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Summary. The problem of  generating the recurrence coefficients of  ortho- 
gonal polynomials from the moments or from modified moments of the 
weight function is well understood for positive weight distributions. Here 
we extend this theory and the basic algorithms to the case of  an indefi- 
nite weight function. While the generic indefinite case is formally not much 
different from the positive definite case, there exist nongeneric degenerate 
situations, and these require a different more complicated treatment. The 
understanding of  these degenerate situations makes it possible to construct 
a stable approximate solution of  an ill-conditioned problem. 

The application to adaptive iterative methods for linear systems of  equa- 
tions is anticipated. 

Subject Classifications: AMS(MOS) 30E05; 41A21, 65F10. 

1 Modified moments  and matrix relations associated to a measure with a full 
set of  formal orthogonal polynomials (generic case) 

Let 2 be any complex measure defined on a subset ~ of  the complex plane C 
with the property that the moments 

(1.1) lZn := q)(z n) := fnznd2(z) ( n E N  := {0, 1,2,...}) 

all exist and such that there exists a full set of  monic formal orthogonal 
polynomials nn (n ~ N) so that ~n has exact degree n and 

Offprint requests to: G.H. Golub (USA, Canada), M.H. Gutknecht (other countries) 



608 G.H. Golub and M.H. Gutknecht 

(0 
(1.2) q~(n,nZrn) = rCm(Z)TZn(z)d)'(z) = tTn, n -~ 0 if n = m. 

This implies in particular that 

(1.3) q~(pTtn) = 0 for any p �9 ~n-1 .  

q~ is a linear functional defined by (1.1) on the monomials and extended to 
the set of  all polynomials by linearity. Note that the bilinear form that could 
be generated from (1.2) by linearity is in general not a positive definite inner 
product, even if the measure is positive real, since the polynomial values may 
be complex, but the overbar indicating the complex conjugate values is missing. 
If  the measure is real and has real support ("real case"), then the polynomials 
ztn can be chosen to be real-valued on R. 

Under  the above assumption the polynomials satisfy a three-term recurrence 

(1.4) ~Zn+X(Z ) ---~ (g - -  O~n)TZn(g ) - -  flnTCn_l(Z) (n �9 N), 

with n- l (z )  :--= 0, n0(z) : -  1. We could assign to fl0 an arbitrary value, but it 
is useful to set fl0 := po, cf. [4]. In general, ct~, fin �9 C, but in the "real case" 
an, fl~ �9 R. 

In addition, consider a second sequence {zn} of  monic polynomials with z~ 
having exact degree n. They satisfy in general a recurrence of the form 

n 

(1.5) = ( .  e N),  
k=O 

but we are particularly interested in the case where they too fulfill a three-term 
r e c u r r e n c e ,  say,  

(1.6) Zn+l(Z) = (g --O~tn)Zn(g)-  fltn'Cn_l(z) (n �9 N),  

with z-1 (z) :--- 0, zo(z) :-- 1. To be more specific, we are, e.g., interested in the 
case where Zn is a suitably shifted and normalized nth Chebyshev polynomial. 

To link the two sets of  polynomials we consider the modified moments 

(1.7) vn := s Zn(z)dJ,(z) (n �9 N) 

(the integrals of  the second set of  polynomials with respect to the measure of  
the first set of  polynomials) and the quantities 

q)(ZmT~n) ~- [ ' C m ( Z ) ~ n ( z ) d ~ . ( z  ) (m,n �9 N). ~T m,n 
Jf~ 

(1.8) 

Note that 

(1.9) ~m,0=Vm ( m � 9  

that the definition of  an,n is in accordance with the one in (1.2) since ~0((%- 
~zn)~zn) = 0 due to zn - ~n �9 ~n-1,  and that in view of  (1.3) 

(1.10) t~m,n=O if m < n .  
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Next let us introduce matrix notation: The infinite row vectors 

(1.11) p : =  [gO, gl , / l :2 . . . .  ], t := [zo, zb z2 , . . . ] ,  

have polynomials as their elements, and p(z), t(z) will denote the corresponding 
vectors of values at z. The matrices 

(1.12) 
0~I /~2 ~' Zl, 1 1:1, 2 

H := 1 0t 2 " ' T := 1 "~2,2 

and 

(1.13) S := 

o00 
0-1,0 0-1,1 
0-2.,0. 0-2,. 1 0-2,2 

0-0,0 0-1,1 

D := 0-2, 2 

are also infinite. H is tridiagonal, T is upper Hessenberg (and under assumption 
(1.6) also tridiagonal), S is nonsingular lower triangular, and D is diagonal�9 
(Note that S is the transposed of  Gautschi's corresponding matrix Y. [4]�9 In the 
case zm(z) = z m the elements of this matrix were already used by Chebyshev 
[1]. 

With this notation the recurrence relations (1.4) and (1.5) become 

(1.14) zp(z) = p(z)H, zt(z) = t(z)T, 

while (1.2) and (1.8) turn into 

(1.15) tp(pZp) = D, ~p(tTp) = S. 

Here, r is supposed to be applied element by element to the rank-one matrices 
p rp  and trp.  

