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Invariant manifolds of numerical integration schemes applied to

stiff systems of singular perturbation type − Part I: RK-methods

Singularly perturbed systems of ODEs are a model class for so-called stiff systems which

are difficult to treat numerically. The smaller the perturbation parameter ε the stiffer the

system. Under usual assumptions a singularly perturbed system has an important geo-

metric property: It admits a highly attractive smooth invariant manifold. In Section 1

we state the invariant manifold result for singularly perturbed ODEs proved in Nipp [3].

A numerical method applied to a system of ODEs defines a map in phase space.

We deal with the question whether such a map preserves the geometric property of the

underlying singularly perturbed ODE. In general, this geometric property carries over to

the discrete system if the step size h is of the same order as the perturbation parameter ε.

In this case the numerical integration is very inefficient, however. For explicit methods the

step size h has to be of order ε due to their poor stability properties. This has been shown

in Kirchgraber, Nipp [2] for the explicit Euler method. We show that for implicit RK-

methods the step size h may be chosen such that h is independent of ε. For h fixed and

for all ε small enough such stiff discrete systems admit an attractive invariant manifold

close to the manifold of the ODE. This geometric result for stiff RK-methods is derived

in Section 2.

The invariant manifold result of Section 2 is obtained by considering one step of the

RK-map, only. In order to numerically approximate the solution of an ODE many steps

have to be performed. Therefore, one is interested in bounds on the global error of the

integration method. As for nonstiff systems this is an easy task it is a difficult problem

for stiff systems. This problem was first solved by Hairer, Lubich, Roche [1] in 1988 for

stiff systems of singular perturbation type. In Section 3 we give a new derivation for the

bounds of the global error of RK-methods applied to singularly perturbed systems. By

means of the invariant manifold result of Section 2 the RK-map is reduced to a map on

the manifold. The discrete system restricted to the manifold is no longer stiff as ε → 0.

This allows to derive bounds on the global error in a comparatively easy and transparent

way.

In Part II which is in preparation multistep methods applied to stiff systems of singular

perturbation type are investigated.
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1. An invariant manifold result for singularly perturbed ODEs

We consider the singularly perturbed autonomous system

dx

dt
= f(x, y)

ε
dy

dt
= g(x, y)

(1)

where x ∈ lRm, y ∈ lRn and ε ∈ (0, ε0). By Cr
b we denote spaces of functions of class Cr

with bounded derivatives.

We make the following

Hypothesis HDE

1) r ≥ 3 .

2) f ∈ Cr
b (lR

m×lRn, lRm) , g ∈ Cr
b (lR

m×lRn, lRn) and f and g are bounded.

3) There is a function s0 ∈ Cr
b (lR

m, lRn) such that g(x, s0(x)) = 0 for x ∈ lRm.

4) There is a positive constant b0 such that all eigenvalues of the Jacobian B(x) :=

gy(x, s0(x)) have real parts smaller than −b0 for all x ∈ lRm.

Under the above assumptions it can be shown that for all ε > 0 small enough Eq.(1)

has a smooth attractive invariant manifold Mε which is O(ε)-close to the so-called reduced

manifold M0 := {(x, y) | x ∈ lRm, y = s0(x)}. The precise result given below is proved in

Nipp [3].

Theorem 1 For every β ∈ (0, b0) there are positive constants ε∗, δ, K and a function

s ∈ Cr
b (lR

m×(0, ε∗), lRn) such that the following assertions hold for ε ∈ (0, ε∗).

i) Invariance. The set Mε = {(x, y) | x∈lRm, y = s(x, ε)} ⊂ lRm×lRn is invariant under

Eq.(1), i.e., if (x0, y0) ∈ Mε then also (x(t), y(t)) ∈ Mε for all t ∈ lR, (x(t), y(t))

being the solution of Eq.(1) with (x(0), y(0)) = (x0, y0). More precisely, Pt(Mε) =

Mε, t ∈ lR, for the map Pt : (x0, y0) '−→ (x(t), y(t)).

ii) Attractivity. Every solution (x(t), y(t)) of Eq.(1) with |y(0)−s0(x(0)) | ≤ δ satisfies

|y(t)− s(x(t), ε) | ≤ K e−βt/ε | y(0)− s(x(0), ε)|

for all t ≥ 0.
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iii) “Asymptotic phase”. For every solution (x(t), y(t)) of Eq.(1) with initial conditions

(x0, y0) at t = 0 satisfying |y0 − s0(x0) | ≤ δ there is (x̃0, ỹ0) ∈ Mε such that for

