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Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Research Report No. 91-04 March 1991

Dedicated to Heinz-Otto Kreiss on his 60th Birthday

Abstract

A basic assumption for the interior scheme when solving hyper-
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1 Introduction

In their famous paper [2], Gustafsson, Kreiss and Sundström have developed
a theory for the stability of difference schemes for hyperbolic initial boundary
value problems. As basic assumption they request always that the “interior”
scheme be stable in the von Neumann sense for the pure Cauchy problem
[2, Assumption 5.1]. In the present paper we investigate whether this von
Neumann stability condition limits the error order p of difference schemes.
We shall show that for Courant numbers µ with |µ| ∈ (0, 12) and explicit
difference schemes, where at least on one side the stencil has the same number
of points on each old time level, such a stability barrier holds. In fact under
the above assumptions we are able to prove that

(1.1) p ≤ 2R ,

where R is the number of downwind points to the left of the characteristic
through the point on the new time level. This is a partial confirmation of a
conjecture made in 1985, which predicts the following bound for the order p
of a stable scheme

(1.2) p ≤ 2min{R, S} ,

see [7]. Here R is defined as above and S is similarly the number of upwind
points. This means that a stable scheme of order p needs to have on each side
of the characteristic at least #p

2$ points in the stencil. (Here #α$ denotes the
smallest integer which is not smaller than α.) If p = 1, this conjecture reduces
to the Courant-Friedrichs-Lewy condition. Therefore the bound (1.2) has the
flavour of being an extension of the Courant-Friedrichs-Lewy condition. The
conjecture was proved in [7] for two-time level schemes, while many examples
in support of (1.2) for multi-time level schemes have been given in [4,5,6].

In the present paper we give typical results and outline the proofs. The
proofs are done using so called order stars, which have been introduced in
[10]. However in the present context one has the difficulty that the order star
has to be defined on the Riemann surface of an algebraic function and the
“comparison” function has a logarithmic singularity. Observe that in [3] the
same comparison function has been used.

In Section 2 we give the exact notation and state the main results. In
Section 3 we give an outline of the proofs. It should be noted that in the
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present paper we shall not strive for full generality but limit ourselves to
typical results. In a forthcoming paper [8] we shall give more details and
attempt to squeeze more results out of the techniques presented here.

2 Main results

In the GKS theory [2] one always assumes that the difference scheme for the
interior is von Neumann stable for the initial value problem

(2.1)
∂
∂t
u(t, x) = c ∂

∂x
u(t, x), x ∈ R, t ≥ 0

u(0, x) = u0(x) given .

Such a scheme can be described as follows. Let &t and &x denote the step
sizes in the time and space variables, and µ = c!t

!x
the Courant number.

If un,m is meant to be an approximation of u(n&t,m&x) then an explicit
three-time level scheme has the form

(2.2)
un+2,m +

∑1
i=0

∑s
j=−r aijun+i,m+j = 0

m = 0,±1,±2, . . . , n = 2, 3, . . . .

Here aij are real coefficients depending in general on µ, aij = aij(µ), and−r ≤
s, ai,−rai,s
(= 0 for i = 0, 1. The coefficients aij determine two very important fea-
tures of the scheme, namely the order and the von Neumann condition. It is
convenient to introduce the characteristic function

(2.3) Φ(z, w) = w2 + a1(z)w + a0(z) .

where

(2.4) ai(z) :=
s

∑

j=−r

aijz
j , i = 0, 1 .

Taking as usual Fourier transforms in space of (2.2) leads immediately to the

Definition 2.1 The scheme (2.2) for the pure initial value problem (2.1) is
said to satisfy the von Neumann condition if

(2.5)
Φ(z, w) = 0

|z| = 1

}

⇒

{

|w| ≤ 1 and if
|w| = 1, then w is a simple root.

For more details see for example one of the references [1,2,6].
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A scheme (2.2) has error order p if and only if for any smooth solution
u(t, x) of (2.2) one has

u(t+2&t, x)+
1
∑

i=0

s
∑

j=−r

aiju(t+i&t, x+j&x) = C
∂p+1

∂xp+1
u(t, x)(&x)p+1+0((&x)p+2)

(2.6) if &x → 0.

