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1. The physical problem

In the last decade a significant effort has been devoted to the numerical prediction of two-
dimensional compressible inviscid flows through the numerical integration of the Euler equations.
In particular the transonic flow about a circular cylinder has been the subject of many investigations
([1]-[4],[12],[13]). Let us consider, for given initial and boundary conditions, a steady state solution
of this problem. If this exists, it depends on only one parameter. Let this parameter be the free
stream Mach number (Ms,). Consider the two sketches of fig.2:
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Figure 2: subcritical (left) and transonic flow (right); steady state solution

on the left side a subcritical case is drawn. All over the flow field the Mach number is less than
one. The flow is isentropic and therefore reversible (since the Euler equations do not allow thermal
exchange). Thus, provided that the boundary conditions are homentropic and homenergetic (we
do not consider here cases where the cylinder is embedded in a wake), the flow is symmetric
with respect to the z- as well as with respect to the y-axis. This is the flow that can be observed
(computed) for Moo < Meoer 2.4, On the right side of fig.2 a steady state solution for the transonic
case (Meoer < Moo < 1) has been depicted. A supersonic region C; appears around the maximum
thickness point of the cylinder. On the lee side of this region the flow returns to the subsonic regime
through a radial shock wave §. This causes total pressure losses that hinder the flow wetting the
cylinder to reach the rear stagnation point P; on the symmetry axis. The flow separates at the
point P,. This separated flow is highly rotational and its vorticity is roughly proportional to the
inverse of the radial extension of the shock. To see that this is true we recall Crocco’s theorem for
the inviscid steady case:

TVs =—v x (V xv)+ Vhyg (1)

Here T is the (absolute) temperature of the flow, s the entropy, v the velocity vector and hg the
total enthalpy. For the two-dimensional case in a cylindrical frame of reference z, p, # with unit
vectors a, b and ¢ and v = v,b 4 vgc lying in the plane normal to a (1) gives:
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and the vorticity is seen to be directly proportional to the entropy jumps across the shock As;p, and
inversely proportional to the radial extension of the shock Ap,,. The separeted flow streams along
a circulating bubble C, toward the rear stagnation point Py and conveys the entropy gradients into
a wake parallel to the z-axis. Thus the wake down the cylinder is a vortex layer whose thickness
(and intensity) depend on the radial extension of the shock. In this layer w(y) = —w(—y) since vg
is an odd function of y and As,p must be non negative in order to satisfy the second principle of
thermodynamics. We just remind that the limit case of an infinitesimal vortex sheet as solution
of the incompressible inviscid equations is unstable ([5] pagg. 511-517 ). Inside C,. the streamlines
are closed paths. What are the values of the entropy which are conveyed along these orbits? Are
these values a rest of the history of the flow? (But in this case how can we refer to this solution as
to the steady state solution?).

In a GAMM workshop [3] two test cases focused on the transonic cylinder problem were pro-
posed to the attention of the contributors: the ones for values of the free stream Mach number
of 0.5 and 0.6. The results of these computations were some way disturbing: numerical meth-
ods designed to compute a steady state solution gave scattered results concerning the size of the



circulating bubble or even did not converge. On the other hand methods based on a true time
integration of the full Euler equations showed very similar unsteady solutions for both test cases
(contributions C17, C18 and C20 in [3]). A deeper insight in the understanding of the physics
of these flows was given by Pandolfi and Larocca [4]. They used a second order accurate finite
difference method based on an upwind hybrid formulation of the Euler equations and a time de-
pendent technique. For both cases they found that the symmetrical solution with a radial shock
followed by an inviscid separation and a circulating bubble was unsteady. Periodical oscillations
of the shock position were coupled with a cyclic variation of the size of the circulating bubble. For
the Mo, = 0.6 case they also observed the recurrent detachment of the circulating bubble and its
convection in the wake. Thus they could explain the disturbing results found in [3]. Moreover they
removed the upsetting question about the meaning of closed paths in the steady state: actually
they did not find any stationary solution!

In addition they observed that, for both test cases, this periodical symmetrical solution was unsta-
ble in the sense that asymmetries of the round of error (due to a different sequence of operations
performed on symmetrical points to update symmetrical initial data) led to an asymmetrical peri-
odic flow. Here the radial shocks on the sides of the circular cylinder oscillate alternately shedding
eddies into a wake whose structure is very similar to that of the von Karman vortex street observed
in the incompressible viscous case (see picture on the cover where entropy contour lines are traced).
They also showed that this phenomena is consistent with the physics of a compressible inviscid
flow and that the numerical viscosity due to the discretization does not affect qualitatively the
results. In particular, for the M., = 0.6 case, a more complex pattern of shock waves was seen
to appear in the flow. Beside the primary shocks a third intermittent one was observed, due to
the strong rotation induced by the curvature of a primary one (fig.12 of [4] and figg. 16 and 28
here). In spite of its complexity the flow was perfectly periodic. These results (for Mo, = 0.5 and
M = 0.6) have been recently confirmed by Di Mascio [13] as well as by our computations.

