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Mathematics for biomedical imaging

• Biomedical imaging:

• Image electrical, optical, and mechanical tissue properties
using electromagnetic and elastic waves at single or multiple
frequencies.

• Enhance the resolution, the stability, and the specificity.

• Direct and inverse problems for wave propagation in complex media.

• Build mathematical frameworks and develop effective numerical
algorithms for biomedical imaging applications.
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Mathematics for biomedical imaging

• Key concepts:

• Resolution: smallest detail that can be resolved.
• Robustness: stability of the image formation with respect to

model uncertainty and electronic noise.
• Specificity: physical nature (benign or malignant for tumors).
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Mathematics for biomedical imaging
• Waves play a key role in biomedical imaging techniques.

• Visualize contrast information on the electrical, optical, mechanical
properties of tissues.

• Tissue contrasts:

• Highly sensitive to physiological and pathological tissue status.
• Depend on the cell organization and composition.
• Overall parameters, averaged in space over many cells.

• Recognize the microscopic cell organization and composition from
measurements at the macroscopic level.
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Mathematics for biomedical imaging

• Diagnosis and staging of cancer disease.

• Help surgeons to make sure they removed everything unwanted around
the margin of the cancer tumor.

• Perform biopsy in the operating room.
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Imaging electrical properties of tissues

• Magnetic permeability µ = free space = 1.

• Electrical conductivity σ: tissue’s ability to transport charges;

• Electrical permittivity (dielectric constant) ε′: tissue’s ability to trap or to

rotate molecular dipoles; determined by the polarization under an external

electric field; free space electrical permittivity = 1.

• σ and ε′: frequency-dependent or dispersive; ω: frequency of
the alternating current.

• Capacitive effect generated by the cell membrane structure.
• σ(ω) = σ0 + ωε′′(ω); ε′′: loss factor; σ0: conductivity at very

low frequencies.
• ε(ω) = ε′(ω)− iωε′′: complex permittivity.

• Electrical admittivity κ = σ + iωε′; macroscopic parameter; represents
the electrical properties of the tissue averaged in space over many cells;
can be anisotropic.
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Imaging electrical properties of tissues

• Causality ⇒ Kramers-Krönig relations (Hilbert transform):

ε′(ω)− ε∞ = − 2

π
p.v.

∫ +∞

0

sε′′(s)

s2 − ω2
ds,

ε′′(ω) =
2ω

π
p.v.

∫ +∞

0

ε′(s)− ε∞
s2 − ω2

ds,

• ε∞: dielectric constant at very high frequencies.
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Imaging electrical properties of tissues
• Dispersion: significant change in the dielectric properties over a frequency

range.

• Relaxation mechanisms (depend on the tissue):

• α-dispersion: low frequencies (80 Hz for muscle)
• β-dispersion: radio frequencies (50 KHz)
• γ-dispersion: microwave frequencies (25 GHz); σ increases

with ω (dipolar reorientation of tissue water); ε′ decreases.
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Imaging electrical properties of tissues

• Empirical approaches:

• Debye model:

ε(ω) = ε∞ +
ε0 − ε∞
1 + iωτ

• Cole-Cole model:

ε(ω) = ε∞ +
ε0 − ε∞

1 + (iωτ)α

• ε0: dielectric constant at very low frequencies; τ : relaxation
time; τ and 0 < α < 1: depend on the nature of the biological
material.
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Imaging electrical properties of tissues

• Maxwell’s equations: ∇× E = −∂H
∂t

, ∇× H = J +
∂D

∂t
,

∇ · H = 0, ∇ · D = ρ.

• Equation of conservation of charge:

∇ · J +
∂ρ

∂t
= 0.

• Ohm’s law:
J = σ0E in Ω× R+. (1)

• Total current density Jtot = J + ∂D/∂t = σ0E + ∂D/∂t.

