On single- and multi-trace implementations for
scattering problems with BETL

L. Kielhorn, ETH Ziirich, Seminar of Applied Mathematics

Sollerhaus Workshop 2012

Why a BEM library?

» The mathematician: Boundary integral equations (BIEs) are
an indispensable tool for the analysis of linear PDEs and their
BVPs. Lovely fractional Sobolev spaces!

Why a BEM library?

» The mathematician: Boundary integral equations (BIEs) are
an indispensable tool for the analysis of linear PDEs and their
BVPs. Lovely fractional Sobolev spaces!

» The application engineer: BIE-discretisation schemes are of
interest for a couple of real-world problems.

Why a BEM library?

» The mathematician: Boundary integral equations (BIEs) are
an indispensable tool for the analysis of linear PDEs and their
BVPs. Lovely fractional Sobolev spaces!

» The application engineer: BIE-discretisation schemes are of
interest for a couple of real-world problems.

» The PhD-student: Come on, implementing Boundary Element
Methods is cumbersome, annoying, tedious and error proning.
It does not pay off!

Why a BEM library?

>

The mathematician: Boundary integral equations (BIEs) are
an indispensable tool for the analysis of linear PDEs and their
BVPs. Lovely fractional Sobolev spaces!

The application engineer: BIE-discretisation schemes are of
interest for a couple of real-world problems.

The PhD-student: Come on, implementing Boundary Element
Methods is cumbersome, annoying, tedious and error proning.
It does not pay off!

BETL aims to save the PhD-student, to support the engineer
with rapid developments of new BEMs, and to please the
mathematician (students have more time to focus on math)

Contents

A short overview on BETL

Boundary Element formulations for scattering problems

Conclusion & Outlook

BETL's one and only purpose

Compute something like

Ali,] = ; G(y — x) ¥i(y) dsy ds,
i /supp(@)wx) /suppw,.) (v — x) d;(y) dsy ds

» Bl operators are non-local, “Everything is connected with
everything!”

» G ~ 1 is rational and singular for y — x. At least, here all
the beauty of BIOs is lost!

The workflow library-driven BEM Applications

» There exists a zoo of different BEMs = Avoid the all-in-one
solution
» Write specific applications utilizing three main libraries:

input, core, result

.Inp core = .out
Potential(BC) Charge density
0 -40 -20 0 20 40

[S = ——
-45 45

-

The main design of the core library
Al j] = ; G(y — x) ¥i(y) dsy dsy
] /sumv(qbf)(b *) /SUPP(%') =) ¥sly) dsy ds

—————>| Element <---------------------------—4

Mesh FESpace <------ ’ Kernel ‘ ’Quadrature‘

— DoFHandler — —‘ Integrator /I

I— BemOperator ———

The Finite Element Basis

» Lagrangian basis functions (Hat functions)

2 2 2

| {

776

5 4 |

0 / | 80 5
|

0 1 0 —3 —1 0 —3 —4 —1

3 2 3 —6 —2 3 —9 —8 —2

| |

| | 10 15 14) 7

0 7 5 | |
| | 11 12 13) &

| |

0 1 0 —4 —1 0 —4 —5 —1

The Finite Element Basis (cont'd)

» (Lowest order) Edge functions

The Dofhandler concept

» On basis of the Finite Element basis distribute the dofs
» Distribution of edge dofs

The design criteria of a BEM library

» Guarantee a robust and efficient runtime behavior!
» Develop flexible and easy-to-use interfaces!
» No redundancies. Implement things only once!

» Make use of well established libraries like, e.g., STL, BOOST,
MKL, SUPERLU, ...!

» Separate data-structures from algorithms!
> Encapsulate data, i.e., avoid global variables!

» Make use of dynamic memory management!

—> Use C++. Exploit the C++-Template-Mechanism

BETL in action — Compute the Single Layer Potential

// define the element type and instantiate the mesh
Mesh< element_t > mesh(input);

BETL in action — Compute the Single Layer Potential

// define the element type and instantiate the mesh
Mesh< element_t > mesh(input);

// define the boundary element basis
typedef FEBasis< element_t ,LINEAR,Discontinuous,LagrangeTraits > slp_basis_t;

BETL in action — Compute the Single Layer Potential

// define the element type and instantiate the mesh
Mesh< element_t > mesh(input);

// define the boundary element basis
typedef FEBasis< element_t ,LINEAR,Discontinuous,LagrangeTraits > slp_basis_t;

// the dofhandler type and its instance

typedef DoFHandler< basis_t > dofhandler_t;

dofhandler_t dof_handler;

dof_handler.distributeDoFs(mesh.e_begin(), mesh.e_end());

