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1. Introduction

In this note we use difference methods to prove the existence of a global W 1,∞-solution

to the isentropic gas equations in Eulerian coordinates

(1.1)
ρt + (ρu)x = 0

(ρu)t + (ρu2 + p(ρ))x = 0

with some kind of special initial data

(1.2) (ρ(x, 0), u(x, 0)) = (ρ0(x), u0(x)).

Here ρ0(x) is non-negative but not necessarily positive. We also show the convergence of

the difference scheme under consideration.

The existence result is first established by Lu in [1] with a variant of the viscosity

method under some assumptions about the pressure function p(ρ). Unlike the earlier

existence results on smooth solutions (see [2] and [3]), this one allows that the density ρ

takes the value zero. We note that at ρ = 0, the system is not hyperbolic any more.

About p(ρ), we make a slightly more general assumption than that in [1]. The as-

sumption reads as follows:

(a). The sound speed c(ρ) = (∂p
∂ρ
(ρ))

1

2 and ρc′(ρ)
c(ρ) are continuous in ρ ∈ [0,∞), and

ρ | c′(ρ) |≤ c(ρ).

(b).
∫ ρ
0

c(s)
s
ds, as a function of ρ ∈ [0,+∞), is well-defined and has a continuously differ-

entiable inverse.

The reader can easily verify that for polytropic gas, in which p(ρ) = const.ργ , the as-

sumption is satisfied for 1 < γ ≤ 3.

The result is mainly based on the following features of the system (1.1) with p(ρ)

satisfying the above assumption:

(1). The system can be rewritten as the following diagonal form

(1.3)
wt + λ2(w, z)wx = 0
zt + λ1(w, z)zx = 0.

Here w = u+
∫ ρ
0

c(s)
s
ds, and z = u−

∫ ρ
0

c(s)
s
ds.

(2). Both λ1(w, z)(= u+ c(ρ)) and λ2(w, z)(= u− c(ρ)) are continuously differentiable

and non-decreasing with respect to their arguments.
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It is well-known ([3]) that scalar conservation laws with convex flux functions and

non-decreasing smooth initial data have classical solutions. The present existence result

can be viewed as an extension of the scalar conclusion for the system. Indeed, we assume

that the initial data (ρ0(x), u0(x)) are such that the corresponding w0(x) and z0(x) are

non-decreasing. That is the specialness of initial data we mentioned before.

We will prove the existence result by constructing difference solutions to the diagonal

system (1.3). It will be seen that our approach is much more elementary and simpler.

Moreover, the time-derivatives are uniformly bounded with respect to the time variable

(This fact is not derived in [1]).

One advantage of using the diagonal system (1.3), which is not used in [1], is that (1.3)

with some initial data has at most one W 1,∞-solution under the above assumptions on

p(ρ). This fact simply follows from the classical local energy inequality for symmetrizable

hyperbolic systems with W 1,∞-coefficients ([4]). It is this uniqueness result that enables

us to conclude the convergence of the difference solutions (not only a subsequence).

Unlike the viscosity approach, the difference one enables us to make detailed pointwise

estimates without having a priori smoothness and positiveness information (see [1]). An-

other advantage of our approach is that initial-boundary value problems can be handled in

a similar fashion including complex moving boundary problems (see [5], [3] and references

cited therein). On the other hand, the viscosity approach seems to have difficulties for

such problems because auxiliary boundary conditions need to be introduced and cause

boundary-layer problems. This is left for the future.

The paper is organized as follows. In section 2 we consider the explicit upwind dif-

ference scheme for the diagonal system and estimate the difference solution and the first-

order difference quotients. Having established the a priori estimates, the convergence of

the difference solutions and the existence of W 1,∞-solutions are concluded in section 3.

Finally in section 4, a few remarks are made.

2. A Priori Estimates on Difference Solutions

In this section we consider a difference approximation for the system (1.3), and we

estimate the difference solutions and the first-order difference quotients in the maximum

norm.

First of all, we assume that

(A). λ1(w, z) and λ2(w, z) in (1.3) belong to C1([C1, C2]×[C3, C4]) and are non-decreasing

with respect to the arguments.
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Here C1, C2, C3 and C4 are given constants. Making this assumption means that the

system (1.3) does not necessarily come from the isentropic gas equations.

