Krylov Space Solvers

Martin H. Gutknecht

Seminar for Applied Mathematics
ETH Zurich

Shanghai Jiao Tong University, 17 Oct. 2006
Large sparse linear systems of equations or large sparse matrix eigenvalue problems appear in most applications of scientific computing.

In particular, discretization of PDEs with the finite element method (FEM) or with the finite difference method (FDM) leads to such problems:

$$\begin{align*}
\text{PDEs} & \quad \Rightarrow \quad \text{discretization/linearization} \\
Ax &= b \\
& \quad \text{or} \\
Ax &= x\lambda
\end{align*}$$

Here, A is $N \times N$, nonsingular, large, and sparse.

large: say, $500 \leq N \leq 100'000'000$

sparse: most elements are zero;

say, 5 to 50 nonzero elements per row

Sparse matrices are stored in appropriate data formats.
Sparse Matrices

Large sparse linear systems of equations or large sparse matrix eigenvalue problems appear in most applications of scientific computing.

In particular, discretization of PDEs with the finite element method (FEM) or with the finite difference method (FDM) leads to such problems:

\[
\begin{align*}
\text{PDEs} & \quad \implies \\
\text{discretization/linearization} & \quad \implies \\
Ax &= b \\
\text{or} \\
Ax &= x\lambda
\end{align*}
\]

Here, \(A \) is \(N \times N \), nonsingular, large, and **sparse**.

- **large**: say, \(500 \leq N \leq 100'000'000 \)
- **sparse**: most elements are zero; say, 5 to 50 nonzero elements per row

Sparse matrices are stored in appropriate data formats.
Often, when PDEs are solved, most computer time is spent for repeatedly solving the linear system or the eigenvalue problem.

In iterative methods A is only needed to compute Ay for any $y \in \mathbb{R}^N$. Thus, A may be given as a procedure/function $A : y \mapsto Ay$.

We will refer to this operation as a matrix-vector product (MV) although in practice the required computation may be much more complicated than multiplying a sparse matrix with a vector.

Of course, variations of the two problems $Ax = b$ and $Ax = x\lambda$ appear also.

We concentrate here on iterative methods for linear systems of equations $Ax = b$.
Often, when PDEs are solved, most computer time is spent for repeatedly solving the linear system or the eigenvalue problem.

In iterative methods A is only needed to compute Ay for any $y \in \mathbb{R}^N$. Thus, A may be given as a procedure/function

$$A : y \mapsto Ay.$$

We will refer to this operation as a matrix-vector product (MV) although in practice the required computation may be much more complicated than multiplying a sparse matrix with a vector.

Of course, variations of the two problems $Ax = b$ and $Ax = x\lambda$ appear also.

We concentrate here on iterative methods for linear systems of equations $Ax = b$.

Martin H. Gutknecht
Krylov Space Solvers
Often, when PDEs are solved, most computer time is spent for repeatedly solving the linear system or the eigenvalue problem.

In iterative methods A is only needed to compute Ay for any $y \in \mathbb{R}^N$. Thus, A may be given as a procedure/function

$$A : y \mapsto Ay.$$

We will refer to this operation as a matrix-vector product (MV) although in practice the required computation may be much more complicated than multiplying a sparse matrix with a vector.

Of course, variations of the two problems $Ax = b$ and $Ax = x\lambda$ appear also.

We concentrate here on iterative methods for linear systems of equations $Ax = b$.
Alternative to iterative methods for linear systems: \textbf{sparse direct solvers}, which are ingenious modifications of Gaussian elimination (\textarrow{\textbf{sparse LU decomposition}})

There are very effective, hardware-dependent implementations.

\textit{Rule of thumb: direct for 1D and 2D — iterative for 3D.}
Results by Stefan Röllin ['05Diss] on *semiconductor device simulation*:

Direct solver *PARDISO*, iterative solvers *Slip90* and *ILS* (all from ISS/ETH Zurich [Prof. Wolfgang Fichtner]).

Results shown are on a sequential computer, although both PARDISO and ILS are best on shared memory multiprocessor computers (*OPENMP*).

The new package *ILS* applies

- a *nonsymmetric permutation*; see Duff/Koster ['00SIMAX]
- a *symmetric permutation*, e.g. *nested dissection (ND)*, *reverse Cuthill-McKee*, or *multiple minimum degree (MMD)*
- *ILUT* preconditioning
- in *iterative method*, preferably *BICGSTAB*
Results by Stefan Röllin ['05Diss] on semiconductor device simulation:

Direct solver PARDISO, iterative solvers Slip90 and ILS (all from ISS/ETH Zurich [Prof. Wolfgang Fichtner]).

Results shown are on a sequential computer, although both PARDISO and ILS are best on shared memory multiprocessor computers (OPENMP).

The new package ILS applies

- a nonsymmetric permutation; see Duff/Koster ['00SIMAX]
- a symmetric permutation, e.g. nested dissection (ND), reverse Cuthill-McKee, or multiple minimum degree (MMD)
- ILUT preconditioning
- in iterative method, preferably BICGSTAB
Direct vs. iterative methods (cont’d)

Matrices used in the numerical experiments of Röllin

<table>
<thead>
<tr>
<th>name of problem</th>
<th>unknowns</th>
<th>structural nonzeros</th>
<th>dim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igbt-10</td>
<td>11’010</td>
<td>234’984</td>
<td>2D</td>
</tr>
<tr>
<td>Si-pbh-laser-21</td>
<td>14’086</td>
<td>511’484</td>
<td>2D</td>
</tr>
<tr>
<td>Nmos-10</td>
<td>18’627</td>
<td>387’457</td>
<td>2D</td>
</tr>
<tr>
<td>Barrier2-7</td>
<td>115’625</td>
<td>6’372’663</td>
<td>3D</td>
</tr>
<tr>
<td>Para-7</td>
<td>155’924</td>
<td>8’374’204</td>
<td>3D</td>
</tr>
<tr>
<td>With-dfb-36</td>
<td>174’272</td>
<td>8’625’700</td>
<td>3D</td>
</tr>
<tr>
<td>Ohne-9</td>
<td>183’038</td>
<td>11’170’886</td>
<td>3D</td>
</tr>
<tr>
<td>Resistivity-9</td>
<td>318’026</td>
<td>19’455’650</td>
<td>3D</td>
</tr>
</tbody>
</table>