We have used an high resolution finite volume upwind method to compute numerically the flow
about the circular cylinder for values of M., between 0.5 and 1. At large times the flow reaches, for
M, in the low transonic regime, a limit cycle. This is stable and does not depend sensitively on
the initial condition and on the discretization. However, for higher values of M., the flow exhibits
a stranger behaviour: at M., = 0.75 the main bulk of the flow still swings but delays in the onset
of successive phases of the oscillation prevent the achievement of a limit cycle. Instead ”islands” of
regularity seems to characterize the (aperiodic?) orbit of the flow. At Mo, = 0.8 the flow returns
to a perfectly periodic oscillation but a further increase of this parameter leads to a renewed break
down of regularity. Finally, for values of the M., & 1 the flow seems to return to a steady solution.
In the following section we outline the numerical method and the initial and boundary conditions.
In the third we present the numerical results and interpret the transitions described above on the
basis of the physics of an inviscid flow. For the M., = 0.85 case we discuss the behaviour of the
flow after the breakdown of the symmetric solution and at some later time. We try to explain this
behaviour with a numerical conjecture. Finally we figure out some conclusions.



2. The numerical method.

Finite volume method, computation of the fluxes.

Let ¢ C IR? be a region of the physical space around the circular cylinder and Ci;(i=1,...,ncl
and j = 1,...,nc2) the rectangular cells of a structured discretization of C. Let also the boundary
of C; ; consist of the four cell interfaces 9C1; ;, 9Cl;41 5, 0C2; ; and 0C2; j41 normal to the first
(index 1) and to the second (index 2) coordinate lines of a curvilinear frame of reference. Let n be
the unit vector normal to the cell interfaces and oriented in the positive direction of the coordinate
lines and ng, n, the components of n in a fixed Cartesian frame of reference z,y (fig.3).
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Figure 3: Domain discretization (left) and 1D Riemann problem (right)

The Euler equations can be written as conservation laws for the C; ; control volume:

%/u(x,t) ds = — /af(U(X’t)’ n(x))dl+ /6f(u(x,t), n(x))dl +

Cig Cliq1,; Cl; 5
— /f(u(x,t), n(x))dl+ /f(u(x,t), n(x))dl (3)
9C2; 541 aC2; 5
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where p is the density, v the velocity vector, p the pressure and e the total specific energy of the
flow (the heat coefficients ratio v is set equal to 1.4). Let us introduce the cell averages U}, and
the flux functions f1; ;, f1;14 ;, £2; ; and £2; ;1 as follows:

1
Ul = o [u(x,t)ds Sij = /ds 4)
T Sig e c

47 47
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ﬂi]' = / /f(u(x,t), n(x)) dl dt Atn = /dt hli]' = /dl (5)
T At i, Jeers ¢ ’ acl,,

and similar expressions for 1,14 ;, £2; ; and £2; ;11. Integrating (3) between ¢, and t,4q and
substituting (4) and (5) gives:
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Let now F1; ; be an approximation to the flux function f1, ;.



Thus for instance
i = f(u(xp, tn),m(xy)) (7)
Fl; j = f(u(xp, tn + At /2),n(x;)) (8)
are a first order and a second order approximation to f1; ; (if p is the middle point of the 9Cl; ;
cell interface as in figure 3). The following of this section deals with the computation of F1, ;.
For this let us consider a one dimensional Riemann problem (R.p.) in the direction n(x,) and
with initial data U7_; ; and U7, on the left and right sides of JC1; ; (fig.3 right bottom). Then
the (self similar) solution of this R.p. for ¢t > ¢, provides the intermediate state u(x,,t,) for the
right hand side of (7). Following the ideas proposed in [7] we solve this R.p. approximatively by
regarding the acoustic waves as if they were isentropic. Although the non linearity of the problem
is retained and the (straightforward) solution of a (non linear) system of equations allows the
computation of the fields between the np waves rising from the breakdown of the discontinuity
U?, — U/, ; at the dC1; ; cell interface (fig.3 right top). Thus for each wave the jumps AU1,; ;
of the conservative variables across the wave (index p) as well as the jumps of the flux function
AFl1,;; can be computed. Both AU1,;; and AFl,;; are vectors in R*. Let us introduce a
diagonal matrix Al, ; ; so that
AFl, ;= Aly i jAUL, (9)
holds. Notice that, if the wave p is a discontinuity traveling at speed Al, ; ; then we should have
(A1, ;)kx = Al,; ; for all & because of the Rankine-Hugoniot relationships. In general we just
have (Alp ”)kk ~ Aly;; since the R.p. has been solved in the isentropic approximation. Let

also Al = 0.5(A1,,; ; + |Al, ; ;|) so that only the waves with positive speeds are accounted for.
Then Wlth (9) and (7) we have

F1;; = f(u(x,,t,),n(x,)) = £(U7 i 1 ZAlp”AUlpw (10)

and we have written an approximate version of Godunov’s method. To achieve an higher approxi-
mation to f1; ; we follow the wave propagation approach described in [8]. Consider equation (10).
One can think of F1; ; as consisting of the flux function on the right side of the dC1; ; cell interface
f(U; ;,n(x,)) and of corrections due to the waves entering the C; ; cell at time ¢,,. Further one can
think of each wave (form) as a single discontinuity AU1, ; ; traveling at speed Al, ; ; and changing
the flux function at the interface for A1, ; ;AUL, ; ; (fig.4 left). Let us now modify the wave (form)
by introducing a slope X1, ; ; over the length {1,_; ; of the C;_1 ; cell and in the direction of n(x,)
(fig.4 right top). Let us now propagate this modified wave (form) for the time interval At, /2 with
the same speed as the original one. With I the identity matrix in IR* the flux correction due to
the modified wave is (fig.4b bottom)

1
SALp (Tl — ALy jAL, )L, 5 (11)

—Alyijy = —ALi jAUL j + 5
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Figure 4: propagation of piecewise constant (left) and linear waves (right)



