Outline

Prerequisites

History

IDR basics

Case $s=1$

Case $s>1$

Conclusions

Appendix: original IDR

Appendix: another variant: IDR(s)BiO
Prerequisites: Krylov (sub)space solvers

Given: linear system $Ax = b$, initial approx. $x_0 \in \mathbb{C}^N$.

Construct: approximate solutions ("iterates")

$$x_n \in x_0 + \mathcal{K}_n(A, r_0),$$

where $r_0 \equiv b - Ax_0$ is the initial residual, and

$$\mathcal{K}_n \equiv \mathcal{K}_n(A, r_0) \equiv \text{span} \{ r_0, Ar_0, \ldots, A^{n-1}r_0 \}.$$

is the nth **Krylov subspace** generated by A from r_0.
\[\mathbf{x}_n \in \mathbf{x}_0 + \mathcal{K}_n(\mathbf{A}, \mathbf{r}_0) \] implies that
\[\mathbf{r}_n \in \mathbf{r}_0 + \mathbf{A} \mathcal{K}_n(\mathbf{A}, \mathbf{r}_0) \subseteq \mathcal{K}_{n+1}(\mathbf{A}, \mathbf{r}_0), \]

so:
\[\mathbf{x}_n = \mathbf{x}_* \iff \mathbf{r}_n = 0 \implies \mathbf{r}_0 \in \mathbf{A} \mathcal{K}_n(\mathbf{A}, \mathbf{r}_0). \]

So, we need to approximate \(\mathbf{r}_0 \) by elements from \(\mathbf{A} \mathcal{K}_n(\mathbf{A}, \mathbf{r}_0) \).

E.g., we may choose \(\mathbf{r}_n \) as the perpendicular ("Lot") from \(\mathbf{r}_0 \) to its orthogonal projection into \(\mathbf{A} \mathcal{K}_n(\mathbf{A}, \mathbf{r}_0) \).

- **Conjugate Residual (CR) method** (Stiefel, 1955):
 \[\mathbf{r}_n \in \mathbf{r}_0 + \mathbf{A} \mathcal{K}_n, \quad \mathbf{r}_n \perp \mathbf{A} \mathcal{K}_n. \]

- Same holds for **GCR** and **GMRES**.
Some Krylov space solvers are based on other orthogonal or oblique ("schiefe") projections:

- **Conjugate Gradient (CG) method** (Hestenes/Stiefel, 1952):
 \[r_n \in r_0 + A\mathcal{K}_n, \quad r_n \perp \mathcal{K}_n. \]

- **Biconjugate Gradient (BiCG) method** (Lanczos, 1952; Fletcher, 1976):
 \[r_n \in r_0 + A\mathcal{K}_n, \quad r_n \perp \tilde{\mathcal{K}}_n :\equiv \mathcal{K}_n(A^*, \tilde{r}_0). \]

- **ML(s)BiCG method** (M.-C. Yeung and T. F. Chan, 1999):
 \[r_{sj} \in r_0 + A\mathcal{K}_{sj}, \quad r_{sj} \perp \mathcal{K}_j(A^*, \tilde{R}_0) :\equiv \bigoplus_{i=1}^{s} \mathcal{K}_j(A^*, \tilde{r}_0^{(i)}). \]
Prerequisites: residual polynomials

\[r_n \in r_0 + A\mathcal{K}_n(A, r_0) \] implies that

\[\exists \rho_n \in \mathcal{P}_n, \, \rho_n(0) = 1 : \quad r_n = \rho_n(A)r_0. \]

- Means roughly: \(\|r_n\| \) is small if \(|\rho_n(t)| \) is small at the eigenvalues of \(A \).
Special cases:

- In CG the residual polynomials are orthogonal polynomials (OPs) w.r.t. a weight function determined by EVals of A (symmetric) and by r_0.
- In BICG the residual polynomials are formal orthogonal polynomials (FOPs). \leadsto Lanczos polynomials.
- In (Bi)Conjugate Gradient Squared (CGS),
 \[
 \rho_{CGS}^n = \left(\rho_{BICG}^n \right)^2.
 \]
- In BICGSTAB,\[
 \rho_{BICGSTAB}^n = \rho_{BICG}^n \Omega_n,
 \]
 where $\Omega_n(t) :\equiv (1 - \omega_1 t) \cdots (1 - \omega_n t)$. Here, at step n, ω_n is chosen to minimize the residual on a straight line.
History of IDR: references

Received May 21, 1990. Presented at Householder Tylosand. 1st preprint: “**CGSTAB**: A more smoothly converging variant of CG-S”, coauthored by P. Sonneveld.

