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Abstract

We present a set of numerical quadrature algorithms which typ-
ically show exponential convergence for analytic integrands, even in
the presence of integrable boundary singularities. The algorithms are
based on mapping the integration interval onto the entire real axis,
together with suitable transformations of the integrand, preferably to
a doubly-exponentially decaying function. The transformed integrals
are approximated efficiently by the trapezoidal rule; the approxima-
tion error may be analyzed by means of Fourier theory.

This method results in a practicable algorithm for computing an-
alytic integrals to a precision of hundreds – or thousands – of digits.
Such high precision may prove meaningful for, e.g., identifying new
numbers (defined by integrals) with combinations of known mathe-
matical constants [1, 3]. An elegant, almost fully automated experi-
mental implementation in the language PARI/GP is given.

Key words: Numerical quadrature, analytic functions, singularities, transfor-
mation method, doubly-exponential decay, trapezoidal rule.

1 Introduction

Many well-known mathematical constants may be expressed as integrals of
simple functions, e.g.

π =

∫ ∞

−∞

d x

1 + x2
.

1



Such integrals may even be regarded as the definition of the number under
consideration. Whereas a few digits of precision (e.g., 16 digits, to be gen-
erous) may suffice for most practical applications, it is a legitimate quest to
know fundamental mathematical constants to much higher precision.

A second reason for being interested in high-precision approximation of
definite integrals is a possible identification of new mathematical constants
in terms of more fundamental, previously known numbers. This has recently
become feasible on the basis of high-precision numerical computaions alone,
by means of so-called integer relation detection algorithms [3]. For example,
inspired by a problem in the American Mathematical Monthly [2], and using
the software [3], D.H. Bailey, Jonathan Borwein and Greg Fee conjectured
the previously unknown closed form

∫ 1

0

arctan(
√

x2 + 2)

(x2 + 1)
√

x2 + 2
dx =

5

96
π2 .

Later this result was rigorously established.

The conjectural discovery of previously unknown relationships (and their
subsequent proof, of course) is in the same line. Consider, e.g., the number

q := (−1

4
) ! = Γ(

3

4
) =

∫ ∞

0

e−x x−1/4 dx . (1)

Not to a complete surprise, there is a relationship between q and elliptic
integrals. Precise numerics and the software [3] yields the conjecture

q2 =
π3/2

2 K( 1√
2
)
, (2)

where K is the complete elliptic integral of first kind (equivalently, this rela-
tion may also be written as q2 =

√
π agm(1, 1/

√
2) with agm(a, b) being the

arithmetic-geometric mean of a and b). This relation is known to specialists.

Finally, we mention that other processes, such as limits or infinite sums,
may be the source of new mathematical constants. Often such processes may
be fomulated as definite integrals, see, e.g., [5], Chapter 3. Therefore, the
envisioned technique involving high-precision evaluation of definite integrals
is expected to have a wide range of applications.



The tool for efficiently approximating definite integrals to high precision
is numerical quadrature, a topic which has been extensively studieded in the
literature on numerical analysis. A comprehensive treatment, together with
an 80-page list of references may be found in Davis and Rabinowitz (second
edition, 1984) [6].

In this paper we propose a unified numerical technique which is well
adapted to the high-precision evaluation of definite integrals of analytic func-
tions. We propose to use monotonically increasing combinations of elemen-
tary functions in order to map the integration interval to the entire real axis.
According to the nature of possible (integrable!) boundary singularities, fur-
ther transfomations are appropriately chosen in order to obtain an integrand
of double-exponential decay. This transformed integral is finally approxi-
mated by means of the trapezoidal rule with an appropriate step h > 0.

For a required precision of d digits the length of the support grows only
as O(log(d) ). With respect to the step size h the discretization error is
exponentially small, typically O(exp(−c ω), sometimes O(exp(−c ω/ log(ω))
or O(exp(−c

√
ω) with some c > 0, ω := 2 π/h. The suggested procedure is

completely flexible with respect to the nature of the boundary singularities.
We will conclude with an experimental code in PARI/GP which is able to
automatically handle a large suite of test integrals to a precision of d digits,
where d may be specified as an arbitrary parameter. The computation time
scales as a (small) power of d.

2 Intervals and Singularities

In order to handle one-dimensional integrals in some generality it is necessary
to consider three types of integration intervals D : the entire real line R,
semi-infinite intervals, and finite intervals. For simplicity, and with no loss
of generality, we restrict ourselves to the following standardized versions of
those intervals:

D =







(−∞, ∞) ,
(0, ∞) ,
(0, b) with 0 < b < ∞ .

