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Abstract

In the years of 1586 to 1592 the Swiss instrument maker and

mathematician Jost Bürgi devised and documented an ingenious

algorithm for efficiently and precisely calculating tables of the sine

function. The manuscript Fundamentum Astronomiæ explaining this

method and Bürgi’s tables had been considered as lost, but have been

rediscovered in 2013 by Menso Folkerts in the University Library of

Wroclaw (Poland). In this presentation we explain and discuss Bürgi’s

algorithm, referred to as Artificium or Kunstweg, with the tools of

modern Linear Algebra. By considering the difference table of the sine

function and by using matrices and eigenvalue problems, we develop a

theory of the algorithm and discuss the rate of convergence.
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Contents

1. Jost Bürgi’s Artificium 4

2. Differences 9

3. Vektors and Matrices 12

4. Eigenvectors and Eigenvalues 15

5. Rate of Convergence 17

6. Examples 21

7. References 25



Jörg Waldvogel, ETH Zürich 4

1. Jost Bürgi’s Artificium

Jost Bürgi’s Artificium algorithm is described in his mathematical text

Fundamentum Astronomiæ, written between 1586 and 1592, but only

rediscovered 2013 by Menso Folkerts [4,5]. Details are given by, among

others, Dieter Launert [6,7], Fritz Staudacher [10] and George Szpiro

[11]. The Artificium is an algorithm for calculating

sin

(
j π2
n

)
, j = 1, . . . , n, n > 1

efficiently and precisely. Bürgi’s example is n = 9 (see p. 5); he also

suggests n = 90, “every degree of the right angle”. We will use the

simpler case

n = 3 : sin(30o) =
1

2
, sin(60o) =

√
3

2
, sin(90o) = 1 .
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From Fundamentum Astronomiæ
As customary in 16th century astronomy, the hexagesimal number system is

used.
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Working from right to left, the algorithm generates a table of numbers.

The ones printed in red are given for clarification only, they are not

carried along.

sin(0o) 0 0 0 0 0 0
2911 780 209 56 15

sin(30o) 2911 780 209 56 15 4
2131 571 153 41 11

sin(60o) 5042 1351 362 97 26 7
780 209 56 15 4

sin(90o) 5822 1560 418 112 30 8
-780 -209 -56 -15 -4

. . . f e d c b a

0. Initial column: a = (a1, a2, . . . , an)
′ ∈ Rn, (almost) arbitrary, for

example, but not necessarily, multiples of the sines to be calculated,

f · sin( j π
2n

), rounded to integers (f = 8 in the above case).

1. Next column to the left: b = (b1, b2, . . . , bn)
′ = cumulative sum of

the aj upwards, first bn = an
2

, then bj = bj+1 + aj , j = n− 1, . . . , 1.

2. Further column to the left: c = (c1, c2, . . . , cn)
′ = cumulative sum

of the bj downwards, first c1 = b1, then cj = cj−1 + bj , j = 2, . . . , n.
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The sine function y = sin(x)
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Continuation to the left

Continuation of the table to the left by repeating Steps 1. and 2. The

Artificium actually is a difference table, built from right to left.

The odd columns a, c, e,g, . . . , normalized by dividing them by their

bottom element, approximate sin( j π2n ) with increasing accuracy.

In the following table the data concerning sin(60o) are collected:

. . . , c2/c3, a2/a3 1351/1560 362/418 97/112 26/30 7/8

. . . , a2/a3 −
√
3/2 2.3724e-7 3.3043e-6 4.6025e-5 6.4126e-4 8.9746e-3

Ratio to next error 13.92823 13.92855 13.93299 13.99526

The limit of the Ratio will be shown to be 7 + 4
√

3 = 13.92820323.
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2. Differences

Difference tables are efficient tools for tabulating functions with

equidistant arguments, e.g. the third powers f(n) = n3:

n f(n) ∆1 ∆2 ∆3

0 0 0
1 6

1 1 6
7 6

2 8 12
19 6

3 27 18
37 6

4 64 24
61 6

5 125 30
91

6 216

• In this example the third dif-

ference is constant

• The top elements and the last

column must be known

• Construction of the table by

cumulative summation from

right to left and from top to

bottom

• Additions only!
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The difference table of the sine function

Prosthaphæresis (co-invented and used by Bürgi, [8])

cos(α) · cos(β) =
1

2

(
cos(α+ β) + cos(α− β)

)
Let α =

π

2
− y − x

2
, β =

y + x

2
; this implies

sin y − sinx = 2 sin
(y − x

2

)
cos
(y + x

2

)
.