Since we are interested in schemes with positive order only, we assume that
Φ(1, 1) = 0.

Proposition 2.2 ([6,9]) Let a scheme (2.2) with the Courant number µ be
stable and satisfy Φ(1, 1) = 0. Then the order is p if and only if the algebraic
function w given by Φ(z, w(z)) ≡ 0 has exactly one branch w1(z), which is
analytic in a neighbourhood of z = 1 and satisfies

(2.7) zµ − w1(z) = O((z − 1)p+1) as z → 1 .

!

The exact solution is constant along the characteristics, x = −ct+const.
Hence if µ is such that the characteristic through the point (tn+2, xm) passes
through a further point of the difference stencil then one can construct an
exact scheme. However if 2µ (∈ Z this cannot happen and then it is easy to
show that the highest possible order is

(2.8) p = 2r + 2s+ 1 ,

see [6]. To formulate the main results we denote the number of stencil points
to the left of the characteristic through the point (tn+2, xm) by R and in-
troduce S as the number of points to the right of this characteristic. If we
restrict ourselves to the cases 0 < |µ| < 1

2 these numbers are

R =

{

2r if − 1
2 < µ < 0

2r + 2 if 0 < µ < 1
2

and

S =

{

2s+ 2 if − 1
2 < µ < 0

2s if 0 < µ < 1
2

R, S are also called the number of downwind points, upwind points respec-
tively. We are now in a position to state the main theorems.
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Theorem 2.3 Assume that µ ∈ (−1
2 , 0) and that the scheme is stable. Then

one has

(2.9) p ≤ 2R .

!

Remark 2.4 In the proof we shall see that we don’t use any information
from the upwind side of the characteristic and therefore the result is true if
the stencil extends to the upwind side not uniformly on the time levels tn
and tn+1, i.e. a1s · a0s = 0 is allowed.

Using a standard symmetry argument gives the following

Corollary 2.5 Assume that µ ∈ (0, 12) and that the scheme is stable. Then
one has

p ≤ 2S .

!

The next theorem gives an order barrier in terms of the number of down-
wind points in the case µ ∈ (0, 1

2).

Theorem 2.6 Assume that µ ∈ (0, 1
2) and r ≥ 1 and that the scheme is

stable. Then one has
p ≤ 2S .

!

The assumption r ≥ 1 is a technical one. It prevents that z = 0 is a
branch point of the algebraic function w(z). We believe that the theorem is
true even if r = 0.

Clearly a remark similar to Remark 2.4 holds here too as well as a corol-
lary corresponding to Corollary 2.5. One can collect the results in the fol-
lowing

Corollary 2.7 Assume that |µ| < 1
2 , r ≥ 1 and s ≥ 1. Then for a stable

scheme one has the bound

p ≤ 2min{R, S} .

!
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3 Order stars and proofs of the theorems

As already indicated earlier we shall not strive for full generality but use the
theory tailored exactly to the theorems we want to prove.

3.1 Properties of algebraic function w

As has been shown in [6] we can always assume that Φ is irreducible. The
algebraic function w, satisfying Φ(z, w(z)) ≡ 0 is double-valued, consisting
in general for each z of two values w1(z), w2(z). It can be made single valued
by introducing the Riemann surface M , i.e.

M = {(z, w) ∈ C̄× C̄|Φ(z, w) = 0}.

It is known that M is a closed and connected set. Even so none of the
variables z and w has more prominence then the other, we will in our notation
have a tendency to use z as “independent variable” and w as dependent
variable. Thus we shall often prefer to work with a double valued function
w1(z), w2(z) and say that these represent two sheets, one “above” the other,
which interact at a finite number of branch points zi, where w1(zi) = w2(zi)
and cuts connecting these branch points.

Remark 3.1 Branch points of w
The branch points of w can occur at 0, ∞ and the points zi where a21(zi)−
4a0(zi) = 0. Since the coefficients of this polynomial equation are real, the
branch points will be either real, or they will occur in complex conjugate
pairs. Branch cuts along which the sheets of M are connected, can therefore,
without loss of generality be taken to fall on the real axis or to be orthogonal
and symmetric with respect to the real axis. However sometimes it gives
“simpler” pictures if one uses pairs of conjugate complex cuts.