(3)

We now consider the integral

C =

∫

D

f(x) dx , (4)



where f is defined and analytic in the open interval D and is such that the
integral (2) over the finite or infinite interval D exists. The reduction to the
standard form (2), (1) (e.g. by a translation) is left up to the user.

At this point it is necessary to exclude highy oscillating integrands f .
Although the methods of this paper may be applicable in particular situa-
tions (e.g. if the integrand is an entire function), more advanced techiques of
complex analysis are needed in general for handling such integrands. With-
out giving precise definitions here we refer to Section 6 for a sketch of this
technique.

Since integrable singularities at the finite boundaries are explicitly allowed
it is necessary to introduce a rough classification of the possible growth or
decay rates of f near an interval boundary. We use x → +∞ and x → +0
as models for an infinite and a finite boundary.

We first restrict ourselves to infinite intervals and consider the right
boundary in the limit x → +∞. Let p, 0 < p < x be a fixed intermedi-
ate point and consider the indefinite integral

F (x) :=

∫ x

p

f(ξ)dξ (5)

which satisfies the initial-value problem

F ′(x) = f(x) , F (p) = 0 , (6)

where primes denote differentiation with respect to x. The integrand f is
integrable as x → +∞ if limx→+∞ F (x) exists. A popular, simple integrable
model function of this class leads to

F (x) = F0(x) := const − 1

α
x−α , α > 0 , (7)

resulting in the integrable integrand

f0(x) = F ′
0(x) := x−α−1 . (8)

Next, we define the family of model integrands fn(x) of exponential type

n, n ∈ Z by Equ. (5) and the recurrence

Fn+1(x) = Fn(ex) , fn(x) = F ′
n(x) , (9)



which implies
fn+1(x) = ex fn(ex) . (10)

Clearly, for every integer n the integrand fn(x) is integrable as x → +∞,
whereby the lower limit p has to be chosen appropriately. In particular:

F0(x) = const − 1
α

x−α , α > 0 ,

F1(x) = const − 1
α

e−α x , F−1(x) = const − 1

α
(log x)−α , (11)

F2(x) = const − 1
α

e−α ex
, F−2(x) = const − 1

α
(log log x)−α

and

f0(x) = x−α−1 ,

f1(x) = e−α x , f−1(x) = x−1 (log x)−α−1 , (12)

f2(x) = ex−α ex
, f−2(x) = x−1 (log x)−1 (log log x)−α−1 .

With increasing exponential type n the integrand fn(x) decays faster
as x → +∞; for strongly negative n the integrand fn(x) approaches non-
integrability. This classification is by far not complete; in fact, even the
functions expressible as finite compositions of exponentials, logarithms and
shifts form an uncountable set. However, already the five model integrands
listed in Equs. (10) cover most of the integrals encountered in the classical
literature. As it was first observed in 1974 by Takahasi and Mori [9], analytic
integrands of the exponential type n = 2, i.e. integrands of the decay rate
displayed by f2 in Equ. (10), referred to as doubly exponential decay, allow
for particularly efficient numerical quadrature algorithms.

In order to carry over this crude classification to finite boundaries with
possibly singular integrands we use the map x 7→ t = 1

x
mapping the infinite

boundary x → +∞ to the finite boundary t → +0. By using the substitution
ξ = 1/τ the integral (3) becomes

F (x) = F (
1

t
) =

∫ 1/t

p

f(ξ) dξ =

∫ 1/p

t

g(τ) dτ =: G(t) , (13)

where

g(τ) = f(
1

τ
) τ−2 . (14)



By applying (12) to the model functions fn from Equ. (10) and denoting the
resulting integrands by gn(t) we obtain

g0(t) = tα−1 ,

g1(t) = t−2 e−α/t , g−1(t) = t−1 (log
1

t
)−α−1 , (15)

g2(t) = t−2 e
1

t
−α e1/t

, g−2(t) = t−1 (log
1

t
)−1 (log log

1

t
)−α−1 .

Clearly, gn(t) are integrands with an integrable boundary singularity as
t → +0; we define gn(t) as the model integrand of exponential type n as
t → +0. Note that a finite boundary with a regular integrand is modeled by
the exponential type 0, i.e. by g0(t) with α = 1.

Given an interval and an explicitly defined integand f , the model func-
tions in (10), (13) allow to read off the exponential types of the integrand at
the two interval bondaries. Note that “algebraic” (as opposed to “exponen-
tial”) transformations x 7→ xβ, t 7→ tβ, β > 0 in Equs. (11) or (13) do not
change the exponential type of fn or gn.

