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Abstract

The numerical integration of stiff mechanical systems is studied in which
a strong potential forces the motion to remain close to a manifold. The
equations of motion are written as a singular singular perturbation problem
with a small stiffness parameter €. Smooth solutions of such systems are
characterized, in distinction to highly oscillatory general solutions. Implicit
Runge-Kutta methods using step sizes larger than e are shown to approximate
smooth solutions, and precise error estimates are derived. As ¢ — 0, Runge-
Kutta solutions of the stiff system converge to Runge-Kutta solutions of the
associated constrained system formulated as a differential-algebraic equation
of index 3. Standard software for stiff initial-value problems does not work
satisfactorily on the stiff systems considered here. The reasons of this failure
are explained, and remedies are proposed.
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1. Introduction

In this article we study the numerical solution of the equations of motion of mechanical
systems in which a strong potential forces the motion to remain close to a manifold. We
defer the general formulation to Section 2, and consider in this introductory section a
simple, yet instructive example: a plane stiff spring pendulum, consisting of a mass point
suspended on a massless spring with Hooke’s constant 1/e?, where € is a small parameter.
Agssuming for simplicity unit mass, rest position of the spring at unit length, and unit
gravity, the equations of motion in Cartesian coordinates (y1,y2) are given by
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. From the viewpoint of singular perturbation theory, this is a singular singularly perturbed
problem [17]. Physical intuition as well as rigorous analysis, see [15], p.11ff., show that
for initial values having bounded energy, the motion of system (1.1) is close to that of
the associated constrained system. This is the fixed-length pendulum, whose equations
of motion in Cartesian coordinates are most easily formulated as a differential-algebraic
system of index 3 [2],[7]:

Y = _yl/\
(1.2) Yo = —y2 A — 1
O=yi+y;—1.

An analogous property will be shown for the numerical solution of (1.1) by an implicit
Runge-Kutta method satisfying mild stability conditions: As e — 0, Runge-Kutta solutions
of the stiff system (1.1) obtained with step sizes h > € converge to Runge-Kutta solutions
of the index-3 differential-algebraic system (1.2). It will be seen that this behavior is at
the same time satisfactory and the cause of numerical difficulties.

Systems like (1.1) arise in the modeling of mechanical systems when stiff force elements,
e.g. springs or elasticity in joints, are taken as such, rather than treating them as kinematic
constraints. Such systems are also obtained when almost rigid bodies are modeled as
elastic bodies. On the other hand, it has been a popular approach among mechanical
engineers to replace constrained mechanical systems by stiff systems like (1.1), possibly
with additional damping. This is done in hope for the bonus that should result from the
numerical treatment of an ODE (albeit stiff ) instead of a DAE. Work on such penalization
methods in a numerical analysis context has been done in [14],[13],[5],[10].



Our interest here is in the numerical solution of stiff systems (1.1) and generalizations
thereof, using step sizes larger than the stiffness parameter e. We then obtain approxima-
tions of smooth solutions of (1.1), without following the high-frequency, small-amplitude
oscillations (vibrations) present in general solutions of (1.1). We begin in Section 2 by
describing the general framework of stiff mechanical systems considered in this paper, and
characterize smooth solutions of such systems. In Section 3 we state the main results on
Runge-Kutta methods applied to stiff mechanical systems. Theorem 3.1 deals with the
case of starting values admitting a smooth solution according to the characterization of
Section 2. Here the error of the Runge-Kutta approximation of the stiff system is shown to
be essentially equal to the error of the Runge-Kutta approximation of the associated con-
strained system in index-3 differential-algebraic form, up to a perturbation of size € times
some nonnegative power of the step size. For starting values near a smooth solution, but
not on it, Theorem 3.2 shows that the corresponding Runge-Kutta solution tends rapidly
towards one which started on a smooth solution. The proof of these results is spread over
Sections 4 to 7, whose contents are described at the end of Section 3. In these sections,
further properties of Runge-Kutta methods are also investigated.

Standard solvers for stiff ODEs do not work well when applied to stiff systems like (1.1).
This failure is explained in Section 8, and remedies are proposed. It is seen, in particular,
that the numerical solution of the stiff system is computationally at least as expensive as
that of the associated constrained system.

We have not considered mechanical systems with strong damping in this paper. Such
systems can, however, also be studied by the techniques used here, and similar results
can be obtained. In particular, it can be shown that for strongly damped systems the
numerical solution approaches that of a differential-algebraic system of index 2.

2. Smooth motion of stiff mechanical systems

When we consider a mechanical system where strong conservative forces penalize some
directions of motion, we are led to study the second order differential equation with a
small parameter e,

(21) My)i = i)~ 5VU()

where the solution y(t) € R" is to be sought on an e-independent bounded interval [0, T'.
We have denoted VU = (0U/dy)T the gradient of the potential U : R® — R. We assume

throughout that M : R® — R"*", f : R"™ — R", and U have sufficiently many bounded
derivatives. Our further assumptions are as follows:

(2.2) M{(y) is symmetric and positive definite for every y € R" .
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U attains a (local) minimum on a d-dimensional manifold ¢/ :

(2.3a) For some region D C R" |
U={ueD:U(u) :rréilr)lU(y)} ={ueD:VU(u)=0}
Y

In a neighborhood of U, U is strongly convex along directions
non-tangential to U, i.e., there exists o > 0 such that for u € U
(2.3b) vl ViU (u)v > a - vl M(u)v
for all vectors v in the M(u)-orthogonal complement of
the tangent space T, U.
We always let
m=n-—d

be the number of independent constraints that locally describe the manifold U.

A simple example of a potential U satisfying (2.3) with & = R? x 0 is given by

Uly) =Ly I?  for y=(ly")eR"=R!xR™,

with the Euclidian norm | - ||. As the following lemma states, this is already the general
situation in suitable local coordinates.

Lemma 2.1. Let u € U be given. There exists a change of local coordinates y = y(z),

with y(0) = u and as often continuously differentiable as V2U, such that
Uly(z)) = %HZJ‘HZ + Const. for z= (Z”,ZJ') eRIXR™ near 0.

Proof. In a first step, we choose local coordinates x = (:1;”,:1;J‘) € R? x R™ near 0, such
that y(0) = u, and that y(x) € U if and only if 1 = 0. In these coordinates, we then

2
have for all !l near 0 that g—g(aj”,()) = 0 by (2.3a), and A(zll) := (aaxif)z(x”,()) is positive
definite by (2.3b). We now change coordinates
wlh =2 wt = w(z)zt

where w(z) € R is to be chosen such that we get
S Aot = Uy(x)) = Uy(0)) -
Since the right-hand side equals
Uy(el. ) = Uly(al,0) = §(@H) T Ale)a™ +r(2)
with r(z) = O(||z+||?), we have

2r(x)
=4/1 .
w(z) \/ + (z )T A(all)z L
Let A= LL"T be the Choleski decomposition of A. In the coordinates
A=l = LT(w”) Cwt

the potential U then has the desired form. O




Remark. Lemma 2.1 could also be obtained as a corollary of the Morse lemma, see [4] for
a particularly transparent presentation, or [1]. The above proof, however, appears more
elementary. O

In terms of the local coordinates z, the system (2.1) is of the form
(2.5) M(2)F=f(e i) -~ (0 0.
) ’ e2\0 I,

with ]/\Z(Z) = (9y/02)T M(y(2))(0y/Dz). This system is again of the type (2.1)-(2.3).
Since numerical methods are not invariant under this transformation, we shall nevertheless
continue to consider the original system (2.1). The representation (2.5) will, however, be
useful for deriving stability estimates, because z appears only linearly in the term divided
by €2.

