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Abstract

We consider the symmetric planar four-body problem with two equal

masses m1 > 0 at positions (±x1(t), 0) and two equal masses m2 > 0
at positions (0, ±x2(t)) at all times t, referred to as the rectangular

symmetric 4-body problem. Owing to the simplicity of the equations of

motion this problem is well suited to study regularization of the binary

collisions, homothetic solutions and central configurations, as well as the

four-body collision and escape manifolds. Furthermore, resonance

phenomena between the two interacting rectilinear binaries play an

important role.
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1. Equations of Motion
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Two equal masses m1 > 0 at positions (±x1(t), 0), xj(t) ≥ 0
Two equal masses m2 > 0 at positions (0, ±x2(t)) at all times t.

Yields two binaries in coupled rectilinear motions on perpendicular lines.
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Equations of motion

ẍj +
mj

4 x2
j

+
2 m3−j xj

r3
= 0 , j = 1, 2 , r :=

√
x2

1 + x2
2 , ˙( ) =

d

dt
( )

(1)

Energy integral:
1
2
(T + U) =: H0 = const. where

T = m1 ẋ1
2 + m2 ẋ2

2 , U = − m2
1

2 x1
− m2

2

2 x2
− 4 m1 m2√

x2
1 + x2

2

(2)

Hamiltonian

H =
p2
1

2 m1
+

p2
2

2 m2
− m2

1

4 x1
− m2

2

4 x2
− 2 m1 m2√

x2
1 + x2

2

with pj := mj ẋj (3)

Hamiltonian equations of motion

ẋj =
∂H

∂pj
, ṗj = − ∂H

∂xj
, j = 1, 2 , H(t) = H0 = const.
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2. Levi-Civita Regularization

Step 1: time transformation

Fictitious time τ as new independent variable, new Hamiltonian K

(Poincaré’s device)

dt = x1 x2 dτ , K = x1 x2 (H −H0) . (4)

Step 2: Levi-Civita’s canonical coordinate transformation

New coordinates ξj , new momenta πj , j = 1, 2

xj = ξ2
j , pj =

πj

2 ξj
, j = 1, 2 (5)

This is obtained via the generating function W (p, ξ) = p1 x1 + p2 x2 as

πj =
∂W

∂ξj
, j = 1, 2 .



Jörg Waldvogel, ETH Zürich 7

The regularized Hamiltonian, K(τ) = 0

K =
1
8

(
π2

1 ξ2
2

m1
+

π2
2 ξ2

1

m2

)
− 1

4

(
m2

1 ξ2
2 +m2

2 ξ2
1

)
− 2 m1 m2 ξ2

1 ξ2
2√

ξ4
1 + ξ4

2

−H0 ξ2
1 ξ2

2

(6)
Regularized equations of motion

ξj
′ =

∂K

∂πj
, πj

′ = −∂K

∂ξj
, j = 1, 2 , ( )′ =

d

dτ
( )

or, for j = 1, 2 with k := 3− j,

ξj
′ =

πj ξ2
k

4 mj (7)

πj
′ = ξj

(
− π2

k

4 mk
+

m2
k

2
+ 4 m1 m2

(
ξ4
k

ξ4
1 + ξ4

2

)3/2

+ 2 H0 ξ2
k

)
t′ = ξ2

1 ξ2
2 .
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Power series expansion in a binary collision

With no loss of generality consider collisions at τ = 0 with ξ1(0) = 0.

For ξ2(0) 6= 0 , K = 0 yields

π1(0) = ±
√

2 m3
1 .

The three parameters of the motion are A := ξ2(0) 6= 0, B := π2(0) and

the total energy H0:

ξ1(τ) = π1(0)
A2

4m1
τ + O(τ3)

ξ2(τ) = A + O(τ3)

π1(τ) = π1(0) + O(τ2)

π2(τ) = B + O(τ3)

The series are uniquely determined (up to the signs) by m1,m2, A, B, H0.
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3. A Typical Example: Escape
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4. Periodic Solutions and Resonance

For finding periodic solutions we use initial conditions in a collision (see

p. 8), e.g.

ξ1(0) = 0 , π1(0) = −
√

2 m3
1 , π2(0) = 0

and fix the energy. For given masses and a given energy H0, define a

tentative quarter period q by ξ2(q) = 0.

Periodicity condition: π1(q) = 0

Example: m1 = m2 = 1, H0 = −0.9. Numerical integration by an

integrator with event capability and the secant method for solving

nonlinear equations yields ξ2(0) = −1.34776 71645 4144.
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A periodic solution with equal masses and H0 = −0.9
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Resonance

This periodic orbit is remarkably robust against perturbations of the

initial conditions (see Section 5).

Reason: The two binaries are in a 1:1 resonance. In this way they are

locked away from a close quadruple encounter, which would eventually

result in an escape (see p. 9).
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5. Poincaré Sections and Quasiperiodic Solutions

Instead of the entire orbit
(
ξj(τ), πj(τ)

)
we only consider its

intersection points with the surface of section

ξ1 = 0 with ξ1
′ > 0 , π1 = −

√
2 m3

1 ,

and we plot the sequence of points in the (ξ2, π2)-plane for fixed energy

H0 and various initial points.

In the plot on p. 16 the center corresponds to the periodic solution of p.