(x̃(t), ỹ(t)) being the solution of Eq.(1) with (x̃(0), ỹ(0)) = (x̃0, ỹ0)

| x(t)− x̃(t) | ≤ K e−βt/ε | y0 − s(x0, ε) |

| y(t)− ỹ(t) | ≤ K e−βt/ε | y0 − s(x0, ε) |

holds for t ≥ 0.

iv) Closeness to M0.
| s(x, ε)− s0(x) | ≤ K ε for x ∈ lRm .

v) Maximality. Every solution (x(t), y(t)) of Eq.(1) satisfying | y(t)−s0(x(t)) | ≤ δ for

all t ∈ lR lies in Mε, i.e., y(t) = s(x(t), ε) for all t.

2. The invariant manifold result for the RK-map

In this section we investigate the geometric behaviour of RK-methods applied to Eq.(1).

Since Eq.(1) is stiff for small ε, stiff RK-methods are needed to integrate such a system.

In this case, the step size h of the integration method usually is much larger than the

perturbation parameter ε.

For our approach it is essential that a RK-method is considered as a map in phase

space. The RK-method applied to the differential equation ẇ = F (w), w ∈ lR#, is a map

which takes w ∈ lR# to

w = w + h
s∑

j=1

bj F (Wj)

where the Wi are defined by

Wi = w + h
s∑

j=1

aij F (Wj), i = 1, ..., s .

It is convenient to introduce the following vectors in lRs#

W :=





W1

·
·
·

Ws



 , F (W ) :=





F (W1)
·
·
·

F (Ws)



 , w =





w
·
·
·
w



 .

In this notation the RK-map may be written as

w = w + h (bT ⊗ I#)F (W )

W = w + h (A⊗ I#)F (W ) .
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We make the following assumptions on the RK-method which are appropriate to

integrate stiff systems.

Hypothesis HRK

1) The RK-method has order p and stage order 1 ≤ q < p.

2) The RK-matrix A is invertible.

3) The stability functionR(z) := 1+z bT (Is−zA)−1
l1, z ∈ lC, where l1 = (1, ..., 1)T ∈ lRs,

satisfies |R(∞)| < 1.

Remarks:

1) If q = p then for p > 1 one may redefine q = p− 1 for Hypothesis HRK 1) to hold.

In this way, the results are not weakened. For p = 1 see Remark 7).

2) Usually, the matrix A of stiff RK-methods has eigenvalues with positive real parts.

This implies Hypothesis HRK 2). In our case where ε << h we do not need this

stronger assumption.

3) Since A is invertible R(∞) may be written as R(∞) = 1− bT A−1
l1 . +

We now apply a RK-method satisfying Hypothesis HRK to Eq.(1) and assume p < r.

This defines a map

P : lRm × lRn ,
(

x
y

)

'−→
(

x
y

)

∈ lRm × lRn(2)

of the form
x = x+ h(bT ⊗ Im) f(X, Y )

y = y +
h

ε
(bT ⊗ In) g(X, Y )

where X and Y are given by

X = x + h(A⊗ Im) f(X, Y )

Y = y +
h

ε
(A⊗ In) g(X, Y ) .

We introduce the new variables z, Z measuring the difference to the manifold Mε of the

differential equation (1). Writing s(x) instead of s(x, ε), for short, we define

y = s(x) + z, Y = s(X) + Z .

We expand the function g about z = 0 and have

g(x, s(x) + z) = g(x, s(x)) + (B(x) + B̂(x, z)) z

4



with B̂(x, z) = O(|z|). In the new variables the y-component of the RK-map P takes the

form

s(x) + z = s(x) + z +
h

ε
(bT ⊗ In)

{
g(X, s(X)

)
+ diag

[
B(X) + B̂(X,Z)

]
Z
}

(3)

s(X) + Z = s(x) + z+
h

ε
(A⊗ In)

{
g(X, s(X)

)
+ diag

[
B(X) + B̂(X,Z)

]
Z
}

(4)

where, e.g., diag[B(X)] denotes the sn × sn block diagonal matrix with n × n blocks

B(X1), ..., B(Xs). We denote the RK-map in the new variables by P̃ and we consider

this map in the space lRm ×Dd, Dd := {z | z ∈ lRn, |z| ≤ d}, where d will be determined

later. We here suppose that Z ∈ [Dd]s. It will be shown that Eq.(4) indeed has a unique

solution in [Dd]s. Collecting the linear terms in Z in Eq.(4) yields

Z =
ε

h
C(X,Z)−1(z− E)

with

C(X,Z) := −(A⊗ In) diag
[
B(X) + B̂(X,Z)