From (1�9 and (1�9 we get a matrix relation connecting H, T, and S: 

S H  = ~p(tTp)H = q~(trpH) = ~p(trzp) = r = Tr~p(tTp) = T r S ,  

i.e., 

(1.16) s n  = T T  s .  

Since H, T, and S are tridiagonal, upper Hessenberg, and lower triangular, 
respectively, the matrix products in (1.16) are lower Hessenberg. 

1 Clearly, (1.16) implies for L := S -  that 

(1.17) H L  = L T  T, 

which is again an equality between two lower Hessenberg matrices�9 Likewise, 
i f  i :~~[~0,~1,~2 . . . .  ] denotes yet another sequence of  monic polynomials and 
zt = tT  is the matrix form of its recurrence, we get by the argument that lead 
to (1�9 for the new matrix W := ~o(tri) the relation 
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(1.18) W T  = T T W .  

Note that W contains in its first row the modified moments of the {n, in its first 
column those of  the %. The special choice ~, --- ~zn has the effect that W = S 
is lower triangular. 

Next, in analogy to (1.11) we let 

(1.19) z : =  [~0,~i,~2,---]  with ~n(Z) := z n 

be the row vector containing all monomials. The moment matrix, which is a 
Hankel matrix, can then be written 

(30 (1.20) m := ~m+,]m,n=o = r 

while the "formal" Gramian matrix of the polynomials ~, is defined by 

(1.21) N := [cP(~m%)]~n=O = cp(tTt). 

Clearly, there are unit upper triangular matrices Z and R containing the 
coefficients of the monomials ( ,  and the polynomials %, respectively, in terms 
of  the ~, : 

(1.22) z(z) = p(z)Z, 

(1.23) t(z) = p(z)R. 

Inserting (1.22) into (1.20) and making use of (1.15) yields 

(1.24) M = Z TDZ.  

On the other hand, from (1.15) and (1.23) we get 

(1.25) S = RTD, 

which means that S is obtained by scaling the columns of R T. Inserting (1.23) 
and this into (1.21) leads to 

(1.26) N = RT DR = SR. 

Consequently, SR  is the LU decomposition (with unit upper triangular matrix) 
of N. If  the diagonal matrix D has a positive diagonal, Z T D Z  and RT D R 
are the normalized Cholesky decompositions (with unit triangular matrices) of 
M and N, respectively. Otherwise, they are (symmetric) LDU decompositions. 
Our assumptions imply that these decompositions exist. (If D has a positive 
diagonal, rcn can be renormalized by q0(rcn z) = 1, so that D = I, S = R T, and 
N = R T R  = SS T, which is then a true Cholesky decomposition. Some of  the 
other formulas then also change slightly; in particular, H becomes symmetric 
[3, 81. 

Finally, from (1.14) and (1.23) there follows that 

(1.27) H R  = R T .  
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This formula is similar to, but different from (1.16) and (1.17), the latter two 
being equivalent to H T D R  = DRT.  Consequently, 

(1.28) HT D = DH. 

Moreover, for L := R -T ,  (1.27) yields 

(1.29) HTL = L T  r. 

2 Algorithms for the generic case 

In typical applications the polynomials Zn are known, but the orthogonal 
polynomials zrn are unknown, and the aim is to compute their recurrence 
coefficients an and fin from some other information, as, e.g., the moments/~,  (if 
rn = (n), the modified moments vn, or the formal Gramian N. In most cases 
the problem of  determining the recurrence coefficients from the moments /Zn 
is highly ill-conditioned and therefore prone to roundoff  error blow-up. In the 
case of  a positive weight function it has been shown by many experiments 
and by Gautschi's detailed analysis [3-6], that using modified moments Vn or 
the formal Gramian N instead of  the moments is usually much more stable. 
One must expect that often the same is true in the indefinite case, although 
ill-conditioned examples for the modified process are also known [4]. 

In this section we discuss a number of  algorithms for computing the 
recurrence coefficients an and fin, i.e., the matrix H, from some of the above 
mentioned other data. We also discuss how, conversely, the modified moments 
are obtained from these recurrence coefficients. The first algorithm concerns a 
partial task applicable in several situations, namely the computation of  H from 
S. 

(i) Computation o f  H from the diagonal and codiagonal o f  S. From (1.16) one 
sees that H = S - 1 T T S  is determined by S and T, but from the same relation 
we can easily derive the well known fact that it suffices to know the diagonal 
and the first codiagonal of  S. 

Equating in (1.16) the (m, n)-element yields (with am,-1 := a-l , ,  := 0) 

m 

(2.1) am.n+l -]- O~n~Tm,. q- flnam.n-1 = am+l,n -}- ~ Zk,raffk,n (m, n >_ 0). 
k=n 

If T is tridiagonal, as in (1.6), this reduces to 

! ! 

(2.1') r 1 + O~nGm. n + flnffm,n_l = (Tin+l, n + O~mffm, n + tim(Tin_l,. (m, n > 0). 