3 Transformations

Consider now the integral (2) of f over the interval D defined in (1), where
the type of D and – if necessary – the value b ∈ (0, +∞) are given, and f
is analytic and integrable in D. We assume that the exponential types nl

and nr (both integers) of f at the left and right boundaries are known. In
the following we assume nl ≤ 2, nr ≤ 2 for simplicity. Most of the integrals
found in the classical literature will be covered; nevertheless, this restrictioon
may easily be overcome.

Following the general concept of transformation methods (see, e.g., [8])
we will use a mapping of the form

x = Φ(t), t ∈ R (16)

in order to transform the integral (2) to an integral over the entire real line
R. Furthermore, we will follow the recommendation of Takahasi and Mori
[9] and tune the mapping in such a way that the resulting integrand decays
doubly exponentially (i.e. of exponential type 2) on both sides. If D is not
the entire real line the mapping (14) must be chosen such that D is the



image of R, otherwise (14) must be an isomorphism of R. We thus adopt the
strategy of mapping the integration interval D onto R first; then it suffices
to handle integrals over the entire real line. This strategy is exactly opposite
to the conventional wisdom of avoiding infinite intervals by mapping them
to finite intervals first.

The functions Φ defining the mappings must be defined and monotonically
increasing on R. Since we are working with analytic integrands we restrict
ourselves to analytic mappings. For practical reasons we choose simple com-
binations of elementary functions, taking advantage of the highly optimized
algorithms for evaluating elementary functions in arbitrary precision which
are available in many mathematical software systems.

We suggest to compose the mapping Φ : t 7→ x = Φ(t) in three steps
E, F, G via the auxiliary variables u and v according to the sequence of
mappings

t ∈ R
E7−→ u ∈ R

F7−→ v ∈ R
G7−→ x ∈ D . (17)

First step. The goal of the outermost mapping, G : v 7→ x = G(v), is
to map the entire v-axis onto D by preserving the exponential types of the
integrand at the boundaries of D. By using the definitions

G0(v) := v +
√

1 + v2 = 1
−v +

√
1 + v2

,

G1(v) :=
G0(v)

1 + G0(v)
,

(18)

where the equivalent second expression in the first line avoids cancellation
for v < 0, the mapping G will be chosen as

x = G(v) =







v if D = (−∞, ∞) ,
G0(v) if D = (0, ∞) ,
b G1(v) if D = (0, b) ; b − x = b G1(−v) .

(19)

The expression for b−x given in the third line allows to compute the distance
from the right boundary b in the case of a finite interval D without loss of
accuracy.

Second step. For the intermediate mapping, F : u 7→ v = F (u), we
conveniently choose

v = F (u) := sinh(u) ; (20)



every application of F simultaneously increases the exponential type of the
integrand at both boundaries by 1. Therefore, the more strongly decaying
boundary reaches the exponential type 2 after m := 2−max(nl, nr) iterations
of F . We mention the convenient relations

G0(F (u)) = eu , G1(F (u)) =
1

1 + e−u
, 1 − G1(F (u)) =

1

1 + eu
, (21)

which give simple expressions for the composition of G0 or G1 with the first
iteration of F .

Third step. For the innermost mapping, E : t 7→ u = E(t), we suggest to
use the definitions

E0(t) := t + et , E1(t) := −E0(−t) = t − e−t . (22)

Each application of E0 increases the right exponential type by 1 and leaves
the left exponential type unchanged (and vice versa for E1). Therefore, the
innermost step in the process of composing the mapping Φ is given by

u = E(t) =







t if nl = nr ,
[E0(t)]

n if nl > nr ,
[E1(t)]

n if nl < nr ,
(23)

where n := |nl−nr|, and the exponent indicates the number of compositional
iterations.
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Figure 1: Graph of the integrand in (24) with a slowly decaying amplitude function

4 Highly Oscillatory Analytic Integrands

The best strategy for evaluating integrals of highly oscillatory analytic func-
tions is to avoid the regions of oscillatory behaviour as much as possible.
For many of the usually encountered oscillatory analytic integrands regions
of non-oscillatory behaviour may readily be found; then Cauchy’s theorem
and calculus of residues as a paper-and-pensil preparatory step yields a non-
oscillatory integral of the same value.

The efficiency and simplicity of this technique will be demonstrated by
means of a constructed example which superficially appears to be rather
nasty (cf. the graph in Figure 1): Let

I(a, b) :=

∫ b

a

sin z

log(1 + z)
dz , (24)

find I(0, ∞) = lima→+0, b→+∞ I(a, b). The naive approach is to write I(0, ∞)
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Figure 2: Extension and deformation of the path of integration of the integrals I1

and I2

as a series,

I(0,∞) =

∞
∑

n=0

∫ (n+1)π

nπ

sin z

log(1 + z)
dz , (25)

of terms of alternating signs tending to zero. Therefore, according to Cauchy’s
theorem (on infinite alternating sums), the series converges (albeit extremely
slowly), and the integral I(0,∞) exists. With luck, extrapolation techniques
applied to the partial sums of the series (25) may yield I(0, ∞) to a limited
accuracy, see, e.g., [5].

