Mathematics of super-resolution biomedical imaging

Habib Ammari

Department of Mathematics, ETH Zürich

Habib Ammari

- Biomedical imaging:
 - Image electrical, optical, and mechanical tissue properties using electromagnetic and elastic waves at single or multiple frequencies.
 - Enhance the resolution, the stability, and the specificity.
- Direct and inverse problems for wave propagation in complex media.
- Build mathematical frameworks and develop effective numerical algorithms for biomedical imaging applications.

- Key concepts:
 - Resolution: smallest detail that can be resolved.
 - Robustness: stability of the image formation with respect to model uncertainty and electronic noise.
 - Specificity: physical nature (benign or malignant for tumors).

- Waves play a key role in biomedical imaging techniques.
- Visualize contrast information on the electrical, optical, mechanical properties of tissues.
- Tissue contrasts:
 - Highly sensitive to physiological and pathological tissue status.
 - Depend on the cell organization and composition.
 - Overall parameters, averaged in space over many cells.
- Recognize the microscopic cell organization and composition from measurements at the macroscopic level.

- Diagnosis and staging of cancer disease.
- Help surgeons to make sure they removed everything unwanted around the margin of the cancer tumor.
- Perform biopsy in the operating room.

- Magnetic permeability $\mu =$ free space = 1.
- Electrical conductivity σ : tissue's ability to transport charges;
- Electrical permittivity (dielectric constant) ε': tissue's ability to trap or to rotate molecular dipoles; determined by the polarization under an external electric field; free space electrical permittivity = 1.
 - σ and ε': frequency-dependent or dispersive; ω: frequency of the alternating current.
 - Capacitive effect generated by the cell membrane structure.
 - σ(ω) = σ₀ + ωε''(ω); ε'': loss factor; σ₀: conductivity at very low frequencies.
 - $\varepsilon(\omega) = \varepsilon'(\omega) i\omega\varepsilon''$: complex permittivity.
- Electrical admittivity $\kappa = \sigma + i\omega \varepsilon'$; macroscopic parameter; represents the electrical properties of the tissue averaged in space over many cells; can be anisotropic.

(本部) (本語) (本語)

• Causality ⇒ Kramers-Krönig relations (Hilbert transform):

$$arepsilon'(\omega) - arepsilon_{\infty} = -rac{2}{\pi} \mathrm{p.v.} \int_{0}^{+\infty} rac{sarepsilon''(s)}{s^2 - \omega^2} ds,$$

 $arepsilon''(\omega) = rac{2\omega}{\pi} \mathrm{p.v.} \int_{0}^{+\infty} rac{arepsilon'(s) - arepsilon_{\infty}}{s^2 - \omega^2} ds,$

• ε_{∞} : dielectric constant at very high frequencies.

- Dispersion: significant change in the dielectric properties over a frequency range.
- Relaxation mechanisms (depend on the tissue):
 - α -dispersion: low frequencies (80 Hz for muscle)
 - β -dispersion: radio frequencies (50 KHz)
 - γ-dispersion: microwave frequencies (25 GHz); σ increases with ω (dipolar reorientation of tissue water); ε' decreases.

- Empirical approaches:
 - Debye model:

$$\varepsilon(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_0 - \varepsilon_{\infty}}{1 + i\omega\tau}$$

• Cole-Cole model:

$$arepsilon(\omega) = arepsilon_{\infty} + rac{arepsilon_0 - arepsilon_{\infty}}{1 + (i\omega au)^{lpha}}$$

 ε₀: dielectric constant at very low frequencies; τ: relaxation time; τ and 0 < α < 1: depend on the nature of the biological material.

