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Abstract

In high temperature flow it is necessary to introduce new physical phenom-

ena to the governing equations. Chemical reactions and vibrational excitation

of the molecules lead to inhomogeneous Euler equations with a source term

and an additional equation of conservation of mass for each species. From

the mathematical point of view we only get additional contact discontinuities

for the different species. From the numerical perspective the treatment of the

fluxes of partial densities has a large influence on the results. For a given

shock-capturing scheme we discuss three methods to compute the fluxes of

partial densities for the same total density flux. We compare the numerical

diffusion for the different fluxes. In a two-dimensional testcase we illustrate

the advantages and disadvantages of these schemes. The third one shows a

good resolution of the strong gradients in the mass fractions for this special

testcase.
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1 Introduction

For a class of flow problems such as the reentry of a space vehicle or the con-
ditions in a shock tube the numerical simulation becomes important. From
the need to calculate the flow field around a double ellipse at an altitude of 70
km during the reentry, several different experiments were made concerning
the numerical diffusion of the scheme. A more or less academic problem is
the stagnation point temperature for an inviscid flow. This is a very sensitive
value in the flow field which depends strongly on the composition of the gas.
Due to the strong density and temperature gradients near the stagnation
point, numerical diffusion becomes important. For small-scaled bodies these
gradients are infinite so that most of the numerical schemes do not calculate
the correct temperature as it was shown in [1]. This problem is an interest-
ing example to examine the influence of numerical diffusion. We will explain
our investigations for this testcase. First we present two ways to introduce
chemical reactions into a standard Euler-solver. The first one is a straight-
forward procedure with a large amount of numerical diffusion. The second
one based on the physical background of contact surfaces does not show the
correct behavior in the steady state solution. The combination of both ideas
then leads to an improved scheme with reduced numerical diffusion.

2 The governing equations

The equations describing the one-dimensional inviscid flow with chemical
reactions are the Euler equations in the form

Ut + F (U)x = S(U) (1)

where

U =





!1
...
!N
m
E





, F (U) =





!1u
...

!Nu
mu+ p
u(E + p)





, S(U) =





s1(!1, . . . , !N , T )
...

sN(!1, . . . , !N , T )
0
0





.

(2)
Here !i, i = 1, ..., N denote the partial densities, m is the momentum and E
the total energy including the formation enthalpy of the different species, p
is the pressure, u the velocity and T the temperature of the gas. In the case
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of chemical non-equilibrium the eigenvalues of the Jacobian matrix of F(U)
are u − c, u, . . . , u, u + c. c is the frozen speed of sound given by c2 = γp/!
where ! is the total density and γ is the ratio of the heat capacities for
constant pressure and constant volume. In comparison to a pure gas there
are additional contact discontinuities due to the different species all moving
with velocity u. Equation (1) is equivalent to

Ût + F (Û)x = Ŝ(Û) (3)

with

Û =





!1
...
!N
m
Ê





, Ŝ(Û) =





s1(!1, . . . , !N , T )
...

sN(!1, . . . , !N , T )
0

−
N∑
i=1

h0
i si





. (4)

Ê is the total energy without the heat of formation, i.e.

E =
N∑

j=1

!j(ej(T ) + h0
j) + !

u2

2
= Ê +

N∑

j=1

!jh
0
j (5)

where ej(T ) is the internal energy per unit mass of species j and h0
j the

formation enthalpy.

3 The numerical scheme

The main underlying scheme is a finite volume method with the Van Leer
flux vector splitting [3] to evaluate the fluxes at the cell interfaces. Starting
from a discrete function Un

i at time n∆t at the point i∆x we solve the inho-
mogeneous equations by an operator splitting approach. We first integrate
the ordinary differential equation

∂U

∂t
= S(U) (6)

for an intermediate value Un+1/2
i . In this step we use formulation (1) to

avoid the source term in the energy equation. In the next step we solve
the homogeneous Euler equation. We adapt the standard solver to chemical

2



reacting flow by the following procedure. First we rewrite the energy flux
FE(U) to separate the heat of formation:

FE(U) = u(E + p) = u(Ê + p) +
N∑

j=1

!juh
0
j

= FE(Û) +
N∑

j=1

h0
jF

!j(Û). (7)

So we get the total energy flux as the standard energy flux plus the sum
of the formation enthalpy of each species times their density flux F !j(Û).
Since there are no reactions in this step the mass fractions Y j in each cell
are constant. For this step we reduce the system to

Wt + F̂ (W )x = 0

with

W = W (U) =





∑N
j=1 !j
m

E −∑N
j=1 !jh

0
j



 =




!
m
Ê



 , F̂ (W ) =




m

mu+ p
u(Ê + p)





by summing over all partial densities and removing the heat of formation.
We update the values of W with the Van Leer flux vector splitting method
for real gas. We have

W n+1
i = W n

i − ∆t

∆x

(
F̂i+1/2 − F̂i−1/2

)
(8)

with
F̂i+1/2 = F̂i+1/2(W

n
i ,W

n
i+1) = F+(W n

i ) + F−(W n
i+1).

