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Abstract

We show, by way of an example, that the solution of a system of hyper-
bolic conservation laws exhibits an unexpected behavior if a source term is
present. The example is the system of Euler equations for N species in two
space dimensions. If the source term is not present and in the initial and
inflow conditions a fixed mixture of species is prescribed then the solution
basically behaves like the flow of an ideal gas, except that there are addi-
tional equations for the different species. However, introducing the chemical
reaction terms produces a thin boundary layer, which makes numerical com-
putations of the two-dimensional problem extremely difficult, if not impossible
for todays computers. In addition this boundary layer is unphysical. We shall
analyse the boundary layer in a one-dimensional calculation along the stag-
nation point stream line. In M. Fey and R. Jeltsch, in Proceedings of the 9th
GAMM Conference on Numerical Methods in Fluid Dynamics, a modification
of the Van Leer flux vector splitting is presented which is able to indicate the
presence of the boundary layer in a two-dimensional calculation.
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1 Introduction

When developing numerical schemes for hyperbolic conservation laws, most authors
consider a scalar one-dimensional conservation laws without a source term. New
phenomena have to be taken into account when one wants to generalize such methods
to systems in several space dimensions. Here we consider an effect which arises
from an interaction of the source term with a geometric singularity. We consider
hypersonic Euler flow of N chemically reacting species around a blunt body in two
space dimensions. We shall indicate that an extreme chemical boundary layer will
develop at the stagnation point. However, if the chemical reactions are turned
off then no boundary layer develops. In Section 2 we formulate the mathematical
problem and report on the fact that todays ‘general purpose’ numerical schemes
with todays computers do not give the correct stagnation point temperature. In
Section 3 we consider analytically the steady state flow along the stagnation point
stream line if one assumes that the flow is symmetric with respect to this line. This
leads to a free boundary value problem for a system of N + 2 ordinary differential
equations. If one uses N equations for the mass fractions and one for the pressure
and velocity along the stagnation point stream line, one can observe nicely the effect
of the source term. A heuristic argument is given to show why the boundary layer
depends on the geometry of the body and the reaction rates. In Section 4 we give a
brief outline of a scheme which is able to at least indicate the existence of a boundary
layer in two-dimensional computations.

2 Mathematical Problem

We consider the unsteady Euler equations with N chemical species in two dimen-
sions. The equations have the form

ou N IF(U) N oG(U)
ot oz dy

= S(U) (2.1)

where U = (p1, ..., pn, pu, pv, pE)T. p; is the partial density of the i-th species,

N

p=>_pi (2.2)

=1

is the density of the gas, u and v are the velocities in z- and y-direction. pF is the
total energy per unit volume. The fluxes F(U), G(U) and the source terms are given

plu plv S1
F(U) = o , GU) = pNE , S(U)y=1| VL (23)
pu” 4+ p pUv 0
pUU pv? +p 0
(PE + pJu (pE +p)v 0



p is the pressure and the s; are the source terms due to chemical reactions. The
chemical source terms have to satisfy

ZSZ' =0 (24)

=1

and depend on the partial densities and the temperature, i. e. s; = s;(p1, ..., pn, 1),
1 = 1,2,...,N. The functions s; are known functions given by the law of mass
action. Since we have the unknowns py, ..., py,u, v, £, p and T we need two further
equations. One is the equation of state for a mixture of N species

s (2.5)

N
p:RTZW

=1

where R is the universal constant of gas and W; is the molecular weight of the :-th
species. The temperature is related to the energy by the equations

a) E=e(T)+ %@2 o) 4 PR where B) oT) = %me(T) (2.6)

=1

Here ¢,(T') is the internal energy of the i-th species, which is a known highly nonlinear
function describing, in addition to the usual translational and rotational motion,
vibrational excitation and electronic energies. hY is the known formation enthalpy
of the i-th species. (2.1), (2.5) and (2.6) form a system of N + 5 equations for the
unknowns py, ..., pn, u,v,p, E,T. Once the quantities are known, p can be computed
from (2.2) and T from (2.6).

Note that we have included the formation enthalpy in our total energy E. This
implies that the last component of the source term S(U) in (2.3) is zero, i. e. the
energy conservation equation becomes homogeneous.