• Maxwell's equations:

$$\begin{cases} \nabla \times E = -\frac{\partial H}{\partial t}, \quad \nabla \times H = J + \frac{\partial D}{\partial t}, \\ \nabla \cdot H = 0, \quad \nabla \cdot D = \rho. \end{cases}$$

• Equation of conservation of charge:

$$\nabla \cdot J + \frac{\partial \rho}{\partial t} = 0.$$

• Ohm's law:

$$J = \sigma_0 E \quad \text{in } \Omega \times \mathbb{R}_+. \tag{1}$$

- Total current density $J_{tot} = J + \partial D / \partial t = \sigma_0 E + \partial D / \partial t$.
- Causal constitutive relationship:

$$D(x,t) = \int_{-\infty}^{t} \varepsilon(x,t-s)E(x,s)ds, \quad (x,t) \in \Omega imes \mathbb{R}^{+}.$$

• Time-harmonic solutions:

$$E(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} E(x,\omega) e^{i\omega t} d\omega, \quad H(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} H(x,\omega) e^{i\omega t} d\omega.$$

• Constitutive relation:

$$D(x,\omega) = \varepsilon(x,\omega)E(x,\omega).$$

- Kramers-Kronig relations: frequency-domain expression of causality.
- Maxwell equations:

$$abla imes
abla imes E - \omega^2 ig(arepsilon' + i rac{\sigma}{\omega} ig) E = 0.$$

• $\omega \rightarrow 0$, $E = \nabla u$: *u* solution to the conductivity equation

$$\nabla \cdot (\sigma + i\omega\varepsilon')\nabla u = 0.$$

• Microwave frequencies (slow variations of ε), E_j solution to the Helmholtz equation:

$$\Delta E_j + \omega^2 (\varepsilon' + i \frac{\sigma}{\omega}) E_j = 0.$$

- Optical propagation in biological tissues: three scales.
 - Maxwell's equations in random media: microscopic scale.
 - Radiative transport equation (RTE): mesoscale.
 - Diffusion approximation to the RTE: macroscale.
- Absorption coefficient μ_a; Scattering coefficient μ_s; depend on the wavelength.
- Fluence rate:

$$\frac{1}{c}\frac{\partial\Psi}{\partial t}-\nabla\cdot\left[\frac{1}{3(\mu_{s}+\mu_{a})}\nabla\Psi\right]+\mu_{a}\Psi=0.$$

• Fluence: integral over time of Ψ .

- (λ, μ) : Lamé coefficients; ρ : density.
- Lamé system:

$$\begin{cases} \rho \frac{\partial u}{\partial t^2} - \nabla \lambda \nabla \cdot u - \nabla \cdot \mu \nabla^s u = F & \text{in } \Omega \times \mathbb{R}_+, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega \times \mathbb{R}_+, \\ u(x, 0) = \frac{\partial u}{\partial t}(x, 0) = 0 & \text{in } \Omega. \end{cases}$$

• $\nabla^s = (\nabla + \nabla^T)/2$; *T*: transpose.

- Co-normal derivative: $\frac{\partial u}{\partial n} = \lambda (\nabla \cdot u) \nu + 2\mu \nabla^s u \nu$.
- Strain tensor: $\nabla^s u$.
- Elasticity tensor: $C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}).$
- Stress tensor: $\sigma(u) = \mathbb{C}\nabla^s u$.

- $\mu = 0$: dominant wave type is a compressional wave.
- Pressure $p = \lambda \nabla \cdot u$ in $\Omega \times \mathbb{R}_+$.
- Acoustic wave equation:

$$\begin{cases} \frac{1}{\lambda} \frac{\partial^2 p}{\partial t^2} - \nabla \cdot \frac{1}{\rho} \nabla p = \nabla \cdot F & \text{in } \Omega \times \mathbb{R}_+, \\ p = 0 & \text{on } \partial \Omega \times \mathbb{R}_+, \\ p(x, 0) = \frac{\partial p}{\partial t}(x, 0) = 0 & \text{in } \Omega. \end{cases}$$

• Time-harmonic regime:

$$\begin{cases} \nabla \cdot \frac{1}{\rho} \nabla p + \frac{\omega^2}{\lambda} p = -\nabla \cdot F & \text{in } \Omega, \\ p = 0 & \text{on } \partial \Omega \end{cases}$$

• Density ρ : ultrasound imaging.

