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Abstract. We first review briefly the Newton-Pad6 approximation problem and the analogous prob- 
lem with additional interpolation conditions at infinity, which we call multipoint Pad6 approximation 
problem. General recurrence formulas for the Newton-Pad6 table combine either two pairs of New- 
ton-Pad6 forms or one such pair and a pair of multipoint Pad6 forms. We show that, likewise, certain 
general recurrences for the multipoint Pad6 table compose two pairs of multipoint Pad6 forms to get 
a new pair of rnultipoint Pad6 forms. We also discuss the possibility of superfast, i.e., O(n log 2 n) 
algorithms for certain rational interpolation problems. 
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0. Introduction 

The rational interpolation problem, which can be formulated in various ways, is 
readily reduced to a particularly structured linear system of equations. For a rational 
interpolant with denominator degree n, one can derive, for example, a homogeneous 
n • (n + 1) system with a divided-difference matrix (see [38], [45], [23]), which 
contains higher divided differences in each column, or a homogeneous system 
with a L0wner matrix [13], which contains first divided differences, or yet other 
structured systems. But, in any case, while the application of the Gauss algorithm 
would require O(n 3) operations, there are recursive O(n 2) algorithms for solving 
these structured systems. Most of the classical methods (see [36], [45], [22] for 
surveys), such as the determination of a Thiele continued fraction, only work under 
genericness assumptions, whereas the Kronecker algorithm [33], [45], [2] and the 
generalizations of the Thacher-Tukey algorithm and the Thiele fraction proposed 
by Graves-Morris and Hopkins [22], [21] and by Werner [46], [47] are generally 
applicable in exact arithmetic, i.e., are so-called reliable. The latter is also true 
for the more recent recurrences of Antoulas and Anderson [3] and the algorithms 
of Gutknecht [25], Van Barel and Bultheel [42], [44], and Beckermann [4], which 
are all closely related to Werner's algorithm. However, if subject to roundoff, all 
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these methods are numerically unstable in cases of near-singularity of some linear 
systems that belong to rational interpolants of lower degrees constructed during the 
recursive process. 

Therefore, in [23] we described new, more general recurrences that allow us 
to avoid ill-conditioned intermediate interpolants. These recurrences are modeled 
after those of the Cabay-Meleshko algorithm [10], [37] for computing Pad6 ap- 
proximants, which was shown to be (weakly) stable. But whereas the recurrences 
of Cabay and Meleshko follow a diagonal of the Pad6 table, those in [23] are for 
the Newton-Pad6 table and allow us to move in any direction in which m + n 
does not decrease. In particular, we can follow a pair of adjacent rows or antidiag- 
trials of the table. While the general recurrence for a diagonal can be understood 
as combining two pairs of Newton-Pad6 forms, other paths require to combine a 
pair Newton-Pad6 forms with a pair of multipoint Pad6 forms. The latter represent 
multipoint Pad6 approximants, by which we mean rational interpolants with some 
interpolation data prescribed at infinity. (We need to point out that, in contrast to our 
terminology introduced in [26] and [23], the notion multipoint Pad6 approximant 
is sometimes used as equivalent to Newton-Pad6 approximant.) Here, we review 
in condensed form the background of this result, present general recurrences for 
both Newton-Pad6 forms and multipoint Pad6 forms, draw a number of conclu- 
sions, and discuss the merits and pitfalls of this approach, including the possibility 
of superfast O(n log a n) algorithms. For more information on the background we 
refer the reader to [23] and the many references cited there. 

Such general recurrences are the basis of look-ahead algorithms for rational and 
Pad6 approximation, and for the solution of the corresponding structured linear 
systems. The notion of a look-ahead procedure came up in connection with the 
unsymmetric Lanczos algorithm [39], [27], [24], [14], which is closely related to 
a diagonal recurrence in the Pad6 table and the fast solution of a Hankel system. 
A look-ahead algorithm requires, in addition to a general recurrence, a look-ahead 
strategy, i.e., a rule for choosing the step size such that the recurrence remains 
stable. Although our theoretical results give some hints on how to choose such 
a strategy here, this topic is not yet discussed in detail. For the diagonal Pad6 
recursion, a complete analysis was given in [10]. For various forms of Pad6 row 
recursions, a partial analysis is given in [28], [30], [29]. These papers also reference 
several articles on fast Hankel and Toeplitz solvers that make use of the look-ahead 
philosophy in a somewhat different way. The case of rational interpolation still 
needs further investigation. However, some first numerical results are presented in 
[7]. There are extensions of this approach to vector-valued and matrix-valued Pad6 
approximation and rational interpolation; see, e.g., [5], [8], [9], [15], [41], [43], 
[40]. 