Thus, taking into account the effects of all (modified) wave (forms) crossing the 9C1; ; cell interface
at time t,, and propagating with local speed Al, ; ; one obtains, for F1; ;

np np
. 1
Fl;; = £(U};,n(x;)) — > ALY, AU, ; ; — 3 D IAL, AU, ; (T — | AL | At,) S, 5
p=1

P3,J

(12)
where k = i—1if A1,; ; > 0 and k = i otherwise. Notice that in (12) the (downwind) effects due to
the propagation of a piecewise linear wave form out of the C; ; cell have also been accounted for. The
slopes X1, j, ; over the Cy ; cell are computed comparing the jumps 2AU1L, ; ; /({1x_1 j+{1j ;) and
2AU1, py1,;/(11g j + l1g41 ;) across the same waves at the 9C1y ; and dClg4q ; the cell interfaces
through the van Leer limiter function. One can show that, for the one dimensional linear case
and taking local slopes, then F1, ; as defined in (12) is a second order approximation to the flux
function f1; ;. Clearly F1;; is also consistent with the flux function f. Thus the approximate
solution of Riemann problems at each cell interface provides all the ingredients (jumps and speeds
of the waves) we need to compute the numerical fluxes and we can write the finite volume high
resolution method as follows:

Aty Aty

U = Uy = o bl Fligy = AL F L] = == (3211 F 20540 — h20;F205] - (13)
1,J 2]

)

p=1

where F1,1; ;, F2; ;41 and F2;; are given by expressions similar to (12). Actually a Strang
splitting ([6] pp. 202-205) version of (13) has been used.

Let IT1(At,) and I2(At,) be the operators updating the cell averages U, ; by accounting for the
fluxes across the C1; ; and 9C2; ; cell interfaces over the time interval At,:

At

(Atn) = Uiy — Uiy — = [hlip1,jFlipsj — hli jFLi ] (14)
2,7
At

I(At) = Uiy — Uiy = =—[h2ij41F2 41 — h2i;F2q,5] (15)
2,7

then the cell averages at the time ¢,, 1 are computed, starting from the initial data U, according
to the following rule

" At,
Upt = 12(=%) 0 TN (At yp1) 0 I2(Abpyps) o -

Aty

<0 I2(Atpys) o I1(Atyqa) 0 I12(Atyqq1) o T1(Atpy1) o 12( 5 )o UZ]» (16)

At each time step At,, is computed on the basis of a one dimensional CFL rule and reduced of 10%

. {1; ; {2; ; a; ;= a(U’f‘ )
At, = 0.9 min ) ’ J ’ i, bi
Zﬁ=117n012((ai,j + (Vi vi)?) (@i + (Vi vig)?) vij =v(Uj;)
j=lne
U, = T1(Al,_1) 0 I2(Aty_1) 0 -0 I2(Aly) o T1(Aly) 0 12(Ato/2)UY, (17)

where a(U;j) 1s the speed of sound computed with the U7 ; cell averages.

Mesh and initial condition; the problem of symmetry.

Most computations have been made on the O-mesh proposed in [3]. This has 32 cells in the radial
and 128 cells in the tangential direction. The cells are angularly equally distributed and radially
clustered on the circular cylinder according to the rule:

p=5 pi=5(1+> af =) ji=2,...,33 o = 1.1648336

Beside this standard mesh (M0) a 64 x 256 (M 1) and a 128 x 512 (M2) ones have been used. Both
are refinements of MO.



We consider two different initial conditions; a first one, symmetrical with respect to the z-axis
is defined, for a given value of M, as follows:

=1, nel

j=1,...,nc2

ey

1
0 _ ViMoo
u= g
/(v =1)+v/2MZ,

A second initial condition is obtained by the first one by asymmetrically perturbing the values of
the first component of U?,ncz and Ugclymz by +107% and —107° respectively. These are the values
of the density in the two cells bounded both from the z-axis and from the outer boundary in the
rear part of the cylinder.

In the numerical experiments we first compute, for a given value of M, the symmetrical solu-
tion by starting the time integration from the symmetrical initial condition. Then we repeat the
computation starting this time from the asymmetrically perturbed initial data. For both compu-
tations we use the same grid and the same code. It has been written to provide, for symmetrical
initial data, symmetric updated values of the cell averages. This can be achieved by making sure
that at each time step the computation of symmetric objects (normal vectors, fluxes, slopes, etc.)
is performed on the basis of the same sequence of operations (but with different operands, of
course!). This is a necessary condition since a + b+ ¢ = a+ ¢+ b does not always hold in computer
arithmetic. It 1s of course also sufficient if the operands are symmetric.

Boundary conditions.

At the surface of the cylinder the wall boundary condition v -m = 0 is indirectly enforced through
the definition of a proper Riemann problem. Let n be oriented inwards the computational domain
and t normal to n. Consider one of the 9C2; 1 cells interfaces laying on the surface of the circular
cylinder. At each time step let U}, and U}, be the initial data on the left and on the right sides
of the 9C2; 1 cell interface respectively. Let

7 _ 7
Pio = Pi1

28 28
1,0 n _ n 7,1
V. .n o —V .n )

n o __ n n 1,0 3,1 n o __ n n

Ui,O = PioVio | n t = n ¢ Ui,1 = PiaVii (18)

n .n Viot= Vi n .n
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€0~ €1
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it is easy to see that, because of the symmetry of this R.p., the wall boundary condition is satisfied
for the intermediate state at the cell interface. Some care must be taken to maintain on this
boundary the same accuracy as at the internal cell interfaces. This can be achieved by considering,
on the (pseudo) cell C; o, slopes 32, ; o which can be computed by reflecting the 32, ; 1 ones in the
same fashion as in (18). Thus the cell interfaces lying on the surface of the cylinder can be treated
as the internal ones as it must be since a wall 1s a natural boundary.