Remark 3.2 If a scheme is stable, the corresponding algebraic function can-
not have a branch point at z = 1 (see (2.5)). The sheet of M on which the
point z = 1, w = 1 occurs, is called the principal sheet, the other one the
secondary sheet. Since there is not a unique way of making the cuts this
notion is in principle a local property in a neighborhood of z = 1. However
in describing examples it is helpful to introduce the following notation, once
the cuts are made. All points on M which can be reached from (1,1) without
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crossing a cut are said to be on the principle sheet and the other ones, except
for points on the cuts, are said to belong to the secondary sheet.

Remark 3.3 Poles of w
Since only explicit difference schemes are considered with a1,−r (= 0, there
is at most one point on M where z is finite and w has a pole. In fact this
happens at z = 0 and this occurs if and only if r ≥ 1. Moreover the pole has
order r.

Remark 3.4 Zeros of w
Since a0,−r (= 0 the finite points where w becomes zero are identical with the
zeros of a0(z). In particular z = 0 is not a zero of w.

Observe that if r > 0 and a1,−r (= 0 then the algebraic function has no
branch point at z = 0.

3.2 Order Stars on the Riemann surface

An order star is defined on the Riemann surface M of the algebraic function
w in the following way. Define the function ϕ by

ϕ(z, w) = z−µw, (z, w) ∈ M

and the order star Ω by

Ω = {(z, w) ∈ M : |ϕ(z, w)| > 1}.

Because of the factor z−µ the function ϕ is multiple–valued on M . However,
the order star Ω, being defined by means of the modulus of ϕ, is again well
defined on M . Ωc denotes the complement of Ω , i.e. Ωc = M\Ω. Since the
coefficients aij are real, it is easily verified that Ω is symmetric with respect
to the real axis.

The order and stability of a difference scheme, which were interpreted in
Section 2 as properties of the function w associated with the scheme, can now
be expressed as properties of the corresponding order star. We give without
proof those properties which are standard results in investigations involving
order stars (e.g. [10]).

Lemma 3.5 If a scheme is stable then Ω ∩ ∂& = ∅ where ∂& denotes the
boundary of the “unit disk” & = {(z, w) ∈ M : |z| < 1}. !
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Lemma 3.6 A scheme (2.2) has order p if and only if at the point z = 1 on
the principal sheet of M the order star consists of p+ 1 sectors of angle π

p+1 ,
separated by p+ 1 sectors of Ωc, each with the same angle. !

A subset A (with boundary ∂A) of Ω is said to be an Ω–component if
∂A ⊂ ∂Ω and A is connected. Ωc–components are defined similarly. An
Ω–component is said to be of multiplicity m if it contains m Ω–sectors at
z = 1 on the principal sheet, similarly for Ωc–components.

The relationship between the multiplicity of an Ω–component and the
total order of the poles of ϕ that it contains, plays an important role in
analyses involving order stars. These two concepts are related using the
argument principle (see [10]). In order to do this we must make sure that
zµ can be defined uniquely in regions which contain z = 0. Thus we need
to make at most two cuts Li on M connecting the zero points (0, w0

i ) to the
infinity points (∞, w∞

i ), i = 1, 2. In the present context we shall choose L1

and L2 such that they have an identical projection onto the z-plane and do
not meet a branch point of w(z). These cuts should not be confused with
the cuts mentioned earlier which had been used only to represent M on “top
of the z-plane”.

Clearly Ω consists of different components. For stable schemes, these are
completely inside or completely outside &.

In the following we shall give bounds for the multiplicity of such Ω-
components inside &. To do this we need two lemmata to integrate ϕ′/ϕ
along the cuts Li.

Lemma 3.7 Assume w(z) has no branch point at z = 0. Let −α be the
leading exponent of ϕ(z, w1(z)) at z = 0, where w1(z) is a branch of w(z),
i.e.

ϕ(z, w1(z)) = z−αΨ(z), Ψ(0) (= 0 .