Let h, τ be the increments respectively in x and t. The difference solutions (wn
j , z

n
j )

are then computed from the explicit upwind scheme

(2.1)

wn+1
j − wn

j

τ
+ λ+,n

2,j

wn
j − wn

j−1

h
+ λ−,n

2,j

wn
j+1 − wn

j

h
= 0

zn+1
j − znj

τ
+ λ+,n

1,j

znj − znj−1

h
+ λ−,n

1,j

znj+1 − znj
h

= 0

together with

(2.2) (w0
j , z

0
j ) = (w0(jh), z0(jh))

for j = 0,±1,±2, · · · and n = 0, 1, 2, · · ·. Here λ± = 1
2(λ±|λ |) and λn

j = λ(wn
j , z

n
j ).

At the outset, it is not obvious that the scheme is well defined since the values (wn
j , z

n
j )

might lie beyond the domain of λ1(or λ2). The following Lemma 2.1 will establish this.

Lemma 2.1. Let (w0
j , z

0
j ) satisfy

C1≤w0
j≤C2, C3≤z0j≤C4

for all j. Then under the CFL condition

τ

h
max
(w,z)

{|λ1(w, z)|, |λ2(w, z)|} ≤ 1,

the difference system (2.1) has a unique solution

{(wn
j , z

n
j ) : n = 0, 1, 2, · · · ; j = 0,±1,±2, · · ·}.

And the solution satisfies the following estimates

(2.3) C1≤wn
j≤C2, C3≤znj ≤C4

for all j and all n.

Proof. We use induction on n. Obviously, {(w0
j , z

0
j )}j is well-defined and (w0

j , z
0
j ) satisfies

(2.3) for each j. Assume that {(wn
j , z

n
j )}j has been uniquely determined by the scheme

(2.1) and (wn
j , z

n
j ) satisfies (2.3) for each j. Then λn

2,j is defined and

τ

h
|λn

2,j| ≤ 1

under the CFL condition.
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Rewrite the difference relation for wn+1
j as

wn+1
j = (1−

τ

h
λ+,n
2,j +

τ

h
λ−,n
2,j )w

n
j +

τ

h
λ+,n
2,j w

n
j−1 −

τ

h
λ−,n
2,j w

n
j+1

= (1−
τ

h
| λn

2,j | )wn
j +

τ

h
λ+,n
2,j w

n
j−1 −

τ

h
λ−,n
2,j w

n
j+1.

Thus, wn+1
j is defined as a convex combination ofwn

j−1, w
n
j and wn

j+1, and therefore satisfies

the estimate.

The same argument applies to znj . Hence the lemma is proved. !

Next, we turn to estimate the difference quotients. To do this, we set

W n
j =

wn
j − wn

j−1

h
and Zn

j =
znj − znj−1

h
,

and compute from the scheme that W n
j and Zn

j satisfy

(2.4)

W n+1
j −W n

j

τ
+ λ+,n

2,j−1

W n
j −W n

j−1

h
+

+ λ−,n
2,j

W n
j+1 −W n

j

h
+

λn
2,j − λn

2,j−1

h
W n

j = 0

Zn+1
j − Zn

j

τ
+ λ+,n

1,j−1

Zn
j − Zn

j−1

h
+

+ λ−,n
1,j

Zn
j+1 − Zn

j

h
+

λn
1,j − λn

1,j−1

h
Zn

j = 0.

In addition, we note that

(2.5)

λ±
j − λ±

j−1 =
1

2
(λj± | λj | −(λj−1± | λj−1 | ))

=
1

2
((λj − λj−1)±( | λj|− | λj−1 | ))

=
1

2
((λj − λj−1)±

λ2
j − λ2

j−1

| λj | + | λj−1 |
)

=
1

2
(λj − λj−1)(1±

λj + λj−1

| λj | + | λj−1 |
)

and

(2.6) α±

j ≡1±
λj + λj−1

| λj | + | λj−1 |
≥ 0.

Lemma 2.2. Suppose (W 0
j , Z

0
j ) satisfy

0≤W 0
j ≤C5, 0≤Z0

j≤C6

4



for all j, δ ∈ (0, 1) and the CFL condition

τ

h
max
(w,z)

{|λ1(w, z)|, |λ2(w, z)|} ≤ 1− δ

holds. Then for τ sufficiently small, the following estimates

(2.7) 0≤W n
j ≤C5, 0≤Zn

j ≤C6

hold for all j and all n.

