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Abstract

A new idea is presented to solve the multidimensional Euler equations numeri-
cally. The aim of this idea is to obtain a robust shock capturing method without the
use of dimensional splitting. The starting point is the idea of the one-dimensional
flux vector splitting and the homogeneity of the Euler equations. Using this con-
cept it is shown that a different interpretation of the one-dimensional waves and
the use of some physical properties lead to a decomposition of the state vector into
three multidimensional waves. This idea includes most of the physical properties of
the Euler equations and allows infinitely many propagation directions. Assuming a
Cartesian grid and constant states within each cell a numerical scheme is derived
and some test calculations are shown.
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Introduction

In multidimensional flow calculations most of the finite difference or finite volume methods
use a one-dimensional Euler solver in multiple directions. Here the main propagation
directions are the coordinate axes, i.e. the cell interfaces of the underlying grid. With this
standard dimensional splitting approach the accuracy of the solution is first order. With
some special modifications the order is at most two [6]. There are flow properties which
can not be correctly described by these splittings, e.g. a shock diagonal to the grid.

There are some new investigations in multidimensional Euler solvers to circumvent the
problem mentioned above. The idea of these codes is to determine the main propagation
direction and then solve a one-dimensional problem in this direction [3], or to construct
a set of elementary waves which transport the residuum of one cell to some neighboring
nodes [4]. Now the propagation directions are independent of the underlying grid. But
these directions have to be calculated from the data of the flowfield and especially from
some of their gradients. This causes a loss of robustness of the resulting scheme.

Our method is a synthesis of the previous ones. The underlying concept is based
on a decoupling of the multidimensional flux into a finite number of multidimensional
elementary waves comparable to the flux vector splitting in one space dimension. These
elementary waves include most of the properties of the Euler equations as there are the
homogeneity of space and the invariance under a reflection. From these ideas we get
a numerical scheme which allows infinitely many propagation directions in contrast to
only two for the dimensional splitting. Moreover, the main part of these waves does not
depend on gradients of the data in contrast to the approach above. The gradients only
affect higher order terms.

Equations and notation

In the following investigations we will restrict ourself to the case of the Euler equations.
Before we start with the description of the idea we introduce the notation used in this
paper. The one-dimensional homogeneous Euler equations can be written in the form

ou o
— + —F(U) =0. 1
5 T 5, EU) (1)
The vector of the conserved quantities U and the physical flux function F(U) are
P pu
U=[m|. FU=| s | )
E u(FE + p)

Here p is the density, m is the momentum, F is the total energy, u = m/p is the velocity
and p is the pressure. Using the equation of state for an ideal gas, we obtain

p=(-1 (E—pu;) (3)

for the pressure. In our case 7 is a constant with v = 1.4, the value for air.
For simplicity, we consider the Euler equations in two space dimensions, although the
ideas carry over to three dimensions. The differential equations then have the form
ou o 0

5 F(U) 4 o

T 5 G(U) = 0. (4)
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The conservation equation for n, the y-component of the momentum, is added to the
system. The vectors have the form

p é)u pu
U = m 7 F — pus +p 7 G — p2uv
n puv pve +p
E u(E + p) v(E +p)

where v = n/p is the velocity in y-direction. Equation (3) becomes

p=G-n(E-rr).

To complete this collection of formulas we add the eigenvalues and eigenvectors of the
Jacobian matrix of F(U) in (2). The eigenvalues are \;y = u — ¢, Ay = v and A3 = u + ¢
and

1 1 1
R = u—c U U+ c (5)
H —wue v*/2 H + uc

is the matrix of the corresponding eigenvectors with the total enthalpy H = (E + p)p
and the speed of sound ¢ defined by ¢ = vp/p. The vector R™'U appearing in the
one-dimensional flux vector splitting has the simple form

T
I v—1 1
R_lU =P\5 7—7 o .
2y v 2y
I denotes the unit matrix and 0 the corresponding vector of zeros. x is the coordinate
vector and u the velocity vector in several space dimensions.

Generalization of the waves

The main idea of this numerical scheme is to use the characteristic propagation direc-
tions in each point of the flowfield and to propagate appropriate quantities along these
directions. Let us consider one space dimension first. We will see that if we interpret
the one-dimensional characteristic waves in a certain manner then there is no difference
between the one- and the multi-dimensional case.