Consider now the 9C2; 5241 interfaces laying on the outer boundary. For these we apply the
boundary conditions discussed in [9] and originally proposed in [10]. We must distinguish between
the cases of an inlet and of an outlet cell interface. Through the first one the gas flows from outside
into the computational domain C. For this case the intermediate state u(x,,t,) is evaluated by
imposing the total enthalpy, the entropy and the direction of the velocity v of the free stream
together with the relationships which are compatible with the wave configuration of fig.5 left.
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Figure 5: wave configuration at inlet (left) and outlet (right) boundaries



This is the wave configuration which 1s expected to come out of the breakdown of a discontinuity
across a (inlet) cell interface whose right state is unknown. The wave 1 can be either a rarefaction
wave or a shock whereas the wave 2 must be a contact discontinuity. In a similar way at outlet cell
interfaces the exit pressure has been imposed (fig.h right). This has been taken to be the pressure
of the free stream. Both for inlet and for outlet cell interfaces no attempt has been made to correct
the direction of the flow and the exit pressure by taking into account some potential solution in
the far field ([11]). This is because we want to avoid the boundary condition to depend on the
solution itself. Thus we can be sure that, if unsteadiness will be observed, this is not related to
the treatment of the boundary. Notice also that these (inlet) boundary conditions are homentropic
and homenergetic.

3. Numerical results

Output variables.
In this section we will show pictures where lift and drag coefficients are plotted against time. These
have been defined as follows:

iz} 2 n
9 nel
Cr = m ;P(UZ1)”y

where D is the diameter of the circular cylinder and p is the pressure computed with the cell
averages of the C; 1 cell. No attempt has been made to extrapolate the pressure at the body. We
also show the history of the density residual

nec2

o= 15;25612 |p(T1(At, ) 12(At,) U} ) — p(UF ;)|
]:

Uj; = I1(Atp_1) 0 I2(Atp_1) o -+ 0 I2(Aty) o T1(Aty) o 12(Alg/2)UY

moreover entropy and total enthalpy deviations has been defined as follows:

U? ) /pos
At = p( nz,l)/p .
T (p(OF )/ poo )
ho(UR
Ahgh] = 0]5,0 Zy_l) -1

Subcritical case.

In order to validate the numerical method and to quantify the errors due to the discretization
we first consider the subcritical case Mo, = .38. This computation was mandatory in [3]. As in
[4],[13] and in the contributions C4, C5, C6, C14, C17, C18 and C20 of [3] we also found that
the symmetrical (with respect to the x- axis) solution is steady, stable, without separation and
circulating flow. Although a slight asymmetry with respect to the y-axis was observed. This is
evident in the diagrams of fig.6 where the entropy (left) and the total enthalpy deviations (right)
in the first row of cells surrounding the cylinder are plotted against the z-coordinate of the center
of these cells. The three plots in each picture refers to computations made with the MO, the M1
and the M2 grids, as can be seen from the different density of output values. We recall that, for
this case, both entropy and total enthalpy deviations (As and Ahg) must be, in the exact solution,
equal to zero. In [13] Di Mascio showed maximal values of As of about .01 for a finite volume
method based on a second order approximation obtained through a predictor-corrector scheme. He
also reported the results obtained with a first order Godunov’s scheme (Asp,qp & .1) and the ones
computed with a MUSCL approach (Aspay & .03). All these values refers to computations with
a 32 x 128 grid. They should be compared with the ones shown in fig.6 (left) for a computation
performed with the MO grid.
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Figure 6: subcritic case: entropy (left) and total enthalpy deviation (right) at the body

Transonic cases.

Let us now turn to the M., = 0.5 case. For this problem we remark a very good agreement
between our computations and those presented in [4] and [13]. As Pandolfi and Larocca we also
found the symmetrical solution to be periodic and unstable. Beginning the integration from the
(asymmetrically) perturbed initial condition we noticed the growth of oscillations in the vortex
sheet initially aligned with the centerline. After a transient (up to about 50 time unities) the
transition to the asymmetric periodic solution was observed. In fig.7 and 8 the histories of drag
and lift coefficients are shown for ¢ € [0,300] on the left and ¢ € [540,560] on the right. The
computation was carried on for 80000 time steps up to ¢ &~ 600 with the MO grid (32 x 128).
If we compare these two pictures with fig.5 of [4] we can see that, in spite of the differences
in the transitory (essentially due to the different initial condition), the periodic path are very
similar. Although in our computation the drag coefficient oscillates between 1.15 and 1.3 whereas
in [4] oscillations between 1.17 and 1.5 were observed. This is probably due to the fact that our
computation of Cp and Cp is based on the cell averages whereas in [4], because of the finite
differences discretization, computational points were laying on the surface of the cylinder. In [13]
Di Mascio shows Cp oscillations between 1.0 and 1.1. As mentioned he also used a finite volume
method. Consider now fig.9. The Cp history is shown for a computation performed on the M1
grid (64x128). The integration was carried on until about 400 time unities. We point out the good
agreement between the two computations (the Cr history has not been plotted since no appreciable
differences between the two computations can be seen in this representation). Differently as in [4]
we have not found, by refining the grid, a significant change in the amplitude of the C'p oscillations.
Instead a smoother path was observed in the computation with the finer grid. No change in the
frequency was noticed. We also notice that the Cp oscillations obtained in [4] with a 64 x 256 grid
seems more in agreement with our computations than those obtained there with a 32 x 128 grid.
To give an idea of the flow field a sequence of four instantaneous pressure coefficient contour lines
has been shown in fig.11 for the computations made on the coarse grid. The time interval covered
by these pictures is about one half of the period of the flow. Therefore after the last picture the
same sequence 1is repeated on the upper side of the cylinder. These pictures should be compared
with the ones of fig.7 in [4] to appreciate the agreement of the two computations and the regularity
of the flow. We also refer to the work of Pandolfi and Larocca for a detailed description of the flow
over a period. Let us strike the fact that we do not have seen any appreciable dependence of this
periodic solution on grid refinement, time interval or initial condition.