]
+

ε

h
(Is ⊗ In)(5)

and

E := s(X)− s(x)−
h

ε
(A⊗ In) g(X, s(X)) .(6)

Note that due to HDE 4) and HRK 2) the matrix C is invertible for d and ε/h small

enough. Inserting the expression obtained for Z into Eq.(3) we find

z = z − e + (bT ⊗ In) diag
[
B(X) + B̂(X,Z)

]
C(X,Z)−1 (z−E)

where

e := s(x)− s(x)−
h

ε
(bT ⊗ In) g(X, s(X)) .(7)

Note that E and e are of order O(h). This is due to the fact that g(X, s0(X)) = 0 and

s(X)− s0(X) = O(ε) and that X − x and x − x are O(h). By means of Eq.(5) we may

replace diag
[
B(X) + B̂(X,Z)

]
by (A−1 ⊗ In)

( ε
h
(Is ⊗ In)− C(X,Z)

)
. Hence, we have

z = z − e+ (bT A−1 ⊗ In)
( ε
h
C(X,Z)−1 − (Is ⊗ In)

)
(z−E)

or

z =
(
(1− bT A−1

l1) In +
ε

h
∆( l1 ⊗ In)

)
z +

(
(bT A−1 ⊗ In)−

ε

h
∆
)
E − e

where
∆ := (bT A−1 ⊗ In) C(X,Z)−1 .
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Thus, we have shown that the map P̃ may be written in the form

x = x+ h(bT ⊗ Im)f(X, s(X) + Z)

z =
(
R(∞) In +

ε

h
∆( l1 ⊗ In)

)
z +

(
(bT A−1 ⊗ In)−

ε

h
∆
)
E − e

(8)

with X,Z defined by

Φ(X,Z) := X − x− h(A⊗ Im)f(X, s(X) + Z) = 0

Ψ(X,Z) := Z −
ε

h
C(X,Z)−1 (z−E) = 0 .

(9)

This form is appropriate to show that the map P̃ is well defined and that it admits a

highly attractive invariant manifold.

We first show that Eq.(9) has a unique solution (X(x, z, h, ε), Z(x, z, h, ε)) in some

large neighborhood of X = x and Z = 0 in
[
lRm

]s
×
[
Dd

]s
. This is done by using the

Newton-Kantorovich theorem (cf., e.g., Ortega, Rheinboldt [5]). The Jacobian J of (9)

satisfies

J(X,Z) :=
∂(Φ,Ψ)

∂(X,Z)
=




(Is ⊗ Im) +O(h) O(h)

O
(
ε
h

)
(Is ⊗ In) +O

(
ε
h

)





for (X,Z) ∈
[
lRm

]s
×
[
Dd

]s
. This implies that J has Lipschitz constant γ = O(h)+O(ε/h).

Moreover, |J−1(x, 0)| is bounded by β = 2 and
∣∣∣J−1(x, 0)

(
Φ(x, 0)
Ψ(x, 0)

)∣∣∣ is bounded by

α = O(h) + O(ε/h) for h and ε/h small enough. The quantity H := αβγ is of order

O
(
(h + ε/h)2

)
and for r1,2 := α(1 ∓

√
1− 2H)/H we have r1 = O(h + ε/h) and r2 =

O
(

1

h+ε/h

)
. Hence, the Newton-Kantorovich theorem implies the existence of a solution of

(9) in the ball Sr1(x, 0) and the solution is unique in
[
lRm

]s
×
[
Dd

]s
∩ Sr2(x, 0). From the

implicit function theorem it follows that this solution is smooth. Since the Jacobian J is

near the identity for small h and ε/h the derivatives are bounded. Therefore, the map P̃

given in Eq.(8) is well defined and is of the form

P̃ :

(
x
z

)

'−→
(

x
z

)

=

(
x+ F̂ (x, z, h, ε)
G(x, z, h, ε)

)

where F̂ and G are of class Cr
b .

We now apply the invariant manifold result of Nipp, Stoffer [4]. The cylinder lRm×Dd

is mapped into itself by the map P̃ if d, h and ε/h are sufficiently small. The functions F̂

and G have the following Lipschitz constants with respect to x and z:

L11 = O(h) , L12 = O(ε) ,

L21 = O(h) +O
( ε
h

)
, L22 = R(∞) +O

( ε
h

)
.