When computing flow problems with these equations we shall adopt a five species
model for the species N, Ny, O, Oy and NO described by Park [16] and [10]. Geomet-
rically we consider the unsteady flow around a blunt object such as a double ellipse,
see test problem 6.2-3 in [8], or a simple circular cylinder. The free-stream values
at the inflow are po, = 2.53 Pa, po = 4.15 x 107° kg/m?, T, = 211 K, M., = 25,
YN, 0o =0.79, Yo, 00 = 0.21 and Yo oo = Yv,oo = Yno,00o = 0. Here Y; always denotes
the mass fraction Y; = p;/p, 1 = 1,2, ..., N of the i-th species and M := v/u? 4+ v?/cs
is the Mach number where ¢; is the frozen speed of sound given by ¢} := ~+(T)p/p
with v(T') := 1+ R/(pc,) vazl pi/Wi. ¢, = ¢,(T) := 0e(T)/IT is the specific heat
of the gas mixture. At the body surface one assumes that the velocity is tangential
to the body, i. e. (u,v)-n = 0 where n is the normal to the body.

Let us consider ‘general purpose’ numerical schemes to solve this initial boundary
value problem. By ‘general purpose’ we mean a scheme which is more or less easily
extendable to a three-dimensional problem, does not use special information of this
particular problem and can be used for time accurate calculations. For example in
the Antibes workshop in 1990, see [8], out of the six contributions [3], [12], [2], [17],
[19] all except for [17] can be considered to be ‘general purpose’. There are the
following two major problems to be overcome by such a scheme. The first one is due



to the very strong bow shock which may give rise to unphysical values, e. g. negative
pressures. If a scheme is explicit, such unphysical values have to be avoided. This
can be done for example with a Van Leer flux vector splitting. The second problem
is much more serious. If one integrates in time to steady state, the stagnation
point temperatures in the contributions in [8] vary between 8455 K and 9653 K for
‘general purpose’ schemes compared to 5783 K for the specialized method proposed
n [17]. Note that the contribution by [12] had an even higher stagnation point
temperature. However, using a new low diffusion Van Leer flux vector splitting,
LDVL, introduced in [11], this temperature is reduced to approximately 8575 K. In
the Antibes workshop of 1991 for ‘general purpose’ schemes, again the stagnation
point temperatures vary between 8500 K and 9200 K, see [1]. Long time ago one has
already observed that the solution of (2.1) — (2.6) has a chemical boundary layer, see
[5], [6], [7], [18] and [9]. In the next section we shall demonstrate this phenomena.

3 Analysis along the stagnation point stream line

In order to demonstrate mathematically why ‘general purpose’ methods have dif-
ficulties when computing the stagnation point temperatures we shall consider here
the steady state solution in a simple geometric setting. We shall consider the flow
around a two-dimensional blunt object which is symmetric with respect to the -
axis. We assume that there exists a steady state solution which is also symmetric
with respect to the z-axis. Hence the stagnation point stream line is the z-axis and
one has v(x,0) = 0 and all unknown variables are even functions in y except v.
For y = 0 the solutions have to satisty the conservation of species equations, the
momentum equations in z- and y-direction and the conservation of energy equation:

(piv)e + (piv)y = 85, 1=1,..,N (3.1)

(pu® +p)o + (puv), =0 (3.2)

(puv)y + (pv* 4 p)y = 0 (3.3)

[(pE + p)uls + [(pF + p)v], = 0 (3.4)

Due to (2.2) and (2.4) the sum of the N equations in (3.1) gives the conservation of
mass

(pu)e + (p)y = 0. (3.5)
Introducing the enthalpy H = F + p/p in (3.4) and using (3.5) and v = 0 yields

puH, = 0. (3.6)

If we assume that there is no vacuum, i. e. p > 0, and that the flow is in positive
z-direction except at the stagnation point s, i. e. u(x,0) > 0 if @ # x,, we have
by (3.6) that H(x,0) =: Hy = const. Even across the bow shock the enthalpy is
constant and therefore Hy can be computed using the free-stream condition:

Ho = 3 YipoeilTeo) + i + 2 Yiooht + 7=
=1 =1 0



Hence one can replace the conservation of energy equation (3.4) by the algebraic
equation