0.5

0.0

M=.5 MO: Cd

200

Figure 7: M., = 0.5, M0 grid; drag coefficient history
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Figure 8: M., = 0.5, M0 grid; lift coefficient history
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Figure 9: M., = 0.5, M1 grid; drag coefficient history

We now increase the free stream Mach number up to 0.65. In fig.12 and 13 the C'p and C'f, histories
are reported for a computation on a M0 grid. By comparison between these and fig.7 and fig.8 we

can notice that, increasing the M,

M=.5 MO: Cd

540

545 550 555 560

M=.5 MO: Cl

545 550 555 560

M=.5 M1: Cd

310

315 320 525 330

i) the amplitude of the Cp oscillations increases and the one of C oscillations decreases.

ii) the frequency of C oscillations increases of about 50%. The frequency of the Cp oscillations

does not change significantly.

iii) the length of the transient to reach the limit cycle increases.

Similar differences were found in [4] between the Mo, = 0.5 and the M, = 0.6 cases. Although

there a reduction of the amplitude of the oscillation was observed both for C'p and Cf.
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Figure 11: M., = 0.5, M0 grid; pressure coefficient contour lines
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Figure 12: M., = 0.65, M0 grid; drag coefficient history
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Figure 13: M., = 0.65, M0 grid; lift coefficient history

Consider again the C'p path of fig.12 on the left. One can notice, beside the transient from the
impulsively start up to the breakdown of the symmetry (¢ =~ 50) other two well defined time
intervals. A first one characterized through irregular oscillations and then, at about ¢ = 150, the
transition to a different path. Here the Cp history seems to become periodic although through
a modulated pattern. Further on the system approaches, at large times, a limit cycle where any
information about the initial condition has been lost. In fact the path on the right side of the same
picture (after about 80000 integration steps) is now perfectly periodic.
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Figure 14: 0.75 < M, < 0.95, M0 grid; drag coefficient history
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Let us now increase the M, further. In fig.14 the C'p histories are compared for values of M,
between 0.75 and 0.95: Consider first the M., = 0.75 case (fig.14 top). Here the flow exhibits a
more complex behaviour. The solution fails to converge to a limit cycle; instead a broken, irregular
pattern can be observed at large times. Inside this pattern some time intervals (¢ € [150, 250] and
t € [800,950], the last one not to be seen in fig.14) come out. These are displayed, with a different
scale, in fig.15: the flow seems, for a while, to incline to a more regular behaviour and a periodical
modulated pattern appears just as in the previous case. In spite of this it returns, at some later
time, to a wild path of aperiodic oscillations.

Consider the second picture of
fig.14. Here the C'p history refers M=.75 MO: Cd
to the M., = 0.8 case. The 2.5 ‘
flow reaches, after a transient

which is even shorter than for the 2.0
My, = 0.65 case, a perfectly pe-

riodic solution ! Nevertheless a 1.5
further increase of the M., by 0.5
(third picture of fig.14 from the

|

= -
top) again brings a similar be- r ]
haviour as for the M., = 0.75 05t ‘ ‘ ‘ i
case with an increase of the am- 100 150 200 250 300

plitude of the oscillations. The
same behaviour can be observed M=.75 MO: Cd
for the Mo, = 0.9 case. Then, at 2.5 ‘
My, = 0.95, something new hap-
pens (fig.14 bottom). The flow 2.0
returns to a (nearly) steady state

solution characterized by a low 151

amplitude high frequency oscil- r ]
lation of the Cp around a quite 1ol ]
high value. This last transition is L i
easy to understand on the basis 05t ‘ ‘ ‘ ]
of the two pictures represented in 800 850 900 950 1000

fig.16. On the left the instanta-
neous contour lines of the pres-
sure coefficient for the flow at
My, = 0.9 have been plotted af-
ter a quite long time from the beginning of the integration. On the right the same output is shown
for the Mo, = 0.95 case. Even if the picture on the left is nothing but an instantaneous portrait
of the flow, though the shock wave structure can be seen to be similar to the one observed at
lower free stream Mach numbers: two primary radial shocks oscillating on the sides of the circular
cylinder and shedding vorticity into the wake. This is true up to a small but significant detail.
Observe the tip of the radial shock on the lower side of the circular cylinder (fig. 16 left). This
joins, about one radii downstream, a region where the clustering of the contour lines reveals the
presence of a shock about normal to the bulk of the stream. This detail of the flow field reveals
the transition to a new wave configuration. This last is now completely developed in the flow at
Ms = 0.95. Consider fig.16 (right) and the two pictures of fig. 18. Here we recognize the shock
wave pattern typical for Mo, — 1: The two radial shocks have moved towards the rear part of the
circular cylinder. They are still quite strong at the surface of the body but, after a short radial
extension, their strength vanishes and they propagate as acoustic signals in a supersonic field.
Behind these two shocks the flow separates. The contact surfaces coming out of the separation
points converge towards the centerline about one radius downstream of the cylinder. Here one can
see the formation of two oblique shocks. Across these the velocity returns almost parallel to the
centerline, though still supersonic.