Proof. Obviously, (2.7) holds for n = 0 and all j. Assume (2.7) holds for n and all j.

We prove (2.7) for n+ 1 and all j.

Because of the assumed truth for n and the assumption (A), there is a constant K,

depending only on Ci(i = 1, 2, · · · , 6), such that

λn
2,j − λn

2,j−1

h
≤K.

Moreover, since λ2(w, z) is non-decreasing with respect to its arguments, wn
j ≥ wn

j−1 and znj ≥

znj−1, we have

0 ≤
λn
2,j − λn

2,j−1

h
.

Furthermore,

λ−,n
2,j ≥λ−,n

2,j−1,

where (2.5)-(2.6) have been used.

Next, from (2.4) and the assumed truth for n we deduce that

W n+1
j ≥ (1−

τ

h
λ+,n
2,j−1 +

τ

h
λ−,n
2,j )W

n
j +

τ

h
λ+,n
2,j−1W

n
j−1 −

τ

h
λ−,n
2,j W

n
j+1 − τKW n

j

≥ (1−
τ

h
λ+,n
2,j−1 +

τ

h
λ−,n
2,j−1 − τK)W n

j

≥ (1−
τ

h
| λn

2,j−1|− τK)W n
j

≥ 0,

whenever τK≤δ.

Again from (2.4) we have

(2.8)

W n+1
j ≤ (1−

τ

h
λ+,n
2,j−1 +

τ

h
λ−,n
2,j )W

n
j +

+
τ

h
λ+,n
2,j−1W

n
j−1 −

τ

h
λ−,n
2,j W

n
j+1.
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Since

1−
τ

h
λ+,n
2,j−1 +

τ

h
λ−,n
2,j ≥1−

τ

h
| λn

2,j−1 |≥ 0,

the right-hand side in (2.8) is a convex combination of W n
j−1, W

n
j and W n

j+1, and therefore

W n+1
j ≤ C5.

Similarly, 0 ≤ Zn+1
j ≤ C6. This completes the proof. !

Corollary. Under the conditions of Lemma 2.2, there is a positive constantM , depending

only on Ci(i = 1, 2, · · · , 6), such that for τ sufficiently small, the following estimates

|
wn+1

j − wn
j

τ
|, |

zn+1
j − znj

τ
| ≤ M

hold for all j and all n.

Proof. The estimates simply follow from the scheme (2.1) and Lemma 2.2. !

3. Convergence and Existence

The objective here is to prove our convergence and existence theorems by investigating

the limits of the difference approximations as the mesh sizes, which satisfy the CFL

condition in Lemma 2.2, tend to zero.

To begin with, we construct several families of piecewise constant functions defined in

the upper-half plane R ×R+(≡ (−∞,+∞)× [0,+∞) ( (x, t)) as follows:

(wh,τ , zh,τ)(x, t) = (w, z)nj ,

(Ŵh,τ , Ẑh,τ)(x, t) =
(w, z)n+1

j − (w, z)nj
τ

,

(Wh,τ , Zh,τ)(x, t) =
(w, z)nj − (w, z)nj−1

h
,

(W̌h,τ , Žh,τ)(x, t) =
(w, z)nj+1 − (w, z)nj

h

for (x, t)∈[jh, (j+1)h)×[nτ, (n+1)τ). From the lemmas and the corollary in the previous

section, these functions are uniformly bounded with respect to h and τ . Thus, we can

extract a mesh sequence {(hk, τk)}∞k=1, in which each (hk, τk) satisfies the CFL condition

in Lemma 2.2, such that as k −→ ∞, hk goes to zero and the corresponding function

sequences constructed above converge respectively to (w, z), (Ŵ , Ẑ), (W,Z) and (W̌ , Ž)

6



in the weak∗-topology of L∞(R× R+). Moreover, it is easy to verify that

(wt, zt) = (Ŵ , Ẑ) and (wx, zx) = (W,Z) = (W̌ , Ž),

where the subscripts denote the generalized derivatives. Consequently,

(w, z) ∈ W 1,∞(R× R+)

and as k −→ ∞,
(wk, zk)

∗
⇀ (w, z),

(Ŵk, Ẑk)
∗
⇀ (wt, zt),

(Wk, Zk)
∗
⇀ (wx, zx),

(W̌k, Žk)
∗
⇀ (wx, zx)

in L∞(R×R+). Here for notational convenience we have used wk for whk,τk , and so on.