Received May 16, 1997. Introduce first **ML(k)BiCG** and then **ML(k)BiCGSTAB** — versions of **BiCG** and **BiCGSTAB**, resp., with “multiple left (shadow) residuals”. Well written, but some details complicated. Astonishing numerical results.
P. Sonneveld and M. B. van Gijzen, *IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations*, Report 07-07, Department of Applied Mathematical Analysis, Delft University of Technology.

Generalizing IDR ≈ IDR(1) to IDR(s). Detailed description, connection to BiCGSTAB; very good numerical results.

G. Sleijpen, P. Sonneveld, and M. B. van Gijzen, *Bi-CGSTAB as an induced dimension reduction method*, Report 08-07, Department of Applied Mathematical Analysis, Delft University of Technology.

Partly new view; partly different notation; partly confusing. Introduce variants of ML(\(k\))BiCG and ML(\(k\))BiCGSTAB; insufficient reference to Yeung/Chan.
M. B. van Gijzen and P. Sonneveld, *An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties*, Report 08-21, Department of Applied Mathematical Analysis, Delft University of Technology.

Explores the freedom in the choice of the “intermediate” residuals to come up with a new version of IDR(s) that is slightly more efficient and particularly ingenious — but even harder to understand in detail.
IDR(s) basics: the setting

Given: linear system $Ax = b \in \mathbb{C}^N$, initial approx. x_0. Let:

$r_0 :\equiv b - Ax_0$,
$\mathcal{K}_m :\equiv \mathcal{K}_m(A, r_0) :\equiv \text{span}\{r_0, Ar_0, \ldots, A^{m-1}r_0\}$,
ν such that $G_0 :\equiv \mathcal{K}_\nu$ invariant,
$S \subset \mathbb{C}^N$ linear subspace of dimension $N - s$,
for $j = 1, 2, \ldots$: choose $\omega_j \neq 0$ and let

$G_j :\equiv (I - \omega_jA)(G_{j-1} \cap S)$,

for $n = n_j, \ldots, n_{j+1} - 1$:

choose x_n such that

$r_n \in G_j \cap (r_0 + A\mathcal{K}_n) \subset \mathcal{K}_{n+1}$.

Note: Typically $n_{j+1} := n_j + s + 1$.

M.H. Gutknecht
TU Berlin
p. 12
IDR(s) basics: the spaces \mathcal{G}_j (case $s = 1$)

$$\mathcal{G}_0 = \mathbb{R}^3$$

$$\mathcal{G}_2 \cap S = \{0\}$$

$$\mathcal{G}_2 \cap S = \{0\}$$

$$\mathcal{G}_2 \cap S = \{0\}$$

$$\mathcal{G}_j := (I - \omega_j A)(\mathcal{G}_{j-1} \cap S)$$
IDR(s) basics: the first two steps (case $s = 1$)

$G_0 = \mathbb{R}^3$

$G_0 \cap S = S$

$r_2 = (I - \omega_1 A)v_1$

r_0

r_1

v_1

v_2

r_3

$I - \omega_1 A$
IDR(s) basics: all the residuals (case $s = 1$)

$$\mathcal{G}_0 = \mathbb{R}^3$$

$$\mathcal{G}_1$$

$$\mathcal{G}_2 \cap \mathcal{S} = \{0\} = \{v_5\}$$

$$r_2 = (I - \omega_1 A)v_1$$

$$r_0$$

$$r_1$$
IDR(s) basics: IDR theorem

Recall: \(G_j \equiv (I - \omega_j A)(G_{j-1} \cap S) \), \(r_n \in G_j \cap (r_0 + A \mathcal{K}_n) \).

Genericness assumption: \(S \cap G_0 \) contains no eigenvector of \(A \).