Figure 15: M., = 0.75, M0 grid; drag coefficient history:
enlargement
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M=.9 MO t=575.3: Cp

M=.95 MO t=573.6: Cp

Figure 16: M., = 0.9, M0 (left) and M = 0.95, M0 (right); pressure coefficient contour lines

After about four radii from the center of
the cylinder the flow returns to the subsonic
regime through a normal shock. This joins, on
the two sides of the wake, the oblique shocks in
two triple points. This shock wave structure
is usually called a A-shock. Inside the region
squeezed between the two separation lines ris-
ing from the surface of the cylinder and the
stagnation point in the wake the vorticity gen-
erated by the shocks at the surface is trapped
in two oscillating circulating bubbles (fig.17).
These bubbles form, together with the circular
cylinder, the (equivalent) body which shapes
the shock wave structure. Thus the oscillation
is confined in a narrow region of the rear part
of the cylinder and the amplitude of the os-
cillations is drastically reduced. We point out
the fact that both the A-shocks and most of
the primary radial ones are very weak. In fact
an entropy plot would show that the dissipa-
tion

M=.95 MO t=573.6: vel. v.
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Figure 17: M., = 0.95, M0; velocity vectors
i the circulating bubbles

is concentrated at the root of the primary shocks. This is also evident from the instantaneous
velocity field of fig.18. Before turning to the problem of the aperiodic oscillations let us compare
the shadowgraph of fig.18 left, revealing the density variationsin a a M., = 0.98 flow and our com-
putation of the case Mo, = 0.95 (right). As far as the shock structure is concerned, the agreement
between our computation and the experiment is very good. The details of the flow in the wake are,
in the experiment, shaped by the physical viscosity of the problem and therefore not reproducible

in our (inviscid) computations.

Aperiodic flow.

Let us turn the attention to the case of the irregular oscillations. In the rest of this section we
want to discuss in some more detail the flow at M., = 0.85. In the next two pictures we show, for
both Cp and Cp, the paths obtained during the transition from the initial condition up to some
time after the onset of the oscillating solution (left).

13



M=.95 M2 t=59.28: u1
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Figure 18: M., = 0.98, Dymentand, Gryson, Ducruet (left); Mo, = 0.95, M2 grid (right)
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Figure 19: M., = 0.85; Cp history with M0, M1 and M2 grids
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Figure 20: M., = 0.85; C history with M0, M1 and M2 grids

On the right side of the same pictures the paths over a time interval of 150 unities after the irregular
flow has developed have been shown. In each picture the results refer to the computations made
with the MO (top), M1 (middle) and M2 (bottom) grids. In the last case the integration was
carried on just until ¢ & 150. Consider first the time interval up to the break down of the symmetry
(between 0 and about 25). Here we notice that, in spite of a slight decrease of the values of Cp
with the successive refinements of MO, the agreement between the three computations is good.
This is not any longer true after the onset of the oscillations. Also at large times (fig.19 right) the
Cp histories computed with the MO and with the M1 grids are different both in the amplitude of
the oscillations and in the form of the irregular paths. We recall that, for the M., = .5 case a
perfect agreement was observed between the solutions obtained with the MO and the M1 grids. In
fig.19 we notice the tendency, for the flow computed with a finer grid, to persist for a longer time in
some almost constant C'p configuration. This is particularly evident over the intervals ¢ € [35, 60]
and ¢t € [80,90]. On these intervals also the C oscillations reduce from a high value to nearly
zero. Consider fig.21 left. Here the pressure coefficient contour lines have been traced for the flow
computed with the M2 grid and at ¢ = 83.95. Output at ¢ € [35,60] would have shown similar
results.
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M=.85 M2 t=83.95: Cp M=.85 M2 t=83.95: ent. dev.

Figure 21: M., = 0.85, M2; pressure coefficient (left) and entropy deviation (right) contour lines

The shock wave structure is some way related to the one depicted in fig.18 for the M., = 0.95
case. The radial shocks surging from the two sides of the circular cylinder weaken after a short
radial extension. They are weakly connected, at the triple points on the two sides of the wake,
to another, nearly normal to the centerline one. Also the entropy contour lines at ¢ = 83.95 are
shown in fig.21 (right). The big, nearly round vortexes on the right side of this picture are the
trace of a previous shock configuration with larger oscillations of the radial shocks. The vortex
pattern near the cylinder, though, is similar to the one for M., — 1. The circulating bubbles are
stretched and squeezed in the narrow region behind the cylinder. Although, let us point out an
important difference between this case and the M., = 0.95 one. Here vortexes are shed into the
wake; there the circulating bubbles seemed not to detach and the wake downstream the cylinder
was more similar to a thin vortex layer than to a vortex street. We can describe the evolution of

this flow by considering the Cp
M=.85 M2: Cd and (' paths enlargements of
‘ fig.22 together with the sequence
of instantaneous contour lines of
fig.23, 24, 25, 26 and 27. These

cover a time interval of about 40

150 unities. Consider first fig.22. We
r notice that, for ¢ between 83.95
= and about 91.5 the amplitude of
E the Cr, oscillation is dramatically
0.5LC ‘ ‘ ‘ reduced. The Cp approaches a
8o 90 100 110 120 nearly constant value about 2. At
M= 85 M2: C| t = 89.37 (first picture of fig.23)