2 N

Ho="2 43y, (ei(T) 00+ ﬂ) (3.7)

y F & W,
which relates the temperature T' to v and Y;, + = 1,..., N but not to density or
pressure. Clearly, since we consider the solution along the stagnation point stream
line y = 0, the momentum equation in y-direction cannot give us any information.
Moreover, to simplify the notation we drop the independent variable y and denote
the differentiation with respect to by a prime. Hence the solution satisfies the
conservation of species equations

pi'u+ piv' = si(pry s pn, T) — pivy, 1=1,...,N (3.8)

and the momentum equation in a-direction (3.2) which takes after some manipula-
tion the form

a u? RT
Zozip/ + puu’' =0 where «a;=(y—1) (HO —— —¢(T) - h?) +—. (3.9
=1 2 Wi

Note that (3.8) and (3.9) represent a system of N + 1 ordinary differential equations
for the N 4+ 4 unknowns pq, ..., pn, T, p,u and v,. Since we have only two additional
algebraic equations, namely (2.2) and (3.7), we are missing one equation. It is clear
that the system has to be underdetermined since somehow the flow should depend
on the geometry of the object around which it has to flow, e. g. the standoff distance
of the bow shock will definitely depend on the size of the body. To a certain extend
this reflects the fact that in subsonic flow, and that is what we have in front of the
stagnation point, information is flowing upstream. Note that in our derivation we
have up to now not made any approximation.

Before making this approximation we consider the condition at the bow shock
and at the stagnation point. By definition of the coordinate system the bow shock
occurs at * = g = 0. Using the Rankine-Hugeniot condition, one can compute the
conditions behind the shock with subscript zero using the free-stream values with
subscript co. One finds the following equations:

a) Yio=Yie, i=12 .. N

)

b) wup= uoopio
Po

) Do = Poo + pootily (1 - %) (3.10)

2 2
0 eo:eﬁ(&o_&oui) (1_@%”&(1_(@))
Poo Po Po 2 Po

The Y, ¢ are uniquely determined from (3.10a). (3.10b—d) form a system of three
equations for the unknowns wg, po, po and eg. The equation of state (2.5) and (2.6b)
provide two additional equations:

3w (3

Yo
W,

) f) eo= ZYi,oei(To) (3.10)



This set of equations can be solved giving initial conditions at @ = 0 for all unknowns
in (3.8), (3.9) except for v,,.

We want to investigate the behavior of the solution of the stagnation point. If
there exists a solution to the original problem then at the stagnation point zs the
velocity u is equal to zero, 1. e.

lim wu(z,0) = 0.
We assume that the physical quantities are continuous functions up to the stagna-
tion point, in particular we assume that they remain bounded. However, infinite
gradients at the stagnation point are allowed. We assume that the following limits
exist and are zero:

a)  lim plu=0, 1=1,2,..,N b)  lim pu=0 (3.11)

Substituting this into the conservation of mass equation (3.5) using v = 0 gives

lim (pu’ + pv,) = 0. (3.12)

Using (3.11b), (3.12) and the symmetry in the momentum equation (3.2) gives
lim p’ = 0. We see that u and p have rather smooth behavior near the stagnation

poiﬁt. If there is no vacuum at the stagnation point, i. e. p(x5,0) > 0, then using

(3.12) and (3.11a) in (3.8) implies

lim si(p1,...,pn, T) =0, ©=1,2,..., N. (3.13)
Hence we have chemical equilibrium at the stagnation point.

Observe that if we assume that v,(z) is known, one can solve the system of
ordinary differential equations (3.8), (3.9) using the initial conditions at 2 = 0 until
u becomes 0. This gives the stagnation point x5 which is also the standoff distance.
To do this we have made experiments with v, = const. The results are given in
Fig. 1 — 4. One observes that for large values of v, one obtains a boundary layer in
the density, temperature and mass fraction of nitrogen atoms. The boundary layer
becomes more pronounced as v, increases, i. e. the smaller the body becomes. If the
body is large, i. e. v, = 100, no boundary layer can be observed. Note that the code
DASSL [4] which we have used stops short of the point @ where u becomes zero due
to the steep gradient.