In our more advanced approach we observe that the integrand is non-
oscillatory on the imaginary axis z = i y, y ∈ R. In order to deform the
path of integration to the imaginary axis, while still working with existent
integrals, we use Euler’s famous identity eiz = cos z + i sin z for splitting up



sin z as sin z = (eiz − e−iz)/2i. Then we have

I(a, b) = I1(a, b) − I2(a, b) (26)

where

I1(a, b) :=

∫ b

a

eiz

2 i log(1 + z)
dz , I2(a, b) :=

∫ b

a

e−iz

2 i log(1 + z)
dz . (27)

We now consider each term of (26) separately and try to modify the path
of integration in such a way that it may be deformed into a subset of the
imaginary axis without changing the value of the corresponding integral. In
the case of I1 (see Figure 2, left frame) consider the cicular arc z = b eiϕ,
0 < ϕ < π/2 from b to i b as an extension of the original path of integration,
i.e. of the real interval [a, b]. By estimating from above the corresponding
integral

C1(b) :=

∫ π/2

0

b ei (ϕ+z)

2 log(1 + z)
dϕ with z = b eiϕ (28)

over this arc, we will show that C1(b) vanishes in the limit b → ∞. For b > 1
we obtain

|C1(b)| ≤
∫ π/2

0

b e−b sin ϕ

2 log b
dϕ ≤

∫ π/2

0

b e−b·2 ϕ/π

2 log b
dϕ =

π

4 log b
(1−e−b) ; (29)

therefore we indeed have limb→∞ C1(b) = 0. It is seen that a similar effect
is achieved with the integral I2 by extending the path of integration by the
lower arc z = b eiϕ, 0 > ϕ > −π/2 (see Figure 2, right frame). In general,
extensions of the path of integration should be attempted in regions of small
values of the integrand.

Since both integrands of Equ. (27) are free of singularities in the regions
delineated in Figure 2, the integrals over the extended paths from a to i b
and from a to −i b, respectively, may be replaced by the integrals over the
direct connections along the imginary axis, according to Cauchy’s theorem.
Hereby the origin must be avoided, as it is indicated by the small circular
arcs in Figure 2. Reason: although the original integrand in (24) is analytic
in z = 0, it is safer to speak of a removable singularity ; in fact, the removable
singularity spawns poles of first order at z = 0 in the integrands of I1 and I2

of Equ. (27).



Collecting everything, we obtain

I(0, ∞) = lim
a→+0

b→+∞

(
∫ i b

a

eiz

2 i log(1 + z)
dz −

∫ −i b

−a

e−iz

2 i log(1 + z)
dz

)

, (30)

where the integrations are along the imaginary axis, sparing the origin. By
using calculus of residues, the contribution of the origin in the limit a → +0
is found to be

2π i

4
Res

eiz

2 i log(1 + z)

∣

∣

∣

∣

z=0

+
2π i

4
Res

e−iz

2 i log(1 + z)

∣

∣

∣

∣

z=0

=
π

2
.

Parametrizing the integrals in (30) by y ∈ R according to z = i y or z = −i y,
respectively, finally yields

I(0, ∞) =
π

2
+

∫ ∞

0

Re
1

log(1 + i y)
e−y dy . (31)

For safely evaluating the integrand we recommend the identity (35) of
the following section, which is valid for complex arguments as well. The
exponential types of the left and right boundaries are 0 and 1, respectively;
the transformations to R and doubly exponential decay in the new integration
variable s, as suggested in Section 3 are therefore

y = et , t = s − e−s . (32)

As an example, the automatic evaluation of (31) to a requested accuracy of
45 digits by the routines of the next section yields

I(0, ∞) =
π

2
+ 0.470222288352813267454402348362864678273093140. (33)

Using step bisection totally takes 27, 50, 92, or 172 evaluations of the inte-
grand, respectively, in order to obtain 6, 12, 23, or 45 correct digits. This
nicely reflects exponential convergence, i.e. halving the step doubles the
number of correct digits.



5 An Implementation in PARI/GP

Any mathematical software offering arithmetics – including elementary func-
tions – in arbitrary precision may serve as a tool for implementing the algo-
rithm described in the previous sections. We choose PARI/GP [4] because it
is available as freeware and because it has a simple and versatile command
structure. Furthermore, it executes surprisingly fast.