Theorem (IDR Theorem (Wes/Son80, Son/vGi07))

\[G_j \subsetneq G_{j-1} \text{ unless } G_{j-1} = \{0\}. \]

Consequently: \(G_j = \{0\} \) for some \(j \leq N \).

Can expect: \(r_n = 0 \) once \(j = N \), that is, \(n = (s + 1)N \).

But typically: \(r_n = 0 \) once \(n = N \), because residuals turn out to be linearly independent.

Hence: IDR Thm. strongly underestimates convergence rate.
IDR(s) basics: what’s different?

Most currently used KSS (= Krylov subspace solvers) are based on a different kind of “induced dimension reduction”:

\[r_n \in \mathcal{L}_n^+ \cap (r_0 + A\mathcal{K}_n(A, r_0)) , \]

where, e.g.,

\[
\begin{align*}
\mathcal{L}_n &= \mathcal{K}_n(A, r_0) \quad &\text{(CG)}, \\
\mathcal{L}_n &= A\mathcal{K}_n(A, r_0) \quad &\text{(CR, GCR, GMRES)}, \\
\mathcal{L}_n &= \tilde{\mathcal{K}}_n := \mathcal{K}_n(A^*, \tilde{r}_0) \quad &\text{(BiCG)}.
\end{align*}
\]

IDR: \(\mathcal{G}_j \) is not an orthogonal complement of a Krylov subspace.

However, due to form of the recursion for \(\{\mathcal{G}_j\} \), \(\mathcal{G}_j \) turns out to be the image of an orthogonal complement of a Krylov subspace.
IDR(s) basics: recursions for \(\{ r_n \} \)

Recall: \[G_j \equiv (I - \omega_j A)(G_{j-1} \cap S). \]

Wanted: \[r_{n+1} \in G_j \cap (r_0 + AK_{n+1}). \]

\[\implies r_{n+1} := (I - \omega_j A) v_n, \quad v_n \in G_{j-1} \cap S \cap (r_0 + AK_n), \]

\[\implies v_n := r_n - \sum_{i=1}^{\nu(n)} \gamma_i^{(n)} \Delta r_{n-i} = r_n - \Delta R_n c_n, \quad (1) \]

where \[s \leq \nu(n) \leq n - n_{j-1}, \quad (\implies \Delta r_{n-i} \in G_{j-1}) \]

\[\Delta r_n \equiv r_{n+1} - r_n, \]

\[\Delta R_n \equiv \begin{bmatrix} \Delta r_{n-1} & \cdots & \Delta r_{n-\nu(n)} \end{bmatrix}, \]

\[c_n \equiv \begin{bmatrix} \gamma_1^{(n)} & \cdots & \gamma_{\nu(n)}^{(n)} \end{bmatrix}. \]
Recall (1):

\[v_n := r_n - \sum_{i=1}^{\nu(n)} \gamma_i^{(n)} \Delta r_{n-i} = r_n - \Delta R_n c_n \in G_{j-1} \cap S. \]

Since \(\dim S = N - s \), there is \(P \in \mathbb{C}^{N \times s} \) s.t. \(S^\perp = R(P) : \)

\[v_n \in S \iff v_n \perp S^\perp = R(P) \iff P^*v_n = 0. \]

To achieve this, the term \(\Delta R_n c_n \) in (1) must be the oblique projection of \(r_n \) into \(R(\Delta R_n) \) along \(S \).

In order that this projection is uniquely defined, we need \(P^* \Delta R_n \) to be nonsingular. Then

\[v_n := r_n - \Delta R_n \left(P^* \Delta R_n \right)^{-1} P^*r_n = r_n - \Delta R_n c_n \]

\[\equiv: c_n \]

We need \(\nu(n) = s \) to make \(P^* \Delta R_n \) a square matrix.
IDR(s) basics: choice of ω_j

Recall: \[r_{n+1} = (I - \omega_j A) v_n \] (3)

Here, ω_j is fixed for $n + 1 = n_j, \ldots, n_{j+1} - 1$.