• Causal constitutive relationship:

D(x , t) =

∫ t

−∞
ε(x , t − s)E(x , s)ds, (x , t) ∈ Ω× R+.
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Imaging electrical properties of tissues
• Time-harmonic solutions:

E(x , t) =
1√
2π

∫ +∞

−∞
E(x , ω)e iωt dω, H(x , t) =

1√
2π

∫ +∞

−∞
H(x , ω)e iωt dω.

• Constitutive relation:

D(x , ω) = ε(x , ω)E(x , ω).

• Kramers-Kronig relations: frequency-domain expression of causality.

• Maxwell equations:

∇×∇× E − ω2(ε′ + i
σ

ω

)
E = 0.

• ω → 0, E = ∇u: u solution to the conductivity equation

∇ ·
(
σ + iωε′

)
∇u = 0.

• Microwave frequencies (slow variations of ε), Ej solution to the Helmholtz
equation:

∆Ej + ω2(ε′ + i
σ

ω

)
Ej = 0.
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Imaging optical properties of tissues
• Optical propagation in biological tissues: three scales.

• Maxwell’s equations in random media: microscopic scale.
• Radiative transport equation (RTE): mesoscale.
• Diffusion approximation to the RTE: macroscale.

• Absorption coefficient µa; Scattering coefficient µs ; depend on the
wavelength.

• Fluence rate:

1

c

∂Ψ

∂t
−∇ ·

[
1

3(µs + µa)
∇Ψ

]
+ µaΨ = 0.

• Fluence: integral over time of Ψ.
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Imaging elastic properties of tissues

• (λ, µ): Lamé coefficients; ρ: density.

• Lamé system:
ρ
∂u

∂t2
−∇λ∇ · u −∇ · µ∇su = F in Ω× R+,

∂u

∂n
= 0 on ∂Ω× R+,

u(x , 0) =
∂u

∂t
(x , 0) = 0 in Ω.

• ∇s = (∇+∇T )/2; T : transpose.

• Co-normal derivative: ∂u
∂n

= λ(∇ · u)ν + 2µ∇su ν.

• Strain tensor: ∇su.

• Elasticity tensor: Cijkl = λδijδkl + µ(δikδjl + δilδjk).

• Stress tensor: σ(u) = C∇su.
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Imaging elastic properties of tissues

• µ = 0: dominant wave type is a compressional wave.

• Pressure p = λ∇ · u in Ω× R+.

• Acoustic wave equation:
1

λ

∂2p

∂t2
−∇ · 1

ρ
∇p = ∇ · F in Ω× R+,

p = 0 on ∂Ω× R+,

p(x , 0) =
∂p

∂t
(x , 0) = 0 in Ω.

• Time-harmonic regime:
∇ · 1

ρ
∇p +

ω2

λ
p = −∇ · F in Ω,

p = 0 on ∂Ω.

• Density ρ: ultrasound imaging.
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Imaging elastic properties of tissues
• Time harmonic regime:

∇ · µ∇su +∇λ∇ · u + ω2ρu = F in Ω,

∂u

∂n
= 0 on ∂Ω.

• Shear modulus µ: stiffness depends on the tissue composition; related to
abnormal phatological processes.

• Compressional modulus λ: 4 order of magnitude larger than µ.

• Modified Stokes system as λ→ +∞:

∇ · µ∇su +∇p + ω2ρu = F in Ω,

∇ · u = 0 in Ω,

pν + µ
∂u

∂ν
= 0 on ∂Ω.

• Remove the compression modulus from consideration.

• Viscosity tissue properties: real and imaginary parts of µ connected by
Kramers-Kronig relations.
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Mathematics for biomedical imaging
• Anomaly imaging: take advantage of the smallness of the imaged

anomalies.

• Hybrid imaging: one single imaging system based on the combined use of

conductivity imaging and acoustic or elastic waves.

• Conductivity imaging: sensitivity to only the electrical contrast.
• Spatial resolution: low.
• Hybrid imaging: Conductivity imaging gives its contrast and

acoustic or elastic wave its spatial resolution.

• Spectroscopic tissue property imaging: specific dependence with respect

to the frequency of the contrast.

• Detect the characteristic signature of tumors; determine which
are malignant and which are benign: specificity enhancement.