• Time harmonic regime:

$$\begin{cases} \nabla \cdot \mu \nabla^s u + \nabla \lambda \nabla \cdot u + \omega^2 \rho u = F & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega. \end{cases}$$

- Shear modulus μ: stiffness depends on the tissue composition; related to abnormal phatological processes.
- Compressional modulus λ : 4 order of magnitude larger than μ .
- Modified Stokes system as $\lambda \to +\infty$:

$$\left\{ \begin{array}{ll} \nabla \cdot \mu \nabla^s u + \nabla p + \omega^2 \rho u = F & \text{in } \Omega, \\ \nabla \cdot u = 0 & \text{in } \Omega, \end{array} \right.$$

$$p\nu + \mu \frac{\partial u}{\partial \nu} = 0$$
 on $\partial \Omega$.

- Remove the compression modulus from consideration.
- Viscosity tissue properties: real and imaginary parts of μ connected by Kramers-Kronig relations.

- Anomaly imaging: take advantage of the smallness of the imaged anomalies.
- Hybrid imaging: one single imaging system based on the combined use of conductivity imaging and acoustic or elastic waves.
 - Conductivity imaging: sensitivity to only the electrical contrast.
 - Spatial resolution: low.
 - Hybrid imaging: Conductivity imaging gives its contrast and acoustic or elastic wave its spatial resolution.
- Spectroscopic tissue property imaging: specific dependence with respect to the frequency of the contrast.
 - Detect the characteristic signature of tumors; determine which are malignant and which are benign: specificity enhancement.
 - Classify micro-structure organization using spectroscopic tissue property imaging: resolution enhancement.
- Plasmonic imaging: take advantage of scattering and absorption enhancements and single particle imaging.

< ロ > < 同 > < 回 > < 回 >

- Anomaly imaging:
 - Conductivity anomalies.
 - Ultrasound and microwave anomalies.
 - Elastic anomalies.
- Hybrid imaging:
 - Acousto-electric effect:
 - Ultrasound-modulated optical tomography;
 - Ultrasonically-induced Lorentz force electrical impedance tomography.
- Spectroscopic imaging:
 - Bio-inspired dictionary matching based approach.
 - Spectroscopic electrical tissue property imaging.

- Acousto-electric effect:
 - Acoustic pressure: p(x, t) = p₀b(x)a(t); p₀: amplitude; b: beam pattern; a: ultrasound waveform.
 - Acousto-electric effect:

 $\Delta \sigma = \eta \sigma p; \quad \eta : \text{ interaction constant.}$

- Acousto-electric imaging:
 - Change of conductivity induces a change of the boundary voltage measurements.
 - Scan the sample, record the boundary variations, and determine the conductivity distribution.

< 1 →

- Acousto-electric imaging: mathematical and numerical framework.
- *u* the voltage potential induced by a current *g* in the absence of acoustic perturbations:

$$\left\langle \begin{array}{c}
abla_x \cdot (\sigma(x)
abla_x u) = 0 \ \mathrm{in} \ \Omega \ , \\
abla_v = g \ \mathrm{on} \ \partial \Omega \ . \end{array} \right\rangle$$

 Suppose σ bounded from below and above and known in a neighborhood of the boundary ∂Ω: σ = σ_{*}; Set Ω' ⊂ Ω where σ is unknown.

• Use of focalized ultrasonic waves with D as a focal spot \rightarrow

$$\sigma_{\delta}(x) = \sigma(x) \bigg[1 + \chi(D)(x) (\nu(x) - 1) \bigg],$$

with $\nu(x) = \eta p(x)$: known.

*u*_δ induced by *g* in the presence of acoustic perturbations localized in the focal spot *D* := *z* + δ*B*:

$$\begin{cases} \nabla_x \cdot (\sigma_\delta(x) \nabla_x u_\delta(x)) = 0 \text{ in } \Omega, \\ \sigma(x) \frac{\partial u_\delta}{\partial \nu} = g \text{ on } \partial \Omega. \end{cases}$$

• Suppose the focal spot D to be a disk and $u \in W^{2,\infty}(D)$. Then,

$$\int_{\partial\Omega} (u_{\delta} - u)g \, d\sigma = |\nabla u(z)|^2 \int_D \sigma(x) \frac{(\nu(x) - 1)^2}{\nu(x) + 1} dx$$
$$+ O(|D|^{1+\beta}),$$

- $O(|D|^{1+\beta}) \leq C|D|^{1+\beta}||\nabla u||_{L^{\infty}(D)}|\nabla^2 u||_{L^{\infty}(D)}$ with C: independent of D and u.
- β : depends only on Ω' , ν , $\sup_{\Omega} \sigma$, $\min_{\Omega} \sigma$.