For m < n - 1 both sides of  (2.1) are zero, for m = n - 1 one has 

(2.2) flnGn-l,n-1 = ffn,n (n ~ 1), 

while for m = n one obtains 

(2.3) ~nan,n + flnffn, n--1 = lYn+l,n + "~n,nffn,n (n > 0) .  
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Given, say, the first ~ + 1 elements on the diagonal and the first codiagonal of 
S, (2.2) and (2.3) allow us to compute a0, . . . ,am and fl~ . . . . .  tim recursively. By 
substituting fin in (2.3) according to (2.2) one gets the following well known 
procedure [4, 13, 16]. For n = 0, 1 . . . .  ,~ :  

(2.4a) fin .-- an,n (n ~ 0). 
O'n-l,n--1 

f in+ 1,n fin,n-- 1 
(2.4b) an := Zn,n + - -  

(rn,n fin--l,n--I 

(ii) The modified Chebyshev algorithm for  generating S recursively f rom the 
modified moments V,n. If  the modified moments, i.e., the first column of  S are 
given, then, using an idea that goes back to Chebyshev, one can build up S 
simultaneously with the computation (2.4) by using relation (2.1) once again. 
Starting with (1.9), 

(2.5a) fim,O := vm, m = O, 1 , . . . ,  2 ~  + 1, 

S is built up recursively by applying formula (2.1) solved for fire,n+1: For 
n = 0, 1 , . . . , ~  - 1 one computes simultaneously fin and an according to (2.4) 
and 

m 

fim,n+l : = f i m+l ,n  - -  O~nfim,n -- flnffm,n--1 "[- E Tk,mffk,n 
(2.5b) k=n 

m = n + l , n + 2  . . . . .  2 -~--n .  

(Again, the sum reduces to two terms if T is tridiagonal.) Given the 2~ + 2 
data v0,...,Vzm+l, one can in this way compute 2m + 2 coefficients a0 . . . . .  am 
and fl0,.-., tim, where, as before, fl0 := vo = a0,o; cf. Fig. i. 

This modified Chebyshev algorithm is due to Sack and Donovan [13] and 
Wheeler [16]. Usually it is only formulated for tridiagonal T, but already Sack 
and Donovan pointed out that it generalizes easily to an upper Hessenberg 
matrix. I f  the modified moments are replaced by the ordinary moments, one 
has "fm,m = 1, Zk,m = 0 (Vk :/: m), and the algorithm specializes to the classical 
Chebyshev algorithm. For a positive measure 2 both algorithms have been 
extensively discussed and analyzed by Gautschi [3-6]. Note that the modified 
moments, with which one starts, are the entries of the first columns of  both S 
and N, since zo(z) = (o(z) - 1. 

(ii') The inverse modified Chebyshev algorithm for  computing S f rom H. If, 
on the other hand, the recurrence coefficients an, fin (including fl0 = v0), and 
Zm,n (m < n) are known, say, for n = 0 , . . . ,  ~,  the formulas (2.4) and (2.5) can be 
inverted in order to compute the diagonal and the first codiagonal of S, then 
to build up the whole matrix S from these elements, and, finally, to compute 
the modified moments v0,...,  v2m+l : For n = 0, 1 , . . . ,~ ,  

(2.6a) fin, n := flnan--l,n--1 (n ~ 0), 

(2.6b) fin+l,n := (an -- Zn,n)fin,n + flnan,n--1, 
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Fig. 2. The modified Chebyshev algorithm for generating S from the modified moments v,n 
according to (2.5). The elements marked by a square are used to build up H according to (2.4). 

and, for n = 0, 1 . . . . .  min{m - 1, 2N - m} and m = 1, 2,. . . ,  2N, m 
(2.6c) am+l,. : =  tTrn,.+l -'t- O~n~Trn,n + flntTm,n--i -- Z Zk,rn~Tk,n" 

k=n 

Note that ~r0,0 = fl0 is used in (2.6a). Note also that (2.6a) and (2.6b) can be 
executed independently of (2.6c). 

It should be mentioned that the qd algorithm of Rutishauser [12] can fulfill 
the same two tasks as the unmodified Chebyshev algorithm and its inverse: 

{ ~n, fln } n=O, o r  Either construct/ktn),=0 from the reverse. However, as has been 
noted by Wheeler [16], the qd algorithm is more likely to break down due to 
degeneracies; in fact, it requires O(~ 2) nonvanishing Hankel determinants, while 
the Chebyshev algorithm requires only O(~) such determinants, cf. Gragg [9, 
p. 214]. Furthermore, Sack and Donovan [13] point out that the qd algorithm 
involves O(~ 2) divisions, as opposed to the 2~ + 1 needed here. 
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(iii) L U  decomposition o f  N into N = SR, cf. (1.26) [3, 8]. From an (~ + 
2) x ( ~ +  1) principal submatrix of  N one obtains an ( ~ +  2) x ( ~ +  1) principal 
submatrix of  S, and from the latter one can either compute s0 . . . .  , am and 
fl0 . . . .  ,fl~ by using (2.4) or the additional modified moments vm+2 . . . . .  v2m+b 
This is a straightforward procedure, but its cost is O(~ 3) even if T is tridiagonal. 
Moreover, it is a disadvantage that the full matrix N is required. (As shown by 
Gautschi [3], it is, however, possible to build up the symmetric matrix N from 
its first row and column.) The following algorithm, which makes use of  the LU 
decomposition and the recurrence (2.6c), only requires to know the diagonal 
and the first codiagonal of  N. 