Next, we show that {(wk, zk)} has a subsequence converging uniformly to (w, z) in

each bounded subset of R × R+. To this end, we construct another family of functions

(w%, z%)(x, t) defined in R× R+ as follows:

(w%, z%)(x, t) = (1−
t− nτ

τ
) (1−

x− jh

h
) (w, z)nj + (1− t−nτ

τ
)x−jh

h
(w, z)nj+1

+
t− nτ

τ
(1−

x− jh

h
) (w, z)n+1

j +
t− nτ

τ

x− jh

h
(w, z)n+1

j+1

for (x, t)∈[jh, (j + 1)h)×[nτ, (n+ 1)τ). First, we easily deduce from Lemma 2.2 that

(3.1) | (w%, z%)− (wh,τ , zh,τ) |≤ C(h+ τ),

where C depends only on Ci(i = 1, 2, · · · , 6). On the other hand, because each (w%, z%) is

continuous and because of the a priori estimates in the previous section, {(w%, z%)} lie in

a bounded subset of W 1,∞(R×R+). Therefore, it follows from the well-known embedding

theorem that {(w%k , z%k)},with *k = (hk, τk)}, contains a subsequence, still denoted

by {(w%k , z%k), uniformly convergent in each bounded domain as k −→ ∞. Thus, we

conclude from (3.1) that {(wk, zk)} (a subsequence) converges to (w, z) uniformly in each

bounded domain. In particular,

(w, z)(x, 0) = (w0(x), z0(x)).
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Now we turn to show that (w, z) in fact solves the diagonal system (1.3). Let ϕ∈C0(R×

R+). Then we have from the scheme (2.1)

∑
j,n

hτϕ(jh, nτ) (
wn+1

j − wn
j

τ
+ λ+,n

2,j

wn
j − wn

j−1

h
+ λ−,n

2,j

wn
j+1 − wn

j

h
) = 0,

or ∫
ϕh,τ(Ŵh,τ + λ+

2,h,τWh,τ + λ−

2,h,τW̌h,τ )dxdt = 0,

where ϕh,τ(x, t) = ϕ(jh, nτ) for (x, t)∈[jh, (j+1)h)×[nτ, (n+1)τ) and λ±

2,h,τ = λ±
2 (wh,τ , zh,τ ).

Since Ŵk is uniformly bounded and converges to wt in the weak∗-topology of L∞, and ϕk

converges uniformly to ϕ as k −→ ∞, we have
∫

ϕkŴkdxdt =
∫

ϕŴkdxdt+
∫
(ϕk − ϕ)Ŵkdxdt

−→
∫

ϕwtdxdt.

Furthermore, because λ+
2 (w, z) is continuous with respect to its arguments and (wk, zk)

converges uniformly to (w, z) in each bounded domain, λ+
2,k converges uniformly to λ+

2 in

each bounded domain. Therefore, we have
∫
ϕkλ

+
2,kWkdxdt −→

∫
ϕλ+

2 wxdxdt.

Similarly, ∫
ϕkλ

−

2,kW̌kdxdt −→
∫

ϕλ−
2 wxdxdt.

Consequently, we arrive at ∫
ϕ(wt + λ2wx)dxdt = 0.

Similarly, ∫
ϕ(zt + λ1zx)dxdt = 0.

Because ϕ is arbitrary, the last two equations give

wt + λ2wx = 0 and zt + λ1zx = 0

for almost every (x, t) ∈ R× R+. Thus, we have proved

Theorem 1. Let λ1 and λ2 satisfy the assumption (A), (w0, z0) ∈ W 1,∞(R) are non-

decreasing and take values in [C1, C2] × [C3, C4] . Then the diagonal system (1.3) with

initial data (w0(x), z0(x)) has a solution in W 1,∞(R×R+).
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Recalling the local energy inequality for symmetrizable hyperbolic systems (see [4]),

we easily know that the diagonal system has at most one W 1,∞-solution. Thus, when

the mesh sizes tend to zero, the difference solutions converge to the unique solutions.