6



We have to verify the two conditions

2
√
L12 L21 < 1− L11 − L22

L22 + L12 λ < (1− L11 − L12 λ)r

where

λ :=
2L21

1− L11 − L22 +
√
(1− L11 − L22)2 − 4L12 L21

.

These two conditions are satisfied if h and ε/h are sufficiently small. Now, Theorem 5 of

Nipp, Stoffer [4] implies the existence of a smooth attractive invariant manifold M̃h,ε of

the map P̃ . More precisely: Let Ωh∗,δ∗ be the domain {(x, h, ε)| x ∈ lRm, h ∈ (0, h∗), ε ∈
(0, hδ∗)}.
There is a λ-Lipschitz function σ̃ : Ωh∗,δ∗ −→ Dd ⊂ lRn of class Cr

b with respect to

x, λ = O(h) +O(ε/h), such that the following assertions hold.

i) M̃h,ε = {(x, z) | x ∈ lRm, z = σ̃(x, h, ε)} is an invariant set of the map P̃ , i.e.,

P̃ (M̃h,ε) = M̃h,ε.

ii) M̃h,ε is uniformly attractive for P̃ with attractivity constant χ(λ) = L22 + L12 λ =

R(∞) +O(ε/h) < 1.

iii) The “property of asymptotic phase” holds.

iv) According to Eq.(8) the function G(x, z, h, ε) has the form G(x, z, h, ε)=H(x, z, h, ε)z

+ Ĝ(x, z, h, ε) with |H(x, z, h, ε)| = |R(∞)| + O(ε/h) ≤ ρ < 1. Thus, σ̃ may be

estimated by

|σ̃(x, h, ε)| ≤
1

1− ρ
sup
x∈lRm

|Ĝ(x, σ̃(x, h, ε), h, ε)| .

v) Every invariant set Ω of P̃ is contained in M̃h,ε.

From Eq.(8) we have Ĝ = ((bTA−1 ⊗ In) − ε
h ∆)E − e. Since the expressions E and

e are of order O(h) as noted above the function Ĝ is of order O(h). It therefore follows

from iv) that σ̃ is of order O(h) as well. This estimate may be improved, however.

Claim σ̃ is of order O(hq+1). Moreover, if the method is stiffly accurate, i.e., if bi = asi,

then σ̃ = O(εhq).

To prove this claim we need some preparations. We consider solutions (u(t),v(t))

of Eq.(1) on the manifold Mε established in Theorem 1. These solutions satisfy the

differential equation

7



u̇ = f(u, s(u))

v̇ =
1

ε
g(u, s(u)) = s′(u)f(u, s(u)) .

(10)

Here, s(u) is the function defining the manifold Mε (for simplicity we again drop the

parameter ε in s(u, ε)). The identity g(u, s(u)) = εs′(u)f(u, s(u)) follows from v(t) =

s(u(t)). s′ denotes the derivative of s(u) with respect to u. Applying a RK-method to

Eq.(10) we obtain

u = u + h(bT ⊗ Im) f(U, s(U))

v = v + h(bT ⊗ In) diag [s′(U)] f(U, s(U))
(11)

with

U = u + h(A⊗ Im) f(U, s(U))

V = v + h(A⊗ In) diag [s′(U)] f(U, s(U)) .
(12)

Since the method is of order p and has stage order q and since f, g are of class Cr
b with

r > p we conclude that

O(hp+1) = v − v(h) = v − s(u(h)) = v − s(u) +O(hp+1)

O(hq+1) = V − v(cih) = V − s(u(cih)) = V − s(U) +O(hq+1)

where ci =
s∑

j=1

aij and v(cih) :=
(
v(c1h)T , ..., v(csh)T

)T
. It follows that

s(u) = s(u) + h(bT ⊗ In) diag [s′(U)] f(U, s(U)) + O(hp+1)

s(U) = s(u) + h(A⊗ In) diag [s′(U)] f(U, s(U)) + O(hq+1) .
(13)

Next we improve the estimates for e and E using the following

Lemma 2 Let (x, z) ∈ M̃h,ε. Then e = O(hj) and E = O(hj) implies e = O(hj+1) +

O(hp+1) and E = O(hj+1) +O(hq+1).