• Suppose $\sigma \in \mathcal{C}^{0, \alpha}(D)$, $0 \leq \alpha \leq 2\beta \leq 1$. Then

$$\begin{aligned} \mathcal{E}(z) &:= \left(\int_{D} \frac{\left(\nu(x)-1\right)^{2}}{\nu(x)+1} dx\right)^{-1} \int_{\partial\Omega} (u_{\delta}-u) g \, d\sigma \\ &= \sigma(z) \left|\nabla u(z)\right|^{2} + O(|D|^{\alpha/2}). \end{aligned}$$

ε(z): electrical energy density; known function from the boundary measurements.

- ▲ 문 ▶ - ▲ 문 ▶ -

- Substitute σ by $\mathcal{E}/|\nabla u|^2$.
- Nonlinear PDE (the 0–Laplacian)

$$\left(\begin{array}{c} \nabla_{x} \cdot \left(\frac{\mathcal{E}}{\left| \nabla u \right|^{2}} \nabla u \right) = 0 \quad \text{ in } \Omega \ , \\ \frac{\mathcal{E}}{\left| \nabla u \right|^{2}} \frac{\partial u}{\partial \nu} = g \quad \text{ on } \partial \Omega \ . \end{array} \right.$$

- g such that u has no critical point inside Ω' .
- Choose two currents g_1 and g_2 s.t. $\nabla u_1 \times \nabla u_2 \neq 0$ for all $x \in \Omega$.

Reconstruct the conductivity distribution knowing the internal energies:

- Linearized versions of the nonlinear (zero-Laplacian) PDE problems.
- Optimal control approach: minimize over the conductivity the discrepancy between the computed and reconstructed internal energies.
- Optimal control approach: more efficient approach specially with incomplete internal measurements of the internal energy densities.
- Resolution of order the size of the focal spot + stability (wrt measurement noise).
- Exact inversion formulas: derivatives of the data ⇒ used only to obtain a good initial guess.

Differential imaging

• Acoustically modulated optical tomography:

 Record the variations of the light intensity on the boundary due to the propagation of the acoustic pulses.

(日) (同) (三) (三)

Differential imaging

 g: the light illumination; a: optical absorption coefficient; *I*: extrapolation length. Fluence Φ (in the unperturbed domain):

$$\begin{cases} -\Delta \Phi + a\Phi = 0 \text{ in } \Omega, \\ I \frac{\partial \Phi}{\partial \nu} + \Phi = g \text{ on } \partial \Omega \end{cases}$$

- Acoustic pulse propagation: $a \rightarrow a_u(x) = a(x + u(x))$.
- Fluence Φ_u (in the displaced domain):

$$\begin{cases} -\Delta \Phi_u + a_u \Phi_u = 0 \text{ in } \Omega, \\ I \frac{\partial \Phi_u}{\partial \nu} + \Phi_u = g \text{ on } \partial \Omega. \end{cases}$$

- *u*: thin spherical shell growing at a constant speed; *y*: source point; *r*: radius.
- Cross-correlation formula:

$$M(y,r) := \int_{\partial\Omega} \left(\frac{\partial \Phi}{\partial \nu} \Phi_u - \frac{\partial \Phi_u}{\partial \nu} \Phi \right) = \int_{\Omega} (a_u - a) \Phi \Phi_u \approx \underbrace{\int_{\Omega} u \cdot \nabla a |\Phi|^2}_{Taylor + Born}.$$

Differential imaging

• Helmholtz decomposition: $\Phi^2 \nabla a = \nabla \psi + \nabla \times A$.