(iv) Recursive generation o f  S from the diagonal and the subdiagonal o f  N. 
o o  Let N = (Vrn,n)m,n=O, and note that N = SR = SD-1S  T by (1.25) and (1.26). 

Assuming Vm,m and Vm+l,m are known for m = 0 . . . . .  ~, one can find the leading 
(~ + 2) • (~ + 1) submatrix of  S by making use of  (2.4), (2.6c), and the above 
formula N = S D - I S  T" Once ak,k and am,k are known for k = 0 . . . .  ,m -- 1, the 
latter formula yields am,m. Then, assuming the ~k and flk are also known, (2.6c) 
allows us to find am+l,k, k = 0 , . . . ,m  - 1, and with those numbers, the above 
formula then yields am+l,m. Finally, (2.4) gives the new tim and ~m. Hence, one 
can build up S from its diagonal and its first codiagonal. 

In summary, we compute for m = 0, 1 . . . .  ,~ :  

(2.7a) 
m-1 

ffm,m : ~  Vm,m --  Z 
2 

tTm,kff k,k , 
k=O 

(2.7b) 

g, 
O'm+l,n " =  O'm,n+l -t- O~nffm,n "1- flnffm,n--1 --  2 ~  ~Ck,m~k,n ' 

k=n 

n = 0  . . . . .  m - - l ,  

m-1 

(2.7C) O'm+l'm ;~--- Vm+l,m --  Z O'm,ktTm+l,ktTk, - ~ '  
k=O 

and/~m and am according to (2.4). 
Moreover, (2.6c) can afterwards be executed for m = N + 1 . . . . .  2~  for 

building up the lower half  of the triangle in Fig. 1 if needed. Hence, again, the 
2m + 2 data {Vm,m, Vm+l,m}m=o yield 2m + 2 coefficients s0 , . . . ,  am and/~0,. . . , /3~ 
and 2m -t- 2 modified moments v0,.. . ,  v2m+l. Note that although one may only 
be interested in the diagonal and the subdiagonal of  S one has to build up the 
whole matrix since in (2.7a) and (2.7c) other elements of  the matrix are needed. 

This algorithm is particularly useful in applications where the parameters 
of  an iterative method for solving a linear system are adapted according to 
approximate spectrum information derived from the residuals that have been 
generated in previous steps [7]. The residuals r0, r b . . . ,  rm allow us to compute 
exactly the (~ + 2) x (N + 1) principal submatrix of  N, since Vm,n = (rm, rn). 
By algorithms (iii) and (iv) one can then compute a total of  2~  + 2 recurrence 
coefficients, while the modified Chebyshev algorithm would only yield half  as 
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many. Algorithm (iv) has over algorithm (iii) the important  advantage that 
only two successive residual vectors need to be stored. 

It should be mentioned at this point, however, that when the zn are shifted 
and scaled Chebyshev polynomials (as, e.g., in the Chebyshev iteration method), 
the relation cos(k + l)O = 2cos kO cos l O -  c o s ( k -  l)O allows one to compute 
V2m and V2m+l from Vm, m and vm+l,m, see [7]. Hence, in this case, the above 
mentioned advantage of  this algorithm becomes inessential. 

(v) Computation o f  H from the diagonal and codiagonal of  S -1. Let L := 
2 ~ S -1 [ ra,n]m,n=O := . By equating the (m,n)-element in (1.17), one obtains in 

complete analogy to (2.1) 

(2.8) 2m,,-I -[- ~ ,~rn,k T n,k = "~m-- l,n -[" ~m~m,n -]- flm+12m+ l,n . 
k=n 

Here, both sides are again zero if m < n - 1. For m = n - 1 and m = n there 
follows, by solving for an and ft,: 

(2.9a) ft, .-- ~-n-l,n-1 (n > 1), 

~n,n--1 ~'n+l,n 
(2.9b) % := %,n + 2n,, 2,+~,,+I " 

These formulas were used by Gautschi [3] and on Gautschi's proposal also in 
the published version of  Golub and Welsch [8] (but there in the unmodified 
case only) for deriving the formulas (2.4). This is astonishing, since our direct 
derivation of  (2.4) is as easy as the one of  (2.9). (In the preprint of  [8] 
determinantal relationships were used instead for the derivation.) Formulas 
(2.9) could be applied after an "inverse LU decomposition" of N, L N L  r = I, 
where L r := R -I  = LTD is unit upper triangular. However, (2.8) and (2.9) do 
not lead to a "Chebyshev-type algorithm", where H can be built up concurrently 
with L. But the following approach, although very similar, does. 