Therefore we have

Theorem 2. Under the assumptions of Theorem 1, the difference solutions converge

uniformly to the unique solution in each bounded domain, as the mesh sizes, satisfying

the CFL condition in Lemma 2.2, go to zero.

The above discussions are all on the diagonal system (1.3). We now return to the

isentropic gas equations (1.1). The next theorem can be viewed as a corollary of Theorem

1. We prove that under the assumption about p(ρ), any W 1,∞-solution to the diagonal

system induces a W 1,∞-solution to the isentropic gas equations, whenever

w ≥ C1 ≥ C4 ≥ z.

Recall that the last inequalities are fulfilled as long as the density ρ ≥ 0.

Theorem 3. Suppose p(ρ) satisfies the assumption, the initial data (ρ0(x), u0(x)) are such

that the corresponding (w0(x), z0(x)) satisfy the condition in Theorem 1 and C1 ≥ C4.

Then the isentropic gas equations (1.1) has a W 1,∞-solution with the prescribed initial

data.

Proof. The proof is an elementary calculation, which is carried out very carefully in order

to avoid the troubles caused by ρ = 0 or w = z.

Let Φ be the inverse function of
∫ ρ
0

c(s)
s
ds, that is,

Φ(
∫ ρ

0

c(s)

s
ds) ≡ ρ

for ρ ∈ [0,+∞). Differentiating the last identity with respect to ρ yields

c(ρ)Φ′ = ρ

for ρ > 0. This equation still holds at ρ = 0, since the existence of the integral implies

c(0) = 0.

Let (w, z) ∈ W 1,∞ solve the diagonal system induced from the isentropic gas equations.

Note that w ≥ C1 ≥ C4 ≥ z. We define

ρ = Φ(
w − z

2
) and u =

w + z

2
.

9



Since w ≥ z and Φ is continuously differentiable, (ρ, u) ∈ W 1,∞. Furthermore,

ρt + (ρu)x = Φ′
wt − zt

2
+ ρux + uρx

= Φ′
wt − zt

2
+ ρ

wx + zx
2

+ uΦ′ wx − zx

= Φ′ (
wt − zt

2
+ u

wx − zx
2

) + ρ
wx + zx

2

= Φ′(−c(ρ)
wx + zx

2
) + ρ

wx + zx
2

= 0,

and

ρ(ut + uux) + p(ρ)x = ρ(−c(ρ)
wx − zx

2
) + c2(ρ)ρx

= −ρc(ρ)
wx − zx

2
+ c2(ρ)Φ′ wx − zx

2

= 0. !

Theorem 4. Under the assumptions of Theorem 3 and as the mesh sizes tend to zero,
wh,τ+zh,τ

2 and Φ(wh,τ−zh,τ
2 ) converge uniformly to the velocity u and the density ρ in each

bounded domain, respectively. The same is true of w"+z"

2 and Φ(w
"−z"

2 ).

4. Remarks

A few remarks are made in this section.

(1). Because W 1,∞ (compactly) embeds into C0,α for any α ∈ (0, 1) on compacta,

(w, z) is in fact locally Hölder continuous.

(2). From the proof of Theorem 3, any W 1,∞-solution to the diagonal system induces

a W 1,∞-solution to the original system under the assumption about the pressure function.

It is, however, not clear if the inverse is true. Therefore, although the diagonal system

has a unique solution in W 1,∞, we don’t claim any uniqueness result for the isentropic

gas equations. The latter is not hyperbolic at ρ = 0.

(3). For the polytropic gas with γ ≥ 3, one can easily verify that a W 1,∞-solution

to the isentropic gas system induces a W 1,∞-solution to the diagonal one. Because the

latter has at most one W 1,∞-solution, W 1,∞-solutions to the isentropic gas equations are

unique, where the density is non-negative but not necessarily positive.

(4). The above arguments and results can be easily extended to the diagonal systems of

n equations. The only requirement is that the corresponding eigenvalues are smooth and
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non-decreasing with respect to the dependent variables. For instance, the existence result

in [6] about the system of three equations can be established with the above arguments.
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