Difference Table of f(x) = sinx:

f(x) ∆1 ∆2

sin(x− 2 δ)
2 sin δ · cos(x− δ)

sinx −4 sin2 δ · sinx
2 sin δ · cos(x+ δ)

sin(x+ 2 δ)

The second difference is proportional to the function value

on the same line (with a negative factor)
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Bürgi’s main result

Remarks

• The tabulation of the cumulative sums is the inverse map of the

construction of the difference table

• The initial conditions are a consequence of the symmetries of the

sin- and cos-functions at x = 0 and x = 90o

• The normalization to sin(90o) = 1 needs one division per element

Theorem 1:

For (almost) arbitrary initial columns a = (a1, . . . , an)′ with

n > 1, the normalized odd columns ak/an, ck/cn, ek/en, . . .

converge to sin(k π/2
n ), k = 1, . . . , n.
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3. Vectors and Matrices

In the case n = 3 of p. 4 we define ã = (a1, a2,
a3
2 )′ = H · a, where H

generally is the diagonal matrix with the n diagonal elements

1, 1, . . . , 1, 12 . Now the first two steps of p. 6 are

b =


1 1 1

0 1 1

0 0 1

 ã, c =


1 0 0

1 1 0

1 1 1


︸ ︷︷ ︸

T

b .

Therefore the mapping corresponding to an Artificium step is

c = M a with M = T ·T′ ·H .
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The Bürgi matrix M

The matrix M = T ·T′ ·H describing the Artificium mapping will be

called the Bürgi Matrix. It had already been mentioned by D. Launert

and A. Thom [6]. For n = 5 we obtain

M =



1 1 1 1 0.5

1 2 2 2 1

1 2 3 3 1.5

1 2 3 4 2

1 2 3 4 2.5


.
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The matrix T has a simple inverse

T ∈ Rn×n is the lower triangular matrix filled with ones. For later use

we derive an alternative representation of T. Let I be the unit matrix,

and let L be the unit subdiagonal matrix,

I =


1

1

. . .

1

 , L =


0

1 0

. . .
. . .

1 0

 ∈ Rn×n.

Then we have

T = I + L + L2 + · · ·+ Ln−1 = (I− L)−1.
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The Bürgi matrix M also has a simple inverse

If a(0) = a ∈ Rn is the initial column and the further odd columns are

denoted by a(1) = c, a(2) = e, . . . , the Artificium algorithm may be

written as

a(j) = M a(j−1), j = 1, 2, . . . ,

in modern Linear Algebra known as power iteration (von Mises -

Geiringer). Assume M has only one eigenvalue, λ1, of maximum

magnitude. Then the normalized vectors a(j)/||a(j)|| converge to the

corresponding eigenvector v1 with the property M v1 = v1 λ1.

For solving the eigenvalue problem we consider the inverse of M, which

is tridiagonal (use T of p. 14):

M−1 = H−1 (I− L)′ (I− L).
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The mapping induced by M−1

For n = 4 we obtain

M−1 =


2 −1

−1 2 −1

−1 2 −1

−2 2

 , M̃ =


−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

 .

By introducing the supplemented vector x̃ =
(
0; x;xn−1

)
, exactly

modelling the behaviour of the sine funtion at 0 and at π/2, the

mapping induced by M−1 becomes

y = M̃ x̃
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Results

• The Artificium algorithm inverts the formation of the difference table

of the sine function in the interval [0, π2 ] up to an unknown factor

• Bürgi takes care of this factor by normalizing the leftmost column to

sin(π/2) = 1 by dividig it by its nth element.
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Power iteration

Notation: upper index (j) counts the odd columns:

Initial column a(0) := a ∈ Rn

Further odd columns a(1) := c, a(2) := e, . . .

with components a(j) =
(
a
(j)
1 , a

(j)
2 , . . . , a

(j)
n

)′
.

The Artificium algorithm

a(j) = M a(j−1) , s(j) =
a(j)

a
(j)
n

, j = 1, 2, . . . ,

is the well-known power iteration (R. von Mises, Hilda Geiringer, 1929).

Relevant for convergence theory: Eigenvalue problem of M.
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4. Eigenvectors and Eigenvalues

The Eigenvalueproblem of M

If the eigenvalue λ1 of maximum magnitude is simple, the power

iteration converges direction-wise to the corresponding eigenvector v1

satisfying M v1 = v1 λ1.

M−1 has the same eigenvectors as M, but the reciprocal eigenvalues.