BETL in action — Compute the Single Layer Potential

// define the element type and instantiate the mesh
Mesh< element_t > mesh(input);

// define the boundary element basis
typedef FEBasis< element_t ,LINEAR,Discontinuous,LagrangeTraits > slp_basis_t;

// the dofhandler type and its instance

typedef DoFHandler< basis_t > dofhandler_t;

dofhandler_t dof_handler;

dof_handler.distributeDoFs(mesh.e_begin(), mesh.e_end());

// the fundamental solution type and its instance

typedef FundSol< LAPLACE, SLP > fs_t;

fs_t fs;

// the kernel type and its instance

typedef GalerkinKernel< fs_t, dofhandler_t::FunctionType > kernel_t;
kernel_t kernel(fs);

// the integrator type and its instance

typedef GalerkinIntegrator< kernel_t, QuadratureRule<1,2> > integrator_t
integrator_t integrator(kernel)

BETL in action — Compute the Single Layer Potential

// define the element type and instantiate the mesh
Mesh< element_t > mesh(input);

// define the boundary element basis
typedef FEBasis< element_t ,LINEAR,Discontinuous,LagrangeTraits > slp_basis_t;

// the dofhandler type and its instance

typedef DoFHandler< basis_t > dofhandler_t;

dofhandler_t dof_handler;

dof_handler.distributeDoFs(mesh.e_begin(), mesh.e_end());

// the fundamental solution type and its instance

typedef FundSol< LAPLACE, SLP > fs_t;

fs_t fs;

// the kernel type and its instance

typedef GalerkinKernel< fs_t, dofhandler_t::FunctionType > kernel_t;
kernel_t kernel(fs);

// the integrator type and its instance

typedef GalerkinIntegrator< kernel_t, QuadratureRule<1,2> > integrator_t
integrator_t integrator(kernel)

// the type of the matrix generator and an instance

typedef DiscreteOperator< integrator_t, dofhandler_t > discrete_operator_t;
discrete_operator_t discrete_operator(integrator, dof_handler);

// finally, this computes the matrix A

discrete_operator.compute();

BETL Applications

Electric field
5
40

30

|2o
Iwo
0

E-field(kV/mm)
0.1

Transmission problem for acoustic scattering

U= Upn in Q7, U= Us + Ujpe in QF

n us
—Au—w?u=0 in Q7
<—|'H— Uinc [[PYDU]] =0 onl
o+ [ynu] =0 onl

~+radiation condition for ug

— - Kw Vw
Ay = < x KL)

Q- _li4 A, (79“):0
(-3 (L8,

+
Qt: “1l_ A, ('VD"S) -0
(2 +) ’Y/J\?Us

» Calderén operator:

» BIEs

Acoustic scattering: Boundary Integral representations

» BIEs

(-L1+A,) @5”) ~0

nU
_ll o Aw (7? U> — <79Uinc>
(2 +) Inu Yn Uine
» Subtract exterior BIEs from interior BIEs (1st kind)
(A +) (100) = (Toum)
InY Y Yinc
» Add exterior and interior BIEs (2nd kind)

(/ . AAw) <’7D U) — <7Duinc> ’ Aw — w. — W

7& u ’Y/V Uinc

On the discretisation of A = A, + Ao, N A=1— A,

Galerkin scheme

b pU (G p Uin (G
() (- () ()
Inu ® Yn Uinc ®
Test- and trial-spaces may differ for 1st kind and 2nd kind
formulation

v

v

v

Single layer and double layer operators are in place.

v

But: What's about an efficient implementation of the
hypersingular operator for the Helmholtz kernel?
» The hypersingular kernels in A,,_ and A,,, demand a
realisation via integration by parts
» The hypersingular operator in Aa,, is not hypersingular. Can
be implemented via a classical approach.

The hypersingular operator (needed for 1st kind form.)

» Continuous representation

(Dyu,w) = // Gu(y — x) curlry u - curlr , w ds, ds,

—w // y — X) uwny - nyg dsy ds,

» Discrete form for lowest order function spaces

3 3
Dy = Z CBV,BTCT — w2A Z N;VuNT | AT
i=1 i=1

Needed FE-spaces in BETL:

// pw linear discontinuous space :: V, B, N

typedef FEBasis<Element<3>,LINEAR ,Discontinuous,LagrangeTraits> slp_fes_t;
// pw constant space :: B, C

typedef FEBasis<Element<3>,CONSTANT ,Discontinuous,LagrangeTraits> const_fes_t;
// pw linear continuous space irC, A

typedef FEBasis<Element<3>,LINEAR ,Continuous ,LagrangeTraits> lin_fes_t;