The homogeneity of the one-dimensional Euler equations give

3
F(U) = AU = RAR'U = 3 r\a (6)

=1

with the Jacobian matrix A of F, the matrix of right eigenvectors R in (5) and the matrix
of eigenvalues A = diag(A1, A2, A3). This property allows us to decompose a state U in
the flowfield into the eigenvectors of A

U= RR_IU = ZI‘Z'OQ

and propagate these quantities with their characteristic speeds to get the flux F. This kind
of method is called flux vector splitting and the special form (6) is the Steger-Warming
splitting. We are now able to calculate the fluxes at each cell interface (in 1-D) and



advance the solution in time. In 1-D we have three different waves traveling with speeds
u— ¢, u and u+ ¢ as shown in Figure 1. The constant vector of conserved quantities U of
the left hand side is decomposed in these three waves. Each wave is independent of each
other, so we can treat them separately. We start with the second wave corresponding to
Az. This wave describes the convection of the gas. The interval Iy = [2;_1/2, Zi11/2] moves
with velocity u as shown in Figure 2. The propagation is in the flow direction. Fven in
several space dimensions there is only one propagation direction and so we can generalize
this wave easily. In the two dimensional case the propagation of a constant state U in a
domain 2y by this wave has the form as shown in Figure 5. The shape of the cell is the
same, it only moves with velocity u which is now a vector. The velocity u even can be a
linear function in space. Then the shape of the domain will be destroyed. We characterize
such a propagation with

Rule 1.
e Information moves from each point x with velocity u(x).

The information is described by a generalized version of the vector asre. Using the
multidimensional version of Dirac’s delta function

we can formulate
Definition 1. (Wave U)
With the function

we define wave U of domain Qg at time t + At by

oy (x,t+ at) = [ Ra(U(y,1))s(x — (v + atuly, 1)) dy.

Uq, (x,1 + at) describes how Ry in Qg is distributed aftet time at. Returning to the 1-D
case, U(x,t + at) is exactly the same function as in Figure 2 extracted from the Steger-
Warming splitting. But Definition 1 is for arbitrary space dimensions. The flux from a
domain )y into a domain ; during time at is given by

Q00 = /UQO(X,t—I— at)dx.
9]

We are now calculating fluxes from one domain into another. This allows us to compute
fluxes between domains without a cell interface, for example the diagonal cells in IR?, or
even between cells which are not direct neighbors.

The generalization of the two sonic waves is more complicated and we will use another
property of the Euler equations. The solution of (1) is invariant with respect to the
transformation of space & — —x. Information traveling with velocity A3 in the solution
is moving with velocity —As = —u — ¢ = @ — ¢ = A5 after the transformation (see Fig. 3).



So in one space dimension these two waves seem to have something in common. If we
examine the eigenvectors of A in (5), we see that the terms in r; and r3 have either the
same or the opposite sign. We now want to describe both propagation directions in one
wave or at least in two waves which contain both directions. Then we generalize them
replacing two directions by all directions. We will characterize this propagation with

Rule 2.

o [nformation moves from each point in all directions with velocity ¢, the speed of
sound, relative to the motion of gas.

o The mass of information is conserved.

The part of r; and r3 with the same sign can easily be distributed in this way. For an
initially constant function, Figure 4 shows the new shape after time at in the 1-D case.
In Rule 2 we are not restricted to a finite number of propagation directions. At this
point we can deal with another main property of the Euler equations. The solution of
(4) is invariant with respect to a rotation of space and from this we get infinitely many
propagation directions. Small disturbances move along the Mach cone. In two space
dimensions (or more) Rule 2 enables us to construct a multidimensional wave. Now we
are able to introduce this property of the Euler equations into a new numerical scheme.
Note that this property is not preserved in the dimensional splitting approach. Putting
these considerations into a mathematical formulation we get

Definition 2. (Wave C)
With the functions

Ri(U):=—] pu |, g(x,t,at) = x + at(u(x,?) + ne(x,1))
pH

we define wave C of domain Qg at time t + at by

Cay (x, 1+ al) = |%|//R1(U(y,t))5(x — g(y.t. at))dydO.

O

O is the surface of the N-dimensional unit ball and n is the outer normal to this surface.
Ca, (x,t + at) describes how Ry in g is distributed after time at. The intergation over
the whole surface O takes into account the propagation in all directions. Figure 7 shows
the support of the wave C at time t 4 at if all the quantities are constant in 4. In this
case Ry is independent of the space variable x and the integral reduces to

1
he(x, 1+ al) = U//‘S(X — g(y.1))dydO. (7)
014 4
Figure 8 shows the shape of h° for atc = 0.4 (axz = 1). The flux of this wave is obtained

in the same manner as for wave U. We get

Qo0 = /CQO(X,t—I- at)dx. (8)
91

With wave C we described only one part of the eigenvectors in (5). We still have to
propagate the part with opposite sign in ry and r3. If we interpret these quantities as
vectors pointing in opposite directions, we can characterize this propagation by
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Rule 3.

o From each point a momentum wave moves in all directions with velocity ¢ relative
to the gas.