(vi) A modified "Chebyshev-type algorithm" for computing H from N. Let 
~ = R - r .  now L := [ m,"]m,n=O := DL = DS -I The matrix relation (1.29) yields 

(2.10) ],n,n-1 qu ~ 2m,k.Cn,k = flmim_l,n _~- O~rn2m,n -~- ~m+l,n. 
k=n 

Here, the formulas obtained by setting m = n and m = n + 1 can be simplified 
by noticing that ] , , ,  = 1 and then solved for a,  and ft,. But again they do not 
yet lead to a "Chebyshev-type algorithm". However, from (1.26) we know that 
LN = S T, so that 

(2.11) am,m= ~ 2m,kVm,k, tYm+l,m = ~-~ ~rn,kVm+l,k . 
k=0 k=0 

Therefore, if 2t,k is known for k _< l < m, then (2.11) and (2.4) allow us to 

compute am and tim, and then (2.10) yields 2m+1,, (n = 0 ,1 , . . . ,m) .  Hence, 
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here one can indeed build up L row by row simultaneously with H T by an 
O(m 2) process. The version for ordinary moments of  this algorithm appears in 
disguised form in Wall [15, pp. 196-200] and, explicitely, in Gragg [9, p. 215], 
but its origin lies probably further back. In contrast to the modified Chebyshev 
algorithm the Gramian N is required, and not only its first column. 

(vii) Transforming modified moments into another set of  modified moments. 
Relations (2.1), (2.8) and (2.10) are all based on matrix identities in which an 
unknown matrix (S, L or L) is multiplied from left and right, respectively, by 
two other matrices, namely the known matrix T r and the matrix H (or its 
transposed) that has to be determined. In each case, the first unknown matrix 
is triangular and the two others are unit Hessenberg. But, in the same way one 
can use (1.18), WT" = T r W ,  to derive a recurrence for building up the full 
matrix W = [ re,n],,,,=0 from its first column containing the modified moments 
of  the set {z,}. In fact, (1.18) yields 

n ?/2 

k=0 k=0 

which corresponds to a stencil that goes in the mth row from 0 to n + 1 and 
in nth column from 0 to m + 1. Given O)m,0 = Vm, m = 0 . . . . .  N, this stencil 
allows us to compute the triangle (Din,n, m + n <<_ -~, and, hence, in particular, 
o)0,n = 7,, n = 0 . . . .  ,N, the first N +  1 modified moments of  the set {~,}. This 
procedure is due to Wheeler [16] who proposed it in the case of  tridiagonal 
matrices T and 7". 

3 Matrix relations for the general case 

Let now ~o be an arbitrary complex linear functional defined on the linear 
space of  all polynomials, and let #n := ~0((n) := q~(z ") (n ~ N) be the associated 
moments. (Hence, q~, which is uniquely determined by these moments, may or 
may not be given by a measure 2 as in (1.1).) There exists a finite or infinite 

n J sequence { J}j=0 of  indices (with 0 = no < nl < n2 < ... and J < oo) for 
which a regular formal orthogonal polynomial o f  the first kind (regular FOP1) 
nnj exists, i.e., a uniquely determined monic polynomial of  degree nj with the 
property (1.3) [2, 11, 14]. A full sequence {nn} of  monic FOPls  is obtained by 
defining 

(3.1) ten(z) := zn-nJn,j(z) if nj < n < nj+b 

(If J < o% i.e., if there is only a finite number  of  regular FOPls ,  we set 
nj+1 := m.) The more general definition 

(3.1') ~Cn(Z) := e),(z)rcnj(z) if nj < n < nj+l, 

in which Ogn is an arbitrary monic polynomial of  degree n -  nj yields an 
equivalent sequence of  FOPls .  We let also 

(3.2) hj := nj+l - n j, hj := (0 < j < J < ~) .  
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(hj = h} = oo if J < oo.) Then,  for nj < n < nj + h~, the polynomials  nn and ~n 
still satisfy (1.3), but  they are no longer uniquely character ized by this property�9 
Moreover,  ~0(nnnn) = ~0(~n~n) = 0 for these singular FOPls .  In contrast ,  for 
nj + h~ < n < nj+1, nn and ~ no longer satisfy (1.3), and we call them therefore 
deficient FOPl s .  

The  or thogonal i ty  propert ies  o f  the sequence {~,} and an immedia te  conse- 
quence concerning the m o m e n t  matr ix  are summarized  in the following matr ix  
result [2, 9, 10, 11]: 

Theorem 3.1. Let p := [rco, rq,Tz2 . . . .  ] as in (1.11). Then 

(3.3) q~(pTp) = D := block diag [Do, D1, D2 . . . .  ] 

is a block diagonal matrix with square blocks o f  size hj (j  = 0, 1 . . . . .  J) which 
are right lower triangular Hankel matrices 

(3.4) Dj := 

6j 
6j * 

3j ." * 
5j * ""  * * 

with t~j "= q)(zhj--17Cn2j). I f  J "( 00, Dj is the infinite zero matrix and 6j := 0. 

