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Abstract. Quaternions, introduced by W. R. Hamilton (1844) as
a generalization of complex numbers, lead to a remarkably simple re-
presentation of the perturbed three-dimensional Kepler problem as a
perturbed harmonic oscillator. The paper gives an overview of this tech-
nique, including an outlook to applications in perturbation theories.

Key words: Perturbed Kepler problem, Kustaanheimo-Stiefel regular-
ization, quaternions, Birkhoff transformation.

1. Introduction

A large branch of celestial mechanics is concerned with handling per-
turbations of the Kepler problem, described by a strongly nonlinear
differential equation for the vector x ∈ R

n, n = 2, 3 as a function of
time t,

ẍ + µ
x

r3
= εf(x, t), r = ‖x‖, (1)

where x is the position vector of the moving particle with respect to
the central body (with gravitational parameter µ > 0), dots denote
derivatives with respect to t, and εf(x, t) is a given small perturbation.

As will be demonstrated in the example below, the linearity of a
problem leads to formally simple perturbation theories. Fortunately,
there exist sets of variables in which the Kepler problem becomes linear;
these are preferred variables for treating perturbed Kepler problems.

In this paper we will revisit two closely related sets of variables
that were introduced in order to regularize the collision singularity in
the Kepler problem: the variables introduced by Levi-Civita (1920), in
which the planar Kepler problem appears as a harmonic oscillator in
two dimensions, and the KS variables (Kustaanheimo 1964, Kustaan-
heimo and Stiefel 1965), in which the spatial Kepler problem appears
as a harmonic oscillator in four dimensions. Both sets of variables
have therefore the agreeable property of transforming the differential
equations of the Kepler problem into a system of linear differential
equations; they are therefore good variables for formulating theories of
the perturbed Kepler problem. We will present a unified treatment of
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these two classical topics, using complex variables in the planar case
and quaternions in the three-dimensional case. For completeness we
mention that in a set of variables based on radial inversion in momen-
tum space (see, e.g., Siegel and Moser, 1971, or the summary in Celletti,
2002) the Kepler problem also becomes linear.

The use of quaternions for the purpose of regularization of the
Kepler problem in three dimensions has been contemplated before.
In the comprehensive text by Stiefel and Scheifele (1971) the use of
quaternions was taken into consideration (p. 286), but clearly rejected:
“Any attempt to substitute the theory of the KS matrix by the more

popular theory of the quaternion matrices leads to failure or at least to

a very unwieldy formalism.” Almost simultaneously, Maria Dina Vi-
varelli (1994) and Jan Vrbik (1994, 1995) demonstrated the usefulness
of quaternions in this field. Here we will describe a new, elegant way of
handling the three-dimensional case in complete analogy to the well-
known planar case by introducing an unconventional conjugation of
quaternions (see the definition in Equ. (24) below), first mentioned by
Waldvogel (2006).

Perturbation theories of ordinary differential equations are com-
paratively simple for linear problems. Consider, e.g., the perturbed
system

ẋ(t) + A(t)x(t) − b(t) = εf(x, t), x : t ∈ R 7→ x(t) ∈ R
n, (2)

of linear differential equations, where A(t) is a given time-dependent
matrix. Equ. (2) may formally be solved to arbitrary order by the series

x(t) = x0(t) + ε x1(t) + ε2 x2(t) + . . . ,

where xk(t) satisfies the linear differential equation

ẋk(t) + A(t)xk(t) = fk−1(t), k = 0, 1, 2, . . . . (3)

Here f−1(t) := b(t), and f0(t), f1(t), . . . are defined as the coefficients
of the formal Taylor series of f(x, t) with respect to ε:

∞
∑

k=0

εk fk(t) = f(x0(t) + ε x1(t) + ε2 x2(t) + . . . , t) .

Note that the linear differential equations (3) are all of the type of the
unperturbed problem k = 0; they only differ in their right-hand sides.