0.4 ‘

the flow structure is basically the
same as in fig.21. Yet the re-
gion of circulating flow has be-
come narrower and the normal
shocks in the wake of the cir-
cular cylinder stronger (entropy
contour lines on the right side).
The part of this shocks which is
more closed to the centerline is

~0.4 ‘ ‘ ‘
80 90 100 1o 120 bent toward the rear part of the
Figure 22: M., = 0.85, M2, Cp and Cp, histories cylinder in a fashion
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similar to the oblique shocks of fig.18. Also notice, in the entropy contour lines, that the big round
vortexes at the right-hand side of the picture have disappeared (since they have been conveyed
downstream) giving place to a narrower vortex street. At ¢ = 90.46 the A-shock structure of the
My, — 1 configuration appears on the upper side of the circular cylinder. This structure is not
stable.

This is due to the fact that, differently than in the M., — 1 case, highly rotational vortexes are
shed into the wake and conveyed through the region between the centerline and the upper triple
point. As one can see from the third picture of fig.23 this triple point has disappeared after about
one time unit. Instead a symmetrical one was born in the lower side of the wake. Thus at ¢ about
91 the flow has reached, for a while, a configuration which is very similar to the one shown in fig.18
and corresponding to the quasi steady My, — 1 flow. At this time the C'p coefficient is about 2
and the C'p about zero. In the sequence of pictures represented in fig.24, 25 and 26 we can see
the breakdown of this configuration. First the quasi symmetry with respect to the z-axis is lost:
At t = 92.64 the radial shock on the upper side of the cylinder has moved upstream generating a
big vortex on its high pressure side. After about one time unit this shock has lost its connection
to the almost normal shock in the rear part of the flow (second picture of fig.24). At the same
time the other radial shock on the lower side of the cylinder moves upstream too. Consider the
flow at ¢ = 94.82: on one side one can observe, in the wake downstream the cylinder, a complex
interaction of the rests of the weak M., — 1 shock wave pattern. On the other side the oscillating
radial shocks give rise, in the vicinity of the body, to a flow similar to the one that can be observed
in the low transonic regime. In fact, between ¢ = 91.54 and ¢ = 94.82, the system has made about
one pseudo oscillation (see also the Cr path of fig.22) and two counter rotating vortexes have been
shed into the wake. These are named, in the entropy deviation contour lines of fig.24, V2 and V.
The upper one rotates clockwise. It has been generated by the radial shock on the upper side of the
cylinder. Consider the interaction of these two vortexes with the two small ones (V7! and Vd_l)
just in the middle of the same picture. They are a rest of the previous oscillation of the flow around
the Mo, — 1 configuration, as one can realize from the previous pictures. The lower one (Vd_l)
rotates counterclockwise whereas the middle one (V1) rotates just as V,?. Consider fig.25: The
V=1 vortex slides out of the layer between V,? and Vd_1 and is rolled up by V,? (t = 95.90). After
about one time unit the two clockwise rotating vortexes has joined together to form a stronger
one on the upper side of the wake (¢ = 96.98). Notice how the structure of both V! and V!
can still be recognized inside V.2 4+ V.71, Instead at ¢ = 98.06 they have merged into a single
vortex. Just the same happens to V) and Vd_l. This last vortex is leapfrogged, in turn, by V.
The two vortexes coalesce and the resulting one is conveyed downstream. This can be seen in the
last picture of fig.25 and in the first frame of fig.26. Over the time interval covered by fig.24 and
fig.25 the flow in the vicinity of the cylinder has made about two cycles of the pseudo oscillation
generating thus two couples of counter rotating vortexes. These can be clearly seen in the first
picture of fig.26. In this same figure we notice the onset of a new phase: The shock structure behind
the circular cylinder get closed to the body; in the rear part of the cylinder we observe four radial
shocks and a circumferential one (fig.26 middle and enlargement of this flow in fig.28): the last
is due to the re-compression of the supersonic reversed flow generated by the two primary radial
shocks. Also the other two radial shocks (which are more closed to the centerline) are generated
by the re-compression of the same reversed flows. A velocity vector representation would reveal
the instantaneous presence of four separation and four stagnation points on the surface of the
cylinder. This complex configuration seems to slow down the oscillation of the two main shocks.
In fact the C'r path remains, for ¢ between 100 and about 101, at a nearly constant value. Also
the entropy deviation contour lines of the last picture of fig.26 (whose enlargement has been used
in the cover picture) shows that the generation of the lower counterclockwise rotating vortex takes
more time that in the previous phase of the oscillation. From here on we observe the progressive
degeneration of the shock structure in the rear part of the circular cylinder. A single low frequency
oscillation of the two primary shocks produces, after about 10 time units, the flow represented in
the first picture of fig.27 (see the Cf history of fig.22 between ¢ ~ 100 and ¢ & 110 too). Here no
trace of the M., — 1 shock wave pattern behind the circular cylinder is left. Both the pressure
coefficient and the entropy deviation contour lines reveal that the structure of the flow is controlled
by the oscillation of the two radial shocks: they slowly move around a quasi steady configuration
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alternately shedding vortexes in the wake. For ¢ > 110 we observe once more that the amplitude of
the oscillations get smaller and their frequency increases. The system undergoes a new transition
which leads again to the onset of a M., — 1 configuration. This happens in much the same way
as during the [84,94] time interval as one can see from fig.22 and from the second and the third
pictures of fig.27. Note also the similarity between fig.21 and the last frame of fig.27.