So, only for $n + 1 = n_j$, we may choose ω_j s.t. $\|r_{n+1}\|$ is minimal among all r of the form $r = (I - \omega_j A) v_n$, i.e., $r \perp Av_n$:

\[\omega_j \equiv \frac{\langle Av_n, v_n \rangle}{\|Av_n\|^2}. \]
IDR(s) basics: recursions for \(\{x_n\} \)

Note 1: \(v_n \in r_0 + AK_n \implies \exists x'_n \text{ s.t. } v_n = b - Ax'_n \),
i.e., \(v_n \) is the residual of an “intermediate” iterate \(x'_n \in x_0 + K_n \).

Note 2: \(\Delta r_n = -A \Delta x_n, \quad \Delta R_n = -A \Delta X_n \),

Hence:

\[
\begin{align*}
v_n &:= r_n - \Delta R_n c_n \implies x'_n := x_n - \Delta X_n c_n, \\
r_{n+1} &:= (I - \omega_j A) v_n \implies x_{n+1} := \omega_j v_n + x'_n.
\end{align*}
\]

There are several ways to rearrange these four recursions and
to combine them with the iterate-residual relationships; see
[Sle/Son/vGi08].
The two formulas

\[r_{n+1} := (I - \omega_j A) v_n, \quad v_n := r_n - \Delta R_n c_n \]

can be combined into

\[r_{n+1} := r_n - \Delta R_n c_n - \omega_j A v_n = \Delta r_n \] \hspace{1cm} (6)

Along with it:

\[x_{n+1} := x_n - \Delta X_n c_n + \omega_j v_n = \Delta x_n \] \hspace{1cm} (7)

We may also combine the second formula and \(\Delta r_n = -A \Delta x_n \).

This is the choice in the “prototype algorithm” of [Son/vGi07].

So, there are many ways to implement IDR(s) — and more to come!
IDR(s) basics: characterization by orthogonality

Theorem (Son/vGi07, Sle/Son/vGi08)

Let $\Omega_0(t) : \equiv 1$, $\Omega_j(t) : \equiv (1 - \omega_1 t) \cdots (1 - \omega_j t) \in P_j^o$, where $P_j^o : \equiv \{\text{polyns. of degree } \leq j \text{ that are 1 at 0}\}$. Then

$$G_j = \left\{ \Omega_j(A)w \mid w \perp \underbrace{\mathcal{K}_j(A^*, P)}_{= \tilde{\mathcal{K}}_j} \right\} = \Omega_j(A) \underbrace{[\mathcal{K}_j(A^*, P)]^\perp}_{= \tilde{\mathcal{K}}_j^\perp}.$$

Note: $\tilde{\mathcal{K}}_j$ is the left-hand side (LHS) block Krylov space that appears in the block Lanczos process with LHS block size s.

Note: We may have Lanczos breakdowns and a collapsing block Krylov space (which requires deflation).
Since \(r_n \in G_j \cap (r_0 + AK_n) \), and since the residual polynomials must have full degree, we have for \(n = n_j, \ldots, n_{j+1} - 1 \):

\[
 r_n = \Omega_j(A)w_n, \quad w_n \in (r_0 + AK_{n-j}) \cap \tilde{K}_j^\perp, \quad w_n \notin K_{n-j}.
\]

(8)

Generically, \(n_{j+1} - n_j = s + 1 \), so, for fixed \(j \), we hope for \(s + 1 \) linearly independent vectors \(w_n \) with \(n_j \leq n < n_{j+1} \).

Generically, for \(n = n_j = j(s + 1) \), where \(w_n \in (r_0 + AK_{js}) \) and \(w_n \perp \tilde{K}_j \) with \(\dim \tilde{K}_j = js \), there is a unique \(w_n \) satisf. (8).

But the \(s \) other vectors \(w_n \) are not uniquely determined by (8).

Cost of computing \(r_{n_j} \in r_0 + AK_{n_j} \): \(n_j + 1 \) MVs with \(A \).
\(s = 1: \text{IDR}(1) \sim \text{BiCGSTAB} \)

Every other set of vectors \((w_n, r_n, v_{n-1}, x_n, \ldots)\) is uniquely determined — up to the choice of the parameters \(\omega_j\).