Moreover, i f  z(z) = p(z)Z as in (1.22), and i f  M = (p(zTz) denotes the 
moment matrix, then 

(3.5) M = Z T DZ 

is a block LD U decomposition (with unit upper triangular Z) .  
For any equivalent sequence {xn} of  FOPls  there holds ~(z) = p(z )W with 

a block diagonal matrix W,  whose diagonal blocks Wj have the same size as 
those o f  D and are unit upper triangular matrices�9 Conversely, any such matrix 
W defines an equivalent sequence o f  FOPls.  For such a sequence there holds 
q~(~Tp) = b = W r D W ,  where D has the same structure as D. There is a 
particular equivalent sequence {~n} for which the diagonal blocks Dj o f  I) become 

the antidiagonal matrices Dj whose antidiagonal elements are by. 
Anothe r  result we need to cite is the one on the recurrence relations for the 

sequence {nn}. We give it also directly in matr ix  form [2, 9, 10, 11]: 

Theorem 3.2. There holds zp(z) = p(z)H, where H is an infinite irreducible block 
tridiagonal upper Hessenberg matrix, 

(3.6) H := 
A1 BE 

C1 A2 

in which, for 0 < i < J, Ai is a companion matrix o f  order hi, 
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(3.7) Ai  : =  

while, for 0 < i < J, 
h i - I  • hi and hi x hi_ l, 

0 

(3.8) Bi : =  

[:.  o,i. [o.:.o ] 
�9 . = ai , 

"'. 0 (Zhi_2, i 
1 O~hi_l, i 

Bi  and Ci-1 are rectangular rank-one matrices of  size 
respectively, 

i ' 0 Bi -. .  0 0 

. . .  0 0 

C i - i  ; =  

" " " 0 

" " ' 0 

with fli ~ O. I f  J < m, Aj  is the infinite forward shift matrix, while Bj = Cf_ 1 = 
0 is the h j - 1  • oo zero matrix. 

For an equivalent sequence of  FOPls, ~(z) = p(z)W, there holds z[J(z) = 
~(z)ffI, where ffI = W -  H W  is a block tridiagonal upper Hessenberg matrix 
with the same off-diagonal blocks Bj and Cj as H and with diagonal blocks 
~4j = W]-I A jWj  which are unit upper Hessenberg. 

Again we consider an arbitrary other sequence {z,} of  monic polynomials, 
as in (1.5), and the corresponding matrix S = [a,,,n], cf. (1.8). Setting t := 
(z0,Zl,Z2,...) we have zt(z) = t(z)T as in (1.14) and t(z) --- p(z)R with a unit 
upper triangular marix R as in (1.23). The matrix T may be an arbitrary upper 
unit Hessenberg matrix, although in practice we are still most interested in 
the case where T is tridiagonal. The matrix relations (1.16), (1.25), (1.26), and 
(1.27) remain valid: 

(3.9) S = R T D ,  N = R T D R = S R ,  S H =  T T s ,  H R = R T .  

The same set of  equations, with tildes everywhere except on N and T, holds 
for any equivalent set of  FOPls.  (However, in (1.17) and (1.29) L and L 
may in general not exist, so that one would have to turn to corresponding 
relations with nonsingular matrices of  finite order. We will not explore these 
relations further here, however.) Let us partition the matrix R into blocks of 
size hi x hj (i, j = 0 , . . . ,  J), i.e., exactiy in the same way D and H are partitioned: 

�9 . J R -=- (Rz,j)i,j=O, where Ri,j is a hi • h j  submatrix. Since R is unit upper triangular 

and D is block diagonal, S = R r D  is block lower triangular, and its diagonal 
blocks Sj,j are products of  a unit lower triangular submatrix Rf.,j and a matrix 
Dj from (3.4). Hence, Sj,j is (as D j) a right lower triangular matrix, and it has 
the same constant antidiagonal elements 6j 7~ 0 as Dj (j < J);  if J < o% the 
last  diagonal block Ss,j is the infinite zero matrix: 

(3 .1o)  8 = [ $1,0 SaA 
$2,0 82,1 $2,2 with Sjj  = .. 

�9 ".. 6j .'" 
6 j  * " ' "  

Next, also T is partitioned in the same way, and we write it as 

�9 
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(3.11) T = 
TI,I T1,2 
C~ T2,2 

Here Ci is the same matrix as in (3.8), and Ti,i is unit upper Hessenberg but 
in general not a companion matrix. If the polynomials r ,  satisfy a three-term 
recurrence, T/,i is tridiagonal, Ti-x,i has its only nonzero element in its lower 
left corner, and Ti-l,j = 0 for j > i. 

4 Algorithms for the general case 

Our aim is again to compute the recurrence coefficients, i.e., the matrix H, of  the 
unknown polynomials re,. The polynomials r ,  are assumed to be known along 
with some additional information, e.g., the formal Gramian N or the modified 
moments v, = v,,0. Results for the moment matrix M and the unmodified 
moments are included as the special case N := M, t := z. 

Again we start by deriving formulas for computing H from S and T. Then, 
we discuss methods for computing S. 

(i) Computation o f  H from the block diagonal and block codiagonal o f  S. The 
relation SH = T T s  translates now in analogy to (2.1) into 

i-1 
T (4.1) Si,j+IG _.}_ Si,jAj + Si,j_IBj = ciT Si+l,j + Ti, i Si,j _~_ ~"~ Zl,iT sl,j 

l=j 
(i,j >_ 0), 

with Si,_ 1 :---~ O. For i < j -  1 both sides are again zero, for i = j -  1 there 
follows 

(4.2) Sj-I , j - IBj  = CT_ISj,j (j > 1), 

and for i = j one has 

(4.3) Sj,jAj q- Sj , j-IBj = c f  gj+l,j q- TjTsj,j (j ~ 0). 