In the following it will be of interest to characterize smooth solutions of (2.1), that is,
solutions with sufficiently many derivatives bounded independently of e.

Theorem 2.2. (Smooth motion) Assume (2.2)-(2.8). For every (y°,y°) in the tan-
gent bundle of U there e:msts a pair (y°,y°), unique up to O(e2N) for arbitrary N, with
differences y© — y° , ¢ — y° of magnitude O(e*) and situated in the M(y°)-orthogonal
complement of the tangent space Tyold, such that the solution of (2.1) with initial values
(y°,y°) is smooth and of the form

(2.6) y(t) = y" (1) + €y (1) + -+ Ny () 4+ O
' 0 = §°(0) 1 41 (1) £+ ENGN (1) 4 O(ENH)

with e-independent functions y*(t) . This solution exists on an e-independent interval [0, T).

The collection of all such pairs (y,y) forms a 2d-dimensional manifold M. Solutions of

(2.1) starting in M remain in ME, up to O(€*Y) on bounded time intervals.

Proof. We will first construct a truncated expansion (2.6) such that its residual in (2.1) is
small, and then conclude with the help of a stability estimate. It is clearly sufficient to prove
the result for the special choice of coordinates in Lemma 2.1. This will be convenient for the
derivation of the stability estimate, but for the construction of the expansion coefficients
we prefer to work with the original coordinates in (2.1).

(a) Since U is assumed to be a d-dimensional submanifold of R”, locally there exist con-
straint functions ¢1,...,¢m :R" — R such that

(2.7) locally: weld it gi(u)=-=gm(u)=0,

and such that the gradients Vg;(u) are linearly independent for u € U. Because of (2.3a),
a vector v 1s in the tangent space T, U, if and only if

(2.8) Hu)p =0,



with the Hessian H = V2U . On the other hand, by (2.7) v € T,i{ if and only if
(2.9) G(u)p =0,

where G = 0¢/dy with ¢ = (g1,...,¢m)" has linearly independent rows. (In what follows,
G might be chosen also as any other m x n-matrix with the same null-space as H.) H can
then be written as

(2.10) H=G"KG,

with an invertible (even symmetric and positive definite) m x m-matrix K. This is seen
as follows: (2.9) is equivalent to

Pu)p =0,

where P is the orthogonal projection P = GT(GGT)7'G . Because of (2.8) we have
(omitting the argument u)

vIHw =o' PHPw for all v,w € R",

and hence

H=PHP ,

which upon inserting the definition of P becomes (2.10). The m x m-matrix K must be
invertible, because H has rank m as a consequence of the equivalence of (2.8) and (2.9).

(b) The coefficients y*(¢) in (2.6) will now be constructed recursively by comparing powers
of € in (2.1). The coefficient of €2 vanishes iff VU(y") = 0 , or equivalently, if

(2.11) 9(y°)=0.

The coefficient of €® vanishes iff

My")§° = f(y°.9°) — H )y' .

Here, however, y! cannot yet be determined. Remembering (2.10), we introduce A\° by the
condition

(2.12) H(y")y' =G (y" )\,
so that we get the equation

(2.13) M) i = f(y°,9°) — GT(y")A",

which together with (2.11) represents the Lagrange equations of motion of the mechanical
system whose position is constrained to the manifold /. This is a differential-algebraic
system of index 3 (see, e.g., [2],[7]) which has a unique solution for every initial value

(y°(0),4°(0)) in the tangent bundle TU.



(¢) By (2.10) and because G has linearly independent rows, equation (2.12) is equivalent
to

(2.14) Gy )y = K7 (y")\° .
The coefficient of €* in (2.1) vanishes iff
(2.15) M)t =o' (y°. 9% 9% v, 9") — GT ™A,

where

¢1(y07y07y07y17y1) = fy(yovyo)yl + fy(yovyo)yl
0 .
— VU (") (v y') = 5 (M) ly=e v -

and where the Lagrange multiplier A! is introduced via
(2.16) H(y")y* = GT(y" )\

If y°,9°, 4% are considered known, then (2.14), (2.15) is again an index-3 differential-
algebraic system for y',¢', A! . Moreover, the initial values y'(0),9'(0) are determined
uniquely if it is required that they both lie in the M(y°(0))-orthogonal complement of the
tangent space Tyo(g)U , i.e., in the range of M=1GT(y%(0)).

Now (2.16) can be rewritten as
Gy’ )y =K' (y")A!,

and comparison of the coefficients of €* gives another index-3 differential-algebraic system
for y2, 4%, A\? . In this way we can continue to construct y*,y* such that the defect of the
truncated expansion (2.6) inserted into (2.1) is of magnitude O(e2" ), for arbitrarily chosen

N.

(d) To simplify matters, we assume from now on without loss of generality, that the
equations are already formulated in the coordinates of Lemma 2.1, i.e., that

VU(y) = (8 I?ﬂ)%

In the previous parts of the proof we have constructed a truncated expansion
(2.17) n(t) =y (1) + Ey' (1) + -+ Ny (t)
such that the defect of (2.17) inserted into (2.1) is small:

. . 1 0 0 2N+2 0 0 2N
218) M= -5 (o 7 Joroe e () LYo
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We will show that every solution of (2.1), whose starting values satisfy
(2.19) y(0) —n(0) = O(™+h) . 4(0) —5(0) = O(eY)
also satisfies

(2.20) y(t) —n(t) = O(EN) , g(t) —nq(t) = O(eN) |

uniformly for all ¢+ on bounded intervals. With the abbreviations M(t) = M(n(t)) and
Ay =y —n we have by (2.1) and (2.18)

221 wwai =% (7 7)ot +oai+o@¥ )+ (0§ o).

as long as Ay = O(e*). With the transformation
Baft) =300 . a0 =30 () ar
we have
Aj = _eizA(t)Ax 1 O(Az) + O(A#) + O(N+2) 4 A(t) - O(&2V) .

Next we use a block diagonalization which separates the zero and non-zero eigenvalues of

A(t):
Qwamen = (§ g, )

with orthogonal matrix Q(t) and with positive definite m x m-matrix B(t). Here, B and
() can be chosen as smooth functions, cf. Theorem I1.5.11 in [11], p.115. (In contrast, the
diagonalization of B(t) may not be possible with a continuous (let alone twice continu-

ously differentiable) transformation matrix, if eigenvalues of B(t) coincide for some ¢. See
Rellich’s example in [11], p.110.) With the change of variables

Au
Q" Aw = (Av)

we thus get

Aii = O(||Aul] + [[Adl + [|Av] + [|AD])) + O(7+2)

(2.22) . _ _ .
A = —ZB(t)Av + O([|Aul[ + [[Au]| + [[Av]|| + [|A2])) + O(e™™) .

B(t) has a smooth Choleski decomposition,
B(t) = L(t)LT(t) .

7



Upon introducing Aw = (Av,eL™YA9)T | the second equation in (2.22) takes a first-order
form with a skew-symmetric matrix divided by e:

1 L(t .
si= (g T ) du ek ollau] + daa + dail) + 0@ ).

The usual energy estimate now gives
d a1 d 2 TAL:
- law] = 20w = Aw” A
= O ([|Aw] - (Aw]| + el Aul| + el| Adl] + O(*¥H1)))
and using also Aw(0) = O(e2V 1), Gronwall’s inequality yields
| Aw)] < Cemax ([ Au(r)] + [Ad(r)]) + O+

Reinserting this into the first equation of (2.22) then gives Au = O(e*™) , Ai = O(e*V),
and thus finally the desired bound (2.20).