Martin H. Gutknecht
Krylov Space Solvers
Nonsymmetric permutations may reduce the condition number and increase the diagonal dominance:

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Original</th>
<th>Scaled & permuted with MPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Condest</td>
<td>d.d.rows</td>
</tr>
<tr>
<td>Igbt-10</td>
<td>4.73e+19</td>
<td>2'421</td>
</tr>
<tr>
<td>Si-pbh...</td>
<td>7.11e+23</td>
<td>1'530</td>
</tr>
<tr>
<td>Nmos-10</td>
<td>9.28e+20</td>
<td>2'951</td>
</tr>
<tr>
<td>Barrier...</td>
<td>2.99e+19</td>
<td>30'073</td>
</tr>
<tr>
<td>Para-7</td>
<td>1.48e+19</td>
<td>41'144</td>
</tr>
<tr>
<td>With-...</td>
<td>1.25e+20</td>
<td>33'424</td>
</tr>
<tr>
<td>Ohne-9</td>
<td>7.48e+19</td>
<td>45'567</td>
</tr>
<tr>
<td>Resist...</td>
<td>failed</td>
<td>105'980</td>
</tr>
</tbody>
</table>
Overall runtime for different solvers and simulations. Scaled to ILS. Dark bars show time spent for the solution of the linear systems. Some runs for PARDISO were done on faster computers with more memory.
The simplest iterative method is \textit{Jacobi iteration}. It is the same as diagonally preconditioned \textit{fixed point iteration} or \textit{Picard iteration}:

If D is the diagonal of A, and if D is nonsingular, we transform $Ax = b$ into

$$x = \hat{B}x + \hat{b} \quad \text{with} \quad \hat{B} \equiv I - D^{-1}A, \quad \hat{b} \equiv D^{-1}b$$ \hspace{1cm} (1)

and apply the fixed point iteration $x_{n+1} := \hat{B}x_n + \hat{b}$.
THEOREM

For the Jacobi iteration holds

\[x_n \rightarrow x_\star \text{ for every } x_0 \iff \rho(\hat{B}) < 1, \]

(2)

where \(x_\star \equiv A^{-1}b \) and \(\rho(\hat{B}) \equiv \max\{ |\lambda| \mid \lambda \text{ eigenvalue of } \hat{B} \} \) is the spectral radius of \(\hat{B} \).
EXAMPLE 1.

Simplest example of a boundary value problem:

\[
\begin{align*}
 u'' &= f \quad \text{on} \quad (0,1), \\
 u(0) &= u(1) = 0.
\end{align*}
\]

(3)

Possible interpretation: steady state distribution of heat in a rod.

\[
A := T := \begin{pmatrix}
 2 & -1 & & \\
 -1 & 2 & -1 & \\
 & -1 & 2 & \ddots \\
 & & \ddots & \ddots & -1 \\
 & & & -1 & 2
\end{pmatrix},
\]

\[
\hat{B} := I - \frac{1}{2} T, \quad \rho(\hat{B}) = \rho(I - \frac{1}{2} T) = \cos \frac{\pi}{N + 1}.
\]

If \(N = 100 \), \(\rho(\hat{B}) = 0.99951628... \)

In order to reduce the error by a factor of 10, we need 4760 iterations!
Jacobi iteration

Since we cannot compute the \(n \)th error (vector)

\[
d_n \equiv x_n - x_*,
\]

(4)

for checking the convergence we use the \(n \)th residual (vector)

\[
r_n \equiv b - Ax_n.
\]

(5)

Note that

\[
r_n = -A(x_n - x_*) = -Ad_n.
\]

(6)

Assuming \(D = I \) and letting \(B \equiv I - A \) we have

\[
r_n = b - Ax_n = Bx_n + b - x_n = x_{n+1} - x_n,
\]

so we can rewrite the Jacobi iteration as

\[
x_{n+1} := x_n + r_n.
\]

(7)

Multiplying this by \(-A\), we obtain a recursion for the residual:

\[
r_{n+1} := r_n - Ar_n = Br_n.
\]

(8)
Since we cannot compute the nth error (vector)

$$d_n \equiv x_n - x_*,$$ \hfill (4)

for checking the convergence we use the nth residual (vector)

$$r_n \equiv b - Ax_n.$$ \hfill (5)

Note that

$$r_n = -A(x_n - x_*) = -Ad_n.$$ \hfill (6)

Assuming $D = I$ and letting $B \equiv I - A$ we have

$$r_n = b - Ax_n = Bx_n + b - x_n = x_{n+1} - x_n,$$

so we can rewrite the Jacobi iteration as

$$x_{n+1} := x_n + r_n.$$ \hfill (7)

Multiplying this by $-A$, we obtain a recursion for the residual:

$$r_{n+1} := r_n - Ar_n = Br_n.$$ \hfill (8)
From (8) it follows by induction that

\[r_n = p_n(A)r_0 \in \text{span} \{ r_0, Ar_0, \ldots, A^n r_0 \} \equiv: \mathcal{K}_{n+1}(A, r_0), \quad (9) \]

where \(p_n \) is a polynomial of exact degree \(n \) and \(\mathcal{K}_{n+1}(A, r_0) \) is the \((n+1)\)th Krylov (sub)space generated by \(A \) from \(r_0 \).

Here, for Jacobi iteration, \(p_n(\zeta) = (1 - \zeta)^n \).

From (7) we conclude that

\[x_n = x_0 + r_0 + \cdots + r_{n-1} = x_0 + q_{n-1}(A)r_0 \in x_0 + \mathcal{K}_n(A, r_0) \quad (10) \]

with a polynomial \(q_{n-1} \) of exact degree \(n - 1 \).

\(q_{n-1}(A)r_0 \) and \(p_n(A)r_0 \) require a total of \(n + 1 \) matrix-vector multiplications (MVs); this is the main work.

Is there a better choice for \(x_n \) in the same affine space?
From (8) it follows by induction that

\[r_n = p_n(A)r_0 \in \text{span} \{ r_0, Ar_0, \ldots, A^n r_0 \} \equiv: K_{n+1}(A, r_0), \quad (9) \]

where \(p_n \) is a polynomial of exact degree \(n \) and \(K_{n+1}(A, r_0) \) is the \((n + 1)\)th Krylov (sub)space generated by \(A \) from \(r_0 \). Here, for Jacobi iteration, \(p_n(\zeta) = (1 - \zeta)^n \).