Since Sjd is nonsingular for j < J, one obtains by multiplication from the left 
with S~. ~ indeed formulas generalizing (2.4). (These formulas, with tildes, hold 
also when equivalent FOPls  are used.) However, since we know the structure of  
Aj and B j, these formulas contain a lot of  redundant  information. All that has 
to be determined are the order hj of  A j, its last column a j, and the nontrivial 
element flj o f  B j, cf. (3.7) and (3.8). It is easily verified that Sfj 1 is left upper 

triangular and that its antidiagonal elements are all 6) -1. Therefore, from (4.2) 
one obtains 

(4.4) flj = 6f_116j. 

(4.3) is more complicated. We partition Sj,j-1 and Sj,j  according to 
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� 9  a j _  1 
S) * " '" * 

(4.5) Sj , j - z= . . , S j , j= 

. . .  "k 

-k Sj ] 

�9 "k . . .  "k 

! 
and we denote the last standard basis vector in chj by ehj. (If h i _  1 = 1, a j _  1 

is the first component of  s~.) Then, due to the special structure of C f  and B j, 
(4.3) yields 

(4.6) aj = Sf, j 1 [TjTsj +ehja~--s~flj] . 

Moreover, if we return to the single elements of S = (am,n), H = (Tin,n), and 
T = (Zm,n), the identity SH = T T s  still yields, in analogy to (2.1), 

(4.7) 
?1 m 

am,n+l q- Z am,n--l~n-l,n = am +l ,n  -}- Z Zm--l,ream--l,n" 
1=0 I=0 

Here, if nj < n = nj+ k < nj+ 1 - 1 ,  then ~n-l,n = 0 for all l 4= --1 and am-l,n = 0 
if m--  l < nj+ 1 - - k - -  1: 

m+k-nj+ 1 + 1 

(4.8a) am,n+l = am+l,, + Z Zre-l,mam-l,n. 
/=0 

Hence, in this case, the left branch of the stencil in Fig. 1 is missing, and, unless 
T is tridiagonal, the upper branch extends up to the first nonvanishing element 
in the nth column of S ; this element lies on the antidiagonal of Sj,j, cf. Fig. 2. 
On the other hand, if n = n j+ 1 - -  1, 

hj r e  

(4.8b) am,nj+l + Z am, nj+~-lO~hj-l,j "1"- am,nj_l flj  ~--- am+l,nj+l--1 -'{'- Z Tk,rnffk,nj+1-1. 
1=1 k=nj 

This stencil has a left branch, which, in general, is longer than the one in Fig. 
1. 

(ii) The non-generic modified Chebyshev algorithm for generating S recursively 
from the modified moments Vm. Assume v0 . . . .  , v2m+l are given. Starting with 
(2.5a) one can again build up the elements am,n in the triangle m + n < 2~ + 1 
of S from left to right, using now (4.4), (4.6), (4.8a), and (4.8b). Note that the 
results of  (4.4) and (4.6) are only needed in (4.8b), i.e., for computing am,hi+l, 
where m > nj+l. At this moment, Sj,j (containing sj), Sj,j-1 (containing s~) and 
the first row of  Sj+I,j (containing as) have all been computed�9 Also, the size hj 
of Sj,j and the constant value of  its antidiagonal elements are known. 

(ii') The non-generic inverse modified Chebyshev algorithm for computing S 
from H. Given the first block S0,0 of  S and the matrices H and T with 
the recurrence coefficients one can again build up S from top to bottom 
by capitalizing upon the relation SH = T T s .  The structure of S, which is 
determined by the diagonal blocks Sj,j, is known from H. The antidiagonal 
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stencils centered at (m, n): 

0 

T n j + l - k - l , m  

7"rn --  l , rn  

T m ~ r n  0 

- 1  

0 

Tm-2,m 

Trn-  l ,m ( 

~ , � 9  

- - ~ O , j  - - O f h i - 2 , j  ~ 
Trn,rn - -  Ot'h.i - 1 ,j 

Fig. 1. The non-generic modified Chebyshev algorithm with the stencils (4.8a) and (4.8b) (bold). 
The elements marked by a square are used to build up H according to (4.4) and (4.6). 

elements 6j of  Sj are recursively obtained from (4.4): 6j = 6j_l[3j (J = 
1,2 . . . .  J -  1). Then (4.8a) and (4.8b), both solved for am+l,n, are used to 
proceed downward. One must be aware that these two relations hold for all 
m > 0, hence also if some of  the occuring elements belong to blocks Si,j with 
i < j (i.e., to blocks above the block diagonal) and are therefore known to be 
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zero. In particular, if nj ~< m < n j +  1 and n = n j +  1 - -  1 (i.e., if am, n belongs to 
the last column of  Sj,j), then a,,,,j+ 1 = 0 in (4.8b). 