Let γ be a circular path with centre z = 0, a radius sufficiently small and
which encircles 0 in a clockwise direction. Then

1

2πi

∫

γ

ϕ′(z, w1(z))

ϕ(z, w1(z))
dz = α .

!
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Lemma 3.8 Assume that γ is a line segment on one of the cuts L1 or L2

used to uniquely define zµ. Let γ+ and γ− denote both sides of γ traversed
in opposite direction. Then

∫

γ+

ϕ′(z, w1(z))

ϕ(z, w1(z))
dz = −

∫

γ−

ϕ′(z, w1(z))

ϕ(z, w1(z))
dz .

!

Observe that γ has different values on γ+ and γ− since zµ has different
values.

One classifies now the possible Ω-components in & and shows for each
class a bound for its multiplicity in terms of the leading exponent of ϕ at
z = 0. Using the argument principle one can easily show the following

Lemma 3.9 A bounded Ω-component contains at least one of the points z =
0 of M where the leading exponent of ϕ is negative. !

Hence we only have to consider Ω-components which contain either one
point (0, w0

i ) or both points (0, w0
i ), i = 1, 2.

Proposition 3.10 Let Ω1 be an Ω-component containing exactly one point
with z = 0, (0, w0

1) say. Let −α be the leading exponent of ϕ at (0, w0
1). Then

the multiplicity m of Ω1 satisfies

m ≤ 2#α$ .

!

Outline of the proof of Proposition 3.10. SinceM can be very complicated
one has to consider many cases. In fact in [8] we consider more than 20
different cases. As an illustration we show here the simplest one Fig. 1a and
two of the most complicated ones Fig. 1b and 1c.

Let us start with the simplest case. Assume that Ω1 lies completely on
the principal sheet. In order to uniquely define zµ we make the cut L1 as
indicated in Fig. 1a. Let γ consist of γ0 = ∂Ω1, the path γ+

c , γ
−
c along the

cut L1 and γr a small circle around 0 as indicated in Fig. 1a. We integrate
ϕ′/ϕ along γ.

9



Figure 1: Ω-components in & containing exactly one zero point.
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One observes that the argument of ϕ decreases along ∂Ω1. Whenever one
of the “loops” γi, i = 1, 2, . . . , m−1, returns to (1, 1) the argument must have
decreased by at least −2π. Using the argument principle and the Lemmata
3.7 and 3.8 one obtains

0 =
1

2πi

∫

γ

ϕ′(z, w)

ϕ(z, w)
dz =

1

2πi

∫

γ0
︸︷︷︸

<0

+
1

2πi

(∫

γ+
c

+
∫

γ−

c

)

︸ ︷︷ ︸

=0

+
1

2πi

∫

γr
︸ ︷︷ ︸

=α

+
1

2πi

∫

γ1+γ2+...+γm−1
︸ ︷︷ ︸

≤−(m−1)

Hence
m− 1 < α

and thus
m ≤ #α$ .

Remark 3.11 Since the argument of ϕ is dropping along γ0 and after re-
turning to (1,1) it differs from the starting value by an integer multiple of
2π, one finds the useful formula

(3.1)
1

2πi

∫

γ0+γ+
c +γ−

c +γr

ϕ′

ϕ
dz ≤

{

1α2 if α (∈ Z

α− 1 if α ∈ Z

Here 1α2 denotes the largest integer not exceeding α.

Let us look at the more complicated Ω-component depicted in Fig. 1b.
Observe that the cut L1 passes through the point (1,1). Hence the argument
used before, that one returns to the same function value of ϕ when coming
back to (1,1) is only true when one ends up on the same side of this cut.
Hence one obtains

0 ≤ 1α2 −
m− 2

2
if α (∈ Z

and therefore

(3.2) m ≤ 21α2+ 2 = 2#α$ if α (∈ Z

For α ∈ Z one obtains the same formula.
Let us look as a last example at the Ω-component depicted in Fig. 1c.