As in [25] and [23] we assume here for notational convenience that the interpo- 
lation data are given in Newton series form. This dispenses us of the need of using 
much more complicated notation for multiple interpolation points and the corre- 
sponding derivatives. However, we need to point out that our formulas, in particular 
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the recurrences, are readily translated into formulas for different representations of 
the data. We do not consider the formal Newton series as a prime computational 
tool. In particular, if all interpolation points are distinct and well apart, it is much 
easier to represent the data as a set of  function values than to transform these into 
divided differences. Only if some of  the points are clustered, it is preferable to rep- 
resent the data corresponding to these points by a Newton series, i.e., by a Newton 
interpolation polynomial if there are only finitely many data, as one can assume in 
practice. 

When using directly the function values one is free to choose the order in which 
the data are taken into consideration. With an appropriate strategy, related to pivoting 
in Gaussian elimination, Graves-Morris improved the numerical stability of the 
Thiele-Thacher-Tukey-Werner interpolation process considerably; see [21], [20], 
[47]. This idea could be combined with our approach, but, for simplicity, is here 
left out of  consideration. 

1. Newton-Pad6 Approximation 

In some applications of rational interpolation the data are given as quotients of 
values. Treating the numerators and denominators of these quotients separately 
does not make the problem much more difficult. In fact, then it becomes more 
symmetric. It is also no extra effort to allow both the data and the points to be 
complex. For notational convenience we assume that the data for the interpolation 
points zj (j  = O, 1 , . . . )  are given as a quotient of two (finite or infinite) formal 
Newton series: 

h(z) " f ( z )  ~ "= - g ( z ) '  f (z )  :---- ~ r  g(z) := ~ T k t k ( z ) ,  (1.t) 
k=0  k=O 

where 

k - 1  

to(z) :-~ l, tk(z) := H ( z -  zJ)' k = l , 2 ,  . . . .  (1.2) 
j=O 

The two formal Newton series must be relatively prime in the sense that they do not 
vanish simultaneously at any zk. While a single formal Newton series can be used 
to represent a series of  finite complex function values and derivatives at arbitrary 
points in the complex plane, we can represent also poles o f h  with the representation 
(1.1). It is well known that the coefficients Ck and 7k in (1.1) are the kth divided 
differences at zo, �9 �9 zk of  f and g, respectively. 

We let A/'g be the set of all formal Newton series for the fixed sequence Z := 
{zj}~= o of  interpolation points. Afz becomes a commutative algebra if addition, 
scalar multiplication, and multiplication are defined pointwise (using the Leibniz 
rule for the derivatives of  the product) [45]. By O(h) we denote any element of 
Afz that has zeros at Zo, .. �9 zl-1, multiple ones being understood as zeros of  formal 
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derivatives. In other words, g = O(h) if and only if the Newton series of g starts 
with the tt-term. If l < 0, the symbol O(tt) is understood as a void condition. 

79m is the space of complex polynomials p of exact degree Op <_ m, and ~m,,~ 
is the set of rational functions r = p /q  with p E 79m, q E ;on, q ~ 0. If r = p/q 
with relatively prime polynomials p and q of exact degrees Op and aq, r is said to 
be of exact type (Op, Oq) and to have the defect 

6 := 6m,,~ := min{m - Op, n - Oq} (1.3) 

in 7Lm,n. If5 > 0, r is called degenerate in T~n,n. In particular, ifp ~- 0, Op := - e c ,  
and hence r ~- 0 has exact type ( - o e ,  0) and defect n in Tr 

We augment Tgm,n by the constant c~, which can be represented as 1/0 and has 
exact type (0, - o c )  and defect m in ~m,~. Let 7 ~ , n  := TC~,n U {to}. Note that 
then r E rr if and only if 1/r E Tin,re. 