In Section 2 Levi-Civita’s regularization procedure in complex no-
tation will be summarized. Section 3 contains a brief introduction to
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quaternion algebra and states the KS transformation in quaternion
notation. In Section 4, the main part of this paper, we develop a simple,
concise way of transforming the spatial perturbed Kepler problem into a
perturbed harmonic oscillator in 4 dimensions. As a byproduct, an ele-
gant representation of the spatial Birkhoff transformation in quaternion
notation will be given in Section 5.

2. The Levi-Civita Transformation

Here we summarize the three steps necessary for regularizing (and thus
“linearizing”) the perturbed planar Kepler problem by Levi-Civita’s
transformation. Throughout this section we use complex notation, i.e.
instead of the vectors x = (x1, x2)

T ∈ R
2, f = (f1, f2)

T we use the
corresponding complex numbers x = x1 + i x2 ∈ C, f = f1 + i f2 ∈ C.

2.1. First step: Slow-motion movie

Instead of the physical time t a new independent variable τ , called the
fictitious time, is introduced by the differential relation

dt = r · dτ,
d

dτ
( ) = ( )′. (4)

Therefore the ratio dt/dτ of two infinitesimal increments is made pro-
portional to the distance r; the movie is run in slow-motion whenever
r becomes small. With the differentiation rules

d

dt
=

1

r

d

dτ
,

d2

dt2
=

1

r2

d2

dτ2
− r′

r3

d

dτ

Equ. (1) transforms into

r x′′ − r′ x′ + µ x = r3 ε f ∈ C . (5)

2.2. Second step: Conformal squaring

This part of Levi-Civita’s regularization procedure consists of repre-
senting the complex physical coordinate x as the square u2 of a complex
variable u = u1 + i u2 ∈ C,

x = u2 , (6)

i.e. the mapping from the parametric plane to the physical plane is cho-
sen as a conformal squaring. This is based on the observation that con-
formal squaring maps an origin-centered ellipse to a Keplerian ellipse
with one focus at the origin (see Fig 1). Equ. (6) implies

r = |x | = |u |2 = u ū , (7)
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Figure 1. The image of a (doubly covered) Keplerian ellipse with one focus at
the origin of the physical plane (left) under the conformal square root is an
ellipse centered at the origin of the parametric plane (right)

and differentiation of Equs. (6) and (7) yields

x′ = 2uu′ , x′′ = 2
(

uu′′ + u′ 2
)

∈ C , r′ = u′ ū + u ū′ . (8)

By substituting this into (5), cancelling two equal terms ( 2 r u′2 and
2u′ ū uu′ ) and dividing by u we obtain

2 r u′′ + (µ − 2 |u′| 2 )u = r2 ū ε f . (9)

Remark. Obtaining initial values u(0) =
√

x(0) requires the compu-
tation of a complex square root. This can conveniently be accomplished
by means of the formula

√
x =

x + |x|
√

2 (|x| + Rex)
(10)

which reflects the observation that the complex vector
√

x has the
direction of the bisector between x and the real vector |x|; it holds in
the range −π < arg(x) < π. The alternative formula

√
x =

x − |x|
i
√

2 (|x| − Rex)

holds in 0 < arg(x) < 2π and agrees with (10) in the upper half-plane;
it therefore provides the analytic continuation of (10) into the sector
π ≤ arg(x) < 2π. Furthermore, it avoids a loss of accuracy near the
negative real axis x < 0.
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2.3. Third step: Fixing the energy

This step is simple for the unperturbed problem, ε = 0. Integrating the
inner product of Equ. (1) and the vector ẋ ∈ R

2 yields the well-known
energy equation

1

2
‖ ẋ ‖2 − µ

r
= −h = const. (11)

where the energy constant h is chosen such that h > 0 corresponds to
an elliptic orbit. From (4) and (8) there follows (using again complex
notation):

ẋ =
1

r
· 2uu′ ,

1

2
| ẋ |2 = 2

|u′ |2
r

, (12)

and (11) implies
µ − 2 |u′ |2 = r h . (13)

Substituting this into (9) and dividing by r yields

2u′′ + hu = 0 , (14)

a system of linear differential equations describing a harmonic oscillator
in two dimensions with frequency ω =

√

h/2.