From (7) we conclude that

\[x_n = x_0 + r_0 + \cdots + r_{n-1} = x_0 + q_{n-1}(A)r_0 \in x_0 + K_n(A, r_0) \quad (10) \]

with a polynomial \(q_{n-1} \) of exact degree \(n - 1 \).

\(q_{n-1}(A)r_0 \) and \(p_n(A)r_0 \) require a total of \(n + 1 \) matrix-vector multiplications (MVs); this is the main work.

Is there a better choice for \(x_n \) in the same affine space?
Definition. Given a nonsingular $A \in \mathbb{C}^{N \times N}$ and $y \neq 0 \in \mathbb{C}^N$, the nth **Krylov (sub)space** $\mathcal{K}_n(A, y)$ generated by A from y is

$$\mathcal{K}_n \equiv \mathcal{K}_n(A, y) \equiv \text{span} \left(y, Ay, \ldots, A^{n-1}y \right).$$

(11)

Clearly,

$$\mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq \mathcal{K}_3 \subseteq \ldots .$$

When does the equality sign hold?
Definition. Given a nonsingular \(A \in \mathbb{C}^{N \times N} \) and \(y \neq 0 \in \mathbb{C}^N \), the \(n \)th **Krylov (sub)space** \(\mathcal{K}_n(A, y) \) generated by \(A \) from \(y \) is

\[
\mathcal{K}_n := \mathcal{K}_n(A, y) := \text{span}(y, Ay, \ldots, A^{n-1}y) \tag{11}
\]

Clearly,

\[
\mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq \mathcal{K}_3 \subseteq \ldots.
\]

When does the equality sign hold?
The following lemma answers this question.

Lemma

There is a positive integer \(\bar{\nu} :\equiv \bar{\nu}(y, A) \) such that

\[
\dim \mathcal{K}_n(A, y) = \begin{cases}
 n & \text{if } n \leq \bar{\nu}, \\
 \bar{\nu} & \text{if } n \geq \bar{\nu}.
\end{cases}
\]

Definition. The positive integer \(\bar{\nu} :\equiv \bar{\nu}(y, A) \) of Lemma 2 is called **grade of** \(y \) **with respect to** \(A \).
LEMMA

The positive integer $\bar{\nu}$ of Lemma 2 satisfies

$$\bar{\nu} = \min \left\{ n \mid A^{-1}y \in \mathcal{K}_n(A, y) \right\} \leq \partial \hat{\chi}_A,$$

where $\partial \hat{\chi}_A$ denotes the degree of the minimal polynomial of A.

COROLLARY

Let x_\star be the solution of $Ax = b$ and let x_0 be any initial approximation of it and $r_0 \equiv b - Ax_0$ the corresponding residual. Moreover, let $\bar{\nu} \equiv \bar{\nu}(r_0, A)$. Then

$$x_\star \in x_0 + \mathcal{K}_{\bar{\nu}}(A, r_0).$$
LEMMA

The positive integer $\bar{\nu}$ of Lemma 2 satisfies

$$\bar{\nu} = \min \left\{ n \mid A^{-1}y \in K_n(A, y) \right\} \leq \partial \hat{\chi}_A,$$

where $\partial \hat{\chi}_A$ denotes the degree of the minimal polynomial of A.

COROLLARY

Let x_\star be the solution of $Ax = b$ and let x_0 be any initial approximation of it and $r_0 \equiv b - Ax_0$ the corresponding residual. Moreover, let $\bar{\nu} \equiv \bar{\nu}(r_0, A)$. Then

$$x_\star \in x_0 + K_{\bar{\nu}}(A, r_0).$$
Definition. A *(standard) Krylov space method for solving a linear system* $Ax = b$ or, briefly, a *(standard) Krylov space solver* is an iterative method starting from some initial approximation x_0 and the corresponding residual $r_0 \equiv b - Ax_0$ and generating for all, or at least most n, iterates x_n such that

$$x_n - x_0 = q_{n-1}(A)r_0 \in \mathcal{K}_n(A, r_0) \quad (12)$$

with a polynomial q_{n-1} of exact degree $n - 1$. ▲
The residuals of a Krylov space solver satisfy

\[\mathbf{r}_n = p_n(A)\mathbf{r}_0 \in \mathbf{r}_0 + A\mathcal{K}_n(A, \mathbf{r}_0) \subseteq \mathcal{K}_{n+1}(A, \mathbf{r}_0), \]

(13)

where \(p_n \) is a polynomial of degree \(n \), which is related to the polynomial \(q_{n-1} \) of (12) by

\[p_n(\zeta) = 1 - \zeta q_{n-1}(\zeta). \]

(14)

In particular,

\[p_n(0) = 1. \]

(15)

Definition. \(p_n \in \mathcal{P}_n \) is the \(n \)th residual polynomial. Condition (15) is its consistency condition.
Remark. For some Krylov space solvers (e.g., BiCG) there may exist exceptional situations, where for some \(n \) the iterate \(x_n \) and the residual \(r_n \) are not defined.

There are also nonstandard Krylov space methods where the search space for \(x_n - x_0 \) is still a Krylov space, but one that differs from \(K_n(A, r_0) \).

Remark. With respect to the “influence on the development and practice of science and engineering in the 20th century”, Krylov space methods are considered as one of the ten most important classes of numerical methods.
Remark. For some Krylov space solvers (e.g., BICG) there may exist exceptional situations, where for some n the iterate x_n and the residual r_n are not defined.

There are also **nonstandard Krylov space methods** where the search space for $x_n - x_0$ is still a Krylov space, but one that differs from $\mathcal{K}_n(A, r_0)$.

Remark. With respect to the “influence on the development and practice of science and engineering in the 20th century”, Krylov space methods are considered as one of the ten most important classes of numerical methods.
REMARK. For some Krylov space solvers (e.g., BICG) there may exist exceptional situations, where for some \(n \) the iterate \(x_n \) and the residual \(r_n \) are not defined.

There are also nonstandard Krylov space methods where the search space for \(x_n - x_0 \) is still a Krylov space, but one that differs from \(\mathcal{K}_n(A, r_0) \).

