
The Matrix gallery(5) of MATLAB

In MATLAB the matrix

(1) A = gallery(5) =




−9 11 −21 63 −252
70 −69 141 −421 1684

−575 575 −1149 3451 −13801
3891 −3891 7782 −23345 93365
1024 −1024 2048 −6144 24572




is provided as an “interesting eigenvalue problem”. According to a remark in MATLAB’s help file
the user is invited to “find its exact eigenvalues and eigenvectors”.

The naive approach fails, since eig(A) yields

(2)

λ1 = −0.03371394752607 + 0.02503344949626i
λ2 = −0.03371394752607 − 0.02503344949626i
λ3 = 0.01337277132340 + 0.03894049608920i
λ4 = 0.01337277132340 − 0.03894049608920i
λ5 = 0.04068235241305 ,

which contradicts λ1 λ2 λ3 λ4 λ5 = det(A) = 0. Somewhat more reliable information is obtained
from poly(A)’ which yields approximate coefficients of the characteristic polynomial p(λ):

(3)

1.00000000000000
−0.00000000000770

0.00000004765977
−0.00000019062667

0.00000025761397
−0.00000012160528 .

This may lead to the conjecture that p(λ) = λ5 is the characteristic polynomial of A, which would
imply that λ = 0 is a 5-fold eigenvalue, i.e. λ = 0 has the algebraic multiplicity 5.

According to the theorem of Cayley-Hamilton every matrix satisfies its characteristic equation,
which would mean A5 = 0 if the above conjecture is true. In fact we obtain

(4.1) A2 =




11 −18 39 −116 464
−230 301 −598 1799 −7194
1717 −2292 4585 −13750 54992

−11674 15565 −31130 93391 −373503
−3072 4096 −8192 24576 −98288



,

(4.2) A3 =




−4 8 −20 64 −255
243 −402 879 −2628 10509

−1710 2852 −6278 18840 −75323
11675 −19458 42807 −128420 513437
3072 −5120 11264 −33792 135104



,
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(4.3) A4 =




0 0 0 0 0
−84 168 −420 1344 −5355
568 −1136 2840 −9088 36210

−3892 7784 −19460 62272 −248115
−1024 2048 −5120 16384 −65280




and A5 = 0. Since the characteristic polynomial of A has the exact degree 5 the above computations
prove that

(5) p(λ) = λ5

is indeed the characteristic polynomial of A, and therefore λ = 0 is a 5-fold eigenvalue. The
result (3) obtained by MATLAB is not that bad after all; it is in error only in the 7th decimal
place. However, in this case the actual eigenvalues are extremely sensitive to round-off errors in
the computation.

Next we consider the problem of finding eigenvectors of A. We notice that every eigenvector x of
A satisfies the homogeneous linear system

(6) Ax = 0, x ∈ lR5 .

For solving (6) and related systems the LU factorization A = LR will be used. The statement
[L, R] = lu(A) yields

(7)

L =




−0.00231303006939 1.00000 0 0 0
0.01799023387304 0.50000 1.00000 0 0
−0.14777692109997 0 0.40000 1.00000000000000 0

1.00000000000000 0 0 0 0
0.26317142122848 0 0 −0.07843137254902 1.00000




R =




3891.00 −3891.00 7782.00 −23345.0000000000 93365.0000000000
0 2.00 −3.00 9.0023130301 −36.0439475713
0 0 2.50 −5.5191467489 22.3637882292
0 0 0 3.3554356207 −12.7532767926
0 0 0 0 0



.

From R we infer rank(A) = 4; therefore there is only one eigenvector, x(1), satisfying Ax(1) = 0.
Hence the geometric multiplicity of λ = 0 is 1, and there is only one Jordan block corresponding
to λ = 0.