(e) It remains to see that a solution y of (2.1) satisfying (2.20) is actually smooth. Sub-
tracting (2.18) from (2.1) and using (2.20) gives us that

(2.23) j—i=0(eN?) .
Differentiating (2.1) and (2.18) once with respect to time and using once more (2.20) and
also (2.23) shows that also
(2.24) Y- =0(N72) .
Differentiating (2.1) and (2.18) further and using the previously obtained estimates of
derivatives of y gives us subsequently

SO = = O(ENH) | ) = o)

SO ) = OENT) ) i = 0N,

and so on. This shows the smoothness of the constructed solution (2.6). O

For later reference, we recollect the differential-algebraic equations satisfied by the coef-
ficients y* in the e?-expansion (2.6) of a smooth solution of (2.1): (y°,4°) is obtained
from

M(yO)yO — f(y07y0) . G(yO)T/\O
g(y") =0
with G = 0¢ /0y of full row rank. For k > 1 we have
M(y*) gt =6y 9% 5"y T T TR N - G0 T
G(y*)y" = K~ (y") A"
with ¢* linear in g*.
We note that (2.25.0) is a differential-algebraic system of index 3 (see, e.g., [2], [7], [8])-
Similarly, if all functions with superscripts up to k — 1 are considered to be known exactly,

then (2.25.k) is again of index 3. The system (2.25.0-k ) together is however of index 2k + 3.
We thus get a sequence of differential-algebraic equations of index 3,5.7,... .

(2.25.0)

(2.25.%)



3. Runge-Kutta methods for stiff mechanical systems: statement of main
results

A Runge-Kutta method applied to a second-order differential (or differential-algebraic)
equation, such as (2.1) or (2.25),

(3.1) Fly,y,5) =0,

yields approximations (yn, ¥, ) to the solution values (y,y) at gridpoints ¢,, recursively via

=1 =1

with internal stages (for i =1,...,s)

(32b) Yo :yn—l—hZai]‘Ynj , Ym :y'n—l—hZai]‘Ynj ,
=1 =1

which satisfy an equation of the form of (3.1),
(3.2¢) F(Yni, Vi, Vi) =0

Here a;; and b; are the coefficients that determine the Runge-Kutta method. It will be
convenient for the presentation to take a constant step size h. It should be noted, however,
that our results do not depend on such an assumption.

Under appropriate stability conditions, it will be seen that the numerical solution (y,, ¥ )
of the stiff mechanical system (2.1) converges for ¢ — 0 to a Runge-Kutta solution (y°,4?)
of the associated constrained system in the index-3 formulation (2.25.0). These stability
conditions (only) involve the stability function for the linear test equation y = Ay (see,

e.g., [8]):
(3.3) R(z) =1+ 2b"(I —z4)"'1,
where b7 = (by,...,bs), A = (aij)i j=1, and T=(1,..., 1)T. We assume the following:

A is invertible, and R(co) = 1 — b7 A7l has
absolute value strictly smaller than 1.

(3.4)

A has no eigenvalues on the imaginary axis, and

(3.5) .
|R(iw)] <1 forall weR, w#0.

Condition (3.5) can be dropped in all our results if we restrict our attention to e < h.



The Runge-Kutta method has stage order ¢ > 1, if
° k
(3.6) ;aijcf_l = % for k=1,...,¢q and all 7 .
(Here ¢; is defined by (3.6) with k = 1.)
We assume throughout that the order p of the method when applied to nonstiff ordinary

differential equations satisfies p > g.

Our first main result concerns numerical solutions which start on the manifold M* of
smooth motion, as characterized by Theorem 2.2. It will be convenient in the following to
distinguish such solutions notationally by adding a superscript e.

Theorem 3.1. Let the Runge-Kutta method have stage order ¢ and satisfy the stability
conditions (3.4)-(3.5). Suppose that the starting value (y§,ys) is on the manifold M of
Theorem 2.2, i.e., that the exact solution (y(t),y (1)) of (2.1) with initial value (y§,ys) s
smooth. For 0 < e < h < hg, with hy sufficiently small but independent of €, there then
ezists a unique Runge-Kutta solution (3.2) of the stiff equation (2.1), whose error satisfies

Yo =y (tn) =y — y°(ta) + O(ER172)
U =9 (tn) = g — 9" (tn) + O(?R177) |
uniformly for 0 < t, < T. Here y° and y°(t) denote the Runge-Kutta and exact solution,

respectively, of the index-3 differential-algebraic equation (2.25.0), where the starting value
(yo,00) 1s the coefficient of €* in the €*-expansion of (y§,ys).

(3.7)

Since we have y*(t) = y°(¢) + O(€?) and y*(t) = ¢°(t) + O(€*) by Theorem 2.2, we get in
particular

Vo =Y +O(€) g =1ip+0(")
if ¢ > 2. Theorem 3.1, however, gives a far sharper estimate. The errors y2 — y°(¢,,) and

y° — 4°(t,) for the index-3 problem have been studied in [7] and [9]. They are at most
O(h?), a sharper bound is restated in Theorem 4.1 below.

Since it is quite exceptional that the starting values lie on the manifold M€ of smooth
motion, it is of interest to know how numerical solutions behave for starting values which
are not in M*“ but sufficiently close. The following theorem shows that such a Runge-Kutta
solution rapidly approaches one which started in M¢€.

Theorem 3.2. Let the Runge-Kutta method of stage order q satisfy the stability conditions
(8.4)-(5.5). If the starting value (yo,90) satisfies VU(yo) = O(h?) and V?U(yo)yo = O(h),
then there exists (yg,vys) € M such that the corresponding Runge-Kutta solutions satisfy
for0<e<h<hyand0<t,<T

C-(hp™ + €%y for q=2k
C - (hp"™ + he**) for ¢=2k+1
with p < 1. If e < h, then p can be chosen as any fized number larger than |R(o0)|.

(3.8) e = el + i — vl < {

10



Remarks. The condition VU(yy) = O(h*) may seem rather restrictive at first sight.
It should however be noted that the potential energy in the mechanical system (2.1) is
LT(y) +0(1),

The damping in (3.8) is implied by conditions (3.4) and (3.5). In contrast, analytical solu-
tions of (2.1) oscillate about M. Note, however, that it is not at all obvious a prior: that
the damping conditions (3.4),(3.5) for the linear test equation §j = —w?y are sufficient for
damping in the nonlinear problem (2.1).

Theorems 3.1 and 3.2 will be proved in the course of the following sections. To prove
Theorem 3.1, we will take a route similar to [6]: In the e*-expansion of the numerical
solution,

(3.9) ye = yn +Eyn +etyn + .., Ue =Un + €U +etun + ...,

the coefficients (y¥,9¥) are the Runge-Kutta solution of the differential-algebraic system
(2.25.0-k). This comes as a direct consequence of the fact that (3.2¢) is of the same form
as the underlying differential equation, and of the linearity of the Runge-Kutta relations
(3.2a,b). To obtain estimates of y§, — y“(t,), we therefore study in Section 4 the errors
y* —y*(t,) for the differential-algebraic systems (2.25) of index 3,5,7, ... . The remainder
terms in (3.9) will be bounded in Section 6, using the tools developed in Section 5. In
that section we study existence and uniqueness of the numerical solution, and influence
of perturbations and error propagation in the Runge-Kutta scheme applied to the stiff
problem (2.1). Theorem 3.2 will be proved in Section 7, using the results of previous
sections and an invariant manifold theorem of Kirchgraber et al. [12],[16].