Given a relatively prime pair (f ,  g) E Afz x N z ,  the double sequence of lin- 
earized rational interpolation problems or Newton-Pad~ approximation problems 
for (f,  g) consistsin finding, for eachpair (m, n) E NxNthepai rs  (p, q) E 7:'m x'Pn 
for which 

g(z)p(z) + f (z)q(z)  = O(t,~+,,+l(z)). (1.4) 

Any such pair (p, q) E T',, x 7:'~ is called an (m,n)  Newton-Paddform (NPF) 
of (f,  g). The associated rational function r,,,~ := p/q is an (m, n) Newton-Pard 
approximant (NPA) of (f,  g) [17]. When writing p/q we do not assume that p and 
q are relatively prime, but we think of p/q as the rational function obtained after 
cancellation of common factors of p and q. Therefore p/q has to be distinguished 
from (p, q). Actually, there may be no relatively prime solution pair. 

The pair (p, q), which only depends on the (m + n)th partial sums of the Newton 
series f and g, is clearly never uniquely determined. But it is easy to prove (see, 
e.g., [23]) that for fixed m and n all solutions (p, q) of (1.4) yield the same rational 
function p/q, i.e., the (m, n) NPA rm,n is well defined. We call it a true rational 
interpolant if rm,n interpolates h = - f / g  at the first m + n + 1 data points, which 
is the case unless there exists no relatively prime pair (p, q). 

The set of all NPFs for a particular interpolation problem is characterized in the 
following fundamental theorem, which is essentially due to Maehly and Witzgall 
[34]. A simple proof is given in [23]. 

THEOREM 1. Thegeneral solution (p, q) E T'm X ;On of(1.4) is 

(P, q) ~- (Pm,n sra,n w, Om,~ Sm,n w), (1.5) 

where Pm,~, ~.%~, and s.~,~ are polynomials that are uniquely determined up to 
a common scaling factor of Pm,,~ and gt.~,n, while w E 7~.~,~-os.~,~ is arbitrary. 
Pm,,~ and gtm,.~ are relatively prime. Sm,~ is a monic divisor of tm+~+l of degree 
Os~,,~ <_ 6~,n, and 5m,n is the defect of r.%~ = ~).%~/0.~,.~ in 7~,,~. The zeros of 
s.~,~ are the points zk where the pair (~.~,.~, glm,~) does not satisfy the interpolation 
conditions. 
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From this theorem we learn in particular that ifOsm,,~ > 0, then (/~,,~, qm,,,) is 
not a solution of  the linearized problem, and, hence, rm,n =/~,~,n/0,~,~ is not a true 
interpolant of  h. The points where rm,,~ does not interpolate up to the required order 
are called unattainable. These points are exactly the zeros of Sm,n. For this reason 
s,~,n is called the deficiency polynomial. For a summary of  the connections between 
the nonlinear rational interpolation problem and the Newton-Pad6 approximation 
problem, see [23] and the references cited there. 

Among the other easy consequences of  Theorem 1 there is the following Char- 
acterization Theorem. 

m 

THEOREM 2 (NPA Characterization Theorem). The function r E 7r with de- 
fect 6 is the (m, n) NPA of h = - f  /9  if and only if r interpolates h in at least 
m + n + 1 - 6 data points. 

Associated with a double sequence of  Newton-Pad6 problems defined by (1.4) 
there is a Newton-Padd table which covers a quarter of the (m, n)-plane and con- 
tains as its (m, n) entry the NPA rm,,~. For the recursive computation of rational 
interpolants one often follows some path in the Newton-Pad6 table. For example, 
this path may be a diagonal, an antidiagonal, or a staircase. (By a 'diagonal' we 
mean the main diagonal or any of  its infinitely many upper or lower codiagonals.) 
However, in such algorithms special measures need to be taken if two interpolants 
are identical on the path. Hence, it is important to understand in which situations 
identical entries can occur. Moreover, for floating-point computations it is equally 
important to deal appropriately with nearly identical interpolants. 