• Classify micro-structure organization using spectroscopic tissue
property imaging: resolution enhancement.

• Plasmonic imaging: take advantage of scattering and absorption
enhancements and single particle imaging.
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Mathematics for biomedical imaging

• Anomaly imaging:

• Conductivity anomalies.
• Ultrasound and microwave anomalies.
• Elastic anomalies.

• Hybrid imaging:

• Acousto-electric effect:
• Ultrasound-modulated optical tomography;
• Ultrasonically-induced Lorentz force electrical impedance

tomography.

• Spectroscopic imaging:

• Bio-inspired dictionary matching based approach.
• Spectroscopic electrical tissue property imaging.
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Acousto-electric imaging

• Acousto-electric effect:

• Acoustic pressure: p(x , t) = p0b(x)a(t); p0: amplitude; b:
beam pattern; a: ultrasound waveform.

• Acousto-electric effect:

∆σ = ησp; η : interaction constant.

• Acousto-electric imaging:

• Change of conductivity induces a change of the boundary
voltage measurements.

• Scan the sample, record the boundary variations, and
determine the conductivity distribution.
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Acousto-electric imaging

• Acousto-electric imaging: mathematical and numerical framework.

• u the voltage potential induced by a current g in the absence of acoustic
perturbations: 

∇x · (σ(x)∇xu) = 0 in Ω ,

σ(x)
∂u

∂ν
= g on ∂Ω .

• Suppose σ bounded from below and above and known in a neighborhood
of the boundary ∂Ω: σ = σ?; Set Ω′ ⊂ Ω where σ is unknown.
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Acousto-electric imaging

• Use of focalized ultrasonic waves with D as a focal spot →

σδ(x) = σ(x)

[
1 + χ(D)(x) (ν(x)− 1)

]
,

with ν(x) = ηp(x): known.

• uδ induced by g in the presence of acoustic perturbations localized in the
focal spot D := z + δB:

∇x · (σδ(x)∇xuδ(x)) = 0 in Ω,

σ(x)
∂uδ
∂ν

= g on ∂Ω.
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Acousto-electric imaging

• Suppose the focal spot D to be a disk and u ∈W 2,∞(D). Then,∫
∂Ω

(uδ − u)g dσ = |∇u(z)|2
∫
D

σ(x)
(ν(x)− 1)2

ν(x) + 1
dx

+O(|D|1+β),

• O(|D|1+β) ≤ C |D|1+β ||∇u||L∞(D)|∇2u||L∞(D) with C :
independent of D and u.

• β: depends only on Ω′, ν, supΩ σ,minΩ σ.
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Acousto-electric imaging

• Suppose σ ∈ C0,α(D), 0 ≤ α ≤ 2β ≤ 1. Then

E(z) :=

(∫
D

(ν(x)− 1)2

ν(x) + 1
dx

)−1 ∫
∂Ω

(uδ − u)g dσ

= σ(z) |∇u(z)|2 + O(|D|α/2).

• E(z): electrical energy density; known function from the boundary
measurements.
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Acousto-electric imaging

• Substitute σ by E/ |∇u|2.

• Nonlinear PDE (the 0–Laplacian)
∇x ·

(
E
|∇u|2

∇u
)

= 0 in Ω ,

E
|∇u|2

∂u

∂ν
= g on ∂Ω .

• g such that u has no critical point inside Ω′.

• Choose two currents g1 and g2 s.t. ∇u1 ×∇u2 6= 0 for all x ∈ Ω.
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Acousto-electric imaging

Reconstruct the conductivity distribution knowing the internal energies:

• Linearized versions of the nonlinear (zero-Laplacian) PDE problems.

• Optimal control approach: minimize over the conductivity the
discrepancy between the computed and reconstructed internal energies.

• Optimal control approach: more efficient approach specially with
incomplete internal measurements of the internal energy densities.

• Resolution of order the size of the focal spot + stability (wrt
measurement noise).