REMARK. With respect to the “influence on the development and practice of science and engineering in the 20th century”, Krylov space methods are considered as one of the ten most important classes of numerical methods.
Alternative names for Krylov (sub)space solvers/methods:

- gradient methods,
- semi-iterative methods,
- polynomial acceleration methods,
- polynomial preconditioners,
- Krylov subspace iterations.
When applied to large real-world problems Krylov space solvers often converge very slowly — if at all. In practice, Krylov space solvers are therefore nearly always applied with **preconditioning**: $Ax = b$ is replaced by

\[
CA \hat{A} x = Cb \hat{b}
\]

left preconditioner \hspace{1cm} (16)

or

\[
AC \hat{A} \hat{x} = C^{-1} x = b
\]

right preconditioner \hspace{1cm} (17)

or

\[
C_L A C_R \hat{A} \hat{x} = C^{-1}_R x = C_L b \hat{b}
\]

split preconditioner \hspace{1cm} (18)
Energy norm minimization

Stable states are characterized by minimum energy. Discretization leads to the minimization of a quadratic function:

\[\psi(x) \equiv \frac{1}{2} x^T A x - b^T x + \gamma \] (19)

with an \textit{spd matrix} \(A \). (We assume real data now.) \(\psi \) is convex and has a unique minimum. Its gradient is

\[\nabla \psi(x) = Ax - b = -r, \] (20)

where \(r \) is the residual corresponding to \(x \). Hence,

\[x \text{ minimizer of } \psi \iff \nabla \psi(x) = 0 \iff Ax = b. \] (21)

If \(x^* \) denotes the minimizer and \(d \equiv x - x^* \) the error vector, and if we choose \(\gamma \equiv \frac{1}{2} b^T A^{-1} b \), it is easily seen that

\[\|d\|_A^2 = \|x - x^*\|_A^2 = \|Ax - b\|_{A^{-1}}^2 = \|r\|_{A^{-1}}^2 = 2 \psi(x). \] (22)

Martin H. Gutknecht Krylov Space Solvers
Energy norm minimization

Stable states are characterized by minimum energy. Discretization leads to the minimization of a quadratic function:

$$\Psi(x) \equiv \frac{1}{2} x^T A x - b^T x + \gamma$$

(19)

with an ** spd matrix ** A. (We assume real data now.)

Ψ is convex and has a unique minimum. Its gradient is

$$\nabla \Psi(x) = Ax - b = -r,$$

(20)

where r is the residual corresponding to x. Hence,

$$x \text{ minimizer of } \Psi \iff \nabla \Psi(x) = 0 \iff Ax = b.$$

(21)

If x_\star denotes the minimizer and $d := x - x_\star$ the error vector, and if we choose $\gamma \equiv \frac{1}{2} b^T A^{-1} b$, it is easily seen that

$$\|d\|_A^2 = \|x - x_\star\|_A^2 = \|Ax - b\|_{A^{-1}}^2 = \|r\|_{A^{-1}}^2 = 2 \Psi(x).$$

(22)
Energy norm minimization

Stable states are characterized by minimum energy. Discretization leads to the minimization of a quadratic function:

$$\psi(x) \equiv \frac{1}{2} x^T A x - b^T x + \gamma$$ \hspace{1cm} (19)

with an *spd matrix* A. (We assume real data now.)

ψ is convex and has a unique minimum. Its gradient is

$$\nabla \psi(x) = Ax - b = -r,$$ \hspace{1cm} (20)

where r is the residual corresponding to x. Hence,

x minimizer of ψ \iff $\nabla \psi(x) = 0$ \iff $Ax = b$. \hspace{1cm} (21)

If x_\ast denotes the minimizer and $d \equiv x - x_\ast$ the error vector, and if we choose $\gamma \equiv \frac{1}{2} b^T A^{-1} b$, it is easily seen that

$$\|d\|_A^2 = \|x - x_\ast\|_A^2 = \|Ax - b\|_{A^{-1}}^2 = \|r\|_{A^{-1}}^2 = 2 \psi(x).$$ \hspace{1cm} (22)
Again:

\[
\|d\|_A^2 = \|x - x_\star\|_A^2 = \|Ax - b\|_{A^{-1}}^2 = \|r\|_{A^{-1}}^2 = 2 \psi(x). \tag{22}
\]

Here

\[
\|d\|_A = \sqrt{d^T A d} \tag{23}
\]

is the **A-norm** or **energy norm** of the error vector.

In summary: If A is spd, to minimize the quadratic function \(\psi\) means to minimize the energy norm of the error vector of the linear system \(Ax = b\).

The minimizer \(x_\star\) is the solution of \(Ax = b\).

Since A is spd, the level curves \(\psi(x) = \text{const}\) are ellipses if \(N = 2\) and ellipsoids if \(N = 3\).
Again:

\[
\|d\|_A^2 = \|x - x^\star\|_A^2 = \|Ax - b\|_{A^{-1}}^2 = \|r\|_{A^{-1}}^2 = 2\, \psi(x).
\] (22)

Here

\[
\|d\|_A = \sqrt{d^\top A d} \tag{23}
\]

is the **A-norm** or energy norm of the error vector.

In summary: If \(A \) is spd, to minimize the quadratic function \(\psi \) means to minimize the energy norm of the error vector of the linear system \(Ax = b \).

The minimizer \(x^\star \) is the solution of \(Ax = b \).

Since \(A \) is spd, the level curves \(\psi(x) = \) const are ellipses if \(N = 2 \) and ellipsoids if \(N = 3 \).
Energy norm minimization (cont’d)

Again:

\[\| d \|_A^2 = \| x - x^* \|_A^2 = \| Ax - b \|_{A^{-1}}^2 = \| r \|_{A^{-1}}^2 = 2 \psi(x). \] (22)

Here

\[\| d \|_A = \sqrt{d^T A d} \] (23)

is the **A-norm** or **energy norm** of the error vector.

In summary: If \(A \) is spd, to minimize the quadratic function \(\psi \) means to minimize the energy norm of the error vector of the linear system \(Ax = b \).

The minimizer \(x^* \) is the solution of \(Ax = b \).

Since \(A \) is spd, the level curves \(\psi(x) = \text{const} \) are ellipses if \(N = 2 \) and ellipsoids if \(N = 3 \).
The method of steepest descent

The above suggest to find the minimizer of Ψ by moving down the surface representing Ψ in the direction of steepest descent. In each step we go to the lowest point in this direction.