For a crude checkout of our algorithm we will use a test suite of 25 inte-
grals I1 through I25 over intervals of all three types:

I1 =
∫ 1

0
dx, I2 =

∫ 1

0
ex dx,

I3 =
∫ 1

0
x63 dx, I4 =

∫ 1

0
sin(8 π x2) dx,

I5 =
∫ 1

0

1

1 + exp(x)
dx, I6 =

∫ 1

0

1

x + 0.5
dx,

I7 =
∫ 1

0

√

12.25 − (5 x − 3)2 dx, I8 =
∫ 1

0

10

1 + (10 x − 4)2
dx,

I9 =
∫ 1

0

1
√

x (1 − x)
dx, I10 =

∫ 1

0

cos(2πx)√
1 − x

dx,

I11 =
∫ 1

0
x−3/4 (1 − x)−1/4 (3 − 2 x)−1 dx, I12 =

∫ 1

0
x−3/4 L(x)−3/4 dx,

I13 =
∫ 1

0
x0.21

√

L(x) dx, L(x) := log
1

x
, I14 =

∫ 1

0
L(x)

√
L(x) dx,

I15 =
∫ 1

0
x0.6 L(x)−0.7 cos(2 L(x)) dx, I16 =

∫ ∞
0

1

x2 + exp(4 x)
dx,

I17 =
∫ ∞
0

1

1 + x2 + x4

1+exp(−x)

dx, I18 =
∫ ∞
0

1

x2/3 + x3/2
dx,

I19 =
∫ ∞
0

e−
√

x dx, I20 =
∫ ∞
0

Re
e−x

log(1 + i x)
dx,

I21 =
∫ ∞
−∞

1

1 + x2 + x4

1+exp(−x)

dx, I22 =
∫ ∞
−∞

1

x2 + exp(4 x)
dx,

I23 =
∫ ∞
−∞(1 + x2)−5/4 dx, I24 =

∫ ∞
−∞ exp(−

√
1 + x2) dx,

I25 =
∫ ∞
−∞

1

x2 +
1

cosh(x)

dx



The integrands are analytic in the open intervals; some of them have in-
tegrable boundary singularities. For convenience the integrands are chosen
as simple expressions in terms of elementary functions; otherwise they are
more or less arbitrary. The first eight integrals over the finite interval (0, 1)
have regular integrands. However, I3, I4, I8 may challenge the algorithm by
a sudden steep slope, oscillatory behaviour, or a narrow spike. In the inte-
grals I9 through I15 over the interval (0, 1) both boundaries carry algebraic
or logarithmic singularities, all of exponential type 0. In some of the inte-
grals I16 through I25 over half-infinite and doubly infinite intervals the finite
boundary carries an algebraic singularity (I18, I19). The intricate details of
the behaviour of the intgrands at infinity hardly affect the performance of
the algorithm.

For coding the original integrands (in any language) a few simple and
well-known precautions need to be taken in order to avoid error stops due
to overflow and for reducing the numerical effects of round-off errors and of
cancellation:

(i) The integrand needs to be evaluated in such a way that no overflow or
underflow interrupts occur. The exponential function exp(x) is particularly
prone to this. Our implementation assumes that exp(x) works without an
error stop for every x < maxexp where maxexp > 0 is some large overflow
limit. In the underflow region x < −maxexp we assume exp(x) := 0 without
producing an error.

In contrast to this, however, the current version of PARI/GP produces
an error stop in calls of exp(x) with x < −maxexp. In the code below we
use the user-defined function exp0(x) instead of exp(x) in order to avoid
this problem. In the current version of PARI/GP the overflow limit is about
maxexp = 372 130 000. In our examples the much less prodigious value of
maxexp = 10 000 will suffice.

(ii) For integrals over finite intervals (0, b) with boundary singularities
the user has to make sure that both distances from the boundaries, x and
x1 := b−x, are known accurately, even if one of them is small. Both distances
need to be transmitted after having been computed independently as stated
in the third line of Equ. (19). The original integrand must be coded by using
the transmitted values of the two distances.

(iii) Avoid expressions prone to cancellation, such as 1 − cos(x). Use
numerically stable forms instead, mostly stemming from well-known mathe-



matical identities, e.g.

1 − cos(x) = 2 sin2(
x

2
) . (34)

A less known example is

log(1 + x) = asinh(x
1 + x/2

1 + x
) , (35)

useful in some of the intgrands of the test suite or, e.g., for accurately com-
puting (1 + 1/n)n for large values of n.