Sets of  more than one equal entry are called singular blocks of the Newton-  
Pad6 table. The block structure of the Newton-Pad6 table was first investigated 
by Claessens [11]. The following formulation of the Block Structure Theorem was 
given in [25]. Additional results from [25] omitted here concern the characterization 
of  the blocks of  the zero and the infinity function, and of the infinite block occurring 
when h is rational; see Figure 1. 

THEOREM 3 (NP Block Structure Theorem). Let r = 15/0 r 0, ~ be an NPA of 
h = - f / 9  of exact type (0~, 00). Then the block ofr  in the Newton-Pad~ table of 
h is a (finite or infinite) union of squares whose upper left corners lie at or below 
the location (013, 0(t) on the diagonal passing through this location. 

It was also shown in [25] that this statement is sharp, i.e., any block satisfying the 
above description can actually occur. In general, a singular block in the Newton- 
Pad6 table needs not even be connected. It may consist of a finite or even infinite 
number of  disjoint components, see Figure 1. There is an easy interpretation for 
the form of  these blocks. Every antidiagonal of the table is associated with an 
interpolation condition: e.g., the one through m + n -- k -- const is associated 
with the data (zk, h(zk)) if  Zk ~ Z~ (Vi < k). If r is an NPA whose block contains 
at least one point of  the above antidiagonal, then this block becomes broader or 
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Fig. 1. A Newton-Pad6 table with four singular blocks: at left a block of the constant o~, at the top 
right a block of the constant 0, in the middle a singular block consisting of three components (with 
the common diagonal dotted), and at the bottom right the infinite block of h (assumed to be rational). 

narrower at this antidiagonal depending on whether the new linearized interpolation 
condition is satisfied by r or not. For a more detailed discussion of this see [25]. 
Once the block gets narrower, r is certainly no longer a true interpolant. But it may 
even happen that an NPA r is for no index pair (m, r~) a true interpolant. In fact 
this is true if and only if the (&/~, 0~) entry does not belong to the block of r. For 
a particular h = -f/g and r, this situation can be avoided by reordering the data. 
However, this means considering another formal Newton series representation and, 
hence, another Newton-Pad6 table. 

2. Multipoint Pad~ Approximation 

While the rational interpolation problem of  the previous section includes the case 
of prescribed poles at finite interpolation points, it does not allow any interpolation 
condition at infinity, except the prescription of the degrees m and n, which determine 
whether the NPA r has a pole, a zero, or a finite nonzero value at infinity. In this 
section we include interpolation conditions at infinity. 

Again, we want to consider a double sequence of approximants. However, since 
conditions at infinity fix the difference between numerator and denominator degree, 
one of  the two parameters has now a new meaning: the first, #, determines the bias 
between using information at infinity and at finite interpolation points; the second, 
n, still denotes the nominal denominator degree of the rational function, i.e., the 
maximum number of finite poles (with account of their multiplicity). 

The data at the finite interpolation points are again assumed to be given in 
the Newton series form (1.1), although, as mentioned before, we suggest to use 
in practice the direct representation by function values and derivatives unless the 
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interpolation points are clustered. Assuming that the function does not have a 
multiple zero at c~, we prescribe its behavior there by a quotient of two formal 
power series in z -1, 

• o 
h(z) : -  ](z) ](z) := & ? ,  O(z):= }2 (2.1) 

O(z) ' 
k=--oo  k=--oo 

with ~ _> --1 and eL r 0 or % r 0. Of  course, we could choose L = 0 or ~ : - 1  
without restricting generality, but we prefer to keep the parameter ~ (iota) since we 
will encounter data of the above form for different values of ~, and, a priori, we will 
only know that eL or % does not vanish, but not which one. 

It has been shown in [23] and will be further discussed below that for those 
general recurrences for the Newton-Pad6 table that do not just follow a diagonal, 
one has to solve rational interpolation problems whose data are of the form (1.1), 
(2.1). 

We let/2 denote the linear space of formal Laurent series y( z) = ~k~=_~ rlkz k 
with complex coefficients. We need also subspaces of/2 that are of  the form 

/2t:m := {y C/2 ; ~?k = 0 if  k < I or k > m}, 
/2z :=/2z:~ = {y E 12 ; rlk = 0 if k < 1}, 
/2* : = s  = { Y E / 2 ;  r l k = 0 i f k > m } .  