• Spherical Radon transform:
$$\nabla \psi = -\frac{1}{c} \nabla \mathcal{R}^{-1} \left[\int_0^r \frac{M(y,\rho)}{\rho^{d-2}} d\rho \right].$$

- System of nonlinearly coupled elliptic equations: $\nabla \cdot \Phi^2 \nabla a = \Delta \psi$ and $\Delta \Phi + a \Phi = 0$.
- Fixed point and Optimal control algorithms.
- Reconstruction for a realistic absorption map.
- Proofs of convergence for highly discontinuous absorption maps (bounded variation).

Example of the imaging device. A transducer is emitting ultrasound in a sample placed in a constant magnetic field. The induced electrical current is collected by two electrodes.

- Interaction between v(x, t)ξ and Be₃: induces Lorentz' force on the ions in Ω ⇒ separation of charges ≡ source of current and potential: j_s(x, t) = ^B/_{e⁺} σ(x)v(x, t)τ; e⁺: elementary charge.
- Voltage potential *u*:

$$\begin{cases} -\nabla \cdot (\sigma \nabla u) = \nabla \cdot j_S \text{ in } \Omega, \\ u = 0 \text{ on } \Gamma_1 \cup \Gamma_2, \ \frac{\partial u}{\partial \nu} = 0 \text{ on } \Gamma_0. \end{cases}$$

• Measured intensity: $I(y,\xi) = \int_{r_{-}} \sigma \frac{\partial u}{\partial \nu}$.

• Virtual potential:

$$U := F[\sigma] = \begin{cases} -\nabla \cdot (\sigma \nabla U) = 0 & \text{ in } \Omega, \\ U = 0 & \text{ on } \Gamma_1, \\ U = 1 & \text{ on } \Gamma_2, \\ \partial_{\nu} U = 0 & \text{ on } \Gamma_0. \end{cases}$$

- Wiener deconvolution filter: recover J(x) = (σ∇U)(x) from measured intensities I(y, ξ).
- Recover σ from $J = \sigma \nabla U$.
- Optimal control algorithm:
 - $\min_{\sigma} \int_{\Omega} |\sigma \nabla F[\sigma] J|^2 + \text{regularization term (a prior)}.$
 - Nonconvexity (numerically); high sensitivity to noise.

Direct method

• Viscosity-type regularization method:

$$\begin{cases} \nabla \cdot (\varepsilon I + (J^{\perp} (J^{\perp})^{T}) \nabla U_{\varepsilon} = 0 & \text{in } \Omega, \\ U_{\varepsilon} = x_{2} & \text{on } \partial \Omega. \end{cases}$$

Reconstructed image:

$$\frac{1}{\sigma_{\varepsilon}} := \frac{J^{\perp} \cdot \nabla U_{\varepsilon}}{|J|^2} \to \frac{1}{\sigma} \text{in } L^2$$

as the viscosity parameter $\varepsilon \rightarrow 0$.

글 > - < 글 >

Mathematics for biomedical imaging

Habib Ammari

- Electrolocation for weakly electric fish:
 - Electric organ: generate a stable, high-frequency, weak electric field.
 - Electroreceptors: measure the transdermal potential modulations caused by a nearby target.
 - Nervous system: perceive target's shape.

Mechanism for imaging:

- Form an image from the perturbations of the field due to targets.
- Identify and classify the target, knowing by advance that it belongs to a learned dictionary of shapes.
 - Extract the features from the data.
 - Construct invariants with respect to rigid transformations and scaling.
 - Compare the invariants with precomputed ones for the dictionary.
- Biological targets: frequency dependent electromagnetic properties (capacitive effect generated by the cell membrane structure).
- Spectroscopic measurements of the target's polarization tensor.

• Wave-type electric signal: $f(x, t) = f(x) \sum_{n} a_n e^{in\omega_0 t}$; ω_0 : fundamental frequency.

• Skin: very thin ($\delta \sim 100 \mu$ m) and highly resistive ($\sigma_s/\sigma_0 \sim 10^{-2}$); $\sigma_b/\sigma_0 \sim 10^2$ (highly conductive).