In the perturbed case h of Equ. (11) is no longer a constant, but is
a slowly varying function and satisfies the differential equation

ḣ = −〈ẋ, ε f〉 or h′ = −〈x′, ε f〉 , (15)

where 〈x, y〉 denotes the inner product of the vectors x, y ∈ R
2. The

energy equation (13) still holds, and instead of (14) we obtain

2u′′ + hu = |u |2 ū ε f . (16)

Remark. Equation (16), together with the second equation (15), de-
scribes a perturbed harmonic oscillator with slowly varying frequency;
it may be transformed to constant frequency by introducing a new in-
dependent variable s proportional to the osculating eccentric anomaly,

e.g., according to the differential relation

ds =
√

h dτ .

This results in the system of differential equations

dh

ds
= − r√

h
〈ẋ, εf〉 , 2

d2u

ds2
+ u =

r

h
ū εf − 1

h

dh

ds

du

ds
.

For more details regarding applications to perturbation theories see
Waldvogel (2006).
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3. Quaternion Algebra and the KS Transformation

In this section we indicate how Levi-Civita’s regularization procedure
may be generalized to three-dimensional motion. The essential step is
to replace the conformal squaring of Section 2.2 by the Kustaanheimo-
Stiefel (KS) transformation. A preliminary version of this transforma-
tion using spinor notation was proposed by Kustaanheimo (1964); the
full theory was developed in a subsequent joint paper (Kustaanheimo
and Stiefel, 1965); the entire topic is extensively discussed in the com-
prehensive text by Stiefel and Scheifele (1971). The relevant mapping
from the 3-sphere onto the 2-sphere was discovered already by Heinz
Hopf (1931) and is referred to in topology as the Hopf mapping.

Both the Levi-Civita and the Kustaanheimo-Stiefel regularization
share the property of “linearizing” the equations of motion of the two-
body problem. Quaternion algebra, introduced by W. R. Hamilton
(1844), turns out to be very well suited as a tool for regularizing the
three-dimensional Kepler motion, as was observed by M. D. Vivarelli
(1994) and J. Vrbik (1994, 1995). Here we will present a new elegant
way of extending the Levi-Civita regularization to three dimensions by
means of quaternions.

3.1. Basics

Quaternion algebra is a generalization of the algebra of complex num-
bers obtained by using three independent “imaginary” units i, j, k. As
for the single imaginary unit i in the algebra of complex numbers, the
rules

i2 = j2 = k2 = −1

are postulated, together with the non-commutative multiplication rules

i j = −j i = k , j k = −k j = i , k i = −i k = j .

Given the real numbers ul ∈ R , l = 0, 1, 2, 3, the object

u = u0 + i u1 + j u2 + k u3 (17)

is called a quaternion u ∈ U, where U denotes the set of all quaternions
(in the remaining sections bold-face characters denote quaternions).
The sum iu1 + ju2 + ku3 is called the quaternion part of u, whereas u0

is naturally referred to as its real part. The above multiplication rules
and vector space addition define the quaternion algebra. Multiplication
is generally non-commutative; however, any quaternion commutes with
a real:

cu = u c , c ∈ R , u ∈ U , (18)
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and for any three quaternions u, v, w ∈ U the associative law holds:

(uv)w = u (vw) . (19)

The quaternion u may naturally be associated with the correspond-
ing vector u = (u0, u1, u2, u3) ∈ R

4. For later reference we intro-
duce notation for 3-vectors in two important particular cases: ~u =
(u1, u2, u3) ∈ R

3 for the vector associated with the pure quaternion

u = i u1 + j u2 + k u3, and u = (u0, u1, u2) for the vector associated
with the quaternion with a vanishing k-component, u = u0+i u1+j u2.