4. Runge-Kutta approximation of differential-algebraic equations associated
with the stiff problem

In this section we give bounds for the errors y* —y*(t,) and y* —y*(¢,,) of the Runge-Kutta
method applied to the sequence of differential-algebraic equations (2.25). We begin with
k=0.

Theorem 4.1. [7],[9] (Error estimates for the differential-algebraic system of index 3) Let
the Runge-Kutta method have stage order ¢ > 1 and satisfy (3.4). Then the error of the
method applied to the differential-algebraic system (2.25.0) of index 3 satisfies

(4.1) Yo =y (ta) = O(RT) iy =y (tn) = O(h7)

uniformly for 0 < t, <T. The error bound for y° can be improved for collocation methods
of order p > q with nodes 0 < ¢y < --- < ¢s = 1 (in particular, for Radau IIA methods,
where p=2s —1):

(4.2) Yo — 4" (tn) = O(RP) .

11



Remarks. The bound (4.2), which was only conjectured in [7], p.86, has recently been
proved by Jay [9]. The error bounds (4.1) were obtained in Theorem 6.4 of [7], p.78.
There the result was formulated under the assumption ¢ > 2 (thus excluding, for example,
the backward Euler method and diagonally implicit RK methods). This condition is not
needed here because equation (2.25.0) is linear in \°, cf. the discussion on p.74 of [7].

For the higher-index equations (2.25.0-k) with k& > 1 we have the following result.

Theorem 4.2. (Error estimates for the differential-algebraic system of index 2k 4 3) Let
k > 1. Let the Runge-Kutta method have stage order ¢ > 2k and satisfy (3.4). Then the
error of the method applied to the differential-algebraic system (2.25) satisfies

uniformly for 0 <t, <T.

Proof. The proof relies on results and techniques from [7], Ch. 6. We consider first the
case k = 1. The result for general k can then be obtained in the same way by an induction
argument.

(a) We begin by studying the local error in y' and y', i.e., the difference of the exact solution
(y' (tn41), 9" (ta+1)) to the Runge-Kutta solution which starts at (y%,¢%, y' (tn), 9" (¢n)). It
is convenient to first consider n = 0. The result after one Runge-Kutta step is obtained

via (cf. (3.2))

(4.4a) yi =y +hY bY' . g=gy+hy bV
=1 =1

with internal stages

(4.4b) Y=y +hY ayY) . Yi=gi+h) a;V)
=1 =1

related by (see (2.25.1))

MEAOYV =o' (¥, V0,V V) — GY)TAL
GY)Y! =K' (Y")AL .

7

(4.4c)

We will show that

yi —y (W) =0 . Po-(y —y' () =O(h") .

(4.5) ‘11 -2 11 -1
=y () =00, Po-(gy —y (h)=00R""),

where Py = I — (M'GT(KGM—'GT)"'KG)(yd) is a projection.
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To this end we look at the defect when the exact solution (y',y') is inserted into (4.4). By
(3.6), the defect in (4.4a,b) is not larger than O(h?T!). In the second equation of (4.4c)
we have the defect (after multiplying the equation with K(Y?))

(KG)(Y?)y' (eih) = A = (KG)(y" (eih)) = X*(eih))
+ (KG)YY) = (KG)(y"(eih)) y' (eih) + (\(cih) — A7)

This is O(h?™!) because of (2.25.1) and the following error estimates for the internal stages
in (2.25.0) which are shown in [7], p.77:

(16) Y2~ eh) = O(AT) . VP~ (eih) = O(h1) AV~ X(eih) = O(h™)
By (2.25.0) and the corresponding equation (3.2c) these estimates immediately imply
(47) 70~ ek = Ot

and so we get a defect of size O(h?™!) also in the first equation of (4.4c). We now apply
Theorem 6.2 of [7], p.75, with ¢ —2, KG, M~'G? in the roles of ¢, g,, k, there. Since the
problem (2.25.1) is linear in y' and A\' and the constraint is linear in y!, it is sufficient to
assume ¢ > 2 (instead of ¢ > 4). We thus get

(48) Vgl eih) = O(AIT), Vi~ eih) = O(AI), Al-A(esh) = O(13)

i

As in the proof of Lemma 6.3 of [7], p.77, we then get the desired bound (4.5) for the local
error, for n = 0. For step numbers n > 1 the estimation of the local error is the same
as above when one uses that the global errors of the internal stages Y., Y. A9,

bounded as in (4.6). This fact is seen from the proof of Theorem 6.4 in [7].

are still

(b) The desired bounds (4.3) of the global error now follow with the proof of Theorem 6.4
of [7], which also gives the bounds

Yoi—y' (tuteih) = O(h172) Y= (tuteih) = O(h17%) A=A (tuteih) = O(h?)

to be used for the proof of k = 2. O

5. Runge-Kutta discretization of the stiff problem: basic properties

In this section we study existence and uniqueness of a Runge-Kutta solution of the stiff
equations of motion (2.1), the influence of perturbations in the scheme, and error propa-
gation. OQur analysis relies in an essential way on various coordinate transforms, like that
of Lemma 2.1 and those used in part (d) of the proof of Theorem 2.2. The Runge-Kutta
method is not invariant under these transformations, but their use is, broadly speaking,
that powers of € can be gained in exchange for powers of h in the local estimates, and that
“fast” and “slow” solution components are separated in the analysis of error propagation.
These appear to be the principal rules in the game, in addition to some basic techniques

of [6].
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One step of the Runge-Kutta method (3.2) applied to the stiff problem (2.1) is reformulated
as

(5.1a) yi=yo+hijo+h” Y bjapYe,  Gi=go+hY b,

k=1 =1

with internal stages

(51b) Yi=yo+chyo + h? Z ai]‘a]‘kj}k , Y; =1 + hZa”Y}
jakzl ]:1
satisfying
3} . 1
(5.1¢) MY = (V30— SVU)

Lemma 5.1. (Existence and local uniqueness) Suppose that the Runge-Kutte matric
A = (a;j) is mvertible and has no eigenvalues on the imaginary azis. If VU(yo) = O(h?),
V2iU(yo) g0 = O(h), then the scheme (5.1) has for 0 < € < h a unique solution, with
Y, = O(1) for ¢« = 1,...,s. This holds for h < hg, where ho is sufficiently small but
independent of e.