Normally, the latter are chosen as in BiCGSTAB, and thus

\[
\begin{align*}
 r_{2j} &= r^\text{BiCGSTAB}_j, \\
 x_{2j} &= x^\text{BiCGSTAB}_j, \\
 w_{2j} &= r^\text{BICG}_j,
\end{align*}
\]

where \(r^\text{BICG}_j\) is the \(j\)th residual of BiCG: \(r^\text{BICG}_j = \rho_j(A)r_0\).

Recursions (4) and (5), with \(\gamma_n \equiv \gamma_1^{(n)} = \langle P, r_n \rangle / \langle P, \Delta r_{n-1} \rangle \):

\[
\begin{align*}
 v_n &:= (1 - \gamma_n)r_n + \gamma_n r_{n-1}, \\
 r_{n+1} &:= (I - \omega_j A)v_n, \\
 x'_n &:= (1 - \gamma_n)x_n + \gamma_n x_{n-1}, \\
 x_{n+1} &:= x'_n + \omega_j v_n.
\end{align*}
\]

(9)
s = 1: polynomial recursions

\[r_n = \Omega_j(A)w_n = \begin{cases}
\Omega_j(A)\rho_j(A)r_0 & \text{if } n = 2j, \\
\Omega_j(A)\hat{\rho}_{j+1}(A)r_0 & \text{if } n = 2j + 1,
\end{cases} \]

\[v_n = \Omega_{j-1}(A)w_{n+1} = \begin{cases}
\Omega_{j-1}(A)\rho_j(A)r_0 & \text{if } n = 2j - 1, \\
\Omega_{j-1}(A)\hat{\rho}_{j+1}(A)r_0 & \text{if } n = 2j,
\end{cases} \]

Inserting these formulas into \(v_n = (1 - \gamma_n)r_n + \gamma_n r_{n-1} \) we get, after a short calculation, for \(n = 2j \) and \(n = 2j + 1 \), respectively,

\[
\hat{\rho}_{j+1}(t) := (1 - \gamma_{2j})(1 - \omega_j t) \rho_j(t) + \gamma_{2j} \hat{\rho}_j(t), \\
\rho_{j+1}(t) := (1 - \gamma_{2j+1}) \hat{\rho}_{j+1}(t) + \gamma_{2j+1} \rho_j(t). \tag{10}
\]

Recall: \(w_{2j} = \rho_j(A)r_0 \perp \tilde{\mathcal{K}}_j \) and \(w_{2j+1} = \hat{\rho}_j(A)r_0 \perp \tilde{\mathcal{K}}_j. \)
BICG uses in its standard version coupled two-term recursions:

\[
\begin{align*}
\mathbf{r}_{j+1} & := \mathbf{r}_j - \alpha_j A \mathbf{v}_j, \\
\mathbf{v}_{j+1} & := \mathbf{r}_{j+1} + \beta_j \mathbf{v}_j.
\end{align*}
\]

The corresp. recursions for \(\rho_j \) and \(\sigma_j \) are

\[
\begin{align*}
\rho_{j+1}(t) & := \rho_j(t) - \alpha_j t \sigma_j(t), \\
\sigma_{j+1}(t) & := \rho_{j+1}(t) + \beta_j \sigma_j(t).
\end{align*}
\]

In contrast, in IDR(1), by (10),

\[
\begin{align*}
\hat{\rho}_{j+1}(t) & := (1 - \gamma_{2j}) (1 - \omega_j t) \rho_j(t) + \gamma_{2j} \hat{\rho}_j(t), \\
\rho_{j+1}(t) & := (1 - \gamma_{2j+1}) \hat{\rho}_{j+1}(t) + \gamma_{2j+1} \rho_j(t).
\end{align*}
\]
Comparing the recursions for \((\rho_j, \sigma_j)\) with those for \((\rho_j, \hat{\rho}_j)\) we easily see:

\[
(1 - \gamma_{2j+1}) (\hat{\rho}_{j+1}(t) - \rho_j(t)) = -\alpha_j t \sigma_j(t),
\]

or,

\[
\hat{\rho}_{j+1}(t) = \rho_j(t) - \frac{\alpha_j}{1 - \gamma_{2j+1}} t \sigma_j(t),
\]

or,

\[
\textcolor{red}{r_{2j+1} = r_{2j} - \frac{\alpha_j}{(1 - \gamma_{2j+1})} A \underbrace{\Omega_j(A) v_j}_{\text{BICGSTAB}}}. \quad \equiv: \text{S}_j
\]