Instead of the missing eigenvectors there exist 4 linearly independent principal vectors x(k), (k =
2, 3, 4, 5) satisfying the conditions

(8) Ax(k) = x(k−1), (k = 1, ..., 5) with x(0) = 0 ,

which, for k = 1, include condition (6) for the eigenvector x(1). The vectors x(k) may be computed

by backward substitution, beginning with an arbitrary 5-th component x
(k)
5 . If we partition the

matrix R as

(9) R =

[
R1 r

0 0

]
,
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where R1=R(1:4,1:4) is a regular 4 × 4 matrix and r=R(1:4,5) is a 4-vector, Equ. (8) may be
solved by the MATLAB statements

c = L\x(k−1), x(k) = [R1\(c(1 : 4)− r ∗ x(k)
5 ); x

(k)
5 ] ,

to be executed for k = 1, ..., 5. Here x
(1)
5 6= 0, and, as a check, c5 vanishes in every step.

It would be desirable to choose the free parameters x
(k)
5 , (k = 1, ..., 5) such that x(k) are vectors

with integer elements, if possible. A brute-force approach is to search through the values x
(k)
5 =

±1, ±2, ..., until an integer vector x(k) is found. It turns out that with

(10) x
(1)
5 = 256, x

(2)
5 = −64, x

(3)
5 = 16, x

(4)
5 = −4 , x

(5)
5 = 1

integer vectors x(k) are indeed produced, and that the values of x
(k)
5 that result in integer vectors

x(k) are determined only modulo 256. A more subtle approach would involve the theory of linear
diophantine equations.

By using the values (10) the sequence of integer vectors x(k) may be generated by the short
MATLAB program (12) given below. Due to round-off errors the elements of these vectors will not
be exact integers, but have to be rounded to the nearest integer vectors. The integer eigenvector
and principal vectors are collected as columns of the transformation matrix T. Since det(T ) = 1,
the inverse T1 of T is an integer matrix as well which is recovered by T1=round(inv(T)). Since A
relates to its Jordan normal form J by

(11) A = T J T−1 ,

J will finally be explicitly computed as J = T1 * A * T .

(12)

A = gallery(5)
[L, R] = lu(A); R1 = R(1 : 4, 1 : 4); r = R(1 : 4, 5); x = zeros(5, 1); T = [ ];
for k = 4 : −1 : 0,

c = L\x, x5 = (−4)^k; x1 = R1\(c(1 : 4)− x5 ∗ r);
x = [round(x1); x5]; T = [T, x];

end;
T, T1 = round(inv(T)), J = T1 ∗ A ∗ T

The results computed in the last line of the program (12) are

(13.1) T =




0 1 0 0 0
21 −3 2 0 0

−142 37 −8 3 0
973 −243 61 −15 4
256 −64 16 −4 1



,

(13.2) T1 =




1 −1 2 −6 24
1 0 0 0 0
−9 11 −21 63 −252
11 −18 39 −116 464
−4 8 −20 64 −255



,
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(13.3) J =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



.

To find more, possibly all, integer transformation matrices S with the property

(14) A = S J S−1 ,

assume

(15) S = T Q

where Q and Q−1 are 5 × 5 matrices with integer elements. Equs. (14), (15) together with (11)
yield the condition

(16) J = QJ Q−1 or J Q = QJ ,

i.e. Q must commute with J . This is achieved by writing Q as a power series in J which, due to
J5 = 0, truncates after 5 terms:

(17) Q = q0 I + q1 J + q2 J
2 + q3 J

3 + q4 J
4 .

If q0 = ±1 and q1, q2, q3, q4 are integers, the reciprocal series has integer coefficients as well, and
both matrices Q and Q−1 have integer elements.

The symbolic-algebra package MAPLE contains a procedure jordan which is able to directly gen-
erate the Jordan normal form of A. The statement J:= jordan(A,‘S1‘) yields J of Equ. (13.3)
and

(18) S1 = S−1 =




0 −1 7 −36 144171/1024
0 −1 6 −28 28117/256
0 −1 5 −21 5291/64
0 −1 4 −15 949/16
1 −2 5 −16 255/4



,

a rational inverse transformation matrix corresponding to

(19) Q =




−4 11 −9 1 1
0 −4 11 −9 1
0 0 −4 11 −9
0 0 0 −4 11
0 0 0 0 −4



,

i.e. q0 = −4, q1 = 11, q2 = −9, q3 = 1, q4 = 1.
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