For convenience we also introduce the vector~ı = (i, j, k) ; the quater-
nion u may then be written formally as u = u0 + 〈~ı, ~u〉. For the two
quaternion products of u and v = v0 + 〈~ı, ~v〉 we then obtain the concise
expressions

uv = u0v0 − 〈~u,~v〉 + 〈~ı, u0 ~v + v0 ~u + ~u × ~v〉 (20)

vu = u0v0 − 〈~u,~v〉 + 〈~ı, u0 ~v + v0 ~u − ~u × ~v〉 ,

where × denotes the vector product. Note that the non-commutativity
shows only in the sign of the term with the vector product.

The conjugate ū of the quaternion u is defined as

ū = u0 − i u1 − j u2 − k u3 ; (21)

then the modulus |u| of u is obtained from

|u|2 = u ū = ū u =
3

∑

l=0

u2

l . (22)

As transposition of a product of matrices, conjugation of a quaternion
product reverses the order of its factors:

uv = v̄ ū . (23)

3.2. The KS Transformation with quaternions

Here we will revisit KS regularization and present a new, elegant deriva-
tion of it, using quaternion algebra and an unconventional “conjugate”
u? referred to as the star conjugate of the quaternion u = u0 + i u1 +
j u2 + k u3:

u? := u0 + i u1 + j u2 − k u3 . (24)

The star conjugate of u may be expressed in terms of the conventional
conjugate ū as

u? = k ū k−1 = −k ū k ;
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however, it turns out that the definition (24) leads to a particularly
elegant treatment of KS regularization. The following elementary prop-
erties are easily verified:

(u?)? = u

|u?|2 = |u|2 (25)

(uv)? = v? u? .

Consider now the mapping

u ∈ U 7−→ x = u u? . (26)

Star conjugation immediately yields x? = (u?)? u? = x; hence x is a
quaternion of the form x = x0 + i x1 + j x2 which may be associated
with the vector x = (x0, x1, x2) ∈ R

3. From u = u0 + i u1 + j u2 + k u3

we obtain

x0 = u2

0 − u2

1 − u2

2 + u2

3

x1 = 2(u0 u1 − u2 u3) (27)

x2 = 2(u0 u2 + u1 u3) ,

which is exactly the KS transformation in its classical form or – up to
a permutation of the indices – the Hopf map. Therefore we have

Theorem 1: The KS transformation which maps u = (u0, u1, u2, u3) ∈
R

4 to x = (x0, x1, x2) ∈ R
3 is given by the quaternion relation

x = u u? ,

where u = u0 + i u1 + j u2 + k u3 , x = x0 + i x1 + j x2. 2

Corollary 1: The norms of the vectors x and u satisfy

r := ‖x‖ = ‖u‖2 = u ū . (28)

Proof: By appropriately combining the two conjugations and using
the rules (18), (19), (22), (23), (25) we obtain

‖x‖2 = x x̄ = u (u? ū?) ū = |u?|2 |u |2 = |u |4 = ‖u‖4 ,

from where the statement follows. 2
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3.3. The inverse map

Since the mapping (27) does not preserve the dimension its inverse
in the usual sence does not exist. However, the present quaternion
formalism yields an elegant way of finding the corresponding fibration

of the original space R
4. Being given a quaternion x = x0 + i x1 + j x2

with vanishing k-component, x = x?, we want to find all quaternions
u such that uu? = x. We propose the following solution in two steps:

First step: Find a particular solution u = v = v? = v0 + i v1 + j v2

which has also a vanishing k-component. Since vv? = v2 we may use
Equ. (10), which was developed for the complex square root, also for
the square root of a quaternion:

v =
x + |x|

√

2 (|x| + x0)
.

Clearly, v has a vanishing k-component.

Second step: The entire family of solutions (the fibre corresponding
to x, geometrically a circle in R

4 parametrized by the angle ϕ), is given
by

u = v · e k ϕ = v (cos ϕ + k sinϕ) .

Proof. uu? = v e k ϕ e−k ϕ v? = v v? = x . 2

4. KS Regularization with Quaternions

In order to regularize the perturbed three-dimensional Kepler motion
by means of the KS transformation it is necessary to look at the
properties of the map (26) under differentiation.

