1)? > konst|Usy — Us_| > 0.

By using the Rankine-Hugoniot jump condition we obtain

> konst|Usy — Ugs_|
t=0

| cos ps
t=0

Then we have ,

> o' = 0i(Uay)](cos pi)

i=1

t=0

> konst|Usy — Us_| — konst|Usy — Us_|?

t=0

t=0
We choose 6 so small, that

> konst|Usy — Ug

t=0
holds, if |Usy — Us_| < 6.

Thus there is € > 0, so that for 0 < #; <ty < € and t € [t1,?2] the estimate (6.1.1) holds,
since the right is a continuous function of .
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Lemma 6.2. Suppose that the system is genuinely nonlinear. For every positive number
(' there exists a number 8 > 0 depending only on f and C' with the following property.

If U und U are two solutions in the class 1 and satisfy

esssup

(v,t)€RX R+ |U(z,1)| < C,

esssup

(enerxrs U0 <C

and for any discontinuity
Ut —U~| <8,
o — 0] < 6,

then there is a constant, so that

V(Usy, Usy) > const|)U — Ugp|* — constA?,

where A(+) := a(:) — a(-).

Proof: We consider (U, Uy ) as a perturbation of ¢)(Usy, Usy ) and have the estimate

0(Uat Usy) = (U, Usy)|
< const|U = Usy||U = Usy | + const|U — Usy |
It holds that ~ B
|U - Ua+| §|U’— - Ua—|

(T~ T
<konst/\
and
U = Usy|?
<20 = Uat [* + Ut = Uar[?)
< konstA*.

Then we have by use of the last lemma that

=

Usts Usyt)
DU, Usq) + [0(Ust, Uss ) = O(U, Usy )]
> const|U — Ugy|* — constA|U — Usy | — constA?.

(6.2.1)

For any positive number g it holds that
NI
< pT AR 4 p|U = Usy

21



We insert this estimation in (6.2.1). Obviously we can find a number p, so that the

conclusion holds.g

As a corollary of this lemma we have

Lemma 6.3. Suppose that the system is genuinely nonlinear. For every positive number

(' there exists a number 8 > 0 depending only on f and C' with the following property.

If U und U are two solutions in the class 1 and satisfy

esssup
(v,t)ERXR¥ U(z,1)] < C,
esssup |-
(v,t)ERXR¥ |U(z,1)| < C
and for any discontinuity
vt —U-| <9,
Ut -U"| <8,

then there is a constant, so that

V(Usg, Usy ) > const|Usy — Usy|* — const\®.

Lemma 6.4. Suppose that the system is genuinely nonlinear. For every positive number

(' there exists a number 8 > 0 depending only on f and C' with the following property.
If U und U are two solutions in the class 1 and satisfy

esssup

enenxn |V 1) < C,

esssup

(miyerxrr U@ )] < C

and for any discontinuity

Ut —U~| <8,
o — 0] < 6,
then there is a constant, so that for any t € [t1,15]
i i
/t1 A*(r)dr < const - (t — 1) /t1 |Uay — Usy|? dr.
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Proof: Taylor’s expansion leads to

At) < /t |’ (1) — a'(7)| dr.

Since o' is the eigenvalue of the matrix

1
/0 Vi(6(Uay —Usz) + Us_) ds

and a' the eigenvalue of the matrix

1
/ VS(8(Uay = Ua—) + Us—) dé,
0
it isn’t difficult to show that there is a constant, so that

|o'(7) = o (7)] < const(|Usy = Uss| + Uz = Us—|)
< const(|Usy — Usy| + A(1)).

Then we have

¢ ¢
At) < const(/ A(r)dT + / |Usy — Ugy|dr).
i1 t1

By use of Schwartz’s inequality we obtain that

t
N*(t) < const - (t — tl)/t (A7) + |Usq — Uag|*] dr.

Then the conclusion follows, if t; and ?, are sufficiently small and t € [t1,%2]. §

Proof of the estimation (6.2):

Putting the last two lemmas together we obtain that
t —
/ O(Ust, Usy)
t1
t —
> [const — const - (1 — t1)2] / |Usy — Uss |*] dr.
t1

If t; and ¢y are sufficiently small and ¢ € [t1, 3], we have the estimation (6.2).5
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