- Target $D = z + \delta'B$; z: location; δ' : characteristic size of the target; $k(\omega) = (\sigma(\omega) + i\omega\varepsilon(\omega))/\sigma_0$; k, σ , and ε : the admittivity, the conductivity, and the permittivity of the target; $\omega_n = n\omega_0$: the probing frequency.
- u_n : the electric potential field generated by the fish:

$$\begin{cases} \Delta u_n = f, & x \in \Omega, \\ \nabla \cdot (1 + (k - 1)\chi(D))\nabla u_n = 0, & x \in \mathbb{R}^2 \setminus \overline{\Omega}, \\ \frac{\partial u_n}{\partial \nu} \bigg|_{-} = 0, \quad [u_n] = \xi \left. \frac{\partial u_n}{\partial \nu} \right|_{+} & x \in \partial\Omega, \\ |u_n(x)| = O(|x|^{-1}), \quad |x| \to \infty. \end{cases}$$

- $\xi := \delta \sigma_0 / \sigma_s$ effective thickness.
- $\lambda(\omega) = (k(\omega) + 1)/(2(k(\omega) 1)).$

- Dipole approximation: $u_n(x) U(x) \simeq \mathbf{p} \cdot \nabla G(x-z)$.
 - G: Green's function associated to Robin boundary conditions.
 - Dipole moment $\mathbf{p} = M(\lambda(\omega), D) \nabla U(z)$.

Polarization tensor

•
$$M(\lambda(\omega), D) = \int_{\partial D} x(\lambda I - \mathcal{K}_D^*)^{-1}[\nu](x) ds(x).$$

Probability of detection in terms of the noise level. Stability of classification based on differences between ratios of eigenvalues of $\Im m M(\lambda(\omega), D)$.

Spectroscopic electrical tissue property imaging

- Differentiate between normal, pre-cancerous and cancerous tissues from electrical measurements at tissue level.
- Frequency dependence of the (anisotropic) homogenized admittivity: $\omega \mapsto K^*(\omega).$
- Relaxation times:
 - 1/ arg max_ω eigenvalues of ℑm K^{*}(ω);
 - Classification: invariance properties;
 - Measure of anisotropy: ratios of the eigenvalues of $\Im m K^*(\omega)$.

Spectroscopic electrical tissue property imaging

The effective admittivity of a periodic dilute suspension:

$$K^* = k_0 \left(I + fM\left(I - \frac{f}{2}M\right)^{-1}\right) + o(f^2).$$

- *M*: membrane polarization tensor

$$M = -\left(\xi \int_{\partial \widetilde{D}} \nu_i \left(I + \xi L_{\widetilde{D}}\right)^{-1} [\nu_i](y) ds(y)\right)_{i,j=1,2}$$

•
$$L_{\widetilde{D}}[\varphi](x) = \frac{1}{2\pi} \text{p.v.} \int_{\partial \widetilde{D}} \frac{\partial^2 \ln |x - y|}{\partial \nu(x) \partial \nu(y)} \varphi(y) ds(y), \quad x \in \partial \widetilde{D}.$$

Spectroscopic electrical tissue property imaging

- Properties of the membrane polarization tensor:
 - *M*: symmetric; invariant by translation;
 - $M(sC,\xi) = s^2 M(C,\frac{\xi}{s})$ for any scaling parameter s > 0.
 - $M(\mathcal{RC},\xi) = \mathcal{R}M(\mathcal{C},\xi)\mathcal{R}^t$ for any rotation \mathcal{R} .
 - Sm M is positive and its eigenvalues, λ₁ ≥ λ₂, have one maximum with respect to ω.
- Relaxation times for the arbitrary-shaped cells:

 $rac{1}{ au_i} := rg\max_{\omega} \lambda_i(\omega).$

- $(\tau_i)_{i=1,2}$: invariant by translation, rotation and scaling.
- Concentric circular-shaped cells: Maxwell-Wagner-Fricke formula (λ₁ = λ₂).
- Nondilute regime: Assume f known ⇒ Classification based on relaxation times.