Even for a 2×2 system many steps are needed to get close to the solution.
We can do much better: we choose the second direction conjugate or A-orthogonal to the first one: $\mathbf{v}_1^T \mathbf{A} \mathbf{v}_0 = 0$.

Now two steps are enough!
How does this generalize to N dimensions?

We choose search directions or direction vectors v_n that are conjugate (A–orthogonal) to each other:

$$v_n^T A v_k = 0, \quad k = 0, \ldots, n-1,$$

and define

$$x_{n+1} := x_n + v_n \omega_n,$$

so that

$$r_{n+1} = r_n - A v_n \omega_n.$$

ω_n is chosen such that the A-norm of the error is minimized on the line

$$\omega \mapsto x_n + v_n \omega.$$

This leads to

$$\omega_n := \frac{\langle r_n, v_n \rangle}{\langle v_n, A v_n \rangle}.$$
How does this generalize to N dimensions?

We choose search directions or direction vectors v_n that are conjugate (A–orthogonal) to each other:

$$v_n^T A v_k = 0, \quad k = 0, \ldots, n - 1,$$

and define

$$x_{n+1} := x_n + v_n \omega_n,$$

so that

$$r_{n+1} = r_n - A v_n \omega_n.$$

ω_n is chosen such that the A-norm of the error is minimized on the line

$$\omega \mapsto x_n + v_n \omega.$$

This leads to

$$\omega_n := \frac{\langle r_n, v_n \rangle}{\langle v_n, A v_n \rangle}.$$
Definition. Any iterative method satisfying (24), (25), and (28) is called a **conjugate direction (CD) method**.

By definition, such a method chooses the step length ω_n so that x_{n+1} is locally optimal on the search line.

But does it also yield the best

$$x_{n+1} \in x_0 + \text{span} \{v_0, \ldots, v_n\}$$

(29)

with respect to the A–norm of the error?

Yes!
Definition. Any iterative method satisfying (24), (25), and (28) is called a **conjugate direction (CD) method**.

By definition, such a method chooses the step length ω_n so that x_{n+1} is locally optimal on the search line. But does it also yield the best

$$x_{n+1} \in x_0 + \text{span} \{v_0, \ldots, v_n\}$$

(29)

with respect to the A–norm of the error? **Yes!**
Definition. Any iterative method satisfying (24), (25), and (28) is called a **conjugate direction (CD) method**.

By definition, such a method chooses the step length ω_n so that x_{n+1} is locally optimal on the search line.

But does it also yield the best

$$x_{n+1} \in x_0 + \text{span} \{v_0, \ldots, v_n\} \quad (29)$$

with respect to the A-norm of the error?

Yes!
Conjugate direction methods (cont’d)

Theorem

For a conjugate direction method the problem of minimizing the energy norm of the error of an approximate solution of the form (29) decouples into $n+1$ one-dimensional minimization problems on the lines $\omega \mapsto x_k + v_k \omega$, $k = 0, 1, \ldots, n$. A conjugate direction method yields after $n+1$ steps the approximate solution of the form (29) that minimizes the energy norm of the error in this affine space.

Proof. One shows that

$$
\Psi(x_{n+1}) = \Psi(x_n) - \omega_n v_n^T r_0 + \frac{1}{2} \omega_n^2 v_n^T A v_n.
$$

Conjugate direction (CD) methods as well as the special case of the conjugate gradient (CG) method treated next are due to Hestenes and Stiefel (1952).
Theorem

For a conjugate direction method the problem of minimizing the energy norm of the error of an approximate solution of the form (29) decouples into \(n + 1 \) one-dimensional minimization problems on the lines \(\omega \mapsto x_k + v_k \omega, \ k = 0, 1, \ldots, n. \)

A conjugate direction method yields after \(n + 1 \) steps the approximate solution of the form (29) that minimizes the energy norm of the error in this affine space.

Proof. One shows that

\[
\Psi(x_{n+1}) = \Psi(x_n) - \omega_n v_n^T r_0 + \frac{1}{2} \omega_n^2 v_n^T A v_n.
\]

Conjugate direction (CD) methods as well as the special case of the conjugate gradient (CG) method treated next are due to Hestenes and Stiefel (1952).
The conjugate gradient (CG) method

In general, conjugate direction methods are not Krylov space solvers, but with suitably chosen search directions they are.

\[x_{n+1} = x_0 + v_0 \omega_0 + \cdots + v_n \omega_n \in x_0 + \text{span} \{ v_0, v_1, \ldots, v_n \} \]
(30)

shows that we need

\[\text{span} \{ v_0, \ldots, v_n \} = \mathcal{K}_{n+1}(A, r_0), \quad n = 0, 1, 2, \ldots . \]
(31)

Definition. The conjugate gradient (CG) method is the conjugate direction method with the choice (31).

The previous theorem leads to the main result on CG:

Theorem

The CG method yields approx. solutions \(x_n \in x_0 + \mathcal{K}_n(A, r_0) \) that are optimal in the sense that they minimize the energy norm (\(A \)-norm) of the error (i.e., the \(A^{-1} \)-norm of the residual) for \(x_n \) from this affine space.
The conjugate gradient (CG) method

In general, conjugate direction methods are not Krylov space solvers, but with suitably chosen search directions they are.

\[\mathbf{x}_{n+1} = \mathbf{x}_0 + \mathbf{v}_0 \omega_0 + \cdots + \mathbf{v}_n \omega_n \in \mathbf{x}_0 + \text{span} \{ \mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_n \} \]

(30)

shows that we need

\[\text{span} \{ \mathbf{v}_0, \ldots, \mathbf{v}_n \} = \mathcal{K}_{n+1}(\mathbf{A}, \mathbf{r}_0), \quad n = 0, 1, 2, \ldots. \]

(31)

DEFINITION. The **conjugate gradient (CG) method** is the conjugate direction method with the choice (31).