Proof: We are looking for estimates for x − u and X − U where x and X are defined by

Eqs.(8), (9) and u, U by Eqs.(11), (12). For u = x we have

x− u = h(bT ⊗ Im)
(
f(X, s(X) + Z)− (f(U, s(U))

)

X − U = h(A⊗ Im)
(
f(X, s(X) + Z)− (f(U, s(U))

)

or
x− u = hO(|X − U |) + hO(|Z|)

(
(Is ⊗ Im) +O(h)

)
(X − U) = hO(|Z|)

8



implying
x− u = O(h |Z|)
X − U = O(h |Z|) .

(14)

For e, E = O(hj) the property iv) of M̃h,ε implies z = σ̃ = O(hj). Now Eq.(9) gives

Z = O(εhj−1). Inserting this estimate into Eq.(14) we obtain x − u = O(εhj) and

X − U = O(εhj). Replacing u and U , respectively, by x + O(εhj) and X + O(εhj),

respectively, in Eq.(13) and introducing the estimates obtained into Eqs.(6) and (7) we

get
e = O(hj+1) +O(hp+1)

E = O(hj+1) +O(hq+1) .

Here, we have used the identity εs′(u)f(u, s(u)) = g(u, s(u)) and the fact that ε/h is

small. This completes the proof of Lemma 2. ⊥

We know that e = O(h), E = O(h) holds. Using Lemma 2 successively it follows that

e = O(hq+1), E = O(hq+1). Hence, the function Ĝ in property iv) of M̃h,ε is of order

O(hq+1) implying σ̃ = O(hq+1). With these estimates for E and σ̃ it follows fom Eq.(9)

that

Z = O(εhq) .(15)

Since for bi = asi one has z = Zs it follows that σ̃ = O(εhq) in this special case. Thus,

we have proved the above claim.

Expressing the results above in the original variables x, y and defining σ(x, h, ε) :=

s(x, ε) + σ̃(x, h, ε) we have shown

Theorem 3 Let the differential equation (1) satisfy Hypothesis HDE. Apply a RK-

method with Hypothesis HRK to Eq.(1) and assume p < r.

Then there are constants h0, δ0, d, c,K and a function σ : Ωh0,δ0 −→ lRn, Ωh0,δ0 :=

{(x, h, ε)| x ∈ lRm, h ∈ (0, h0), ε ∈ (0, hδ0)}, σ of class Cr
b with respect to x, such that for

all h, ε with h ≤ h0, ε ≤ δ0h the following assertions hold.

i) Invariance. The set Mh,ε = {(x, y) | x ∈ lRm, y = σ(x, h, ε)} is an invariant set of

the map P given in Eq.(2), i.e., P (Mh,ε) = Mh,ε.

ii) Attractivity. The manifold Mh,ε is uniformly attractive for P with attractivity con-

stant χ(h, ε) = R(∞) + c ε/h < 1, i.e., for all (x, y) with |y − s(x, ε) | ≤ d the

inequality

|y − σ(x, h, ε)| ≤ χ(h, ε) |y − σ(x, h, ε)|
holds.

9



iii) “Asymptotic phase”. For every (x0, y0) with |y0 − s(x0, ε)| ≤ d there is (x̃0, ỹ0) ∈
Mh,ε such that for (xj , yj) := P j(x0, y0) and (x̃j , ỹj) := P j(x̃o, ỹ0) ∈ Mh,ε, j ∈ lN0,

|xj − x̃j | ≤ K χ(h, ε)j | y0 − σ(x0, h, ε)|

|yj − ỹj| ≤ K χ(h, ε)j | y0 − σ(x0, h, ε)| .

iv) Closeness to Mε.

|σ(x, h, ε)− s(x, ε)| ≤ K hq+1 for x ∈ lRm .

If the RK-method satisfies bi = asi then

|σ(x, h, ε)− s(x, ε)| ≤ K εhq for x ∈ lRm .

v) Maximality. Every invariant set Ω of P is contained in Mh,ε, i.e., P (Ω) = Ω implies

Ω ⊂ Mh,ε.

Remarks:

4) Under Hypothesis HDE the singularly perturbed differential equation (1) admits an

attractive invariant manifold. Theorem 3 states that under Hypothesis HRK the

RK-map (2) inherits this geometric property.

5) The invariant manifold of the differential equation is highly attractive, i.e., the

manifold Mε of the time-h map of Eq.(1) has attractivity O(e−βh/ε). The invariant

manifold Mh,ε of the RK-map (2) has attractivity R(∞) + O(ε/h). Hence, the

attractivity property of the manifold Mε is poorly reproduced by the attractivity of

Mh,ε unless R(∞) = 0.