Below is the sample of code fct for the entire test suite in PARI/GP.
Following Remark (ii) above both distances x = x and x1 = b − x from
the interval boundaries are transmitted to fct, together with the integer
variable ind defining the specific integrand to be considered. In our code all
variables not listed as function parameters are global variables. The codes
for the integrands of I16, I17, I21, I22, I25 exemplify a technique for avoiding
overflow. The codes for the integrands of I9, I10, I12, I20 offer examples of the
implementation of Remark (iii) to avoid numerical cancellation. No attempt
is made for carrying out these simple precautions automatically. With I20

the value reported in (33) of the integral (31) is computed. The function
exp0 defined below is explained in Remark (i) above.

{fct(x,x1,ind) =

if(ind== 1, f=1); if(ind== 2, f=exp0(x));

if(ind== 3, f=x^63); if(ind== 4, f=sin(8*Pi*x^2));

if(ind== 5, f=1/(1+exp0(x))); if(ind== 6, f=1/(x+1/2));

if(ind== 7, f=sqrt(49/4-(5*x-3)^2)); if(ind==8,f=10/(1+(10*x-4)^2));

if(ind== 9, f=1/sqrt(x*x1)); if(ind==10,f=cos(2*Pi*x1)/sqrt(x1));

if(ind==11, f=(x*x1)^(-1/4)/(3-2*x)/sqrt(x));

if(ind>=12 & ind<=15, L = if(x<3/4, -log(x), asinh((x1-x1^2/2)/x)));

if(ind==12, f=(x*L)^(-3/4)); if(ind==13, f=x^(21/100)*sqrt(L));

if(ind==14, f=L^sqrt(L)); if(ind==15,f=x^(3/5)*L^(-7/10)*cos(2*L));

if(ind==16, if(x<maxexp, f=1/(x^2+exp0(4*x)), f=0));

if(ind==17, d=1+x^2; if(x>-maxexp, d=d+x^4/(1+exp0(-x))); f=1/d);

if(ind==18, f=1/(x^(2/3)+x^(3/2))); if(ind==19, f=exp0(-sqrt(x)));

if(ind==20, f=exp(-x)*real(1/asinh((I*x-x^2/2)/(1+I*x))));

if(ind==21, if(x<maxexp, f=1/(x^2+exp0(4*x)), f=0));



if(ind==22, d=1+x^2; if(x>-maxexp, d=d+x^4/(1+exp0(-x))); f=1/d);

if(ind==23, f=(1+x^2)^(-5/4)); if(ind==24, f=exp0(-sqrt(1+x^2)));

if(ind==25, d=x^2; if(abs(x)<maxexp, d=d+1/cosh(x)); f=1/d); f}

{exp0(x) = if(x>-maxexp, exp(x), 0)}

The subroutine Data defines the interval types, the exponential types of
the boundaries and reference values for the exact integrals. The interval
length and type are encoded in the single quantity b := bvec[ind], where a
value b ∈ (0,∞) codes for the finite integration interval (0, b), b = ∞ codes
for the half-infinite interval (0,∞), and b = 0 codes for the doubly infinite
interval (−∞,∞). As a mnemonic, one may think of the interval code b
as the sum of the two interval boundaries, where (−∞) + (∞) := 0. In
absence of a representation of ∞ in PARI/GP we arbitrarily use any number
≥ inf := 230 to represent ∞.

For simplicity the vectors left, right of the exponential types must be
defined by the user. An automatic determination of these exponential types
from values of the integrands is not difficult, however.

For conveniently assessing the the errors of the final results we endow
Data with reference values for the test integrals. Only for the integrals
I14, I16, I17, I20, I21, I22, I25 no explicit expressions could be found; we include
67-digit approximations. For all other integrals the PARI codes for the closed
forms may be found in Data. Note that the quarter-integer values of the
gamma function (I12) and the arithmetic-geometric mean agm (I23) are con-
nected via Equ. (2) and the relation (− 1

4
)! (1

4
)! = π/

√
8.

The intgrals I4 and I10 are related to the Fresnel integrals S(z), C(z), see
[1], Section 7.3,

I4 =
S(4)

4
, I10 = C(2) .

These, in turn, are connected with the complementary error function erfc via
the complex relation [1], 7.3.22,

C(x) + i S(x) =
1 + i

2

(

1 − erfc(
(1 − i)

2

√
π x)

)

. (36)

An appropriate algorithm for evaluating erfc to high precision for complex



arguments z with Re z > 0 may be based on the continued fraction [1], 7.1.14,

erfc(z) =
e−z2

√
π

· 1 |
| z

+
1
2
|

| z
+

1 |
| z

+
3
2
|

| z
+

2 |
| z

+
5
2
|

| z
+ . . . . (37)

The procedure CIS below evaluates Equ. (36) to the current working preci-
sion, where for obtaining a convenient stopping criterion forward evaluation
of the continued fraction (37) is used.