Creating the discrete operators V;,, C, N, B, A

» Recalling the discrete form

v

v

v

v

3 3
Dh=> GCBV,BTCT —w?A (D NVuNT | AT

=1 i=1

Dofhandler types

typedef
typedef
typedef

DoFHandler< slp_fes_t > slp_dh_t;
DoFHandler< const_fes_t > const_dh_t;
DoFHandler< lin_fes_t > lin_dh_t;

With an integrator type the bem-operator’'s definition is

typedef

DiscretelOperator< integrator_t, slp_dh_t > slp_operator_t;

...and the sparse operators’ definitions read

typedef
typedef
typedef
typedef

Next step: Create instances and perform the

curl_operator < const_fes_t, lin_fes_t
normal_operator < slp_fes_t , slp_fes_t
adjacency_operator< const_fes_t, slp_fes_t
adjacency_operator< lin_fes_t , slp_fes_t

slp_operator_t slp_operator(integrator, slp_dh);

B_op_t

B_op (const_dh , slp_dh);

slp_operator.compute();
B_op.compute(); // ...and do the same for all other operators!

> curl_op_t;

> normal_op_t;
> B_op_t;

> A_op_t;

computations

What—in fact— has to be done. ..

» Once the operators have been computed the discrete Calderén
operator is given by

—K, BV,BT

MV FD =Dy vi) Ky

» BETL provides methods to build block system out of matrices
or blocks of matrices

» However, BETL encapsulates the Calderén operator in a
simple structure

// declare calderon operator type

typedef driver::helmholtz::CalderonOperator< NO_ACCELERATION > calderon_op_t;
// create instances of calderon operators
calderon_op_t calderon_ext (omega_ext)
calderon_op_t calderon_int (omega_int)
// initialize it with element iterators
calderon_ext.initialize(begin, end);
calderon_int.initialize(begin, end);

// compute them

calderon_ext.compute()
calderon_int.compute();

Notes on the 2nd kind formulation

» 2nd kind formulation demands the implementation of new
kernels for Va.,, Kaw, and Da,

// skeleton for the implementation of V_\Delta\omega
class FundSol< HELMHOLTZ_DIFF, SLP > {
FundSol(complex_t omega_1, complex_t omega_0) { /* ... */ }
void operator () (const ArgRad r, const ArgGP X, const ArgGP VY,
ResultType& result)
{ /* your implementation goes here... %/ }

H

» Now you can use it in the same way as the built-in functions

// define and instantiate the modified Green’s function

typedef FundSol< HELMHOLTZ_DIFF, SLP > fs_t;

fs_t fs(omega_int, omega_ext);

// declare a GalerkinKernel in the same way as before

typedef GalerkinKernel< fs_t, dofhandler_t::FunctionType > kernel_t;

» Naturally, everything can be encapsulated in a simple data
structure again

// declare calderon operator type

typedef driver::helmholtz_diff::CalderonOperator< ACA > calderon_op_t;
// create instance

calderon_op_t calderon(omega_int, omega_ext)

// initialize it with element iterators

calderon.initialize(begin, end);

// compute it

calderon.compute();

// ...compute mass matrix -> glue everything together..

Enhancing the scheme...

» The first kind formulation

u Mnp 0 Ujp
(Anw + Ane,) M = [0 MDN} [t,- C}

nc

is just a special case of the classical Single Trace Formulation
D u u
Z LgAh,wd Ly |:t:| = LZXL‘M |:t{nc:|
d=0 - —=Inc
» L4 are localisation operators

Ly:dofsonlT — dofson [y

» Thanks to their sparsity the implementation of the
Localisation operators can be easily done. BETL provides
generic routines for creating sparse matrices.

A final enhancement

» Multi-trace formulations usually reveal the following matrix

structure
UO
diag(Aw,) + 1/\/11/(?%%,410 %MOIIJIF Ao Z(i = £(tinc)
2 Wext Wext ;1

» What extra work has to be done from an implementation
point of view? In fact not much:

// declare calderon operator type
typedef driver::helmholtz::CalderonOperator< ACA > calderon_op_t;
// create instance
calderon_op_t A_01(omega_ext);
// initialize it with different element iterators for test- and trial-spaces
A_01.initialize(begin_test , end_test,
begin_trial, end_trial);
// compute it!
A_01.compute();
// do the same with the mass matrix
typedef identity_operator< dofhandler_test_t, dofhandler_trial_t > id_op_t;
id_op_t M_01(dofhandler_test, dofhandler_trial);

Tiny case study: wWext = 1, Wint = 2, Fophere = 0.5

» Single trace formulation results (#Elements: 3648)

