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Abstract

We present an elegant algorithm for simultaneously com-

puting all feet F0, F1, . . . , Fn ∈ R
n of the altitudes of a simplex

from the coordinates of its vertices A0, A1, . . . , An ∈ R
n. The

algorithm which is based on projective geometry and matrix

algebra, is valid for every n ≥ 1. Coded in Matlab, it may be

expressed by means of three simple statements using no more

than 50 characters.
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1 Introduction

The construction of the feet of the altitudes of a triangle or a tetra-
hedron is a standard task in elementary geometry or solid geometry.
The planar case is of particular interest: The feet F0, F1, F2 ∈ R

2

of the altitudes of a triangle with vertices A0, A1, A2 ∈ R
2 form the

so-called orthic triangle. This triangle is the solution of Fagnano’s
problem (1775), see, e.g., [1]: Among all triangles P0, P1, P2 with Pk
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on the side opposite to Ak (k = 0, 1, 2) or on its extension, find the
triangle with minimal perimeter.

In n=2 dimensions the computation of all feet F0, F1, . . . , Fn ∈ R
n

of a simplex in R
n from the coordinates of its vertices A0, A1, . . . , An ∈

R
n is therefore of interest. In this note we describe a surprisingly

compact algorithm for this task that is valid in every dimension n ≥ 1.
The basis of our approach is the use of homogeneous coordinates that
will be reviewed in the next section. Then, the faces of the simplex
will be represented by means of an inverse matrix. Finally, the feet
are obtained by intersecting the altitudes with the faces. An elegant
code in Matlab [4] will be given at the end.

2 Homogeneous Coordinates

In homogeneous coordinates the point X = (X1, X2, . . . , Xn)
T ∈ R

n

is represented by the (n + 1)-tuple x = (x0, x1, . . . , xn)T ∈ R
n+1 \

{(0, 0, . . . , 0)T}, where the superscript T denotes transposition and

Xk =
xk

x0

, k = 1, . . . , n (1)

for any x0 6= 0. Any multiple cx of x with c 6= 0 represents the
same point. A projective space is obtained by allowing x0 = 0 :
(0, x1, . . . , xn)T represents the infinitely remote point, or absolute point,
in the direction of (x1, x2, . . . , xn)T ∈ R

n.

All points X = (X1, X2, . . . , Xn)T ∈ R
n satisfying the linear rela-

tion
e0 + e1 X1 + · · ·+ en Xn = 0 (2)

form an (n − 1)-dimensional hyperplane E ⊂ R
n. The elements ek

of the (n + 1)-tuple e = (e0, e1, . . . , en)T ∈ R
n+1 \ {(0, 0, . . . , 0)T} are

defined as the hyperplane coordinates, or Plücker coordinates, of E;
again, any multiple c e of e with c 6= 0 represents the same hyperplane.
Equ. (2) with (1) yields the condition of incidence,

n
∑

k=0

ek xk = 0 or eTx = 0 ; (3)



i.e. the hyperplane E contains the point X if and only if the dot
product of the homogeneous vectors e and x vanishes.

From Equ. (2) it is seen that the vector (e1, e2, . . . , en)T ∈ R
n

is orthogonal to every vector in the hyperplane E. Therefore, the
direction of (e1, e2, . . . , en)T , i.e. its absolute point

e0 := (0, e1, e2, . . . , en)T ∈ R
n+1 , (4)

corresponds to the direction orthogonal to E. For a more detailed
introduction to projective spaces and homogeneous coordinates see,
e.g., [1] or [3].

3 The Faces of a Simplex

Let the n + 1 vertices Ak (k = 0, . . . , n) of a nondegenerate simplex
⊂ R

n be given by their homogeneous coordinates, e.g.

ak = (1, Ak1, Ak2, . . . , Akn)
T , k = 0, . . . , n , (5)

where Akj is the jth Cartesian component of the position vector of
the kth vertex. Consider now the matrix

A = (a0, a1, . . . , an) ∈ R
(n+1)×(n+1) (6)

whose columns are the homogeneous coordinates of the vertices of the
simplex. Assuming that A is invertible, we denote its inverse by ST ;
hence

ST · A = I or S := (A−1)T , (7)

where I is the unit matrix of order n + 1. By partitioning ST into its
rows sT

k = (sk0, sk1, . . . , skn) we have

ST =







sT
0
...
sT
n






or S = (s0, s1, . . . , sn) , (8)

and Equ. (7) may be written as

sT
k al =

{

0, k 6= l

1, k = l
. (9)



Therefore, as a consequence of (3), the hyperplane defined by the
homogeneous vector sk contains every vertex of the simplex except Ak;
it is therefore the face opposite to Ak. Hence we have the following

Theorem 1. Let A ∈ R
(n+1)×(n+1) be the matrix containing in

its kth column the homogeneous coordinates of the vertex Ak (k =
0, . . . , n) of a nondegenerate simplex ⊂ R

n, n ≥ 1. Then the trans-
pose of the inverse of A, S := (A−1)T , contains the homogeneous
coordinates of the face opposite to Ak in its kth column. 2

The matrix A in the above theorem is guaranteed to be invertible:
Assume that A is singular; then we can express one of the columns
of A, say the kth column, as a linear combination of the remaining
columns. Hence the vertex Ak lies in the subspace spanned by the rest
of the vertices, and the simplex is degenerate, in contradiction with
the hypotheses of the theorem.