To analyse this boundary layer analytically let us rewrite the system (3.8), (3.9)

as
A(y(z))y(z) = by(x)), = €l0,z,) (3.14)
with
u p1 51(p1s s pny T') — prvy p1
A . . . : oy :
u PN SN(plv"'vavT)_pva PN

a1 ... any  pu 0 U



The quantities p and T are given by (2.2) and (3.7). One easily finds, see [15], [14],
that
det A = —uN_lpc?c (1 — MQ) .

Hence if N > 1 then A becomes singular in a vacuum, which is not of interest, or
if w = 0. Thus, at the stagnation point A becomes singular, in fact the rank drops
from N 4 1 to 2. To find the solution at the stagnation point we use two smooth
functions, the pressure p, = lim p and the velocity us; = lim u = 0.

r—ry r—x

One can now obtain the other variables Yi,.... Yy, p and T using the fact of
equilibrium chemistry (3.13), constant enthalpy (3.7) and the equation of state (2.5).
To do this observe that some of the equations in (3.13) are linearly dependent
since one has m < N kind of atoms which are conserved. Using the equations of
conservation of these atoms, one can eliminate m of the unknowns Y;, w. l. 0. g. one
could eliminate Y7, ..., ¥,,. Hence (3.13) reduces to

$i(Yogts oo YN p, T) =0, t=m+1,...,N

After eliminating Y7, ..., ¥, from the equation of state and (3.7) we obtain the two
additional equations. Observe that this system of equations does depend on the
geometry of the body only through the pressure p. The pressure p is obtained
from the integration of (3.14) and thus depends on v,. Hence all thermodynamic
variables at the stagnation point depend on the geometry of the body. To illustrate
this dependence we have solved this initial value problem (3.14) for the five species
model and the initial conditions given above under the assumption that v, = const.,
see Table 1.

In order to show that the chemical boundary layer is due to the chemistry source
term we rewrite the equations (3.14) in the variables Y;. The equivalent system has
the form

1
a) YV = —si(Vy, .., Y, pou), i=1,2,..,N
? up
b) wup' + pu' = —pv, (3.15)

1 N
c) c?cp'—l—puu’:—EZ%SZ»(E,...,YN,/},U)
=1

for the unknowns Yi, ..., Y, p, u. From this one sees easily that if the source terms
are identically zero then by (3.15a) the mass fractions are constant, i. e. one has
a flow of a nonreactive mixture of gases. Then (3.15b) and (3.15c) are the usual
equations one obtains along the stagnation point line of an ideal gas flow. Hence
there is no boundary layer.

Since p and u are the variables which have a smooth limit as x tends to the
stagnation point one should see the singular behavior of the equations better if we
replace the dependent variable p by p. After simple manipulations one obtains

1
a) K’zu—psi(ﬁ,...,YN,p,u), i=1,2,..,N

b) p' + puu’ =0
| N

c) (1-— M2)u’ = —v, + —22042'52'(5/17 s YN, Py 1)
PCy =1



where M = u/ec; along the stagnation point line. Here one needs the algebraic
equation (3.7) and the equation of the state (2.5). Again one sees easily that there
is no boundary layer if there is no source term present.

Let us briefly get a rough idea of the boundary layer. Assume that in (3.15)
the conservation of atoms has been used to eliminate m of these mass fractions.
Moreover we use the dependence on the smooth functions v and p. Hence (3.15a)
reduces to Y/ = S(Y,u, p)/(up) where Y = (Y, 41, ..., Yy)L. At the stagnation point
we have equilibrium chemistry. Hence we can assume an expansion of the form

S(Y,u,p) = J(Y,u,p)(Y = Y*) + O(||[Y — Y*|]*). (3.16)

Let us further assume that there exists a regular matrix 7" independent of Y, u,p
such that 7'JT~! = A is a real diagonal matrix. If we omit the higher order terms in
(3.16), we obtain for the new variable 7 = T'(Y —Y™) a system of N —m independent

ordinary differential equations

1

Z'=—A Z, Z(xs) = 0.
o Mwp)Z, Aw)
Expanding the solution around x5 and using u = —v,(as — x) gives for each compo-
nent z;
A
zi(x) = es(ws — @) vwers (3.17)

where A; is the ¢-th eigenvalue of J, p, is the density at the stagnation point and
Uys 18 vy(25). Observe that the eigenvalues A; are negative. One sees that there is a
boundary layer if there is one eigenvalue \; with —)\; < vy,p,. Moreover, it becomes
more extreme if v, is increasing.