The previous theorem leads to the main result on CG:

THEOREM

The CG method yields approx. solutions \(\mathbf{x}_n \in \mathbf{x}_0 + \mathcal{K}_n(\mathbf{A}, \mathbf{r}_0) \) *that are optimal in the sense that they minimize the energy norm (\(\mathbf{A} \)-norm) of the error (i.e., the \(\mathbf{A}^{-1} \)-norm of the residual) for* \(\mathbf{x}_n \) *from this affine space.*
The conjugate gradient (CG) method (cont’d)

Properties of the CG method (Ass.: A spd or Hpd):

\[x_n - x_0 \in \mathcal{K}_n, \quad r_n \in r_0 + A\mathcal{K}_n \subseteq \mathcal{K}_{n+1}, \quad v_n \in \mathcal{K}_{n+1}, \]

The residuals \(\{r_n\} \) form an orthogonal basis of \(\mathcal{K} \):

\[\langle r_m, r_n \rangle = \begin{cases} 0 & \text{if } m \neq n, \\ \delta_n & \text{if } m = n. \end{cases} \]

The search directions \(\{v_n\} \) form a conjugate basis of \(\mathcal{K} \):

\[\langle v_m, Av_n \rangle = \begin{cases} 0 & \text{if } m \neq n, \\ \delta_n' & \text{if } m = n. \end{cases} \]

\[\| x_n - x^* \|_A = \| r_n \|_{A^{-1}} \] is shortest possible.

Associated with this minimality is the Galerkin condition

\[\mathcal{K}_n \perp r_n \in \mathcal{K}_{n+1} \] (32)
Properties of the CG method (Ass.: A spd or Hpd):

\[\mathbf{x}_n - \mathbf{x}_0 \in \mathcal{K}_n, \quad \mathbf{r}_n \in \mathbf{r}_0 + A\mathcal{K}_n \subseteq \mathcal{K}_{n+1}, \quad \mathbf{v}_n \in \mathcal{K}_{n+1}, \]

The residuals \(\{ \mathbf{r}_n \}_{n=0}^{\nu-1} \) form an **orthogonal basis** of \(\mathcal{K}_\nu \):

\[
\langle \mathbf{r}_m, \mathbf{r}_n \rangle = \begin{cases}
0 & \text{if } m \neq n, \\
\delta_n & \text{if } m = n.
\end{cases}
\]

The search directions \(\{ \mathbf{v}_n \}_{n=0}^{\nu-1} \) form a **conjugate basis** of \(\mathcal{K}_\nu \):

\[
\langle \mathbf{v}_m, A\mathbf{v}_n \rangle = \begin{cases}
0 & \text{if } m \neq n, \\
\delta'_n & \text{if } m = n.
\end{cases}
\]

\[\| \mathbf{x}_n - \mathbf{x}_* \|_A = \| \mathbf{r}_n \|_{A^{-1}} \text{ is shortest possible.} \]

Associated with this minimality is the **Galerkin condition**

\[\mathcal{K}_n \perp \mathbf{r}_n \in \mathcal{K}_{n+1} \quad (32) \]
The conjugate gradient (CG) method (cont’d)

Algorithm

For solving $\mathbf{Ax} = \mathbf{b}$ choose an initial approximation \mathbf{x}_0, and let $\mathbf{v}_0 := \mathbf{r}_0 := \mathbf{b} - \mathbf{Ax}_0$ and $\delta_0 := \|\mathbf{r}_0\|^2$. Then, for $n = 0, 1, 2, \ldots$, compute

\begin{align*}
\delta_n' &:= \|\mathbf{v}_n\|^2_A, \\
\omega_n &:= \delta_n/\delta_n', \\
\mathbf{x}_{n+1} &:= \mathbf{x}_n + \mathbf{v}_n \omega_n, \\
\mathbf{r}_{n+1} &:= \mathbf{r}_n - \mathbf{A}\mathbf{v}_n \omega_n, \\
\delta_{n+1} &:= \|\mathbf{r}_{n+1}\|^2, \\
\psi_n &:= -\delta_{n+1}/\delta_n, \\
\mathbf{v}_{n+1} &:= \mathbf{r}_{n+1} - \mathbf{v}_n \psi_n.
\end{align*}

If $\|\mathbf{r}_{n+1}\| \leq \text{tol}$, the algorithm terminates and \mathbf{x}_{n+1} is a sufficiently accurate approximation of the solution.
The conjugate residual (CR) method

Each The **conjugate residual (CR) method** is fully analogous to the CG method, but the 2-norm is replaced by the A-norm.

Properties of the CR method (Ass.: A Herm.):

The residuals $\{r_n\}_{n=0}^{\tilde{\nu}-1}$ form an A-**orthogonal basis** of $K_{\tilde{\nu}}$:

$$\langle r_m, Ar_n \rangle = \begin{cases} 0 & \text{if } m \neq n, \\ \delta_n & \text{if } m = n. \end{cases}$$

The search directions $\{v_n\}_{n=0}^{\tilde{\nu}-1}$ form a A^2-**orthogonal basis** of $K_{\tilde{\nu}}$:

$$\langle v_m, A^2v_n \rangle = \begin{cases} 0 & \text{if } m \neq n, \\ \delta'_n & \text{if } m = n. \end{cases}$$

$\|x_n - x_*\|_{A^2} = \|r_n\|_2$ is shortest possible.

Associated with this minimality is the **Galerkin condition**

$$A K_n \perp r_n \in K_{n+1}. \quad (34)$$
The conjugate residual (CR) method

Each The conjugate residual (CR) method is fully analogous to the CG method, but the 2-norm is replaced by the A-norm.

Properties of the CR method (Ass.: A Herm.):

The residuals \(\{r_n\}_{n=0}^{\nu-1} \) form an A-orthogonal basis of \(K_\nu \):

\[
\langle r_m, Ar_n \rangle = \begin{cases}
0 & \text{if } m \neq n, \\
\delta_n & \text{if } m = n.
\end{cases}
\]

The search directions \(\{v_n\}_{n=0}^{\nu-1} \) form a A\(^2\)-orthogonal basis of \(K_\nu \):

\[
\langle v_m, A^2v_n \rangle = \begin{cases}
0 & \text{if } m \neq n, \\
\delta'_n & \text{if } m = n.
\end{cases}
\]

\[\|x_n - x_*\|_{A^2} = \|r_n\|_2 \text{ is shortest possible.}\]

Associated with this minimality is the Galerkin condition

\[A K_n \perp r_n \in K_{n+1}.\]
Solving nonsymmetric (or non-Hermitian) linear systems iteratively with Krylov space solvers is considerably more difficult and costly than symmetric (or Hermitian) systems.