• Exact inversion formulas: derivatives of the data ⇒ used only to obtain a
good initial guess.
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Differential imaging

• Acoustically modulated optical tomography:

Light source

Light detectors

Focused acoustic beam

Acoustic source

Spherical acoustic
pulses

Ω y

6

Contrasted anomaly

• Record the variations of the light intensity on the boundary due to the
propagation of the acoustic pulses.
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Differential imaging
• g : the light illumination; a: optical absorption coefficient; l : extrapolation

length. Fluence Φ (in the unperturbed domain):
−∆Φ + aΦ = 0 in Ω,

l
∂Φ

∂ν
+ Φ = g on ∂Ω.

• Acoustic pulse propagation: a→ au(x) = a(x + u(x)).

• Fluence Φu (in the displaced domain):
−∆Φu + auΦu = 0 in Ω,

l
∂Φu

∂ν
+ Φu = g on ∂Ω.

• u: thin spherical shell growing at a constant speed; y : source point; r : radius.

• Cross-correlation formula:

M(y , r) :=

∫
∂Ω

(
∂Φ

∂ν
Φu −

∂Φu

∂ν
Φ

)
=

∫
Ω

(au − a)ΦΦu ≈
∫

Ω
u · ∇a |Φ|2︸ ︷︷ ︸

Taylor+Born

.

Mathematics for biomedical imaging Habib Ammari



Differential imaging

• Helmholtz decomposition: Φ2∇a = ∇ψ +∇× A.

• Spherical Radon transform: ∇ψ = −
1

c
∇R−1

[∫ r

0

M(y , ρ)

ρd−2
dρ

]
.

• System of nonlinearly coupled elliptic equations: ∇ · Φ2∇a = ∆ψ and
∆Φ + aΦ = 0.

• Fixed point and Optimal control algorithms.

• Reconstruction for a realistic absorption map.

• Proofs of convergence for highly discontinuous absorption maps (bounded
variation).
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Lorentz force electrical impedance tomography

absorber

sample with electrodes

magnet (300 mT)

transducer (500 kHz)

oil tank

degassed water

Example of the imaging device. A transducer is emitting ultrasound in a sample
placed in a constant magnetic field. The induced electrical current is collected

by two electrodes.
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Lorentz force electrical impedance tomography

Ω

Γ1

Γ2

Γ0

Γ0y

ξ

τ

support of the acoustic beam

I

Be3

e1

e2

e3

support of x 7→ v(x, t)

• Interaction between v(x , t)ξ and Be3: induces Lorentz’ force on the ions
in Ω ⇒ separation of charges ≡ source of current and potential:
jS(x , t) = B

e+ σ(x)v(x , t)τ ; e+: elementary charge.

• Voltage potential u:
−∇ · (σ∇u) = ∇ · jS in Ω,

u = 0 on Γ1 ∪ Γ2,
∂u

∂ν
= 0 on Γ0.

• Measured intensity: I (y , ξ) =

∫
Γ2

σ
∂u

∂ν
.
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Lorentz force electrical impedance tomography

• Virtual potential:

U := F [σ] =


−∇ · (σ∇U) = 0 in Ω,

U = 0 on Γ1,

U = 1 on Γ2,

∂νU = 0 on Γ0.

• Wiener deconvolution filter: recover J(x) = (σ∇U)(x) from measured
intensities I (y , ξ).

• Recover σ from J = σ∇U.

• Optimal control algorithm:

• min
σ

∫
Ω

|σ∇F [σ]− J|2 + regularization term (a prior).

• Nonconvexity (numerically); high sensitivity to noise.
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Lorentz force electrical impedance tomography

Direct method

• Viscosity-type regularization method:{
∇ · (εI + (J⊥(J⊥)T )∇Uε = 0 in Ω,

Uε = x2 on ∂Ω.

• Reconstructed image:

1

σε
:=

J⊥ · ∇Uε
|J|2 → 1

σ
in L2

as the viscosity parameter ε→ 0.
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Lorentz force electrical impedance tomography
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Lorentz force electrical impedance tomography
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Bio-inspired dictionary matching based approach

• Electrolocation for weakly electric fish:

• Electric organ: generate a stable, high-frequency, weak electric
field.