If the reactions become infinitely fast, i. e. —A; tends to infinity, then one does
not have a boundary layer and in fact one hasa flow with equilibrium chemistry. One
knows from the results in the two Antibes workshops that todays schemes have no
problem computing equilibrium Euler flow, i. e. one obtains the correct stagnation
point temperature. In order to set this last derivation in the proper perspective let
us briefly discuss a particular example. In Fig. 5 we plot \;/p along the stagnation
point stream line in the case of a circular body with the five species chemistry
model described above. Since one has conservation of the total number of the N
and O atoms two eigenvalues are identically zero. Directly behind the shock two
eigenvalues are complex and we have indicated only |X;|/p. Further downstream
this pair of conjugate complex eigenvalues becomes two real eigenvalues and A;/p
is approximately —1.03 usec™! and —0.33 usec™! at the stagnation point. Since
v, ~ 0.0327 psec™, these two eigenvalues do not give rise to a boundary layer.
However, the third eigenvalue A3 does. If we use the value of A\3/p ~ 0.01 ysec™*
which occurs just before the stagnation point, we obtain an exponent of 0.3 in
(3.17). Note that in 2D calculations we get estimates of approximately 0.4 for
this exponent. However from Fig. 5 we see that the eigenvalue becomes zero at
the stagnation point, a fact which contradicts our assumption. Hence one has to
improve the above analysis. There are indications that the singularity is stronger
than of the type (z; — ). Perhaps it is of the form ¢/ In[d(xs — )], see [15], [14].
Without going into more details it is clear that the slow reactions are causing the



chemical boundary layer and that this fact will be even more pronounced if the
corresponding eigenvalue goes to zero.

Let us briefly relate the present analysis to earlier investigations. Conti [6] and
Vinokur [18] give good surveys on earlier work on analysing chemical boundary lay-
ers. Conti uses in [5] and in more detail in [6] the method of successive truncations.
The idea is that one expands unknown functions with respect to powers of sinf and
cosfl, where 8 is the angle in polar coordinates. This leads to a sequence of systems
of ordinary differential equations. However, each system requires knowledge of at
least one unknown which originates from the next system. This is similar to our
v, function. While in our analysis v, is taken from a 2D computation and incorpo-
rates the geometry of the body as the needed additional function, Conti [6] uses the
bow shock radius r; as a geometrical parameter and truncates the expansion of the
pressure after one term. To get more accurate results one solves successively several
of these systems of ordinary differential equations. In Vinokur [18] the chemical
boundary layers are shown to exist using a local analysis at the stagnation point
similar to the derivation we proposed to obtain the necessary condition —X\; < vy,ps
for existence of a boundary layer. The basic behavior of the boundary layer given
by Vinokur is (x5 — 2)®. We have mentioned above that this cannot be correct if an
eigenvalue goes to zero. Moreover it seems that our method to compute the standoft
distance x5 using v, is new. Finally we want to mention that in [9] the existence of
a possible chemical boundary is pointed out but the assumption of incompressibility
at the stagnation point seems to be contrary to our results, see Fig. 1.

4 2D - computations and the low diffusion Van Leer flux
vector splitting

We briefly explain the overall scheme for the two-dimensional numerical solution
of (2.1). We use an operator splitting, i. e. alternatively one solves the system of
ordinary differential equations

ou
=5 =5(U) (4.1)

and the system of N + 3 partial differential equations
ou  oFU) 0GU)
- + +
ot oz dy

= 0. (4.2)

From (2.3) we see that the last three equations of (4.1) are homogeneous. Moreover,
using (2.2) and (2.4) the sum of the first N equations in (4.1) gives dp/dt = 0.
Hence, when solving (4.1) we can assume that p,u,v and E are constant. Thus, in
this chemistry step one has to solve only a subsystem of (4.1) consisting of the first
N equations. Of course, for the s; one has to know the temperature T" but this can
be computed from (2.6). Since in our examples the eigenvalues of the Jacobian of
the right hand side are moderate only compared to the integration stepsize there
is no difficulty in integrating this system. In fact one could use an explicit Euler
scheme.

