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Abstract

The problem of a high enthalpy nozzle flow is considered. Rotational
symmetry is assumed. The governing inhomogeneous Euler equations are
given, and the special treatment of the high temperature gas, the vibrational
and chemical equilibrium is described. Some numerical boundary conditions
are given and the problem of rotational symmetry is mentioned. At the end
some numerical results are shown.
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Introduction

In high temperature flow such as the reentry of a space vehicle or a high enthalpy
flow in a nozzle the equations describing the fluid motion become inhomogeneous.
For temperatures of 5000 K and high total pressure as it arises in shock tubes,
chemical reactions take place and they are not in equilibrium with the thermody-
namical states. Even some thermodynamical properties such as vibrational energy
are assumed to be in non-equilibrium.

In the following discussion the flow in a nozzle with high total enthalpy and
pressure is numerically simulated. We assume thermodynamical equilibrium only
for the translational and rotational modes of the particles. The chemical reactions
as well as the vibrational energies of the molecules are taken in non-equilibrium.
We will briefly describe the equations, the numerical method and the boundary
conditions. At the end some numerical results for the test case VIIL.2 are shown.

The governing equations

High temperature inviscid flows are described by the conservation equations for the

partial densities of the different chemical species, the momentum, the total energy

and the vibrational energies which can be written in two dimensions in the form
ou N IF(U) N oG(U)
ot oz dy

The vector U has the form U = (p1,..., py,m,n, E, Ev,, ..., Ev,.)T where the Ey,

represent the different vibrational energies. The fluxes and the source term have the
form

= S(U). (1)
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The quantities p;, ¢ = 1,..., N denote the partial densities of the NV different chem-
ical species of the mixture, m and n are the momenta in x- and y-direction, F is the
total energy per unit volume, p = %, p; is the total density of the mixture, p is the
pressure, v = m/p and v = n/p are the components of the fluid velocity. The terms
s; characterize the production of the ith species due to chemical reactions and the
Y describe the energy exchange between the vibrational states and the modes in
equilibrium. In order to get a closed set of equations the pressure p and the source
term have to be related to the N + 3 + K components of U.

The evaluation of the flow properties is very easy because we only have a mixture
of ideal gases although the physical model is complex. The equilibrium temperature
can be obtained from the equation of the total energy by an explicit formula because



the heat capacities are not a function of temperature. We have

E— (Epin+ En+ Ev)
PCy

T =

where Fjy;, is the kinetic energy, E), = 3 p;h? is the heat of formation and Fy =
> Ly, is the total vibrational energy. The term ¢, = 3 Y;c,, is the heat capacity

of the gas at constant volume. The pressure is given by the equation of state

p = pRT Y Y;/W; with the molar mass W,.

Description of the source term

For the chemical reactions we use the five species model of air consisting of Ny, O3,
N, O, NO with 17 reactions introduced by Park. A complete table of the reactions
together with the corresponding empirical factors for the reaction rates and the
equilibrium constants is given in [5]. The source term for the chemical reactions
appearing in the equations is determined by the law of mass action as described in
[2]. The source term for the vibrational energies depends strongly on the physical
model and the data used. The v; are given by

E _
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Tj

where the relaxation time 7; is based on a Landau-Teller theory and the vibrational
energies ey, (in mole/m?) are given by

RO,
evj = 7@] ! (2)
exp(+) — 1
from the simple physical model of a harmonic oscillator. The ©; are the vibrational
temperatures and the e{% are the equilibrium vibrational energies (e.g. ey, evaluated

at the equilibrium temperature). The vibrational energies per unit volume are given

by Evj = evj/W]‘.

Operator splitting

The basic idea for solving the equation (1) is to split it into an system of ODEs for
the source term and the homogeneous Euler equations. Note that during the first
step, the integration of the system of ODEs

dU
g - S(U)v

the z- and y-momenta, the total energy and the total density are constant. In the
second step while solving the homogeneous Euler equations

8_U_|_ IF(U) N oG(U)
ot oz dy

the mass fractions Y; = p;/p and the vibrational energies Ey, stay constant. For
the nozzle flow the system of ODEs is stiffer than for the double ellipse because of

=0 (3)



the different flow conditions (see [4]). Here the eigenvalues of the Jacobian of the
chemical source terms are in the range of —10% in contrast to —107 for the reentry.
For the vibrational states stiffness becomes more pronounced. Here the relaxation
times are in the range of 107!?s and so the eigenvalues are less than —10'®. Therefore
we use the implicit Euler scheme for the source term. It is not obvious whether this
method is feasible. Further investigations are needed to check the coupling between
the chemical reactions, the vibrational relaxation and the flowfield. The solution
of the homogenious Euler equations is obtained using a low diffusion Van Leer flux
vector splitting [3]. The vibrational energies are treated in the same way as the
partial densities.

Numerical results

The geometry and the free stream conditions are taken from the specifications of
the Workshop on Hypersonic Reentry Problems [1], Part II. The testcase VIII.2
is considered here. Up to now we only use one vibrational temperature and non-
catalytic boundary condition. For the calculation we used a grid with nearly the
same space discretization in both directions so that the region near the inlet is
better resolved. Rotational symmetry is taken into account. The results shown in
the plots were obtained on a mesh with 666 points in x- and 30 points in y-direction.
At the inlet we used a Mach number of 1.0 and data equivalent to the total pressure
and temperature prescribed in testcase VIIL.2. As inflow boundary condition the
free stream values are used at the point © = 0. At the outflow boundary we only
use information from inner points because of supersonic outflow. To obtain the
boundary condition on the wall we connect the state in front of the wall to a state
with normal velocity zero at the wall by an expansion wave. The walls are non-
catalytic in contrast to the specifications of testcase VIII.2. The following plots
show the numerical results. The solution is considered to be converged if the relative
variation of the conserved quantities is less than 107%. There is a strong influence
of the boundary conditions at the symmetry axis. This influence only appears in
the steady state limit. During the time accurate computation the initial shock wave
propagates with the correct shape. The errors near the symmetry line are not caused
by the chemical reactions or the vibrational non-equilibrium.
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