• Electroreceptors: measure the transdermal potential
modulations caused by a nearby target.

• Nervous system: perceive target’s shape.
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Bio-inspired dictionary matching based approach

Mechanism for imaging:

• Form an image from the perturbations of the field due to targets.

• Identify and classify the target, knowing by advance that it belongs to a

learned dictionary of shapes.

• Extract the features from the data.
• Construct invariants with respect to rigid transformations and

scaling.
• Compare the invariants with precomputed ones for the

dictionary.

• Biological targets: frequency dependent electromagnetic properties
(capacitive effect generated by the cell membrane structure).

• Spectroscopic measurements of the target’s polarization tensor.
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Bio-inspired dictionary matching based approach

• Wave-type electric signal: f (x , t) = f (x)
∑

n ane
inω0t ; ω0: fundamental

frequency.

• Skin: very thin (δ ∼ 100µm) and highly resistive (σs/σ0 ∼ 10−2);
σb/σ0 ∼ 102 (highly conductive).
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Bio-inspired dictionary matching based approach

• Target D = z + δ′B; z : location; δ′: characteristic size of the target;
k(ω) = (σ(ω) + iωε(ω))/σ0; k, σ, and ε: the admittivity, the
conductivity, and the permittivity of the target; ωn = nω0: the probing
frequency.

• un : the electric potential field generated by the fish:

∆un = f , x ∈ Ω,

∇ · (1 + (k − 1)χ(D))∇un = 0, x ∈ R2 \ Ω,

∂un
∂ν

∣∣∣∣
−

= 0, [un] = ξ
∂un
∂ν

∣∣∣∣
+

x ∈ ∂Ω,

|un(x)| = O(|x |−1), |x | → ∞.

• ξ := δσ0/σs effective thickness.

• λ(ω) = (k(ω) + 1)/(2(k(ω)− 1)).
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Bio-inspired dictionary matching based approach

• Dipole approximation: un(x)− U(x) ' p · ∇G(x − z).

• G : Green’s function associated to Robin boundary conditions.
• Dipole moment p = − M(λ(ω),D)︸ ︷︷ ︸

Polarization tensor

∇U(z).

• M(λ(ω),D) =

∫
∂D

x(λI −K∗D)−1[ν](x) ds(x).
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Bio-inspired dictionary matching based approach
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Probability of detection in terms of the noise level. Stability of classification
based on differences between ratios of eigenvalues of =mM(λ(ω),D).
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Spectroscopic electrical tissue property imaging
• Differentiate between normal, pre-cancerous and cancerous tissues from

electrical measurements at tissue level.

• Frequency dependence of the (anisotropic) homogenized admittivity:
ω 7→ K∗(ω).

• Relaxation times:

• 1/ arg maxω eigenvalues of =mK∗(ω);
• Classification: invariance properties;
• Measure of anisotropy: ratios of the eigenvalues of =mK∗(ω).

104 105 106 107 108 109
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ω

λ
1
(C

)

Mathematics for biomedical imaging Habib Ammari



Spectroscopic electrical tissue property imaging

The effective admittivity of a periodic dilute suspension:

K∗ = k0

(
I + f M

(
I − f

2
M

)−1
)

+ o(f 2).

• f : volume fraction; ξ: effective thickness of the membrane; ∂D: cell
membrane; D̃ = D/

√
f : rescaled cell.

• M: membrane polarization tensor

M = −
(
ξ

∫
∂D̃

νj
(
I + ξLD̃

)−1
[νi ](y)ds(y)

)
i,j=1,2

.

• LD̃ [ϕ](x) =
1

2π
p.v.

∫
∂D̃

∂2 ln |x − y |
∂ν(x)∂ν(y)

ϕ(y)ds(y), x ∈ ∂D̃.
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Spectroscopic electrical tissue property imaging

• Properties of the membrane polarization tensor:

• M: symmetric; invariant by translation;
• M(sC , ξ) = s2M(C , ξs ) for any scaling parameter s > 0.
• M(RC , ξ) = RM(C , ξ)Rt for any rotation R.
• =mM is positive and its eigenvalues, λ1 ≥ λ2, have one

maximum with respect to ω.