御を くぼと くぼと

Plasmonic resonant nanoparticles

- Gold nano-particles: accumulate selectively in tumor cells; bio-compatible; reduced toxicity.
- Detection: localized enhancement in radiation dose (strong scattering).
- Ablation: localized damage (strong absorption).
- Functionalization: targeted drugs.

M.A. El-Sayed et al.

Plasmonic nanoparticles

- *D*: nanoparticle; ν : normal to ∂D ; $\varepsilon(\omega)$: complex permittivity contrast; $\lambda(\omega) = (\varepsilon(\omega) + 1)/(2(\varepsilon(\omega) 1)).$
- Neumann-Poincaré operator K^{*}_D:

$$\mathcal{K}_D^*[\varphi](x) = rac{1}{2\pi} \int_{\partial D} rac{\langle x-y,
u_x
angle}{|x-y|^2} \varphi(y) \, ds(y) \,, \quad x \in \partial D.$$

- Symmetrization technique (Calderón's identity): Discrete spectrum $\sigma(\mathcal{K}_D^*)$ in] -1/2, 1/2[.
- Quasi-static plasmonic resonance: dist $(\lambda(\omega), \sigma(\mathcal{K}_D^*))$ minimal $(\Re e \varepsilon(\omega) < 0)$.
- Enhancement of the absorption and scattering cross-sections Q^a and Q^s at plasmonic resonances:

$$Q^{s} + Q^{s} \propto \Im m \operatorname{Trace}(M(\lambda(\omega), D)); \ Q^{s} \propto |\operatorname{Trace}(M(\lambda(\omega), D))|^{2}.$$

• Polarization tensor:
$$M(\lambda(\omega), D) := \int_{\partial D} x(\lambda(\omega)I - \mathcal{K}_D^*)^{-1}[\nu](x) ds(x).$$

Mathematics for biomedical imaging

- 4 同 6 4 回 6 4 回 6 1

Plasmonic nanoparticles

- *K*^{*}_D: scale invariant ⇒ Quasi-static plasmonic resonances: size independent.
- Analytic formula for the first-order correction to quasi-static plasmonic resonances in terms of the particle's characteristic size δ:

M.A. El-Sayed et al.

• Operator-Valued function $\delta \mapsto \mathcal{A}_{\delta}(\omega)$:

$$\mathcal{A}_{\delta}(\omega) = \overbrace{(\lambda(\omega)I - \mathcal{K}_{D}^{*})}^{\mathcal{A}_{0}(\omega)} + (\omega\delta)^{2}\mathcal{A}_{1}(\omega) + O((\omega\delta)^{3}$$

Resonant media for super-resolution

• Super-resolution for plasmonic nanoparticles:

S. Nicosia & C. Ciraci, Cover, Science 2012

Plasmonic nanoparticles

• Resolution: determined by the behavior of the imaginary part of the Green function. Helmholtz-Kirchhoff identity:

$$\Im m G(x, x_0, \omega) = \omega \int_{|y|=R} \overline{G(y, x_0, \omega)} G(x, y, \omega) ds(y), \quad R \to +\infty.$$

- The sharper is $\Im m G$, the better is the resolution.
- Local resonant media used to make shape peaks of $\Im m G$.
- Mechanism of super-resolution in resonant media:
 - Interaction of the point source x₀ with the plasmonic nanoparticles excites high-modes.
 - Resonant modes encode the information about the point source and can propagate into the far-field.
 - Super-resolution: only limited by the resonant structure and the signal-to-noise ratio in the data.

Plan

Resolution, stability, and specificity enhancement:

- Anomaly imaging: scale separation techniques; model reduction;
- Hybrid (or multi-wave) imaging: different types of waves are combined into one imaging system;
- Spectroscopic imaging: source separation techniques;
- Physic-based learning approach: data representation; feature extraction;
- Nanoparticle imaging: scattering and absorption enhancement; single particle imaging.

Mathematical and probabilistic tools:

- Singular-value decomposition; regularization; random media; integral transforms; Kramers-Kronig relations; optimal control;
- Layer potential techniques; asymptotic analysis; spectral analysis.

• = • • = •