4 The Feet of the Altitudes

In the following, we restrict ourselves to proper simplices, i.e. no ver-
tices are at infinity. Therefore the matrix A defined in (6) contains
no zeros in its first row. The kth altitude of the simplex may be
defined as the line connecting the vertex Ak with the absolute point
s0
k := (0, sk1, sk2, . . . , skn)

T of the normal of the face opposite to Ak. In
general, the line connecting two points A, B (given by their homoge-
neous coordinates a, b, respectively) is the set of points c = λ a+ µb

with λ, µ ∈ R, (λ, µ) 6= (0, 0). For the kth altitude we may choose
c = fk := ak −µk s0

k, µk ∈ R, for simplicity. Its foot satisfies sT
k fk = 0

which implies

µk =
sT
k ak

sT
k s0

k

. (10)

Evaluating the numerator by means of Equ. (9) and using the explicit
expression for the denominator yields

fk = ak − µk s0
k with µk =

1
∑n

j=1 s2
kj

, k = 0, 1, . . . , n (11)



for the foot of the kth altitude. In order to obtain all feet at once we
consider the n + 1 first equations of (11) as the columns of a single
matrix equation,

F = A − S0 · diag(µ0, µ1, . . . , µn) , (12)

where F is the matrix with the homogeneous coordinates of the feet
as its columns. Furthermore, diag(µ0, . . . , µn) is the diagonal matrix
with µ0, . . . , µn as its diagonal elements. Finally, S0 = (s0

0, s
0
1, . . . , s

0
n),

the matrix of the absolute points of the vectors orthogonal to the faces,
is obtained from S by zeroing out the first row and may be written as

S0 = diag(0, 1, . . . , 1) · (A−1)T (13)

as a consequence of Equ. (7). We therefore have established

Theorem 2. Let A ∈ R
(n+1)×(n+1) be the matrix containing in

its kth column the homogeneous coordinates of the vertex Ak (k =
0, . . . , n) of a nondegenerate proper simplex ⊂ R

n, n ≥ 1. Then
S0 defined in (13) is the matrix of the absolute points of the vectors
orthogonal to the faces, and F defined in (12), with µk from (11), has
the homogeneous coordinates of the feet of the altitudes of the simplex
as its columns. 2

In the case of dimension n = 1, when the simplex is a line segment,
the algorithm simply exchanges the boundary points.

Remark. The use of projective spaces and homogeneous coordi-
nates is widespread when it comes to deal with simplices. E.g. in
[2] it can be seen how proofs of theorems get shortened and how the
duality principle of projective geometry can enter the calculations.

5 An Elegant Implementation in Matlab

The concise algorithm (13), (12) may be coded in the language of
Matlab [4] as follows below. Matlab is particularly well suited
owing to its powerful instructions for the operations of matrix algebra.

% Given data: columns of A are the homogeneous coordinates

% of the vertices of the simplex. Example in 2 dimensions:



A = [ 1 1 1

-3 3 1

0 1 4];

% Algorithm

S = inv(A)’; S(1,:) = 0*S(1,:);

F = A - S * diag(1./sum(S.^2)),

% Columns of F are the homogeneous coordinates of the feet.

% The top row of A (preferably ones) is inherited by F.

% Result for the above example of A:

% F = [1.000000000000 1.000000000000 1.000000000000

% 1.615384615385 0.500000000000 1.540540540541

% 3.076923076923 3.500000000000 0.756756756757];

Comments on the code of the algorithm. We use the symbol S

for the matrix S0. The prime causes transposition of a real matrix.
The second statement replaces the top row of the current S by a row
of zeros. The operator diag fills its argument vector into a diago-
nal matrix. The sequence 1./sum(S.^2) computes all values µk for
k = 0, 1, . . . , n of Equ. (11) by summation over the columns of the
matrix of the squared elements of S0.
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Kastentext.
Im Unterricht in Elementargeometrie gehören die Höhen im Dreieck
zum Standardstoff. Die Verallgemeinerung auf das Tetraeder im Raum
liefert gelegentlich Material für Maturitätsaufgaben, etwa “Berechne

den der Ecke A gegenüberliegenden Höhenfußpunkt FA im Tetraeder

ABCD aus den Koordinaten der Eckpunkte”. In einer solchen Si-
tuation ist auf Lehrersseite diese kleine Arbeit entstanden. Es zeigt
sich, dass es ein erstaunlich einfaches und kompaktes Verfahren für die
simultane Berechnung aller Höhenfußpunkte eines n-dimensionalen
Simplex gibt. Dieses funktioniert für alle Dimensionen n ≥ 1 und
beruht auf der Verwendung homogener Koordinaten und projektiver
Räume. Nach einer kurzen Einführung dieser Begriffe werden zunächst
alle Seitenflächen eines Simplex mit einer einzigen Matrixinversion
berechnet. Der Text könnte auch Anregungen für den Unterricht
geben.
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