Proof. (a) We use the coordinate transform y = y(z) of Lemma 2.1 and denote the inverse
transform by z = z(y). We set zo = z(yo),

. 9 .
(5.20) Zi=+). = (5 )
y
> _ | 0z -

and further Z; = <a—y>(yo)Yl ie.,

. 9 .
(5.2b) Y, = (é)(zo)zi .
In these variables (5.1¢) becomes

N . ~ ) 1/0 0

(5.3) M(z) 2= }(2i 20 - (0 Im> Z

with M(z) = (%) (2) M(y(=) (22) (z0) and fiz.) = (2) (=) $u(2). (22) z0)2) - We

now consider all unknowns as functions of Z;, according to the scheme

(5.4) Z; Y; Y;,Y; Zi, Zi .
(5.2b) (5.1b) (5.2a)
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(b) Similarly to [7],[6], we consider Z; as a function of 7 in the homotopy

(5.5)
M(ZZ)ZZ = f(Zz,Zz) - 6% (8 I(,)n> Zi+(r—1) <f(Zi(0),z'0) — e% (8 I(,)n> Zfo)> ,

where we have denoted Zi(o) = zo+c¢;hzg. For 7 = 0 the solution is ZZ |r=0 = 0. We will show
that a unique bounded solution of (5.5) exists up to 7 = 1. When we differentiate (5.5) with

respect to 7, we obtain with (5.4) and the notation Z = (Zi)le, FO = (f(ZEO),éo))le,
ARES (Zi(o))f:1 the differential equation

(@@M@@+mm+ow@m+%A%(g]ﬁ+mmiomwm0>€%

— (o) _ ~ . 7(0)
F 62[8® (0 Im> VAN

Multiplying the lower block by €?/h*, we get a right-hand side which is O(1) by our
assumption on the starting values. With the block notation

jmm:<MHAm>

M1 Mao
we have
( I, © Myy + O(h) I, @ My + O(h) )gg_mn
= I, @ (Mayy +O(h)) 5 I, @ Mys + A* @ I, + O(h) ) dr

as long as ||Z|| = O(1). The assumption on the eigenvalues of A implies that the above
matrix has a uniformly bounded inverse for h < hg. It follows that the solution Z exists
uniquely and remains O(1) up to 7 = 1. O

In addition to (5.1), we now consider a perturbed system
(5.6a) Gi=To+hyy +h% Y bjapYe, Gy =gy +h Y bY;,
k=1 j=1

with internal stages

(56b) 1//\; = @\0 + Cih/y'\o + h? Z ai]‘a]‘kj}k , Y; = y/;) + hZa”Y}
jakzl ]:1
satisfying
~ P 1 ~
(5.60) MT) T, = (T T) = SVUT) +d;

€

We denote the differences to the solution of (5.1) by Ayy = yo — Yo, AY; =Y, — l//\}, etc.
When we study the effect of the perturbations Ayg, Ayp, and d; on the Runge-Kutta
solution, we have to take recourse to the variable transforms used in part (d) of the proof
of Theorem 2.2.
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Lemma 5.2. (Influence of perturbations) In addition to the conditions of Lemma 5.1
we suppose that also VU(yy) = O(h?), VzU(yo)yo = O(h), and further Ayy = O(h),
Ayo = O(h). Then there exist invertible matrices T = T(yo) and S; = S(yo,Y:), such that

the transformed variables

AU e Aug Aig\  on &Y\ o
(AV;) - TAY; ’ (AUQ) - TAyO ’ (AUQ) - TAyO ) <el> - Szdz
satisfy the bounds

.. 2
|AU;|| < C - (-HAUOH + [[Aug|| + ||ADo]| + || Atio]| + 6 + hh2 9)

.. 2
|ati<c- (ﬁ\AvoH + Zl8uall + LA + Aol + 13 + T 9) |

Here 6 = max; ||6;]], 6 = max; ||6;]|, and C is a constant independent of 0 < € < h < hy.

Proof. As in the preceding proof, we make the term divided by €? linear by using the
transformed variables Z; and their perturbed counterparts Z; which are defined in the
same way. We introduce

0z ) 0z - 0z
Azy = ay(yO)Ayo . Az = ay(yo)Ayo , AZp= ay(yo)AYz ;
(5.7) s
AZ; = ay(yo)AY AZo +h ; ai;AZ;

but we have to insist on setting

o~

AZ; = z2(Y;) — 2(Y5)

5.8 _ : . _ )
(5:8) = Azy + ¢;h A + b2 Z aijaixAZy + O(h|| Az + R || Az || + R3||AZ]|) .

7,k=1

With (5.7), (5.8) and the a prior: estimate Z; = O(1) of Lemma 5.1 we then get from (5.3)

and from the analogously transformed formula (5.6¢) the equation

0 0

8y Z\T
o I —2(Z)\"d; .

1
(5.9) M(2)AZ; + — ( 5

) AZ; = O(R|AZ) + O Az | + | Adall) +
As in part (d) of the proof of Theorem 2.2, we block-diagonalize

(5.10) M2 )(8 . )M—1/2(20):Q<8 g)cf
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with symmetric positive definite B. For the transformed variables

NG  meee s e .
(sz>:Q Ml/Z(ZO)-AZi:T(Zo)-AYi with T:QTMl/za_y

AU, . : AU, g
(AVz) =T(%) - AY; (AVz) = QTM'*(%)- AZ;

Y

(g) = Sid;  with S = S(%,2;) = QTJTJ—l/?(go)g—y(Z)T
7 Z

we obtain from (5.9) the following system:

AT; . )
(805 1. av ) = OGISTT+ AT
(5.11) ‘

. ) 0;
+ O]+ vall + il + ol + (57 ) -
i From (5.8) we have

AV =Avg + ¢;hADy + R Z aijaJkAVk

7,k=1

+ O(h(|| Auo|| + | Avo||) + B*(|| Ado | + | A% ])) + O (JAT | + |AVD) -

We insert this into the second equation of (5.11) and multiply by €*/h* to obtain

2 . . .
(% L@L,+A%@ B) AV = O(h|| AT + h||AT)

1 1, .. 1 . €’
F OGS IAvl| + 7 A6 ) + O(F | Aug] + | Aio]) + 56
where AV = (AT"/i)le, and © = (0;)7_;. The matrix on the left-hand side has a uniformly
bounded inverse for 0 < € < h. We thus obtain the bounds stated in the theorem. O

With the bounds of Lemma 5.2 at hand, it is now an easy task to estimate the errors in
the numerical solution after one step.

Lemma 5.3. (Error after one step) Under the assumptions of Lemma 5.2 we have with

a = ||[Augl| + ||Avgl| + k- (||Adg|| + ||Ado]|) the relations

Auy \ _ [ Aug + hAug 2 2
(hAu1>_< h A >—|—O(ha—|—h6—|—he€)

Avq _ R ﬁ 0 L ‘ Avg n O(ha + W36 + 629)
eL7'AY, ) e \=LT 0 eL™1Avy Olea + eh?6 + € /h - 6)

where R(z) is the stability function (3.5), and L is the Cholesk:
factor of the positive definite matriz B = LLT in (5.10).
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Proof. The relations for Au; and hAw; follow directly from (5.6), (5.7) and the bounds of
Lemma 5.2, used in (5.1a). ) )
The second equation of (5.11), with ||AU|| and ||AV]| on the right-hand side bounded by

Lemma 5.2, reads
. 1 1 . .
(512) ATt 5B AVi= O(F Aol + | Auo| + [ Ado] + ||| + b + )

In analogy to the proof of Theorem 2.2, we rewrite this as a first-order system with a
skew-symmetric matrix:

(5.13) <€L§2Vi> = % <_%T g) ' (aLél‘ZV) - (0(2@)

where 3 is the expression on the right-hand side of (5.12). (From (5.7), (5.8) and Lemma
5.2 we get the relations

AVi =Avg +h Y ai;AV; + O(ha + h*6 + €26)
j=1
(5.14) .
eLT'AV; =eL™'Avg + h Y aijeL T AV + O(ea + eh?s + € [h - 6) .

J=1

Similarly we have

Avy = Avg + 7Y b AV + O(ha + B8 + €76)

i=1

(5.15) .
eL™' Ay = L™ Aig + h Y _beL T AVj + O(ea + eh®6 + € /h - 6) .