In particular, /20 and s are the sets of formal power series in z and 1/z, 
respectively. When y E /2",  we write y(z) = O_ (z~),  and if  additionally y 
s we may express this as Oy = m. The set of  all polynomials (i.e., of formal 
power series with finitely many terms) is denoted by P .  

As in [23] we consider now the following double sequence of multipoint Padd 
approximation problems: given (f ,  g) c .N'z x N z ,  as in (1.1), and ( f , ) )  E/2* x s 
as in (2.1), let, for each index pair [#;n] ~ Z x N, the nonnegative integer m := 
m(# ;  n) be defined by 

m :=  m a x { L - # -  1 , L + n , # } ,  (2.2) 

and determine the pairs 

/2l.Z-}-n+l:~-bn X "Pn -~ /2~q-n--m:tWn X ~2) n 
i f t t  _< - - n -  1, 

(u, v) e x =Pm x 
i f - n  - 1 _< # _< ~ + n, (2.3) 

p .  x = x 

if  # > L + n, 

which satisfy the conditions (u, v) r (0, 0) and 

O(z)u(z) + f (z )v(z)  = O-(z") ,  (2.4a) 

g(z)u(z) + f (z )v(z)  = O(t.+n+l(Z)), (2.4b) 
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where tj(z) -- 1 i f j  < 0. Any  such pair (u,v) is here called a [/z;n] multipoint 
Pad~form (MPF) of  ( ] ,  O; f ,  g), and 

u(z) 
ru;'~(z) :=  v(z) (2.5) 

is referred to as the corresponding lit; n] multipoint Padd approximant (MPA). 
It was shown in [23] that in analogy to the situation in Pad6 and Newton-Pad6 

approximation, for fixed/z and n, the [/z; n] MPFs (u, v) are equivalent in the sense 
that they yield a uniquely determined rational function u/v. Hence, also the MPA 
rt,;~ is well defined. 

Let us discuss the three cases in (2.3). In the first one, where n < - / z -  1 =- m - c ,  
(2.4b) is void and (2.4a) implies ~ + n - / z  = m + n + 1 conditions at z - cc for the 
pair (u, v) with a total o f  m + n + 2 parameters. Hence,  we have a one-point Pad6 
approximation problem at infinity. In the third case, r + n <_/z = m, (2.4a) is void, 
while (2.4b) is identical to the condition (1.4) for an (m, n)  NPA. Finally, in the 
second case, both (2.4a) and (2.4b) are in effect, and we have a proper multipoint 
Pad6 problem with ~ + n - / z  conditions at z = oc and/z  + n + 1 conditions 
at finite interpolation points. Hence,  there is a total of  L + 2n  + 1 conditions for 
(u, v) �9 • 

In summary, the three cases in (2.3) have the following interpretation: 

St ~ - n  - 1 : Pad6 problem at z = co, m -= c - / z  - 1, 
- n  - 1 < / z  < c + n : proper multipoint Pad6 problem, m = r + n, 

+ n <__/z : Newton-Pad6 problem, m = #. 

The MPAs for a data set ( ] ,  9; f ,  9) can be  collected in a multipoint Padd table 
{rv;~ ; [#; n] �9 Z • N} that covers a half-plane. We let the n-axis point to the right 
and the/z-axis  point to the bottom. I f  ~ = 0, the proper MPAs lie in a 90 ~ sector 
with horizontal axis o f  symmetry  be tween/z  = - 1 and/z = 0; cf. Figure 2. Above 
this sector the table contains Pad6 approximants at infinity, below there are NPAs. 
If  L > 0, the lower  border o f  this sector lies farther down. If  ~ -- - 1, it is farther up 
by  one entry. In this case r-1;o(Z) = 0, as is seen from (2.3)-(2.4b). 

Note  that n is the nominal denominator degree of  rt,;n, but/z is notthe numerator 
degree, except in the NPA sector o f  the table, where /z =- m. The number of  
parameters in the numerator is always m + 1. 

Again, one can describe the set o f  solutions o f  the defining equations (2.2)-  
(2.4b). This result was given in [26]. We cite it from [23], where it was reformulated. 