In the flow step one can solve (4.2) using a dimensional splitting and the Van
Leer flux vector splitting in the modification for real gas given by Yee [20]. This



standard Van Leer, SVL, has too much numerical viscosity and does therefore not
resolve the boundary layer. This can clearly be seen from Fig. 6. Instead we use
a modification called low diffusion Van Leer, LDVIL. The basic idea is to reduce
the number of contact discontinuities by summing up the first N equations. If
the formation enthalpy is removed from the energy equation, this results in the
usual Euler equations. These are solved by the standard Van Leer. To update the
mass fractions we model the contact discontinuities exactly by complete upwinding
according to the total density flux. However, to add the changes of the energy
due to formation enthalpy we use these fluxes for the partial densities constructed
according to the standard Van Leer scheme. In [11] it is shown that this new low
diffusion Van Leer scheme is consistent and has less numerical viscosity in areas of
subsonic flow, hence the chemical boundary layer is better resolved, see Fig. 6. For
comparison we show in Fig. 6 also the numerical solution, BVP, of the boundary
value problem (3.8), (3.9) along the stagnation point line with (3.10), condition
u(xs) =0 and v, = const. = 32437 sec™".

5 Conclusions

In our analysis we have found a boundary layer at the stagnation point due to the
chemical source term. It turns out that the boundary layer is so thin that it is not
physical. This means that the Euler equations with chemistry are not modeling
physics correctly. However, numerical ‘general purpose’ schemes should be able to
give the correct mathematical solution in order to show the incorrectness of the
model. We observe that all ‘general purpose’ schemes for solving the unsteady
Euler flow with chemical reactions give a stagnation point temperature which is
wrong by more than 2700 K, i. e. more than 45 %. If one shows the solution
along the stagnation point stream line, which is rarely done, one does, for example
with standard Van Leer, not observe the boundary layer at all. To compare the
quality of numerical discretizations one should relate the results to the cell size at
the stagnation point. To get better numerical results one should perhaps formulate
different boundary condition. In [13] we used the boundary layer behavior discussed
here to get better boundary conditions. This leads to a decrease of the stagnation
point temperature by approximately 300 K but does still not solve this problem
satisfactory.

We observed that if the source terms are turned off then the boundary layer van-
ishes. This indicates that it is not enough to analyse schemes only for homogeneous
conservation laws. Instead one also has to consider source terms. In this conference
this has been done for singular perturbed problems by FEngquist and LeVeque, see
this book. However, in the present example the situation is worse in the sense that
the perturbation parameter depends on the solution and becomes zero at least in
one point of the domain.
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Table 1: Solution at the stagnation point with chemical equilibrium
vy = 100 1000 10000 32437 100000
Yn 4.62112E-01 | 4.62173E-01 | 4.62272E-01 | 4.62344E-01 | 4.62414F-01
Yn, | 3.27454E-01 | 3.27394E-01 | 3.27296E-01 | 3.27225E-01 | 3.27156E-01
Yo 2.09498F—-01 | 2.094991-01 | 2.09501F-01 | 2.09502FE-01 | 2.09503FE-01
Yo, | 5.67648E-06 | 5.66061E-06 | 5.63479E-06 | 5.61623E-06 | 5.59804E-06
Ynvo | 9.30253E-04 | 9.28473E-04 | 9.25572E-04 | 9.23485E-04 | 9.21436E-04
7.58529E-04 | 7.54662E-04 | 7.483871-04 | 7.43892E-04 | 7.394961°-04
2.10363E+03 | 2.09248E+03 | 2.07439E+03 | 2.06144FE+03 | 2.04877E+03
5.76834F+03 | 5.7669515+03 | 5.76468+03 | 5.7630515+03 | 5.76144F+03
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Figure 1: Density along the stagnation point streamline.
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Figure 2: Pressure along the stagnation point streamline.
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Figure 3: Temperature along the stagnation point streamline.
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Figure 4: Mass fraction of nitrogen atoms along the stagnation point streamline.
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Figure 5: \;/p along the stagnation point streamline.
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Figure 6: Comparrison between the solution of the boundary value problem (BVP)
and 2-D calculations (SVL), (LDVL).
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