J=1

If we ignore the O(...) terms, then equations (5.13)-(5.15) are just the Runge-Kutta
equations for the linear differential equation

1{ 0 L
w_e _T o))"

whose Runge-Kutta solution is

h 0 L

Taking the perturbation terms in (5.13)-(5.15) into account leads to the statement of the
lemma. O
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Next we consider error propagation over many steps of the Runge-Kutta method applied
to (2.1) and its perturbed variant. We denote by (yn,¥n) and (¥, 9, ) the corresponding
numerical solutions. We assume

VU(Ga) = O(h?), V2U(Gn)g, =O(h)  for 0<nh<T,

(5.16) N N
Yn+1 — Yn = O(h) )

and for the starting value of the unperturbed Runge-Kutta scheme we assume

VU(yo) = O(h*) , V*Ulyo)yo = O(h) .

(5.17) N .o
Yo — Yo =0(h), Yo —yo,=0(h).

We denote Ayp = yn — Yny DYn = Un — @n, and the transformed variables
Aty \ e Aty \ e .

(5.18) (Avn> = T(Yn)Ayn , (Ai)n> = T(Yn)AYn ,

with the transformation matrix T(y, ) of Lemma 5.2. Similarly, we let

(5.19) (g"> S Vaiddmi (i=1,...,8)

where d,; is the perturbation in the n-th step of (5.6¢). We denote by 6 and 6 the
corresponding bounds

(5.20a) Onill <6, ||6ni] <6 for 0<nh<T, andalli,
of which we assume
(5.20b) §=0(h), 20 = O(h*) .

Then we have the following result:

Lemma 5.4. (Error propagation) Let the Runge-Kutta method satisfy the stability condi-
tions (3.4) and (8.5). Under conditions (5.16)-(5.20), the Runge-Kutta solution (yn,n)
exists for 0 < nh <T, 0<e < h < hgy, and 1t satisfies

JAw]l + [ A < € - (1 Auol + | Ao + [|Avoll + Bl Aol + 8 + 26/h)
|Avall + Bl Adl| < C - (h(l| Auall + [ Adall) + (5" + B)([| Avol| + R Adoll) + s + 26)

where 0 < p < 1. If e < h, then p can be chosen as any fized number larger than |R(o0)|.
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Proof. (a) Let us suppose for the moment that a solution (y,, 9, ) exists for 0 < nh < T,
which satisfies (5.17) for all n. This can be verified by an induction argument, as it will be
seen that the conditions of Lemma 5.1 remain satisfied uniformly over the whole integration
interval. For brevity we denote

i = |(Awg, M)

and

Vp = H(AUTM GL_I(?/J\TL) . Avn)TH for € S h S I(E
vn = |[(Avy, hAi)n)TH for h > Ke

where K is a sufficiently large constant. We will show that for suitably chosen (h- and
e-independent) norms we have

ot o (14 O(h) O(1) Ln O(hé + €%6)
s () < (o0, Yol ) () + (s
with a p < 1. This is seen from Lemma 5.3 as follows. For € of the same magnitude as h,

this holds with the Euclidian norm in (5.21), because by (3.5)

hi( 0 L h
n _ hoo
HR<€ (—LT 0)) | = max [R(izw;)|<p<1

where w? > 0 are the eigenvalues of B = LLT. On the other hand, for small ¢/h a
calculation gives

(I(’)” %0L> K <% <_0LT g» (Ién %LO‘1> B (sz((f;)) R((io)> @ I + O((e/R)*)
where R(z) = R(oo) + R(c00)z™" +0(:72) as = = 0. Since [R(o)| < 1, we can choose a

norm such that the induced operator norm of the matrix on the right-hand side is strictly
smaller than 1. This gives us (5.21).

(b) To bound p, and v,, we transform the matrix in (5.21) to diagonal form, so that
fin 1 (AT 0 I
()= (0 ) ()
(AT 0 O(hé + €26)
1{ M ‘
ZX ( 0 A;_]>X<O(h36+629)
=1
with Ay =14 O(h), A2 = p + O(h), and transformation matrix

= (om )

Direct computation now yields the estimates stated in the lemma. O
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6. Estimation of the remainder term in the ¢’-expansion of the numerical
solution

In this section we will prove the following result, which together with Theorems 2.2 and
4.2 will imply Theorem 3.1.

Theorem 6.1. (Asymptotic e?-expansion of the numerical solution) Let the Runge-Kutta
method have stage order ¢ and satisfy the stability conditions (3.4)-(3.5). Suppose that the
starting value (y§,ys) is on the manifold M€ of Theorem 2.1, i.e., that the exact solution
of (2.1) with initial value (y§,ys) is smooth. For 0 < e < h < hg, with hy sufficiently
small but independent of €, there then exists a unique Runge-Kutta solution (3.2) of the
stiff equation (2.1), which s of the form
Y = Yo+ Eyp oy
U = Un+ €Ut €N+
Here y! .yt (1 = 0,....k) denote the Runge-Kutta solution of the differential-algebraic
equation (2.25), where the starting value (yl, ) is the coefficient of €' in the € -expansion
of (y§,us5). The remainder terms are bounded by
lrall + [7al] = O(e**) if ¢=2k,

= O(he®™)  if ¢=2k+1.

(6.1)

(6.2)

This result will follow from Lemma 5.4, once we have studied the defect obtained upon
inserting the truncated expansions (with k = [¢/2])

Un = Yo+ Eyp + o+ Xyl

2k - k

(6.3) o~ .

and the truncated expansions of the internal stages into the formulas (3.2) defining y,, 9n.
By linearity, there is no defect in the Runge-Kutta relations (3.2a,b), and the defect d,;
in (3.2¢),

o~

~ > ~ -~ 1 ~

€2

is of the special form given in the following lemma.

Lemma 6.2. (Defect of truncated expansions) With k = [¢/2], we have in (6.4)
0
(6.5) S(Yai)dni = € (B(Yo‘)Ak) +O0(e242)

Here the matrices are S(Y)).) = S(@\n,?m) + O(h) and B(Y).) = B(yn) + O(h), with
S(Yn,Yni) and B(y,) defined as in the proof of Lemma 5.2. AF. is the internal stage
approzimation of \¥(t, 4 c;h) in (2.25.k), which satisfies

Abi=0™")  if q=2k,
(6.6) =0(1) if q=2k+1.
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Proof. Since the Runge-Kutta relations (3.2a,b) are linear with e-independent coefficients,
since (3.2¢) is of the same form as the corresponding differential or differential-algebraic

equations (2.1) or (2.25), and since ?ni, Vi = O(1) by Theorem 4.2, the same construction
as in parts (b) and (c) of the proof of Theorem 2.2 gives

dni = EFGT(YIIAF, 4 O(2412) |

Here GT(y) may be any matrix of full column rank which has the same range as H(y) =
V2U(y). The representation (6.5) is obtained with a special choice of GT: The positive
definite matrix B has been constructed in the proofs of Theorem 2.2 and Lemma 5.2 such

that .
~_ 0 oy \ —~_ 0 0
T 12 (9Y oy 1/2, _
ot (G2) a (G) e (G )

where M = <@>TM <%>. It follows that

Oz
Oz T __ 0 _ 0
T_<8y> 1/2Q<B> S 1<B>

is an admissible choice. This gives (6.5). Finally, the bounds (6.6) for A¥. are given
explicitly for & = 0 and 1 in the proof of Theorem 4.2, and follow with the indicated
induction argument also for higher k. O

Proof of Theorem 6.1. We apply Lemma 5.4 with @\n,/y\n of (6.3). We have
vo — i = O(HH2) i — 3y = O(HF2)
and Lemma 6.2 yields

=0, =0(2*/h) it ¢=2k,
6 =0(he®®) . 6= 0(&F) if ¢g=2k+1.