The integral along γ1 can be treated as in the first example. However the
curves γ2 and γ3 “loop” around z = 0 on the secondary sheet and thus one
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has to make similar cuts there. Let β be the leading exponent of ϕ on this
secondary sheet. Using formula (3.1) gives

1

2πi

∫

γ3
+

1

2πi

(∫

γ+
c

+
∫

γ−

c

)

+
1

2πi

∫

γr
≤

{

1β2 if β (∈ Z

β − 1 if β ∈ Z

When integrating along γ2 one has to observe that the integration on the
small circle around z = 0 goes in opposite direction. Hence one obtains

1

2πi

∫

γ2
+

1

2πi

(∫

γ+
c

+
∫

γ−

c

)

+
1

2πi

∫

−γr
≤

{

1−β2 if β (∈ Z

−β − 1 if β ∈ Z
.

Since
1β2+ 1−β2 = −1 if β (∈ Z

we obtain for the two loops γ2 and γ3 together with the cuts and circles
around 0 the bound -1. Collecting these estimates gives for a component of
the type depicted in Fig. 1c

0 ≤ 1α2 −
m− 1

2
.

Thus one has

(3.3) m ≤ 21α2+ 1 .

This is even sharper than (3.2). In fact treating all cases one finds that the
bound (3.2) is the worst possible.

We are now able to prove Theorem 2.3.

3.3 Proof of Theorem 2.3

If r = 0 one has R = 0. Hence by the Courant-Friedrichs-Lewy condition the
scheme cannot be convergent, i.e. it is impossible that one has simultaneously
p > 1 and stability. Assume now that r > 0, i.e. r ≥ 1. Hence w(z) has
two branches at z = 0 with leading exponents −r and 0. Thus the leading
exponents of ϕ at z = 0 are

−r − µ < 0

and
−µ > 0 .
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Since the scheme is stable there is a clear distinction between the Ω compo-
nents in and outside &. From Lemma 3.9 follows that there is exactly one
Ω-component Ω1 inside&. The leading exponent of ϕ at z = 0 is−α = −r−µ
and the other zero point (0, w0

2) is not part of Ω1. Hence Proposition 3.10
can be applied. This gives

m ≤ 2#r + µ$ = 2r = R .

Here we used that µ ∈ (−1
2 , 0). Hence the number of Ω-sectors inside & is

R. One can have at most R+ 1 Ω sectors outside. By Lemma 3.6 we obtain
the desired result.

3.4 Proof of Theorem 2.6

Since µ ∈ (0, 12) the leading exponents of ϕ at z = 0 are

−α1 = −r − µ < 0

and
−α2 = −µ < 0 .

Since the scheme is stable there is a clear distinction between theΩ-components
inside and outside&. One has now the possibility that there are two different
Ω-components, each one containing exactly one point z = 0, or exactly one
Ω-component containing both points (0, w0

i ), i = 1, 2.
Again one has to classify all Ω-components containing both zero points

(0, w0
i ), i = 1, 2. A simple example is given in Fig. 2a. Let us add to this

component m− 2 closed curves γ3, . . . , γm which are of the same shape as γ1
but lie outside γ1. Using the above introduced techniques gives the estimate

(3.4) m ≤ 21α12 + 21α22 + 2 .

A large portion of classes of Ω-components is obtained by “connecting” two
Ω-components with one “zero-point” through branch cuts. The worst possi-
ble case is found by combining the two examples of Fig. 1b and 1c, see Fig.
2b.

Using the bounds (3.2) and (3.3) gives

(3.5) m ≤ 21α12 + 21α22 + 3 .

13



Figure 2: Examples of Ω-components containing two zero points.
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This bound is not sharp enough to prove Theorem 2.6 and in fact one can
improve the bound. Let δi be the noninteger part of αi, i.e.

δi = αi − 1αi2 .

Then (3.5) can be replaced by

(3.6) m ≤ 21α12+ 21α22+ 1 + 21δ1 + δ22 .

Substitution of the leading exponents αi in the two worst bounds (3.4)
and (3.6) gives the estimates

(3.7) m ≤ 21r + µ2+ 21µ2+ 2 = 2r + 2 = R

and

(3.8) m ≤ 21r + µ2+ 21µ2+ 1 + 212µ2 = 2r + 1 < R .

Here we used that µ ∈ (0, 12). The rest of the proof is exactly the same
as in the proof of Theorem 2.3.
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