The fluxes are

F+(W ) =

{
F̂ (W ) if u > c

0 if −c ≥ u
, F−(W ) =

{
0 if u > c

F̂ (W ) if −c ≥ u
,

and if |u| ≤ c then

F !±(W ) = ± !

4c
(u± c)2,

Fm±(W ) =
!

4γc
(u± c)2(2c± (γ − 1)u),

F Ê±(W ) = ± !

4c
(u± c)2

[
(2c± (γ − 1)u)2

2(γ2 − 1)
+

c2

γ

(
γ̄

γ̄ − 1
− γ

γ − 1

)]

.

γ̄ is an averaged value of γ = γ(T ) over a temperature region.
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With these properties we can construct the fluxes of the partial densities
in a straightforward manner by setting

F
!j
i+1/2 = Y j

i F̂
!+(W n

i ) + Y j
i+1F̂

!−(W n
i+1). (9)

In the second approach we take a closer look at the physics of a contact
surface. Different compositions of the gas are separated by a contact discon-
tinuity and remain separated. From the direction of this wave we can derive
the movement of the different mass fractions (Fig. 1).

The propagation of this wave depends directly on the sign of the total
mass flux. If this flux is positive then the contact surface moves to the right
and vice versa. With this idea we can construct a second flux for the partial
densities setting

F
!j
i+1/2 =





Y j
i F̂

!
i+1/2 if F̂ !

i+1/2 > 0

Y j
i+1F̂

!
i+1/2 if F̂ !

i+1/2 ≤ 0
. (10)

With the fluxes of the partial densities in (9) or (10),

Fm
i+1/2 = F̂m

i+1/2

for the momentum, and

FE
i+1/2 = F̂E

i+1/2 +
N∑

j+1

h0
jF

!j
i+1/2 (11)

for the energy we update the quantities in U in the same manner as in (8)

using the intermediate state Un+1/2
i as the initial value.

Un+1
i = Un+1/2

i − ∆t

∆x
(Fi+1/2 − Fi−1/2). (12)

Both fluxes with (9) and (10) are consistent in the sense that Fi+1/2(U,U) =
F (U).

We now compare these fluxes. To keep the notation as simple as possible
we set:

F±
i := F̂ !±(W (Un+1/2

i ))

Fi+1/2 := F̂ !
i+1/2

Gj
i+1/2 := F

!j
i+1/2 from (9)

Hj
i+1/2 := F

!j
i+1/2 from (10)
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We look at the difference

(Hj
i+1/2 −Hj

i−1/2)− (Gj
i+1/2 −Gj

i−1/2)

=






Y j
i (F

+
i + F−

i+1) − Y j
i−1(F

+
i−1 + F−

i ) if Fi+1/2 > 0, Fi−1/2 > 0
Y j
i (F

+
i + F−

i+1) − Y j
i (F

+
i−1 + F−

i ) if Fi+1/2 > 0, Fi−1/2 ≤ 0
Y j
i+1(F

+
i + F−

i+1) − Y j
i−1(F

+
i−1 + F−

i ) if Fi+1/2 ≤ 0, Fi−1/2 > 0
Y j
i+1(F

+
i + F−

i+1) − Y j
i (F

+
i−1 + F−

i ) if Fi+1/2 ≤ 0, Fi−1/2 ≤ 0

−
(
Y j
i F

+
i + Y j

i+1F
−
i+1 − Y j

i−1F
+
i−1 − Y j

i F
−
i

)

=






(−F−
i+1)(Y

j
i+1 − Y j

i ) + (−F−
i )(Y j

i−1 − Y j
i ) if Fi+1/2 > 0, Fi−1/2 > 0

(−F−
i+1)(Y

j
i+1 − Y j

i ) + F+
i (Y j

i−1 − Y j
i ) if Fi+1/2 > 0, Fi−1/2 ≤ 0

F+
i+1(Y

j
i+1 − Y j

i ) + (−F−
i )(Y j

i−1 − Y j
i ) if Fi+1/2 ≤ 0, Fi−1/2 > 0

F+
i+1(Y

j
i+1 − Y j

i ) + F+
i (Y j

i−1 − Y j
i ) if Fi+1/2 ≤ 0, Fi−1/2 ≤ 0

For subsonic flow, i.e. |u| < c, there exists a constant K ∈ IR such that

F+ ≥ K > 0 and

−F− ≥ K > 0.