Of particular interest are

I11 = π 21/2 3−3/4

I15 = Γ(0.3) Re ((1.6 + 2 i)−0.3)
I24 = 2 K1(1) (modified Bessel function of 2nd kind) ,

expressions that could not be found by Maple. Mathematica cannot find
I24 either but correctly finds I15. I11 is reported incorrectly by including a
superfluous factor of −i. Regarding the remarks in Section 1 it is interesting
to note that the Inverse Calculator [3] was able to correctly identify 8 among
the 16 nontrivial closed forms, based on 20-digit approximations alone.

{Data() =

bvec =[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,inf,inf,inf,inf,inf,0,0,0,0,0];

left =[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0 , 0 , 0 , 0 , 0 ,0,0,0,1,0];

right=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1 , 0 , 0 , 1 , 1 ,0,1,0,1,0];

nb=length(bvec); rpi=sqrt(Pi);

\\67 digits are given below

ex14=2.595132461375600632865453596449932552478419572986913447335431561632;

ex16=0.2461875948449699884557359935932994086783830793908650627278504508893;

ex17=0.9412901354281974848153186739811774604944392064590013284767270879056;

ex20=0.4702222883528132674544023483628646782730931405843339205454011619235;

ex21=2.352556240156597452006557266749073664089683637842586132781113858813;

ex22=3.160322869748470870443040097285096584359515878397156175719639506290;

ex25=3.474037783744718107096426978387195272872810866563003223677556283784;

exact=[1, exp(1)-1, 1/64, imag(CIS(4)[1])/4, 1/2-log(cosh(1/2)),\

log(3), (sqrt(132)+sqrt(117)+49/2*(asin(6/7)+asin(4/7)))/20,\

Pi-atan(10/23), Pi, real(CIS(2)[1]), Pi*sqrt(2/3/sqrt(3)),\

sqrt(2)*gamma(1/4), sqrt(Pi)*500/1331, ex14,\

gamma(3/10)*real((8/5+2*I)^(-3/10)),ex16,ex17,6/5*Pi*sqrt(2-2/sqrt(5)),\

2, ex20, ex21, ex22, 2*agm(1,sqrt(2)), 2*besselk(1,1), ex25]}



{CIS(x) = z=rpi/2*(1-I)*x; \\[1] 7.3.22, erfc by 7.1.14, forw.eval.

u0=[0,1.0]; u=[1.0,z]; q0=u0[1]/u0[2]; q=u[1]/u[2]; n=0;

while(q!=q0, n=n+1; u1=z*u+n/2*u0; u0=u; u=u1; q0=q; q=u[1]/u[2]);

[(1+I)/2*(1-exp(-z^2)/rpi*q), n]}

The essential operations of our algorithm are carried out in the subrou-
tines FCT, trapez and halfstep. The function FCT evaluates the trans-
formed integrand, where the parameters b, L, R specify the interval type and
the exponential types of the boundary singularities.

{FCT(t,b,L,R,ind) = D=sign(L-R); dt=1;

\\ b: interval type: b=0:(-inf,inf), 0<b<inf:(0,b), b=inf:(0,inf)

\\ L,R = boundary types, restricted to -1 (subpolyn.) .. 1 (exp.)

for(i=1,abs(L-R), eDt=exp(D*t); dt=dt*(1+eDt); t=t+D*eDt);

for(i=1,1-max(L,R), dt=dt*cosh(t); t=sinh(t));

if(b==0, dx=dt*cosh(t); x=sinh(t),

if(b<inf, e=exp(t)/2; e1=1/4/e; ch=e+e1;

x=b*e/ch; x1=b*e1/ch; dx=dt*b/2/ch^2, x=exp(t); dx=dt*x)

); dx*fct(x,x1,ind)}

The procedure trapez accumulates the trapezoidal sum with step h and
an arbitrary offset. For truncating the trapezoidal sums according to the
current working precision the sums are accumulated outwards in both di-
rections, starting from an appropriate inner point, offset. Summation is
stopped if the addition of two consecutive terms does not change the current
sum. Owing to the careful internal handling of guard digits in PARI/GP this
direct summation from large to small terms suffices in all cases of the test
suite. Backwards summation from small to large absolute values does not
significantly improve the accuracy. The procedure returns the trapezoidal
sum S+T and the number j+k of evaluations of the integrand.