• Relaxation times for the arbitrary-shaped cells:

1

τi
:= argmax

ω
λi (ω).

• (τi )i=1,2: invariant by translation, rotation and scaling.

• Concentric circular-shaped cells: Maxwell-Wagner-Fricke formula
(λ1 = λ2).

• Nondilute regime: Assume f known ⇒ Classification based on relaxation
times.
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Plasmonic resonant nanoparticles

• Gold nano-particles: accumulate selectively in tumor cells; bio-compatible;
reduced toxicity.

• Detection: localized enhancement in radiation dose (strong scattering).

• Ablation: localized damage (strong absorption).

• Functionalization: targeted drugs.

M.A. El-Sayed et al.
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Plasmonic nanoparticles

• D: nanoparticle; ν: normal to ∂D; ε(ω): complex permittivity contrast;
λ(ω) = (ε(ω) + 1)/(2(ε(ω)− 1)).

• Neumann-Poincaré operator K∗D :

K∗D [ϕ](x) =
1

2π

∫
∂D

〈x − y , νx〉
|x − y |2 ϕ(y) ds(y) , x ∈ ∂D.

• Symmetrization technique (Calderón’s identity): Discrete spectrum
σ(K∗D) in ]− 1/2, 1/2[.

• Quasi-static plasmonic resonance: dist(λ(ω), σ(K∗D)) minimal
(<e ε(ω) < 0).

• Enhancement of the absorption and scattering cross-sections Qa and Qs

at plasmonic resonances:

Qa + Qs ∝ =mTrace(M(λ(ω),D)); Qs ∝
∣∣Trace(M(λ(ω),D))

∣∣2.
• Polarization tensor: M(λ(ω),D) :=

∫
∂D

x(λ(ω)I −K∗D)−1[ν](x) ds(x).
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Plasmonic nanoparticles
• K∗D : scale invariant ⇒ Quasi-static plasmonic resonances: size

independent.

• Analytic formula for the first-order correction to quasi-static plasmonic
resonances in terms of the particle’s characteristic size δ:

M.A. El-Sayed et al.

• Operator-Valued function δ 7→ Aδ(ω):

Aδ(ω) =

A0(ω)︷ ︸︸ ︷
(λ(ω)I −K∗D) +(ωδ)2A1(ω) + O((ωδ)3).
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Resonant media for super-resolution

• Super-resolution for plasmonic nanoparticles:

S. Nicosia & C. Ciraci, Cover, Science 2012
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Plasmonic nanoparticles

• Resolution: determined by the behavior of the imaginary part of the
Green function. Helmholtz-Kirchhoff identity:

=mG(x , x0, ω) = ω

∫
|y|=R

G(y , x0, ω)G(x , y , ω)ds(y), R → +∞.

• The sharper is =mG , the better is the resolution.

• Local resonant media used to make shape peaks of =mG .

• Mechanism of super-resolution in resonant media:

• Interaction of the point source x0 with the plasmonic
nanoparticles excites high-modes.

• Resonant modes encode the information about the point
source and can propagate into the far-field.

• Super-resolution: only limited by the resonant structure and
the signal-to-noise ratio in the data.
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Plan

Resolution, stability, and specificity enhancement:

• Anomaly imaging: scale separation techniques; model reduction;

• Hybrid (or multi-wave) imaging: different types of waves are combined
into one imaging system;

• Spectroscopic imaging: source separation techniques;

• Physic-based learning approach: data representation; feature extraction;

• Nanoparticle imaging: scattering and absorption enhancement; single
particle imaging.

Mathematical and probabilistic tools:

• Singular-value decomposition; regularization; random media; integral
transforms; Kramers-Kronig relations; optimal control;

• Layer potential techniques; asymptotic analysis; spectral analysis.
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