This formula expresses the odd indexed IDR(1) residuals in terms of quantities from BICGSTAB and the coefficient \(\gamma_{2j+1}\).
\[
\hat{\rho}_{j+1}(t) = \rho_j(t) - \frac{\alpha_j}{1 - \gamma_{2j+1}} t \sigma_j(t),
\]

\[
\text{BICG/BICGSTAB: } \quad \rho_{j+1}(t) := \rho_j(t) - \alpha_j t \sigma_j(t),
\]

\[
\text{IDR(1): } \quad \rho_{j+1}(t) := (1 - \gamma_{2j+1}) \hat{\rho}_{j+1}(t) + \gamma_{2j+1} \rho_j(t).
\]
\(s = 1 \): Comments and conclusions

- IDR(1) can be viewed as a minor variation of BiCGSTAB.
- It is not clear, why one or the other should be more stable.
- In fact, the existence of all even indexed IDR(1) residuals requires (like the BiOR\$ES version of BiCG) that no Lanczos breakdowns and no pivot breakdowns occur.
- The smoothing step breakdown (\(\omega_j = 0 \)) is also the same and can be treated easily by choosing a non-optimal \(\omega_j \).
s > 1: IDR(s) \sim ML(s)BICGSTAB

- Relation IDR(1) \sim BICGSTAB \iff BICG is matched by relation IDR(s) \sim ML(s)BICGSTAB \iff ML(s)BICG.

- If the parameters \(\omega_j \) were chosen the same in IDR(s) and ML(s)BICGSTAB every \((s + 1)\)th iterate were the same in both methods — but normally the parameters are not chosen the same.

- ML(s)BICG and ML(s)BICGSTAB are due to Man-Chung Yeung and Tony Chan '97/'99 SISC. Connection to nonsym. block Lanczos [Aliaga/Boley/Freund/Hernández '96/'99 MC].

- Oddly, essentially the same methods are also introduced in [Sle/Son/vGi08]. Yeung/Chan are cited in introduction only.
• The fundamental discovery that, in the framework of Lanczos-type product methods, multiple left projections can both speed up the convergence and reduce the MV count (per “degree” of w_n, which is what is determined by orthogonality) is due to Yeung and Chan. Sonneveld and van Gijzen rediscovered it 10 years later independently.

• Yeung/Chan paper is well written, but derivation of the recursions is complicated due to use of the “wrong” basis for \tilde{K}_j and complex manipulations for reducing cost. Amazingly, their Matlab program

http://www.uwyo.edu/mathmyeung/p12/mlbicgstab.txt

is only 187 lines (incl. 30 lines of comments).

• ML(s)BICGSTAB requires a few more inner products and vector updates than IDR(s) and may be less stable.
Conclusions

- IDR(1) is as good as BiCGSTAB.
- IDR(s) is as good as ML(s)BiCGSTAB.
- The IDR(s) recurrence coefficients are simpler to compute than those of ML(s)BiCGSTAB.
- Typically, IDR(s) and ML(s)BiCGSTAB outperform other methods for a nonsymmetric problem.
- What is missing is the IDR-like generalization of BiCGStab2 to cover the case where A is real, but has (strongly) non-real eigenvalues.
\[s = 1: \] How did the original IDR differ from IDR(1)?

In contrast to IDR(1) of [Son/vGi07], where we had

\[
\begin{align*}
\mathbf{v}_n & := \mathbf{r}_n - \gamma_n (\mathbf{r}_n - \mathbf{r}_{n-1}), \\
\mathbf{r}_{n+1} & := (I - \omega_j \mathbf{A}) \mathbf{v}_n,
\end{align*}
\]

\[
\begin{align*}
\mathbf{x}'_n & := \mathbf{x}_n - \gamma_n (\mathbf{x}_n - \mathbf{x}_{n-1}), \\
\mathbf{x}_{n+1} & := \mathbf{x}'_n + \omega_j \mathbf{v}_n,
\end{align*}
\]