(iii) Block LU decomposition N = SR: In the block LU decomposition of 
N there is some freedom left in factorizing the block pivots N j0,) = N j , j -  

j--1 ~,k=0 Sj,kRk,j, which in view of  N~] = Sj,jRj,j are known to be right lower 
triangular. Here, in order to obtain S, R, and, subsequently, by (4.4) and (4.6), 
the matrix H with the structure (3.6)-(3.8) one would need Sj,j lower right 
triangular and Rj,j unit upper (right) triangular, and additionally, one would 
have to aim for the companion matrix structure of  the diagonal blocks Aj of 
H. It seems to be too complicated to attain all these goals at once, hence, we 
suggest to aim first at a matrix H of  an equivalent set of FOPls  ~n. 

We recall that ~ = pW, where W is block diagonal with unit upper 
triangular blocks Wj of order hi. These blocks Wj can otherwise be chosen 
arbitrarily. Since the related matrices S, R, H satisfy 

(4.9) S = SW,  R = W - I R ,  [-I = W - I H W ,  

N = SR is also a block LU decomposition of  N and the diagonal blocks Aj 
of the resulting H are similar to those of H ,7tj = Wj-IAjWj.  By choosing 

_ _ 1  A ^ Wj = S),j E j, where Ej is any matrix of  the form (3.4), we obtain Sj,j = F,j. In 

particular, we can choose Sj,j antidiagonal: 

[i 0, (4.10) , ~ j , j = ~ j  :=  .'" .'" 0 

j 0 --- 0 

Hence, we suggest to compute the block LU decomposition N ----- SR of N that 
is characterized by a splitting of  the block pivots Nj0,) = N j , j -  ~J-=1 o VSj,k[~k,j 

into NOj,] = EjRj , j .  This is just an antidiagonal scaling of the block pivot and 

yields a unit upper triangular Rj,j. 
Once the decomposition N = SR has been computed, the formulas (4.4) 

and (4.3) allow us to find B j-1 = Bj-1 and ,7tj. For the typically small matrices 
~lj one can finally determine the similar companion matrices Aj and the 
corresponding similarity transformation matrices Wj. 

An alternative is to find first instead of S the matrix S := ~o(tT~) that 
belongs to the equivalent set of  FOPls  ~n with the property that 

A A ^ 

(4.11) q3(~T~) = b := block diag [E0, Eb E2,...] 

with the antidiagonal blocks /~j of (4.10). In view of b T = b there holds 
N = tSb-ltsT as in the generic case, and there follows that 

j--1 

(4.12) ~j,j~-~I~jT = NOj',71) := Nj, j--  Z r 
k=O 
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Hence, here the block pivot NOj,f 1), which is symmetric and right lower tri- 
angular with antidiagonal elements fij, must be factorized into a right lower 

triangular m a t r i x  Sj,j with the same antidiagonal, the antidiagonal matrix ~ f l ,  

and the transposed of  Sj,j. It is shown in [11] that one can further require that 

CSj,j is antisymmetric (i.e., symmetric with respect to the antidiagonal), that the 
^ 

decomposition is then uniquely determined, and that Sj,y can be found in a 
recursive process starting from its diagonal. 

(iv) Recursive generation of S from the block diagonal and the block subdia- 
gonal of N. One might expect that the corresponding algorithm (2.7) for the 
generic case is easily replaced by its block version. However, serious obstacles 
appear. For let us assume that the blocks Sj,k, k = 0 . . . . .  j -- 1, of  S are known, 

as well as all blocks St,k with I < j. Then the pivot NjO,j -1) : :  2k=0J--1 Sj,kSk,k-1Sk,jr 

can be computed, but once again, as in (i), the factorization of  Nj,~ 1 into 

Sj,jDjSjr, j such that the corresponding block Aj in H has companion matrix 
structure seems not to be possible at this moment. If  it were, we could then 
compute the first rows of  the blocks Sj+l,k, k = 0 . . . . .  j ,  except the last element 
in the first row of  Sj+I,j if hj > 0, by applying (4.8a) and (4.8b). Then this last 
element could be obtained in a fashion analoguous to (2.7c) and the nontrivial 
elements of  Bj-l and Aj would result from (4.4) and (4.6). Finally, (4.8a) and 

(4.8b) could again be used to find Sj+l,k, k = 0,..., j, and Nj+I,j+ l ( j )  ," the structure 
of  the latter allows one to determine hi+ 1. 

Since in this procedure the correct factorization of  the block pivot is 
unknown, one might try to build up S or S instead, as in (iii). But then the 
determination of  ~lj or )lj according to (4.3) would require the whole block 
Sj+I,j, which, on the other hand, cannot be determined from (4.8) unless Aj or 

~tj, respectively, are known! Although there may be a way out of  this circle, it 
is likely that the procedure becomes very complicate. 

Remark. There is some overlap between our Sections 1 and 2 and the 
dissertation of  Mark Kent from Stanford University, which has been worked 
out in the same time period. We would like to point out that neither did Mark 
Kent have any preliminary version of  our paper nor did we make use of any 
preliminary text from his thesis. 
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