Before trying to give an interpretation of these results let us stress the following points. The
same behaviour as the one outlined above has been found, at large times too, both in the compu-
tations performed with the M1 and in the ones made with the MO grids. In this last case, however,
the coarseness of the grid does not allow a proper description of the A-shocks downstream of the
circular cylinder and the system seems to behave in a fashion which 1s more closed to the regular
low transonic oscillations. This could also explain the qualitative differences between the C'p paths
obtained, at large times, with M0 and M1 computations. As for the computation at M., = 0.5
here also we have checked the influence of the time discretization on the numerical results. In the
last, picture the C'p and Cp histories for a computation performed with At, reduced of 55% for
the Mo, = 0.85 case and with the MO grid are shown. We point out the agreement between these
results and the ones represented in figg.19 and 20 (top) for short times. At large times the two
paths are still qualitatively very similar, yet quantitatively different: we observe here a dependence
on the time discretization at large times.

Let us interpret the numerical results described in this section by means of the following con-
jecture: The transonic flow has, for a given value of M, three solutions. A first symmetrical one
which 1s always unstable. A second one which can be both stable or unstable depending on the
value of M,: this is, in some phase space, the limit cycle corresponding to the periodical oscillation
of the two radial shocks. A third one which also can be stable or unstable: this is the limit cycle
(eventually contracting to a point for Mo, — 1) related to the A-shock configuration shown in fig.18
for the My, = 0.95 case. Thus, for values of the free stream Mach number in the low transonic
regime, the third solution is unstable and the second one stable. On the other hand, when M is
sufficiently closed to 1, the third solution becomes stable (and the second one unstable). Although
there are values of M., for which neither the second nor the third solutions are stable. In this case
the flow oscillates (in the phase space) irregularly between these two (unstable) solutions. This is
what happens for Mo, = 0.75, Mo, = 0.85 and M, = 0.9.

4. Conclusions

We have closed the previous section with a conjecture about the kind of dependence of the solution
on the control parameter M,. This conjecture 1s probably wrong. In fact the phenomena that we
have described could be explained with many other assumptions. In spite of this our conjecture
allows us to formulate the following important question:

Is this dependence of the solution on M, just a feature of the numerical model or a characteristic
of the Euler equation themselves? An answer to this question can just come from (numerical)
experiments or from a deeper knowledge of the features of the mathematical model. Although
we do not know other examples of compressible inviscid flow where these transitions have been
observed, we think that this answer is positive and that the Euler equations exhibit, for this
physical problem, a turbulent behaviour.
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M=.85 M2 t=89.37: Cp M=.85 M2 t=89.37: ent. dev.

M=.85 M2 t=90.48: ent. dev.

M=.85 M2 t=91.54: ent. dev.

Figure 23: M., = 0.85, M2; pressure coeff. (left) and entropy deviation (right) contour lines.
The flow approaches the Mo, — 1 configuration
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M=.85 M2 t=92.64: Cp M=.85 M2 t=92.64: ent. dev.

\tex{$V_dr0$
\tex{$V_dA{-1}$

M=.85 M2 t=93.73: ent. dev.
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\tex{$V_dr0$}

M=.85 M2 t=84.82: ent. dev.
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Figure 24: M., = 0.85, M2; pressure coeff. (left) and entropy deviation (right) contour lines.
Breakdown of the Mo, — 1 configuration: the radial shocks begin to oscillate
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M=.85 M2 t=95.90: Cp M=.85 M2 t=95.90: ent. dev.
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M=.85 M2 t=96.98: Cp M=.85 M2 t=96.98: ent. dev.
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M=.85 M2 t=98.06: Cp M=.85 M2 t=98.06: ent. dev.
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\ex{$V_dr{-1}$} \tex{$V_d"0$}

Figure 25: M., = 0.85, M2; pressure coeff. (left) and entropy deviation (right) contour lines.
Breakdown of the Mo, — 1 configuration: the shock wave structure get closed to the rear part of
the cylinder
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M=.85 M2 t=99.14: Cp M=.85 M2 t=99.14: ent. dev.

\ex{$V_ur0+V_ur{-1}$}

\tex{$V_dA0+V_dA{-11$}

M=.85 M2 t=100.2: Cp M=.85 M2 t=100.2: ent. dev.

M=.85 M2 t=101.3: ent. dev.

Figure 26: M., = 0.85, M2; pressure coeff. (left) and entropy deviation (right) contour lines.
Breakdown of the Mo, — 1 configuration:
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M=.85 M2 t=109.1: Cp M=.85 M2 t=109.1: ent. dev.

M=.85 M2 t=112.4: ent. dev.

M=.85 M2 t=118.: ent. dev.

—— OJAS

Figure 27: M., = 0.85, M2; pressure coeff. (left) and entropy deviation (right) contour lines.
Towards the Mo, — 1 configuration:
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M=.85 M2 t=100.2: Cp

Figure 28: M., = 0.85, M2; pressure coefficient contour lines
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Figure 29: M., = 0.85, M0, CFL/2; Cp and Cp, histories
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