{trapez(h,offset) = j=0; S00=1.9; S0=1.1; S=0; s=offset+h;

while(S!=S00, j=j+1; s=s-h; S00=S0; S0=S; S=S+h*FCT(s,b,L,R,ind));

k=0; T00=1.9; T0=1.1; T=0; t=offset;

while(T!=T00, k=k+1; t=t+h; T00=T0; T0=T; T=T+h*FCT(t,b,L,R,ind));

[S+T, j+k]}



Refinement of the trapezoidal sum by step halving and comparison with
the exact values is done in halfstep. The function call dig(error) computes
the number of correct digits in a result with a given relative error.

{halfstep(tol) =

h=1; sh=0; res=trapez(h,sh); val=res[1]; v0=val+1;

evec=dig(val/ex-1); count=res[2]; cvec=count;

while(abs(val-v0)>tol, h=h/2;

v0=val; res=trapez(2*h,sh+h); val=(val+res[1])/2; count=count+res[2];

evec=concat(evec,dig(val/ex-1)); cvec=concat(cvec,count);

)};

{dig(err) = if(err!=0, floor(-log(abs(err))/l10), dec)}

The calling program loops through all examples of the test suite and
prints the number of correct digits and the accumulated number of function
evaluations at every stage. Also, the final approximation of the integral
is printed (although not shown in the table of Section 8). For efficiently
truncating the step halving algorithm its convergence rate has to be known.
For many common integrals, in particular for the integrals in our test suite
(except for I17 and I25), this convergence rate is O(exp(−c/h)) with some
constant c > 0 or close to this.

If halfstep is stopped with the toleance tol = 10−dec/2 the final approx-
imation has just about reached the accuracy of dec digits. If the convergence
rate is slower, as it appears to be the case in I25, the required accuracy may
not quite be reached. The choice of a smaller value of tol may help, at the
risk of unnecessarily doubling the computational effort in other cases.

The program given below is the actual call for approximating the 25 test
integrals of fct in 67-digit working precision.

\\ Calling program, choose dec

dec=67; default(realprecision,dec); tol=1/10^floor(1/2*dec);

inf=2^30; maxexp=10000; l10=log(10); Data();

for(ind=1,nb, b=bvec[ind]; L=left[ind]; R=right[ind]; ex=exact[ind];\

halfstep(tol); print(ind," ",evec," ",cvec); print(val));



6 Results

Here we summarize the results of the calling program given at the end of the
previous sectiom. With a working precision of dec = 67 digits the program
executes in 4.1 seconds on a 1.6-MHz processor. In this range the execution
time roughly scales as dec2.3. An accuracy of 65 or 66 digits is achieved in
all cases except for I25, where an additional step bisection would be required
in order to compensate for the slower convergence rate with respect to step
bisection.

Case Correct digits per stage Number of function evaluations

1 [2,6,14,31,66] [15,29,53, 97,183]

2 [2,6,13,29,62,65] [15,29,53, 97,183,349]

3 [0,1, 4,13,37,66] [11,21,37, 66,121,227]

4 [0,0, 1,10,33,66] [13,25,46, 84,155,294]

5 [2,6,14,31,67] [15,29,53, 97,183]

6 [2,5,12,24,50,65] [15,29,53, 97,183,349]

7 [2,5,11,20,40,65] [15,29,53, 97,183,349]

8 [1,0, 2, 4, 8,17,35,65] [15,29,53, 97,181,347,674,1323]

9 [4,7,15,32,66] [15,31,59,109,205]

10 [0,5,12,26,58,65] [15,30,56,103,194,371]

11 [2,6,12,25,50,65] [16,31,59,110,209,402]

12 [4,7,15,32,66] [17,33,63,119,226]

13 [3,6,14,31,65] [13,27,50, 93,173]

14 [2,5,11,26,56,65] [15,30,55,101,190,363]

15 [1,3, 7,15,30,59,65] [15,30,56,103,194,371,721]

16 [2,4,10,22,43,65] [13,26,47, 86,160,304]

17 [3,5, 9,14,23,38,65] [14,29,54,100,187,357,694]

18 [3,7,16,33,66] [17,34,65,122,233]

19 [4,8,18,35,65] [20,39,73,138,263]

20 [3,6,12,23,45,65] [15,29,53, 97,182,348]

21 [1,2, 5, 8,15,28,51,65] [14,29,54,100,187,358,695,1373]

22 [0,0, 2, 4, 8,18,36,65] [14,27,50, 92,171,325,629,1242]

23 [3,7,15,32,65] [15,29,55,101,191]

24 [3,7,16,32,66] [15,31,59,109,205]

25 [1,4, 7,12,20,35,58] [15,31,59,109,205,393,765]
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