6) In general, the distance between the manifolds Mε and Mh,ε is O(hq+1). If |y −
s(x, ε)| = O(hq+1) then Eq.(9) shows that Z = O(εhq). This means that in this

case all the information to step forward the numerical method is taken O(εhq)-close

to Mε. +

3. Global error bounds for stiff RK-methods

Our main result in Section 2 was obtained by investigating one step of the RK-method,

only. One step corresponds to the local error. Integrating an ODE one is mainly interested

in the global error, however, i.e., the error at time T = Nh. Since the invariant manifold
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result in fact is a global result it is very helpful to derive bounds on the global error of

the RK-method. The flow of Eq.(1) close to the manifold Mε is essentially described by

the m-dimentional system ẋ = f(x, s(x, ε)) which is no longer stiff with ε → 0. Similarly,

the dynamics of the RK-map (2) near the manifold Mh,ε is essentially described by an

m-dimensional map (the x-part of (2) on Mh,ε). Thus, our approach reduces the stiff

problem to a nonstiff one.

Let us consider a solution (x(t), y(t)) of Eq.(1) on Mε and its RK-approximation

(xk, yk), k = 0, 1, 2, ..., given by
(

xk+1

yk+1

)

:= P

(
xk

yk

)

,

(
x0

y0

)

:=

(
x(0)
s(x(0), ε)

)

where P denotes the RK-map (2). We want to find bounds for xk − x(kh), yk − y(kh),

kh ≤ T .

Theorem 4 Let the differential equation (1) satisfy Hypothesis HDE. Apply a RK-

method with Hypothesis HRK to Eq. (1) and assume p < r. Moreover, assume that

the initial conditions satisfy y(0) = s(x(0), ε), x0 = x(0), y0 − y(0) = O(hq+1).

Then the following error bounds hold for kh ≤ T .

xk − x(kh) = O(hp) +O(εhq+1)

yk − y(kh) = O(hq+1) .

Moreover, if bi = asi the estimate

yk − y(kh) = O(hp) +O(εhq)

holds.

Remark:

7) If q = p = 1 then xk − x(kh) = O(h), yk − y(kh) = O(h). See also Remark 1). +

The proof of Theorem 4 is done in two steps. In Lemma 5 we first derive a weaker

bound. This preliminary bound then simplifies the proof of Theorem 4.

As in Section 2 we compare xk with the RK-solution uk of the differential equation

u̇ = f(u, s(u)). (We again write s(u) instead of s(u, ε).) We set u(0) = x(0). Note that

this implies u(t) = x(t) for all t. The RK-solution of the full system satisfies

xk+1 = xk + h(bT ⊗ Im)X ′k

yk+1 = yk + h(bT ⊗ In) Y ′k
(16)

11



Xk = xk + h(A⊗ Im)X ′k X ′k = f(Xk, Y k)

Y k = yk + h(A⊗ In) Y ′k , εY ′k = g(Xk, Y k)
(17)

and the RK-solution of the simplified system satisfies

uk+1 = uk + h(bT ⊗ Im) U
′k(18)

Uk = uk + h(A⊗ Im)U
′k , U ′k = f(Uk, s(Uk)) .(19)

Lemma 5 Under the assumptions of Theorem 4 the bounds

xk − uk = O(εhq) , Xk − Uk = O(εhq)

hold for k h ≤ T .

Proof: In addition to the variables uk, Uk we define variables for the simplified system

which correspond to y:

vk := s(uk)

V k := s(Uk) , εV ′k = g(Uk, s(Uk)) .

Noting that εs′(u)f(u, s(u)) = g(u, s(u)) (cf. Eq.(10)) we get from Eq.(13) that

vk+1 = vk + h(bT ⊗ In) V ′k + O(hp+1)

V k = vk + h(A⊗ In) V ′k + O(hq+1) .
(20)

We introduce the differences
∆xk = xk − uk

∆yk = yk − vk ,

∆Xk = Xk − Uk ∆X ′k = X ′k − U ′k

∆Y k = Y k − V k , ∆Y ′k = Y ′k − V ′k .

From Eqs.(16) - (20) we conclude that

∆xk+1 = ∆xk + h(bT ⊗ Im)∆X ′k

∆yk+1 = ∆yk + h(bT ⊗ In) ∆Y ′k +O(hp+1)

∆Xk = ∆xk + h(A⊗ Im) ∆X ′k

∆Y k = ∆yk + h(A⊗ In) ∆Y ′k +O(hq+1) .