There are two fundamentally different ways to generalize CG:

- Maintain the orthogonality of the projection and the related minimality of the error by constructing either orthogonal residuals $r_n \leadsto \text{generalized CG (GCG)}$ or $A^T A$-orthogonal search directions $v_n \leadsto \text{generalized CR (GCR)}$.

 The recursions involve all previously constructed residuals or search directions and all previously constructed iterates.

- Maintain short recurrence formulas for residuals, direction vectors and iterates \leadsto \text{biconjugate gradient (BICG) method and to Lanczos-type product methods (LTPM)}.

 At best oblique projection method; no minimality of error vectors or residuals.
Solving nonsymmetric (or non-Hermitian) linear systems iteratively with Krylov space solvers is considerably more difficult and costly than symmetric (or Hermitian) systems.

There are two fundamentally different ways to generalize CG:

- Maintain the orthogonality of the projection and the related minimality of the error by constructing either orthogonal residuals \(r_n \) (\(\leadsto \) generalized CG (GCG)) or \(A^T A \)-orthogonal search directions \(v_n \) (\(\leadsto \) generalized CR (GCR)).

 The recursions involve all previously constructed residuals or search directions and all previously constructed iterates.

- Maintain short recurrence formulas for residuals, direction vectors and iterates (\(\leadsto \) biconjugate gradient (BICG) method and to Lanczos-type product methods (LTPM).
 At best oblique projection method; no minimality of error vectors or residuals.
Solving nonsymmetric (or non-Hermitian) linear systems iteratively with Krylov space solvers is considerably more difficult and costly than symmetric (or Hermitian) systems.

There are two fundamentally different ways to generalize CG:

- Maintain the orthogonality of the projection and the related minimality of the error by constructing either orthogonal residuals \(r_n \) \(\leadsto \) generalized CG (GCG) or \(A^T A \)-orthogonal search directions \(v_n \) \(\leadsto \) generalized CR (GCR).

 The recursions involve all previously constructed residuals or search directions and all previously constructed iterates.

- Maintain short recurrence formulas for residuals, direction vectors and iterates \(\leadsto \) biconjugate gradient (BICG) method and to Lanczos-type product methods (LTPM).

 At best oblique projection method; no minimality of error vectors or residuals.
The biconjugate gradient (BiCG) method

While CG (for spd \mathbf{A}) has mutually **orthogonal residuals** \mathbf{r}_n with

$$\mathbf{r}_n = p_n(\mathbf{A})\mathbf{r}_0 \in \text{span} \left\{ \mathbf{r}_0, \mathbf{A}\mathbf{r}_0, \ldots, \mathbf{A}^n\mathbf{r}_0 \right\} \equiv: \mathcal{K}_{n+1}(\mathbf{A}, \mathbf{r}_0),$$

BiCG constructs in the same space residuals **orthogonal to a dual Krylov space spanned by “shadow residuals”**

$$\tilde{\mathbf{r}}_n = \tilde{p}_n(\mathbf{A}^T)\tilde{\mathbf{r}}_0 \in \text{span} \left\{ \tilde{\mathbf{r}}_0, \mathbf{A}^T\tilde{\mathbf{r}}_0, \ldots, (\mathbf{A}^T)^n\tilde{\mathbf{r}}_0 \right\} \equiv: \tilde{\mathcal{K}}_{n+1}(\mathbf{A}^T, \tilde{\mathbf{r}}_0) \equiv: \tilde{\mathcal{K}}_{n+1}$$

$\tilde{\mathbf{r}}_0$ can be chosen freely.

There are two Galerkin conditions

$$\tilde{\mathcal{K}}_n \perp \mathbf{r}_n \in \mathcal{K}_{n+1}, \quad \mathcal{K}_n \perp \tilde{\mathbf{r}}_n \in \tilde{\mathcal{K}}_{n+1},$$

but only the first one is relevant for determining \mathbf{x}_n.
The biconjugate gradient (BICG) method

While CG (for spd A) has mutually \textit{orthogonal residuals} r_n with

$$r_n = p_n(A)r_0 \in \text{span} \{r_0, Ar_0, \ldots, A^nr_0\} \equiv: K_{n+1}(A, r_0),$$

BICG constructs in the same space residuals \textit{orthogonal to a dual Krylov space spanned by “shadow residuals”}

$$\tilde{r}_n = \tilde{p}_n(A^T)\tilde{r}_0 \in \text{span} \{\tilde{r}_0, A^T\tilde{r}_0, \ldots, (A^T)^n\tilde{r}_0\} \equiv: K_{n+1}(A^T, \tilde{r}_0) \equiv: \tilde{K}_{n+1}$$

\tilde{r}_0 can be chosen freely.

There are two Galerkin conditions

$$\tilde{K}_n \perp r_n \in K_{n+1}, \quad K_n \perp \tilde{r}_n \in \tilde{K}_{n+1},$$

but only the first one is relevant for determining x_n.

Martin H. Gutknecht
Krylov Space Solvers
The residuals \(\{ r_n \}_{n=0}^m \) and the shadow residuals \(\{ \tilde{r}_n \}_{n=0}^m \) form biorthogonal or dual bases of \(\mathcal{K}_{m+1} \) and \(\tilde{\mathcal{K}}_{m+1} \):

\[
\langle \tilde{r}_m, r_n \rangle = \begin{cases}
0 & \text{if } m \neq n, \\
\delta_n \neq 0 & \text{if } m = n.
\end{cases}
\]

The search directions \(\{ v_n \}_{n=0}^m \) and the “shadow search directions” \(\{ \tilde{v}_n \}_{n=0}^m \) form biconjugate bases of \(\mathcal{K}_{m+1} \) and \(\tilde{\mathcal{K}}_{m+1} \):

\[
\langle \tilde{v}_m, Av_n \rangle = \begin{cases}
0 & \text{if } m \neq n, \\
\delta'_n \neq 0 & \text{if } m = n.
\end{cases}
\]

BICG goes back to Lanczos (1952) and Fletcher (1976).