T H E O R E M  1'. In the case - n  - 1 < /Z < ~ + n of proper multipoint Padd 
approximation the general form of the MPFs (u, v) defined by (2.2)-(2.4b) is 

(u, v) = (~2u;n st~;n w, r stun w), (2.6) 
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Fig. 2. The case L = 0 of a multipoint Pad6 table with its 90 ~ sector of proper multipoint Pad6 
approximants and the two adjoining sectors of Pad6 approximants at infinity and Newton-Pad6 ap- 
proximants, which are separated by dashed staircases. Also shown is a typical singular block with its 
dotted diagonal. 

where titan, v~,;n are up to scaling uniquely determined relatively prime polyno- 
mials, and s~,;n is a monic divisor of tu+n+l of degree O8u;n <_ min{6, u}, with 
6 : =  6mr~ ( >  O) being the defect ofr~,;n : =  ~z~,;~/~,;,~ in ~+n,n, and 

u :=  u~;m : = / z  - O(~ffzmn + f'b~,;n) (_> O) (2.7) 

being the number of extra (linearized) interpolation conditions fulfilled at oo by 
(z2u;n, 'bran ). Finally, w is an arbitrary nonzero polynomial of degree 

Ow <_ rain{6, u} - Osu:~. (2.8) 

The zeros of the deficiency polynomial st,;n are the finite interpolation points zk 
(with appropriate multiplicity) at which the pair (titan, ~?u.r~) does not satisfy the 
interpolation conditions. The deficiency at oo, 

^ ( 0 if u > 6, 
6- : =  o-~,;,~ : = ,  6 - u / f  u < 6, (2.9) 

indicates the number of (linearized) interpolation conditions at oo that are not 
fulfilled by a pair (u, v) of the form (2.6) with Osu;n + Ow = 6. It satisfies 

0 < 6- _< m i n { n  - #,  ~ - Osm,~ }. (2.10) 
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To avoid the treatment of  several cases we restricted Theorem l '  to proper MPFs, 
i.e., to --n -- 1 < # < t + n. However, when the appropriate interpretations of void 
conditions are made, the theorem remains true for it < - n  - 1 and it > L + n. In 
fact, then one has a one-point Pad6 approximation problem at c~ or a Newton-Pad6 
approximation problem, respectively, and one can therefore just refer to Theorem 
1. 

In view of a general MPA characterization theorem, it is useful to define the 
defect (5 for all three types of  MPAs. Assume r is any rational function that can be 
written as r = ~2/~3 with (~2, ~) satisfying (2.3) and ~2, ~3 being relatively prime. In 
the case # < - n  - 1, where m = t - # - 1 and thus t + n - m < 0, we call (~2, ~3) 
relatively prime if the polynomials z~+m-'~(z(z) and 73(z) are relatively prime. We 
define the [#; n]-defect of  r by 

5 := 5~;n := max{# - 0~,~ + n  - O ~ , n -  0~}. (2.11) 

For proper MPAs (i.e., if - n  - 1 < # < t + n), this is just the defect of r in 
7"~t,+n,n. For NPAs (i.e., for # >_ b + n, where m = it), it is the defect of  r in 7Lm,~. 
Finally, for PAs at ~ (i.e., for # _ - n  - 1, where m = t - # - 1), 5~,;~ is equal 
to the defect of  the function z H r (1 /z )  in TC~,n. 

With this definition, the following analogue of Theorem 2 holds [23]. 

THEOREM 2' (MPA Characterization Theorem). Let [it; n] E Z • N, let (u, v) 
satisfy (2.3), and let 5 be the [it; n]-defect o f t  = u/v .  Then r is the [it; n] MPA if it 
satisfies at least ~ + 2n + 1 - 5 of the ~ + 2n + 1 nonlinear interpolation conditions 
implied by (2.4a)-(2.4b). 