Applying this to the 1-D case the momentum wave is scalar and ”all directions” are
represented by the different signs. Figure 6 shows the distribution of a constant function
after time at according to this rule. Again we can easily generalize this to several space
dimensions. After fitting some constants, e.g. the amplitude of this wave is not determined
by Rule 3 in contrast to the wave C, we can put the mathematical formulation in

Definition 3. (Wave C~)

With T the unity matriz and O the vector of zeros in IRV, g from Def. 2 and the
N x (N + 2) matriz function

OT
Ly(U) =2 1
v ul

we define the wave C~ of domain Qg at time t 4 at by

Ca (.1 + at) = |O|//L3 (v, 1))n6(x — g(y. 1, at))dydO.

O

Cq, (x,t + at) describes how momentum and energy are distributed after time at due to
the pressure in }y. Figure 9 shows the support of C~ for constant states and Figure 10

shows |h¢7| for the same time as h°. Analogous to (7), h° is given as
A (3, U4 1) = //n5 v, 1))dydO.
~ ol 5a
The flux from domain €y to €y with wave C™ is
o = [ Cay(x,t + at)dx. (9)
Q

Thus the total flux is given by
Fﬁoﬁl F’Léoﬂ —I_ FQoﬂl —I_ FQoﬂl

For a given finite volume discretization of the space IRN we can calculate the mean
value of a cell at time t + at:

Un+1 = QO Z FQon FQlQO
VQO 1£0
Qg is the domain of the desired cell and €;, 5 # 0 are the domains of the other cells. If
we only consider the next neighbors we have to sum over 3V — 1 domains.

Up to now we made neihter any assumption on the dimension of the space nor on the
shape of the functions, e.g. density, velocity or speed of sound. To obtain a numerical
scheme using Definitions 1 — 3 we assume constant states within the cells and restrict
ourself to a Cartesian grid. With these assumptions the integration of the delta function
in Def. 1 — 3 can be done analytically and we get a robust numerical scheme called the
method of transport.



Numerical results and conclusions

We tested the resulting numerical method in two space dimensions. At first we com-
puted the solution of various two-dimensional Riemann problems, for moderate initial
data, i.e. when the ratio of maximal to minimal density is lower than 5. The results are
comparable to those obtained with dimensional splitting. The solution of these and more
Riemann problems computed with high accuracy are shown in [5].

A more interesting test case in view of hypersonic flow is the situation with a free
stream Mach number of 25 and a source term within the flow field. The density ratio is
now more than 100. Even with large time steps (CFL number ~ 1) no unphysical values
occur in the flow field and the shock is captured well. For comparison, the standard Van
Leer flux vector splitting was not able to do this. The CFL number had to be reduced to
obtain a solution in this case.

The disadvantage of this method is due to geometrical reasons. The Mach cone in two
space dimensions are circles and so parts of the waves C and C~ have circles as boundaries
(see Figures 7 and 8). In [1] the calculation of the waves is done in detail. It points out
that the waves are complicated functions of roots and inverse trigonometric functions.
So the integration in (8) and (9) to obtain the fluxes needs a lot of computational work.
Therefore the resulting method of transport is 6 — 8 time slower than a comparable first
order method with dimensional splitting. Since there is no reduction of the time step for
hard problems the scheme is only 3 — 4 times slower.

Showing the consistency of this method one notices that a lot of simplifications are
possible. Thus we can reduce the computational effort drastically. As shown in [2] this
simple multidimensional Euler solver is only 20 % slower than a standard method but
as robust as the original method of transport. Because of the time step reduction for
dimensional splitting methods, this simplified method is nearly two times faster.

The main advantage of the method of transport is of theoretical nature. The gen-
erality of the definition of the waves allows a better understanding of multidimensional
phenomena. It may be comparable to the Godunov method in one space dimension where
most of the physics is included in the numerical scheme but it is not the most efficient
one.
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Figure 1: The Steger-Warming flux over a
cell boundary.
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Figure 2: The flux from interval I to the
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Figure 4: The distribution of wave C at
time t 4+ at for constant R in /;.
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Figure 7: The support of wave C at time
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Figure 9: The support of wave C~ at time
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Figure 6: The distribution of wave C~ at
time t 4+ at for constant Ls in /o.

Figure 8: The distribution of wave C at
time t 4+ at for constant Ry in €.

Figure 10: The distribution of wave C~ at
time t 4+ at for constant L5 in €)g.
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