Each step requires two MVs to extend \(\mathcal{K}_n \) and \(\tilde{\mathcal{K}}_n \): one multiplication by \(A \) and one by \(A^T \).
The biconjugate gradient (BiCG) method (cont’d)

The residuals $\{r_n\}^m_{n=0}$ and the shadow residuals $\{\tilde{r}_n\}^m_{n=0}$ form biorthogonal or dual bases of K_{m+1} and \tilde{K}_{m+1}:

$$\langle \tilde{r}_m, r_n \rangle = \begin{cases} 0 & \text{if } m \neq n, \\ \delta_n \neq 0 & \text{if } m = n. \end{cases}$$

The search directions $\{v_n\}^m_{n=0}$ and the “shadow search directions” $\{\tilde{v}_n\}^m_{n=0}$ form biconjugate bases of K_{m+1} and \tilde{K}_{m+1}:

$$\langle \tilde{v}_m, Av_n \rangle = \begin{cases} 0 & \text{if } m \neq n, \\ \delta'_n \neq 0 & \text{if } m = n. \end{cases}$$

BiCG goes back to Lanczos (1952) and Fletcher (1976).

Each step requires two MVs to extend K_n and \tilde{K}_n: one multiplication by A and one by A^T.
The residuals \(\{ r_n \}_{n=0}^m \) and the shadow residuals \(\{ \tilde{r}_n \}_{n=0}^m \) form biorthogonal or dual bases of \(K_{m+1} \) and \(\tilde{K}_{m+1} \):

\[
\langle \tilde{r}_m, r_n \rangle = \begin{cases}
0 & \text{if } m \neq n, \\
\delta_n \neq 0 & \text{if } m = n.
\end{cases}
\]

The search directions \(\{ v_n \}_{n=0}^m \) and the “shadow search directions” \(\{ \tilde{v}_n \}_{n=0}^m \) form biconjugate bases of \(K_{m+1} \) and \(\tilde{K}_{m+1} \):

\[
\langle \tilde{v}_m, Av_n \rangle = \begin{cases}
0 & \text{if } m \neq n, \\
\delta'_n \neq 0 & \text{if } m = n.
\end{cases}
\]

BiCG goes back to Lanczos (1952) and Fletcher (1976). Each step requires two MVs to extend \(K_n \) and \(\tilde{K}_n \): one multiplication by \(A \) and one by \(A^T \).
Sonneveld (1989) found with the (bi)conjugate gradient squared method (BICGS) a way to replace the multiplication with A^T by a second one with A.

The nth residual polynomial is p_n^2, where p_n is the nth BICG residual polynomial, which satisfies a three-term recursion.

In each step the dimension of the Krylov space and the search space increases by 2. Convergence is nearly twice as fast, but often somewhat erratic.

BICGSTAB (Van der Vorst, 1992) includes some local optimization and smoothing.

The nth residual polynomial is $p_n t_n$, where

$$t_{n+1} (\zeta) = (1 - \chi_{n+1} \zeta) t_n (\zeta).$$

Van der Vorst’s paper is the most often cited one in mathematics.
Sonneveld (1989) found with the (bi)conjugate gradient squared method (B\textsc{icg}s) a way to replace the multiplication with A^T by a second one with A.

The nth residual polynomial is p_n^2, where p_n is the nth B\textsc{icg} residual polynomial, which satisfies a three-term recursion.

In each step the dimension of the Krylov space and the search space increases by 2. Convergence is nearly twice as fast, but often somewhat erratic.

\textsc{bicgsta}b (Van der Vorst, 1992) includes some local optimization and smoothing.

The nth residual polynomial is $p_n t_n$, where

$$t_{n+1}(\zeta) = (1 - \chi_{n+1} \zeta) t_n(\zeta).$$

Van der Vorst’s paper is the most often cited one in mathematics.
In BICGSTAB all zeros of t_n are real (if A, b are real). It is better to choose two possibly complex new zeros in every other iteration: \rightsquigarrow BICGSTAB2 (G., 1993)

Further generalizations of BICGSTAB include:
BICGSTAB(ℓ) (Sleijpen/Fokkema, 1993; Sleijpen/VdV/F, 1994)
GPBI-CG (Zhang, 1997), etc.

These LTPMs are often the most efficient solvers. They do not require A^T, and they are typically about twice as fast as BICG.
The memory needed does not increase with the iteration index n (unlike in GMRES).
In BICGSTAB all zeros of t_n are real (if A, b are real). It is better to choose two possibly complex new zeros in every other iteration: \leadsto BICGSTAB2 (G., 1993)

Further generalizations of BICGSTAB include:

BICGSTAB(ℓ) (Sleijpen/Fokkema, 1993; Sleijpen/VdV/F, 1994)
GPBI-CG (Zhang, 1997), etc.

These LTPMs are often the most efficient solvers. They do not require A^T, and they are typically about twice as fast as BICG. The memory needed does not increase with the iteration index n (unlike in GMRES).
In BICGSTAB all zeros of t_n are real (if A, b are real).
It is better to choose two possibly complex new zeros in every other iteration: \(\leadsto \) BICGSTAB2 (G., 1993)

Further generalizations of BICGSTAB include:

BICGSTAB(ℓ) (Sleijpen/Fokkema, 1993; Sleijpen/VdV/F, 1994)
GPBI-CG (Zhang, 1997), etc.

These LTPMs are often the most efficient solvers.
They do not require A^T, and they are typically about twice as fast as BICG.
The memory needed does not increase with the iteration index n (unlike in GMRES).
Solving the system in coordinate space

There is yet another class of Krylov space solvers, which includes well-known methods like MinRes, Symmlq, Gmres, and Qmr. It was pioneered by Paige and Saunders (1975).

We successively construct a basis of the Krylov space by combining the extension of the space with Gram-Schmidt orthogonalization (or biorthogonalization), and at each iteration we solve $Ax = b$ approximately in coordinate space.

- **symmetric Lanczos process** \rightarrow MinRes, Symmlq (Paige/Saunders, 1975)
- **nonsymmetric Lanczos process** \rightarrow Qmr (Freund/Nachtigal, 1991)
- **Arnoldi process** \rightarrow Gmres (Saad/Schultz, 1985)
Breakdowns and roundoff

Iteration Number

Residual Norms

BiORes: residual
BiORes: true residual
BiOMin: residual
BiOMin: true residual
BiOQMR: residual
BiOQMR: true residual
BiOCQMR: residual
BiOCQMR: true residual

Martin H. Gutknecht
Krylov Space Solvers
Conclusions

- Krylov (sub)space solvers are very effective tools.
- There are a large number of methods of this class.
- Preconditioning is most important.
- Breakdowns and roundoff may be a problem.
6th International Congress on Industrial and Applied Mathematics

Zurich, Switzerland
16 - 20 July 2007