The transformation (26) or (27) is a mapping from R
4 to R

3; it
therefore leaves one degree of freedom in the parametric space unde-
termined. In KS theory (Kustaanheimo and Stiefel, 1965; Stiefel and
Scheifele, 1971), this freedom is taken advantage of by trying to inherit
as much as possible of the conformality properties of the Levi-Civita
map, but other approaches exist (e.g., Vrbik 1995). By imposing the
“bilinear relation”

2 (u3 du0 − u2 du1 + u1 du2 − u0 du3) = 0 (29)

between the vector u = (u0, u1, u2, u3) and its differential du on orbits
the tangential map of (27) becomes a linear map with an orthogonal
(but non-normalized) matrix.
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This property has a simple consequence on the differentiation of the
quaternion representation (26) of the KS transformation. Considering
the noncommutativity of the quaternion product, the differential of
Equ. (26) becomes

dx = du · u? + u · du? , (30)

whereas (29) takes the form of a commutator relation,

u · du? − du · u? = 0 . (31)

Combining (30) with the relation (31) yields the elegant result

dx = 2 u · du? , (32)

i.e. the bilinear relation (29) of KS theory is equivalent with the require-
ment that the tangential map of u 7→ uu? behaves as in a commutative
algebra.

By using the tools collected in Section 3 together with Equ. (32)
the regularization procedure outlined in Section 2 will now be carried
out for the three-dimensional perturbed Kepler problem. Care must
be taken to preserve the order of the factors in quaternion products.
Exchanging two factors is permitted if one of the factors is real or if
the factors are mutually conjugate. An important tool for simplifying
expressions is regrouping factors of multiple products according to the
associative law (19). In order to stress the simplicity of this approach
we present all the details of the formal computations.

4.1. First step in space: Slow-motion movie

Let x = x0 + i x1 + j x2 ∈ U be the quaternion associated with the po-
sition vector x = (x0, x1, x2) ∈ R

3; then the perturbed Kepler problem
(1) is given by

ẍ + µ
x

r3
= ε f(x, t) ∈ U , r = |x| , (33)

where f(x, t) = f0(x, t)+i f1(x, t)+j f2(x, t) = f ?(x, t) is the quaternion
associated with the perturbation f(x, t) ∈ R

3.

The first transformation step calls for introducing the fictitious time
τ according to Equ. (4), dt = r · dτ ; the result is formally identical
with Equ. (5),

r x′′ − r′ x′ + µ x = r3 ε f ∈ U . (34)
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4.2. Second step: KS transformation with quaternions

Instead of the conformal squaring according to Equ. (6) we use the KS
transformation (26),

x = uu? , r := |x| = u ū . (35)

Differentiation by means of the commutator relation (31) yields

x′ = 2uu? ′

, x′′ = 2uu? ′′

+ 2u′ u? ′

, r′ = u′ ū + u ū′ . (36)

Substitution of (35) and (36) into (34) results in the lengthy equation

(u ū) (2uu? ′′

+ 2u′ u? ′

)− (u′ ū+u ū′) 2uu? ′

+µuu? = r3 ε f , (37)

which is considerably simplified by observing that the second and third
term – after applying the distributive law – compensate:

2 (u ū)u′ u? ′ − 2u′ (ū u)u? ′

= 0 .

Furthermore, by means of (18), (19) and (31) the fourth term of (37)
may be simplified as follows:

−2 (u ū′) (uu? ′

) = − 2u (ū′ u′)u? = − 2 |u′|2 uu? .

By using this and left-dividing by u Equ. (37) now becomes

2 r u? ′′

+ (µ − 2 |u′| 2 )u? = r2 ū ε f (38)

in almost perfect formal agreement with Equ. (9) of the planar case.