If the finite interpolation points zk all coalesce at z = 0, our proper multipoint 
Pad6 approximation problem becomes a two-point Pad6 approximation problem. 
Then g and f are formal power series, and the term O(tt,+n+l ) in (2.4b) becomes 
O(z#-~+l) .  Such two-point Pad6 approximation problems for two formal power 

series h := - f/[7 and h := - f / g  in 1/z  and z, respectively, have been investigated 
by several authors; see [23] for references and comments. The two-point analog of 
our multipoint Pad6 table is called M-table. It was shown by Cooper, Magnus, and 
McCabe [12] that in the M-table all singular blocks are either square or infinite, 
exactly as in the case of  the classical Pad6 table. The only new feature is the 
possibil i tyofanewtypeofaninfiniteblock,  ahalf-plane {(it, n) c Z •  n _ no}. 
We showed in [23] that also in the multipoint Pad6 table the typical singular blocks 
have the same form as in the Newton-Pad6 table, except that the portion in the 
Pad6 approximation sector must be square; see Figure 2. For the formulation of this 
Block Structure Theorem it is important to have the following characterization for 
the diagonal of  a singular block [23]. 

LEMMA.  Let r =- ~2/~3 be an MPA. Assume that r 7s 0 and ~ ~ 0 are relatively 
prime. Then those entries in the block of r where the [#; n]-defect 5 satisfies 

O(z)~t(z) + f(z)O(z)  =-- O_(z  t'-~) (2.12) 
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lie on a particular diagonal o f  the multipoint Pacl~ table. The case/z - 6 = - o o  
is permitted and means that the upper edge of  the square block and hence also its 
diagonal are at infinity. 

We call the constant difference/Z - 6 in (2.12) the order at to  of (~, ~) and 
denote it by/zoo. With this definition, the following theorem holds [23]. 

THEOREM 3' (MP Block Structure Theorem). Let the data ( f ,  {7; f ,  9) be of  the 
form (1.1) and (2.1), with L : O. Let r : iz / ~ be an MPA of ( f , ~ ; f ,  9), and let #to 
be the order at to  o f  (~2, ~). Assume that (z ~ 0 and r ~ 0 are relatively prime. 

Then the block o f t  in the multipoint Pad~ table o f ( f ,  [1; f ,  9) is a finite or infinite 
union of  squares whose upper left comers lie at or below the location [/zoo, 0(:] on 
the diagonal passing through this location. I f  not empty, the intersection of  the block 
with the sector/Z < - n  - 1 is equal to the intersection of  a square with this sector; 
and the upper left comer  o f  this square is then at [/zoo, 0~3]. 

As for Theorem 3 the strength of  this result is that it is best possible: again, one 
can prove that any block of  the described form can appear; see [23]. 

3. Recursive Computation of NPAs and MPAs: Basic Ideas 

The general recurrence relations for Newton-Pad6 approximants (NPAs) and mul- 
tipoint Pad6 approximants (MPAs) that we want to discuss in the rest of this paper 
are modeled after the recurrences applied by Cabay and Meleshko [37], [10] for 
the stable computation of  a diagonal sequence of Pad6 approximants. Under more 
restrictive assumptions these recurrences were used before by Gragg, Gustavson, 
Warner, and Yun [ 18], who modified the recurrences of  Brent, Gustavson, and Yun 
[6]. Here we consider NPAs and MPAs instead of Pad6 approximants, and a more 
general type of  recurrence that allows us to proceed in other directions too. Whereas 
some of  the other algorithms that have been proposed for singular tables take spe- 
cial small steps to follow the border of  the block when encountering a singular one, 
here the idea is to take a large step crossing the block (as in [25]) or even several 
blocks. The option of  jumping over several blocks allows us to avoid ill-conditioned 
interpolants that could occur as intermediate results. This is a necessity for a numer- 
ically stable algorithm. Moreover, this option allows us to apply recursive doubling 
and opens up the possibility of superfast O(n  log 2 n) algorithms. Such algorithms 
were suggested in [6] for staircase Pad6 sequences, in [8] for diagonal matrix Pad6 
sequences, and in [28] for row Pad6 sequences. Here we will point out that for 
a certain class of  rational interpolation problems we can still attain the same low 
complexity. 