the original IDR of [Wes/Son80] used for \(n \) odd the recursions

\[
\begin{align*}
\mathbf{v}_n & := \mathbf{r}_n - \gamma'_n (\mathbf{r}_{n-1} - \mathbf{r}_{n-2}), \\
\mathbf{r}_{n+1} & := (I - \omega_j \mathbf{A}) \mathbf{v}_n,
\end{align*}
\]

\[
\begin{align*}
\mathbf{x}'_n & := \mathbf{x}_n - \gamma'_n (\mathbf{x}_{n-1} - \mathbf{x}_{n-2}), \\
\mathbf{x}_{n+1} & := \mathbf{x}'_n + \omega_j \mathbf{v}_n.
\end{align*}
\]

with \(\gamma'_n \equiv \gamma_1^{(n)} = \langle \mathbf{P}, \mathbf{r}_n \rangle / \langle \mathbf{P}, \Delta \mathbf{r}_{n-2} \rangle \).

The IDR theorem still applies, and still \(\mathbf{x}_{2j} = \mathbf{x}_j^{\text{BiCGSTAB}} \).
Another variant: IDR(s)BiO

Recall (1): in IDR(s) of [Son/vGi07]

\[v_n := r_n - \sum_{i=1}^{\nu(n)} \gamma_i^{(n)} \Delta r_{n-i} = r_n - \Delta R_n c_n \in G_{j-1} \cap S. \]

where \(s \leq \nu(n) \leq n - n_{j-1} \), and normally \(\nu(n) = s \).

In [vGiSon08] the authors propose instead a variant where the index \(n - i \) in (1) ranges from \(n_{j-1} \) to \(n_j - 2 \).
At the same time they replace in (1) the subspace basis

\[\{ \Delta r_{n-i} \}_{i=1}^{s} \subset G_{j-1} \cap A K_n \]

by a basis of another \(s \)-dim. subspace depending on \(j - 1 \) only:

\[\{ g_{n_{j-1}+i-1} \}_{i=1}^{s} \subset G_{j-1} \cap A K_{n_{j-1}} \]
This means that now (after inverting the summation index)

\[v_n := r_n - \sum_{i=1}^{s} \gamma_i^{(n)} g_{n_{j-1}+i-1} = r_n - G_{j-1} c_n \in G_{j-1} \cap S, \]

where \(n = n_j + k \) (\(k = 0, \ldots, s \)),

\[G_{j-1} := \begin{bmatrix} g_{n_{j-1}} & \cdots & g_{n_j} \end{bmatrix}, \quad c_n := \begin{bmatrix} \gamma_1^{(n)} & \cdots & \gamma_s^{(n)} \end{bmatrix}. \]

\(c_n \) is determined by the condition \(v_n \perp \mathcal{R}(P) \). So, as in (2),

\[c_n := (P^* G_{j-1})^{-1} P^* r_n, \quad v_n := r_n - G_{j-1} c_n. \]

Also the matrix \(M_{j-1} \) of the linear system for \(c_n \) only depends on \(j - 1 \), not on \(n \) (i.e., \(k \)).
Using a “one-sided biorthogonalization” process [vGiSon08] enforce that

\[M_{j-1} \equiv P^* G_{j-1} \quad \text{and} \quad F_j \equiv P^* \left[r_{nj} \ldots r_{nj+s-1} \right] \]

are lower triangular, so

\[C_j \equiv \begin{bmatrix} c_{nj} & \cdots & c_{nj+s-1} \end{bmatrix} \equiv M_{j-1}^{-1} F_j \]

is lower triangular too. Consequently:

- The sum in (11) starts at \(k + 1 \) only.
- In the \(k \)-loop of the code, no longer used parts of \(G_{j-1} \) and \(M_{j-1} \) can be overwritten with new data for \(G_j \) and \(M_j \).
- This applies also to \(U_{j-1} \equiv A^{-1} G_{j-1} \) needed to update \(x_n \).
- \(\rightsquigarrow \) Reduction in computing time and memory usage.
Conclusions

- The new variant, called IDR(s)BIO here, is particularly ingenious.
- Computing time and memory usage are reduced a bit.
- Ansatz for \mathbf{v}_n generalizes the original IDR of 1980, but IDR(1)BIO \neq IDR$_{1980}$.
- It remains unclear why the latter was said to be less stable than BICGSTAB.
Merry Christmas