The following theorem may easily be proven using elementary

trigonometry (p. 10) and the mapping induced by the matrix M̃ based

on M−1, representing calculation of the negative second difference.
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Theorem 2. There exists a regular matrix V and a diagonal matrix D

such that M is similar to D, i.e.

M V = V D .

The matrix V =
(
vki
)

with

vki = sin
(
k (i− 1

2
)
π

n

)
, k, i = 1, . . . , n

contains n linearly independent eigenvectors of M as its columns

(i fixed), and D contains the eigenvalues

λi =
1

4 sin2
(
(i− 1

2 ) π
2n

) with λ1 > λ2 > · · · > λn

on its diagonal.
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5. Rate of Convergence

Bürgi’s normalizations for obtaining approximations xkj of sines:

s(j) =
a(j)

a
(j)
n

=⇒ s(j)n = 1

Bürgi’s Artificium algorithm yields

lim
j→∞

s(j) = v1 (first eigenvector)

Norm of the error: e(j) = ‖s(j) − v1‖2

Convergence quotient: q(j) =
e(j−1)

e(j)

Often we have Q := limj→∞ q(j) =
λ1
λ2
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Modified initial column u = a in the basis of V

According to the first equation of Theorem 2, M V = V D, the power

iteration can be represented in a simpler form:

a(j) = M V V−1 a(j−1) ⇒ V−1 a(j) = D V−1 a(j−1) .

Modified iteration vector: u(j) = V−1 a(j)

Modified initial column: u = u(0) = V−1 a(0) = V−1 a

Therefore: u(j) = D u(j−1) or u(j) = Dj u(0)

The rate of convergence depends on the eigenvalues

λi = 1
4/ sin2

(
(i− 1

2 ) π
2n )
)

and on the modified initial column u.
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The eigenvalues (p. 20) satisfy λ1 > λ2 > · · · > λn. With

V−1 = 2
n V′H, the rth component ur of the modified initial column

becomes (r = 1, 2, . . . , n):

ur =
2

n

n∑
i=1

′ sin
(

(r − 1
2 ) i πn

)
ai, Σ′ : last term with half weight

The initial column a must be chosen such that u1 6= 0. The statement

of p. 21 on Q holds, if also u2 6= 0.

Theorem 3

Let r ≥ 2 be the smallest index with ur 6= 0. Then Q = limj→∞ q(j) =
λ1
λr

.
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6. Examples

The cases n = 3 and n = 9 are the introductory example and Bürgi’s example

yielding r = 3. The case n = 4 is one of the many examples with r = 2 and

rather slow convergence Q < 9, where integer initial columns are difficult to

find or do not exist.

n=3: a = (4, 7, 8)′, u2 = 2
3

(
1 · a1 + 0 · a2 − 1 · a3

2

)
= 0, r = 3 ⇒

Q3 =
λ1

λ3
=

sin2(75o)

sin2(15o)
= 7 + 4

√
3 = 13.92820

n=4: a = (4, 7, 9, 10)′, u2 = 0.20111, r = 2 ⇒

Q2 =
λ1

λ2
=

sin2(33.75o)

sin2(11.25o)
= 8.10973

n=9: a = (2, 4, 6, 7, 8, 9, 10, 11, 12)′, u2 = 0, r = 3 ⇒

Q3 =
λ1

λ3
=

sin2(25o)

sin2(5o)
= 23.51281

n=15: a = (1, 2, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 12, 12)′, u2 = u3 = 0,

r = 4 ⇒ Q4 =
λ1

λ4
=

sin2(21o)

sin2(3o)
= 46.88760
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These two examples considering values of n divisible by 15, n = 15m,

were found by Grégoire Nicollier [9]. They are characterized by initial

columns with only a few non-zero elements. The last example shows a

remarkable initial column leading to r = 6 and Q6 ≈ 121, however only

with irrational components (involving the golden ratio

φ = sin 42o+sin 78o

sin 6o+sin 66o = 2 cos 36o = 1+
√
5

2 = 1.618034).

n=15 m: ak = 1 if k = 2m or k = 10m or k = 12m, ak = 0 otherwise,

r = 4 ⇒ Q4 ≈ 49, e.g. Q4 = 48.94 for n=90 (Nicollier)

n=15 m: ak = 1 if k = m or k = 11m, ak = φ if k = 7m or k = 13m,

ak = 0 otherwise, r = 6 ⇒

Q6 =
λ1
λ6
≈ 121, goes back to Q4 ≈ 49 after a few steps if φ is

only approximated, e.g. by φ ≈ 13
8 (Grégoire Nicollier, Sion [9])
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