Lemma 5.4 now gives the stated bounds for r,, =y, — ¥, and 7, = ¢, —/y'\ O

Proof of Theorem §.1. Combining Theorem 6.1 with Theorem 2.2, we have for ¢ = 2k + 1
Yo =y () = (yn = 9" (t) + € (v —y' (1) + -+ €5 (yy — ¥ (tn)) + O(he)
U = 9 () = (G = 9°(t)) + € (Gn — 91 (ta)) + - + €5 (g0 — 9" (ta)) + O(he®®) .

By Theorem 4.2, the position error terms e*! (yfl — yl(tn)> (I =1,...,k) and the corre-
sponding velocity error terms are all bounded by O(€*h?7?) for € < h. This gives Theorem
3.1 for odd stage order ¢q. The case of even ¢ is treated in the same way. O
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7. Starting values near, but not on the manifold of smooth motion

In this section we prove Theorem 3.2. We will use the results of Sections 5 and 6, and a
variant of an invariant manifold theorem due to Kirchgraber, Nipp and Stoffer [12],[16].
There, one considers a recurrence relation

(7.1) Ent1 = Al + @(Ensnn) n>0

Nnt+1 = @Z’('fnann) -

where A is an invertible matrix, and 7). R x R™ — R™ x R™ is Lipschitz

W
continuous. We denote the Lipschitz constant of ¢ with respect to { by L¢¢, and define

L¢y, Lye, Ly, analogously.
Theorem 7.1. [16],[12] (Invariant manifold theorem) For (7.1), suppose that

(7.2) A7 < o, Lee + Ly +24/LenLye < 1/a a>1.

Then the following holds:

(i) There exists a Lipschitz continuous function s: R™ — R™ such that

(7.3) no = s(&o) implies N = $(€n)  for all n.

Hence, S ={(£,s(8)) : £ € R"} is an invariant manifold for (7.1).
(i) The invariant manifold is attractive: With p = Ly, ++/LeyLne < 1, solutions of (7.1)
satisfy

(7.4) 170 = s(€a)ll < p" - lno —s(&)ll »  n=0,

for all starting values (&, o).
(iii) For every (&o,no), there exists ({5,n5) € S, such that the corresponding solutions of
(7.1) converge geometrically to each other:

(7.5) 1§y mn) — (Ensm)ll < Cp™ - [[(§05m0) — (5510l
and
(7.6) 1(€05m0) = (&5 m)Il < €+ [[mo — (&)l -

The constants C and C' depend only on the quantities in (7.2).

We have now all ingredients ready for the proof of Theorem 3.2.
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Proof of Theorem 5.2. (a) Let a starting value (yo, yo) with
(7.7) VU(yo) = O(h*) . V*Ulyo)yo = O(h)

be given. To distinguish it from other starting values needed in the course of the proof,
we denote it henceforth by (¥,,v,). By (7.7), (Yo, 7o) is O(h)-close to the manifold M*
of smooth motion, and we can thus choose an (y(0),y(0)) € M which is O(h)-close to
(Yo, U0 ). We take this as initial value of a smooth solution (y(t),y(t)) of (2.1).

We will transform variables in all Runge-Kutta solutions (yn,y,) of (2.1) with starting
values (yo,%o) which satisfy (7.7) and are O(h)-close to (¥,,9,). We then know from
Lemma 5.4 and Theorem 3.1 that for such solutions

(7.8) Yn —Y(tn) = O(h) ,  Un —y(tn) = O(h) uniformly for 0<+¢, <T .

Like in Lemma 5.2, we now introduce transformed variables

(1.9) (U) =t v (57 = Tt i

where T(y) = (QTﬁl/zg—Z)(y) as in Lemma 5.2. In these variables, the Runge-Kutta

method for (2.1) can be expressed as a recursion of the form (7.1): By Lemma 5.3 (and
(7.8)), and by part (a) of the proof of Lemma 5.4, we have (7.1) and (7.2) with

En = (tn, tn, hiy) T

(Vn, L™ (y(tn)) - 9n)T for e<h < Ke,
= (Vn, hoop) T for h > Ke .

1 0 O
A=10 I; I

0 0 Iy

Lff = O(h) ) Lf’) = O(h) ) Lflf = O(h) ) Lm) = po + O(h) )

where pg is the p in Lemma 5.4.

At first, this only holds locally along y(t), 0 < t < T, but outside we may modify and
extend ¢ and v such that (7.2) holds with global Lipschitz constants. We can therefore
apply Theorem 7.1, which gives us the following in the original variables (y,y): There exist
2d-dimensional manifolds Mj(t), 0 <t < T, such that

(7.10) (yo0,Y0) € M;(0) implies (Yn,Un) € Mj(t,) forall n.

For every (yo, o) satisfying (7.7) and O(h)-close to (¥y, ¥, ), there exists (yg,vi) € M5 (0),
such that the corresponding Runge-Kutta solutions satisfy

(7.11) (YnsGn) = (Y- ¥5) + O(p"R)

where p = po + O(h). The last statement follows from (7.5) and (7.6), and holds in
particular for (y,,7,) itself.
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(b) On the other hand, Theorem 6.1 gives us an “almost-invariant” manifold: Let Min
denote the set of all (@\n,/y\n) of the form of a truncated e?-expansion (6.3), where the
coefficients (y' , 5! ) are the Runge-Kutta solution of the differential-algebraic system (2.25),
and where the starting value is a truncated e-expansion (go,/y'\o) € M€+ O(e**+2). The
set M, , is then a 2d-dimensional manifold, which by Theorem 3.1 (and Lemma 5.4 for
the O(e**2)-perturbation off M¢) is O(h?)-close to M°.

Let now (y¢,y5) € M°. Then we have

(Yo Gn) € M, + O(e2)

by Theorem 6.1 (for ¢ = 2k, and with an additional factor h before ¢2* for ¢ = 2k + 1),
and

(Y Un) € M (tn) + O(p"h)

as a consequence of (7.11). Since this holds uniformly for 0 <¢,, < T and for all (y§,y) €
M€ (in an O(h)-neighborhood of (%, ,) ), we see that the two manifolds M;, ,, and My (t,)
are O(p"h + e2F)-close. As they have the same dimension 2d, we can conclude conversely:
For every (yg,vs) € M:(0), there exists (y§,y5) € M = M , + O(e***?) such that the
corresponding Runge-Kutta solutions satisfy ’

(7.12) (v um) = (v, u5) + O(p"h + €F) .

Theorem 3.2 now follows by combining (7.11) and (7.12). O

8. Computational aspects

Standard software for stiff initial value problems does not work satisfactorily when applied

to stiff mechanical systems (2.1). There are two reasons for this failure:

(i) The numerical treatment of the stiff problem (2.1) is very close to that of the associated
constrained problem in the index-3 form (2.25.0). This can cause a breakdown of the
standard error estimation and step size control.

(ii) The modified Newton iterations usually employed for the solution of the nonlinear
system of equations in each Runge-Kutta step only converge under a severe step size
restriction h = 0(62/3), except when the potential U is quadratic.

We will see in this section that these difficulties can be overcome by suitable modifications.