Res(D\vlchIeV) re
i 055
l 129

» 2nd kind formulation results (#Elements: 2048)

nodal resu\i(Dmch\e') re nodal resu"(DmchIen m
0 04

]v4 ,02
_ —
1.129

1 443 -0 2053 0 7085

BETL's homepage

» Visit BETL at: www.sam.math.ethz.ch/betl

BETL - Boundary Element Template Library

< & |2 | B www.sam.math.ethz.ch, I3 @ o

Boundary

Element
BETL is a C++ template library for the discretisation of boundary integral operators. While it currently

Template p the of boundary integral operators via Galerkin schemes its design

principles allow also for the incorporation of other discretisation schemes such as, e.g., the still popular

About BETL

Lib collocation meth

iprary Over the years s “project has grown slightly bigger than it was originally expected. In its original form BETL
was just intended to serve as set of methods with rather limited functionality for maintaining an existing
industrial Boundary Element solver. Since then BETL has become a fully autonomous tool on which powerful
Boundary Element applications can be buid. BETL'S strength lies in its use of wellknown design principles in

About conjunction with state of the art C++ language features. This ensures the fast development of robust,
extendable, and reliable numerical schemes and implementations which are somehow related to the

Fres discretisation of boundary integral operators.

Documentation Main features of BETL

License BETL mainly aims on the discretisation of quite general boundary integral operators. The following list gives a

rough overview on BETL's main features.

Example « Support of different element types
© 3noded triangular elements
o 6-noded triangular elements
o 4-noded quadrilateral elements
o 8-noded quadrilateral elements
« Lagrangian basis functions of constant, linear, and quadratic order for triangular as well as as for
quadilateral elements
Raviart-Thomas- and Nedelec-type basis functions of lowest order for the 3-noded triangular element
Laplace- and Helmholiz-type fundamental solutions.
 Asetof traces to compute
o single-layer potentials
o double-layer potentials
o hypersingular integral operators
 Asetof integrators
o General integrators are based on formulas developed by S. Sauter and C. Schwab. They cover

.o

Lars Kiethorn
SAM - Seminar for Applied Mathematics

ETH ez

ich
idgenbsiach achicheHochichule 2k Phone: ++41 (0)44 632 6587

W

Last updato FriApr 13 16:59:28 CET 2012 by L Kiehom

www.sam.math.ethz.ch/betl

Conclusion

» BETL is an efficient, modular, extendable and an easy-to-use
BEM library

» BETL provides Laplace- and Helmholtz-type fundamental
solutions

» BETL provides flat/curved triangles/quadrilaterals

» BETL provides constant, linear, and quadratic FE-Spaces for
Nodal based Functions (continuous/discontinuous)

» BETL provides lowest order edge-elements for, e.g., Eddy
Current simulations (continuous/discontinuous)

» BETL provides preconditioners for the most common integral
operators

» Operator preconditiong via dual meshes (Implementation for
Lagrangian FE-spaces is finished. Implementation for Edge
based FE-spaces is almost finished)

» ABPX (Artificial Bramble-Pasciak-Xu) for the Laplacian single
layer potential (G.Of)

Conclusion

» BETL is interfaced with Fast Boundary Element Methods
» BETL utilizes AHMED's parallelism (OpenMP,MPI) [T.Klug,
TU Munich]
» BETL is interfaced with classical Fast Multipole Methods
(FMM) [by G.Of, TU Chemnitz/Graz] (experimental)
» BETL is interfaced with a directional FMM [by M.Messner &
E.Darve] (experimental)
» BETL provides a set of integrators (complete generic
integrators as well as semi-analytic integrators)

» BETL has been tested with gnu & Intel compilers

» BETL utilises cmake as a build system: Linux, MacOS X &
Windows

» BETL relies on well tested open-source libraries

Conclusion

> Up to now BETL has been applied to

Electrostatic problems

Magnetostatic problems

Optimization problems

Eddy current problems

Single-/Multi-trace formulations for the Helmholtz operator

» What the BETL does not offer?

» No n-d discretizations of Bl operators (with n # 3)

No collocation schemes

No evaluations of representation formulae

No adaptive integrators (quasi-singular kernels!)

No support for heterogeneous meshes

No adaptivity at all (e.g., hp-BEM demands modifications on
the ‘model analysis', i.e., modifications on the dofhandler)

vV vy vy

v

vV vy VY VvVYyy

Outlook

» Improve the documentation

» Improve the test routines

» Apply BETL to optimization problems

» Apply BETL to real-world problems again

» Implement stable quadrature schemes [based on work of
C.Schwab]

» Implement higher order spaces for edge-functions
» Improve the MPI-parallelisation (load-balancing!)

» Incorporate NURBS as FE-Space (isogeometric-approach)

	A short overview on BETL
	Boundary Element formulations for scattering problems
	Conclusion & Outlook