Then the fluxes in (9) and (10) can be compared yielding

Gj
i+1/2 −Gj

i−1/2 ≈ Hj
i+1/2 −Hj

i−1/2 −K(Y j
i+1 − 2Y j

i + Y j
i−1)

and the additional numerical diffusion can be estimated by the last term. In
this estimate only the fluxes in the partial densities are needed.

For the numerical tests we changed the geometry of the Antibes test-
case from an ellipse to a cylinder. This does not change the values in the
stagnation point, it only removes additional complications due to the non-
symmetric mesh and the curved streamline ending at the stagnation point.
For the cylinder we can calculate a solution by integrating an ODE system
for the partial densities and the velocity along the streamline. Figures 2 –
4 show the solutions for different scalings of the body. The size of the body
is proportional to the inverse of vy, the derivative of the y-velocity compo-
nent in the y-direction. We can see from the plots of density, temperature,
and mass fraction of nitrogen atoms Y N that the chemical reactions move
more and more to the stagnation point when the body becomes smaller and
smaller.

Test calculations with these two fluxes show an unacceptable property of
the flux in (10). From the energy equation we get

∂E

∂t
+

∂

∂x
(u(E + p)) =

∂E

∂t
+

∂

∂x
(u!H) = 0. (13)
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In the steady state we have

0 =
∂

∂x
(u!H) = !u

∂

∂x
H +H

∂

∂x
!u. (14)

Due to the conservation of mass the second term vanishes and thus H is
constant along streamlines. Fig. 5 shows the total enthalpy H along the
stagnation point streamline. For the flux in (10) the enthalpy increases dras-
tically near the stagnation point in contrast to the standard Van Leer flux
(9). This behavior can be explained by the following: The mass fractions Y j

are independent in different cells as they used to be due to the contact sur-
face. The same holds for the heat of formation because in (11) the same flux
of the partial densities is used. This contradicts equation (14) and the fact
that the total enthalpy which includes the formation enthalpy is constant.

Therefore we define a third scheme. For the fluxes of the partial densities
we keep the formula (10), but for the energy flux (11) we use the F

!j
i+1/2

defined in (9):

F
!j
i+1/2 =





Y j
i F̂

!
i+1/2 if F̂ !

i+1/2 > 0

Y j
i+1F̂

!
i+1/2 if F̂ !

i+1/2 ≤ 0

FE
i+1/2 = F̂E

i+1/2 +
N∑

j+1

h0
j

[
Y j
i F̂

!+(W n
i ) + Y j

i+1F̂
!−(W n

i+1)
]

(15)

The resulting scheme is still consistent in the above sense. We now have
a combination of both properties. The mass fractions are now nearly inde-
pendent of the neighboring values and the numerical diffusion is reduced as
shown above. On the other hand we introduce a mechanism to control the
heat of formation over the cell interfaces in the energy flux.

The last sequence of figures shows the values of temperature, density,
and mass fraction of nitrogen atoms for the three schemes with two different
meshes. The size of the cell in front of the stagnation point is 0.5 mm and
0.2 mm, respectively.

4 Conclusions and Remarks

In the case of chemical reacting flow it is necessary to reduce the numerical
diffusion. A comparison of the results seems to show that the combined
scheme (15) gives a better approximation of the mass fractions than the
standard Van Leer scheme (9). The investigations in this article are not

6



restricted to Van Leer’s scheme, for some other methods like TVD or ENO
it is also possible to replace the standard flux of partial densities by the one
in (10).

From useful discussions with colleagues it seems that for some special
Godunov schemes an increase of the total enthalpy in the steady state so-
lution also results from the contact surface of the tangential velocity in a
two dimensional flow. This contact surface has the same properties as those
mentioned above.
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Figure 1: Separation of different mass fractions by the contact surface
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Figure 2: Density along the streamline with the ODE Solver DDASSL [2]

Figure 3: Temperature along the streamline with the ODE Solver DDASSL
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Figure 4: Mass fraction of nitrogen atoms along the streamline with the ODE
Solver DDASSL

Figure 5: Total enthalpy along the streamline with different fluxes of partial
densities
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Figure 6: Solution with 0.5 mm cell size and fluxes (9) and (15).

Figure 7: Solution with 0.2 mm cell size and fluxes (9) and (15).
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