(21)
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From the definitions it follows that

∆X ′k = R1(X
k, Y k, Uk)∆Xk +R2(X

k, Y k, Uk)∆Y k

where R1 = diag[fx(Uk, s(Uk))] + O(|∆Xk|) + O(|∆Y k|) and R2 = diag[fy(Uk, s(Uk))] +

O(|∆Xk|) +O(|∆Y k|). We have

|∆Y k| = |Y k − s(Uk)| ≤ |Y k − s(Xk)|+ |s(Xk)− s(Uk)| .

Since Y k − s(Xk) = O(εhq) by Eq.(15) and since the function s is uniformly Lipschitz in

x it follows that

∆Y k = O(1)∆Xk +O(εhq) .(22)

Hence, we have

∆X ′k =
{
diag[fx(Uk, s(Uk))] +O(|∆Xk|) +O(|∆Y k|)

}
∆Xk

+
{
diag[fy(Uk, s(Uk))] +O(|∆Xk|) +O(|∆Y k|)

}
∆Y k

= O(1)∆Xk +O(εhq)

(23)

and
∆Xk = ∆xk +O(h)∆Xk +O(εhq+1)

which may be written as

(
(Is ⊗ Im) +O(h)

)
∆Xk = ∆xk +O(εhq+1) .(24)

Inserting this estimate for ∆Xk into Eq.(23) we obtain from Eq.(21) that

∆xk+1 =
(
Im +O(h)

)
∆xk +O(εhq+1) .(25)

We apply the following Gronwall type argument which is easily proved by induction:

For any sequence (δk), δk ∈ lR+, satisfying δ0 = 0 and

δk+1 ≤ (1 + c0)δ
k + c1, c0 > 0, for 0 ≤ k < N

the estimate

δk ≤
c1
c0

[
(1 + c0)

k − 1
]
≤

c1
c0

[
ek c0 − 1

]

holds for k ≤ N .

Setting δk = |∆xk|, c0 = C0h, c1 = C1 εhq+1 we get from Eq.(25)

|∆xk| ≤
C1

C0

εhq(eC0T − 1) for k ≤ N .

Inserting this estimate into Eq.(24) terminates the proof of Lemma 5. ⊥
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Proof of Theorem 4: In order to improve the bound of Lemma 5 we investigate the

O(εhq+1)-term of Eq.(25) more precisely. Using the estimates of Lemma 5 and of Eq.(22)

in Eq.(23) and noting that εhq ≤ h2 we obtain

∆X ′k = diag[fk
x ]∆Xk + diag[fk

y ]∆Y k +O(εhq+2)(26)

where diag[fk
x ] := diag[fx(Uk, s(Uk))] and diag[fk

y ] := diag[fy(Uk, s(Uk))]. Similarly, we

get

ε∆Y ′k = diag[gkx]∆Xk + diag[gky ]∆Y k +O(εhq+2) .(27)

Solving Eq.(27) for ∆Y k and inserting the expression obtained into Eq.(26) yields

∆X ′k =
{
diag[fk

x ]− diag
[
fk
y (g

k
y)

−1 gkx
]}

∆Xk + ε diag
[
fk
y (g

k
y)

−1
]
∆Y ′k +O(εhq+2).

Inserting this into Eq.(21) and using Eq.(24) and Lemma 5 we have

∆xk+1 = ∆xk + h(bT ⊗ Im)diag
[
fk
x − fk

y (g
k
y)

−1 gkx
]
∆xk

+ εh(bT ⊗ Im)diag
[
fk
y (g

k
y)

−1
]
∆Y ′k +O(εhq+2) .

Subtracting ∆xk on both sides, taking the sum from k = 0 to k = j and then taking

norms yields

|∆xj+1| ≤ hC0

j∑

k=0

|∆xk|+
∣∣∣εh(bT ⊗ Im)

j∑

k=0

diag
[
fk
y (g

k
y)

−1
]
∆Y ′k +O(εhq+1)

∣∣∣(28)

where C0 is a bound for h(bT ⊗ Im)diag
[
fk
x − fk

y (g
k
y)

−1 gkx
]
.

We again use a Gronwall type argument easily proved by induction:

For any sequence (δj), δj ∈ lR+, satisfying δ0 = 0 and

δj+1 ≤ c0
j∑

k=0

δk + c1 , c0 > 0 , for 0 ≤ j < N

the estimate

δj+1 ≤ c1(1 + c0)
j ≤ c1e

j c0

holds for j < N .