4.3. Third step: Fixing the energy in space

In formal agreement with the planar case the energy equation expressed
by fictitious time is

1

2 r2
|x′|2 − µ

r
= −h with h′ = −〈x′, ε f〉 . (39)

From (36), (25), (28) we have

|x′ |2 = x′ x̄′ = 4u (u? ′

ū? ′

) ū = 4 r |u′ | 2 ,

and the first equation of (39) becomes

µ − 2 |u′ |2 = r h (40)
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in formal agreement with Equ. (13) found for the planar case. Substi-
tuting this into the star-conjugate of (38) and dividing by r yields the
elegant final result

2 u′′ + h u = |u |2 ε f ū? , (41)

a differential equation in perfect agreement with (16) for the planar
case; however, it takes more than an educated guess to get the correct
right-hand side.

5. The Birkhoff Transformation

The topic of this section is not directly related to the preceding text;
we add it here because the quaternion tools discussed before allow for
an elegant representation of the spatial Birkhoff transformation.

This regularizing transformation was proposed by George David
Birkhoff (1915), in order to regularize all singularities of the planar
restricted three-body problem with a single transformation. Half a
century later Stiefel and Waldvogel (1965) published a generalization
of Birkhoff’s transformation to three dimensions, using the KS trans-
formation. Later these ideas were used by Waldvogel (1967a, 1967b).

Here we will first revisit the classical Birkhoff transformation (the
same conformal map is known in aerodynamics as the Joukowsky trans-
formation) and represent it as the composition of three elementary
conformal mappings; this will then readily generalize to the spatial
situation by means of quaternions.
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Figure 2: The sequence of conformal maps generating the planar
Birkhoff transformation
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Consider a rotating physical plane parametrized by the complex
variable y ∈ C; for convenience we assume the fixed primaries of the
restricted three-body problem to be situated at the points A, C given
by the complex posititons y = −1 and y = 1, respectively (see Figure
2). The complex variable of the parametric plane will be denoted by v

and will be normalized in such a way that the primaries are mapped
to v = −1 or v = 1, respectively.

The key observation is that Levi-Civita’s conformal map (6),
u 7→ x = u2, not only regularizes collisions at x = 0 but also analogous
singularities at x = ∞. This is seen by closing the complex planes to
become Riemann spheres (by adding the point at infinity) and using
inversions x = 1/x̃, u = 1/ũ.

Taking advantage of this fact, we first map the v-sphere to an
auxiliary u-sphere by the Möbius transformation

v 7−→ u =
v + 1

v − 1
= 1 +

2

v − 1
, (42)

which takes the primaries A, C to the points u = 0, u = ∞, respec-
tively. The Levi-Civita map (6) will leave these points invariant while
regularizing collisions at A or C. Finally, the Möbius transformation

x 7−→ y =
x + 1

x− 1
= 1 +

2

x − 1
(43)

maps A, C to y = −1 and y = 1, respectively. The composition of the
maps (42), (6), (43) yields

y =

(

v + 1

v − 1

)2

+ 1

(

v + 1

v − 1

)2

− 1

or y =
1

2

(

v +
1

v

)

, (44)

the well known map used by Joukowsky and by Birkhoff.

In the spatial case we choose v,u,x,y ∈ U to be quaternions,
x = x?, y = y? being quaternions with vanishing k-components as-
sociated with 3-vectors x, y. Then the mappings (42), (43), now being
shifted inversions in 4 or 3 dimensions, are both conformal maps, in
fact the only conformal maps existing in those dimensions, except for
the translations, magnifications, and rotations. Composing these with
the KS or Hopf map (35), u 7→ x = uu?, yields

y = 1 + (v? − 1) (v + v?)−1 (v − 1) (45)

after a few lines of careful noncommutative algebra. This is easily split
up into components by means of the inversion formula 1/v = v̄/|v|2; it
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agrees with the results of Stiefel and Waldvogel (1965) up to the sign
of v3. Both transformations regularize; the discrepancy is due to the
different definition of the orientation in the inversions.

References

Birkhoff, George David (1915): “The restricted problem of three bodies”. Rendiconti

del Circolo Matematico di Palermo 39, 1. Reprinted in Collected Mathematical

Papers, Vol. 1, Dover Publications, New York, 1968.
Celletti, Alessandra (2002) “The Levi-Civita, KS and radial-inversion regularizing

transformations”. In: Singularities in Gravitational Systems, D. Benest and C.
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