12. The ovals around it visualize quasiperiodic solutions (tori). The

black asterisks mark periodic solutions of longer periods, e.g. near

ξ2 = −1.49906 (6-periodic) or near ξ2 = −1.55325 (5-periodic, stable,

with green islands) and near ξ2 = −0.96016 (p. 17, 5-periodic, cyan

islands). In the outermost green “curve” corresponding to ξ2 = −1.57
the onset of chaos is visible.
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Ten islands corresponding to two 5-periodic solutions
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6. Homothetic Solutions and Central Configurations

Solve the equations of motion (Equ. (1), p. 5) by

xj(t) = cj f(t) , j = 1, 2, c1 = c cos(ϕ), c2 = c sin(ϕ)

with constants c, ϕ, and f(t) describing a rectilinear Kepler motion,

f̈(t) +
m

f(t)2
= 0 .

This yields the two conditions

m1

cos3(ϕ)
+ 8 m2 =

m2

sin3(ϕ)
+ 8 m1 = 4 c3 m ,

resulting in the following condition for symmetric diamond-shaped

central configurations of four pairwise equal masses:

m1

cos3(ϕ)
− m2

sin3(ϕ)
= 8 (m1 −m2) , 0 < ϕ < π/2 . (8)
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Computation of the central configurations

Introduce the mass parameter µ :=
m1 −m2

m1 + m2
∈ (−1, 1) .

For arbitrary (real) µ Equ. (8) has a unique real solution ϕ with∣∣ϕ− π

4

∣∣ < 0.36474 52742 36650 .

Equ. (8) reduces to a polynomial equation of degree 12 for tan(ϕ
2 ).

Alternatively, Equ.(8) may be solved numerically by the Newton-Raphson

iteration, e.g. by using the initial approximation (green curve on p. 20),

ϕ0 =
π

4
+

1
f

arctan
(
f b µ

)
with f = 1.528545 π, b =

2
√

2− 1
3

.

In the interval −1 < µ < 1 the absolute error of ϕ0 is less than

0.003255, and 3 iterations yield an accuracy of 15 digits.
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Discussion of the central configurations. See figure on p.4
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7. The Quadruple-Collision Manifold

Idea: Introduce normalized coordinates, momenta, and fictitious time

ξ̃j , π̃j , τ̃ adapting to the current size and rate of change of a four-body

system in a close quadruple encounter or in a quadruple collision.

A convenient length is the radius of inertia ρ, defined by means of the

moment of inertia I (McGehee, JW):

ρ2 = I = 2
(
m1 x2

1 + m2 x2
2

)
. (9)

We remark that Equs. (1) - (5) of p. 5, 6 easily imply

İ = 2
(
π1 ξ1 +π2 ξ2

)
, Ï = 4 T +2 U = 8H0−2 U = 4 H0 +2 T . (10)

Scaling transformations:

xj = ρ x̃j , pj = ρ−1/2 p̃j , ξj = ρ1/2 ξ̃j , πj = π̃j , dτ = ρ−1/2 dτ̃ .

(11)
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Normalized equations of motion.

From Equ. (101) and the transformations (41), (9), (11) we obtain

dρ

dτ̃
= ρ ξ̃2

1 ξ̃2
2

(
π1 ξ̃1 + π2 ξ̃2

)
, (12)

a differential equation for ρ allowing ρ(τ̃) ≡ 0 as a solution. The

remaining four equations for equivalently describing the motion follow

from Equs. (7) of p. 7:

dξ̃j

dτ̃
= ξ̃2

k

(
πj

4 mj
−

ξ̃3
j

2
(
π1 ξ̃1 + π2 ξ̃2

))
, k := 3− j, j = 1, 2

dπj

dτ̃
= ξ̃j

(
− π2

k

4 mk
+

m2
k

2
+ 4 m1 m2

(
ξ̃4
k

ξ̃4
1 + ξ̃4

2

)3/2

+ 2 ρ H0 ξ̃2
k

)
(13)dt

dτ̃
= ρ3/2 ξ̃2

1 ξ̃2
2 .
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The collision manifold M
is defined as the limiting solution of the system (12), (13) characterized

by ρ(τ̃) ≡ 0. Equ. (12) is satisfied, and (133) implies that time t does

not advance. Therefore M, i.e. the solution of (131), (132) with ρ = 0,

describes the very instant of collision as seen in an infinitely slowed down

and blown-up slow-motion picture.

As a consequence of (9) and (6), the collision manifold has the two

integrals of motion

m1 ξ̃1
4

+ m2 ξ̃2
4

=
1
2

1
8

(
π2

1 ξ̃2
2

m1
+

π2
2 ξ̃1

2

m2

)
− 1

4

(
m2

1 ξ̃2
2

+ m2
2 ξ̃1

2
)
− 2 m1 m2 ξ̃1

2
ξ̃2

2√
ξ̃1

4
+ ξ̃2

4
= 0 .

Furthermore, it can be shown that the flow on M is a gradient flow.
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Conclusions

• A particular case of the “Caledonian” symmetric four-body problem

is investigated: two pairs of equal masses are moving symmetrically

in the plane on two fixed perpendicular axes.

• Motion is governed by a simple Hamiltonianwith 2 degrees of freedom.

• The two types of binary collisions can be regularized by two

one-dimensional Levi-Civita transformations.

• Periodic, quasiperiodic, and chaotic motion exists. As a

consequence of a 1:1 resonance between the two binaries, orbits can

be stable for very long time (“stickiness”).

• The quadruple-collision manifold (McGehee) is governed by a rather

simple 4th-order system with two integrals of motion.

• More results to come!