Concerning (i), we remark that the usual step size control works well when the velocities
are multiplied by the step size h in the error estimation, which should thus be based on
IIAy|| + & - ||Ay||. Compare [7], p.104. An incurable consequence of (i) remains the order
reduction as implied by Theorem 3.1. This appears tolerable, however, for Runge-Kutta
methods with higher stage order, e.g., Radau ITA methods.
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We now turn to problem (ii). The following lemma gives sufficient conditions for the con-
vergence of the usual modified Newton iterations, and the proof and numerical experiments
indicate that they are actually necessary, unless the potential is quadratic.

Lemma 8.1. (Convergence of modified Newton iterations under step size restriction)
Consider the solution of the nonlinear system of equations (5.1c) for Y; (it=1,...s), with
Y; and Y; inserted from (5.1b). Suppose that the starting values satisfy VU(yo) = O(h?),
V2U(yo)yo = O(h), and let the iteration start with 1‘;;(0) = O(1). Then the modified Newton

iteration with an approrimate Jacobian

h2
(8.1) Jo =TI, ® M(y) + 6—2A2 @ V2U(yo) + O(h)

3

converges if h < ce*/>. With the approzimate Jacobian

h? > )
(8.2) Ji =TI, @ M(yo) + = ZaijajkVZU(yo + cih o) + O(h)
j=1 i k=1
the iteration converges if h < ce'/?. In both cases ¢ is a sufficiently small constant.

Proof. Denoting

P = (MOG)T; - ST+ 59000 )

=1

with Y}, Y; inserted from (5.1b), the modified Newton iteration is the fixed-point iteration

YD —g(¥®) | with oY) =Y~ JLR(Y) .

For both J = Jy and J = J; we have |77 = O(1), and since
V2U(yo + cihyo + h? Dok @ijaRYr) = V2U(yo + cihijo) + O(h?) = V*U(yo) + O(h) for
Y = O(1), we get
. O(h3/62) for J=1J,,
#0 ={ i) )
O(h*/e*) for J =1 .

The Banach fixed-point theorem then gives the result. O

In the proof of Lemma 8.1, one sees that no convergence problems would occur if the
Jacobian could use values Y in the argument of V2U which are O(¢e?)-close to the solution
of (5.1c). Such values can be obtained by first solving the Runge-Kutta equations for the
constrained problem (2.25.0), see [7], p.95 for a study of the corresponding modified Newton
iteration. Then we use the obtained values Y in modified Newton iterations for (5.1) with
Jacobian

B[
(8.3) Jo= 1@ M(yo) + — > aijai VEU(YY) +0(h) .
j=1 i k=1
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A potential difficulty with all the iteration matrices in (8.1)-(8.3) is that their condition
numbers grow without bound as €/h — 0. Moreover, in (8.2) and (8.3) we have lost the
tensor product structure of the Jacobian in (8.1) which leads to significant savings in the
linear algebra, see [3], and [8], p.131f. This can be preserved in the following approach,
which appears particularly effective if the rank of V2U, m, is considerably smaller than
the dimension of the system, n. The starting point is Hairer’s reformulation ([7], p.120) of
the equations of the stiff pendulum (1.1),

Y1 :_yl/\

Yo = —y2 A — 1

=7 72 - y%—l—y%—l .
Vi Y3

Formally setting e = 0 in this system of equations yields the differential-algebraic equations
of the fixed-length pendulum in index-3 form. When a Runge-Kutta method is applied to
(8.4), the numerical solution is still the same as in (1.1), but now the modified Newton

(8.4)

method converges without a step size restriction as in Lemma 8.1. The reformulation (8.4)
depends on an explicit representation VU(y) = GT(y)¢(y), where GT(y) = (y1,y2)T
full-rank matrix having the same range as V2U(y). Unfortunately, such a representation

1s a

is not possible in general. However, along a smooth solution we “almost” have that VU(y)
is in the range of V2U(y) (up to a perturbation of magnitude O(e?)). This observation is
at the heart of the following iteration: Beginning with

(8.5) K=o, i=1,...s,

we solve iteratively for & > 0 the nonlinear systems in Yi(k) and Agk) (with Yi(k), Yi(k)
related to Yi(k) by (5.1b))

MEP)T® = gy ® g Ey _ qTy )b ®
(86) 62 1 _
(k) _ T (v (k) (k)

AW = = (¢T)) - vum),

and then set
1
k1 k k k
(87) i = @AY - Svu )

Here GT € R" ™ is a full-rank matrix having the same range as V2U € R"*", e.g., a

selection of m linearly independent columns of V2U. (GT)~ denotes a left inverse of G7,
ie., (GT)~ - GT = I,,. For example, (GT)~ can be obtained from the LU decompositon
of an invertible m x m-submatrix of GT: (GT)~ = (E~1,0)if GT = (?) with invertible

E. This is computationally inexpensive if m < n.
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The nonlinear system (8.6) is solved by inner iterations with a modified Newton method
with the approximate Jacobian

‘ A2 ® <GT(y0)> ) VZU(yO) _2_2]—3 @ Im 7
which will be seen to have a uniformly bounded inverse as ¢/h — 0. The convergence
properties of these iterations are summarized in the following.

Lemma 8.2. (Convergence of iterations (8.5)-(8.8)) Suppose that the starting values satisfy
VU(yo) = O(R*), V2U(yo)yo = O(h). Then the errors of the outer iteration (8.5)-(8.7)
satisfy for € < ch

YW ¥, = 0@y, k=0,1,2,... ,

where Y; is the solution of (5.1). The inner iteration with matriz (8.8) converges with rate

O(h).
Remark. The first outer iteration thus already gives
Y v, =0(n?), YO Y =0(h) .

If a further outer iteration is required, then care should be taken that Yi(o) has been com-
puted sufficiently accurately to account for the perturbation sensitivity in the computation

of " in (8.7). Formula (8.7) will usually be used only for £ = 0 (or at the utmost k£ = 1),

7
and unlike (8.3) there is no iteration with ill-conditioned matrices.

Proof. For the sake of brevity, we only outline the main points of the proof.

(a) In the study of the inner iteration with (8.8), the essential observation is that by (2.10),

H = V2U can be written as H = GTKG with invertible K, and hence (GT)"H = KG.
T

Since (]\é G(; ) is invertible, this implies that (8.8) has a uniformly bounded inverse. It

then follows without difficulty that the modified Newton iteration for (8.6) converges with

rate O(h).

(b) The convergence analysis of the outer iteration relies on a bound of the difference
between the solution of (8.6) and that of a perturbed system with additional defect 6 =
O(h) in the first equation of (8.6). This difference can be shown to be bounded by

(8.9) AY; = O(h%6), AY; =0(hé), AY;4+0(8), AN =0(5).

We now consider the defect when the exact values YZ are inserted into (8.6) with k& = 0.

With A; = 61—2GT(Y})_ -VU(Y;), the defect is

1
=

(VA — VU = 5 (67(V) - 6T (V)™ — 1) VU(¥)
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By Lemma 5.1, we have Y; = O(1), and hence VU(Y;) = O(€*) by (5.1¢). So there exists
Yio =Y, + 0(62) with VU(YiO) = 0, and we have

VU(Y:) = H(Y;)- (Vi = V) + O(¢") .
Since by (2.10),
(8.10) (GT"(G")y” -I,)-H=0,

the defect is O(e?), and (8.9) gives the result for & = 0. To proceed further one then shows
with the help of (8.9) and (8.10)

1 1
GT(v"HA® — G—QVU(Y}”) = GT(Y)Ai = VU +O(E0)
For k = 1, we can then use (8.9) with § = O(e*1?), and so on. O
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