We set δj = |∆xj |, c0 = C0 h and introduce the bound c1(h, ε) as follows:

∣∣∣εh(bT ⊗ Im)
j∑

k=0

diag
[
fk
y (g

k
y)

−1
]
∆Y ′k + O(εhq+1)

∣∣∣ ≤ c1(h, ε) .
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From Eq.(28) we get

|∆xj+1| ≤ c1(h, ε) e
C0T .(29)

We show that c1(h, ε) = O(εhq+1). We have to estimate the terms

Sj := εh(bT ⊗ Im)
j∑

k=0

diag[fk
y (g

k
y)

−1]∆Y ′k, 0 ≤ j < N .

Note that, if the matrices diag[fk
y (g

k
y)

−1] were omitted, Eq.(21) would imply Sj = ε (∆yj+1

−∆y0 +O(hp)). We show that indeed a similar expression may be obtained with appro-

priate factors, however. We define for 0 ≤ k < N

H(xk) := fy(x
k, s(xk)) gy(x

k, s(xk))−1

and

Qk := εh(bT ⊗ Im){diag[H(Uk)]− (Is ⊗H(xk+1))}∆Y ′k

Rk := ε{H(xk)−H(xk+1)}∆yk .

From Eq.(21) we have

∆yk+1 = ∆yk + h(bT ⊗ In)∆Y ′k + T k

with T k = O(hp+1). By induction it is now easily shown that

Sj = εH(xj+1)∆yj+1 − εH(x0)∆y0 +
j∑

k=0

(
Qk +Rk − εH(xk+1)T k

)

holds. We estimate the first two terms of this expression. By assumption we have ∆y0 =

y0 − s(x0) = y0 − y(0) = O(hq+1). From the properties ii), iv) of Theorem 3 and from

Lemma 5 we conclude that

∆yk = yk − s(uk) = [yk − σ(xk, h, ε)] + [σ(xk, h, ε)− s(xk)] + [s(xk)− s(uk)]

= χ(h, ε)k O(|y0 − σ(x0, h, ε)|) +O(hq+1)

= O(|∆y0|) +O(|σ(x0, h, ε)− s(x0)|) +O(hq+1) = O(hq+1) .

(30)

Hence, Sj =
j∑

k=0

(
Qk + Rk − εH(xk+1)T k

)
+O(εhq+1). We estimate Rk and Qk. Since

H(xk)−H(xk+1) = O(|xk+1−xk|) = O(h) we conclude using Eq.(30) that Rk = O(εhq+2).

Similarly, we have

diag[H(Uk)]− (Is ⊗H(xk+1)) = O(|Uk − xk+1|)
= O(|Uk −Xk|) +O(|Xk − xk+1|)
= O(εhq) +O(h)
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where we have used Lemma 5. Inserting the estimates of Eqs.(22), (24) and of Lemma

5 into Eq.(27) yields ε∆Y ′k = O(εhq). Hence, we have shown that Qk = O(εhq+2). We

conclude

j∑

k=0

(
Qk +Rk − εH(xk+1)T k

)
=

j∑

k=0

(
O(εhq+2) +O(εhp+1)

)
= O(εhq+1) +O(εhp)

implying Sj = O(εhq+1) and thus c1(h, ε) = O(εhq+1). From Eq.(29) we obtain

∆xk = xk − uk = O(εhq+1).(31)

We now estimate

xk − x(kh) = [xk − uk] + [uk − u(kh)] = O(εhq+1) +O(hp) .(32)

Here, we have used that uk − u(kh) is the global error of the differential equation u̇ =

f(u, s(u)). Since this differential equation is not stiff with respect to ε the global error is

O(hp). For the y component we find

yk − y(kh) = [yk − s(uk)] + [s(uk)− s(xk)] + [s(xk)− y(kh)]

= ∆yk + [s(uk)− s(xk)] + [s(xk)− s(x(kh))]

= ∆yk +O(|xk − uk|) +O(|xk − x(kh)|) .

By means of Eqs.(30), (31) and (32) we get yk − y(kh) = O(hq+1). It remains to consider

the case bi = asi. By property iv) of Theorem 3 we have σ(xk, h, ε)− s(xk) = O(εhq) and

we conclude as in Eq.(30) that ∆yk = O(εhq) holds. It follows again with Eqs.(31) and

(32) that

yk − y(kh) = O(εhq) +O(hp)

which completes the proof of Theorem 4. ⊥
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