A crucial tool is the usage of basic pairs of NPFs and MPFs. According to 
Theorems 1 and 1', NPFs and MPFs are determined uniquely up to scaling if and 
only if in (1.5) and (2.6), respectively, the polynomial w is of  degree 0, i.e., a 
constant. It can be seen that w is a constant if and only if, in the respective table, 
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we are either at a normal entry or at a position at the border of a singular block. 
In view of  the possible form of singular blocks, the latter conditions are fulfilled 
if the previous or the following entry on the same diagonal is different. Hence, we 
are going to use pairs of NPFs (and MPFs, respectively) with the property that they 
are upper left and lower right neighbors, respectively, of each other, but belong 
to different blocks. This then implies that these NPFs are unique up to scaling, 
and that the denominators (and also the numerators) are relatively prime except 
for the possibility of a common zero at an interpolation point, in which case either 
the corresponding NPAs are not true interpolants or the data function g (or f ,  
respectively) has a zero there also. The second member of these pairs will be called 
weakly regular. (We would call it regular if we knew additionally that the NPA is a 
true interpolant, but we will not have this knowledge in general.) Instead of basic 
pairs consisting of a regular NPA and its upper left neighbor, one could also use 
basic pairs consisting of  an NPA (then called weakly column-regular) and its upper 
neighbor, or an NPA (then called weakly row-regular) and its left neighbor, or an 
NPA and its lower left neighbor. The last type of  basic pairs appears implicitly in 
the classical Kronecker algorithm [33], [45], [2]. 

Basic pairs appear at many places in the literature, at least implicitly; see, e.g., 
[1], [3] (Assumption (3.8)), [4], [42], [44]. In the Pad6 case they can be traced back 
to the Euclidean algorithm [6], [18] and are related to B6zoutiants, the Christoffel- 
Darboux formula, and inversion formulas for Hankel and Toeplitz matrices; see, 
e.g., [16], [19], [31], [32]. Heinig and Rost [31] call the denominators of the basic 
pairs fundamental solutions. Implicitly, the basic pairs considered here also come up 
in one version of  the methods of Werner [46], [47] and Gutknecht [25] that produces 
a generalization of the Thiele fraction called a diagonal G-fraction in [25], because 
its convergents are the distinct entries on a particular diagonal of the Newton-Pad6 
table. In all these situations, one proceeds from one basic pair to the next one, so 
that the two pairs have a common member. However, the full algorithmic power of 
basic pairs becomes apparent in conjunction with the mentioned recurrences that 
allow us to jump over arbitrary many blocks, like in [37], [ 10], [28], [23]. 

Antoulas and Anderson, who consider rational interpolants with max{0p, Oq} 
chosen minimal, give in Lemma 3.2 of [3] a recurrence that is said to allow one to 
go from any pair of such interpolants to any new interpolant satisfying the union 
of the previously fulfilled interpolation conditions, plus, possibly, some additional 
ones. However, the proof of  the formula is not given, and, in any case, its application 
becomes complicated if many new data are added at the same interpolation point, 
as one then needs to compute higher derivatives of  a quotient. In their Theorem 
3.9, whose proof is said to serve as a guideline for the one of their Lemma 3.2, the 
authors turn then to what we call a basic pair and add only one new interpolation 
condition at a time. 

Briefly, the general recurrence from [23] (stated as Theorem 9 below) says that 
a basic pair of  NPFs of types (m - 1, n - 1) and (m, n) can be updated to a basic 
pair with types (m + t~ - 1, r~ + k - 1) and (m + n, n + k) satisfying additional 
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Fig. 3. At left: the index range of the new (m + n, n + k) NPA (solid fine) and its upper left neighbor 
(dotted line) that can be constructed according to Theorem 9 below. At right: the index range of the 
new [# + n; n + k] MPA (solid line) and its upper left neighbor (dotted line) that can be constructed 
according to Theorem 9'. 

e; + k interpolation conditions. For such a step of length n + k one needs to compute 
the so-called residuals of  the previous pair, and a pair of  [n; k - 1] and In + 1; k] 
MPFs. Here, n is restricted to - k  < n < k. Hence, viewed from the weakly regular 
(ra, n) NPF (p,~, q~) the newly constructed weakly regular (m + n, n + k) NPF 
(p~+k, q,~+k) lies in the Newton-Pad6 table in a 90 ~ sector with horizontal axis, see 
Figure 3. If we want to move instead in a 90 ~ sector with vertical axis we can apply 
the same theorem, but with ( f ,g) ,  (p~, q,-,), (re, n) replaced by (g, f) ,  (q~,p~), 
(n, ra). In the case where ~ = k (and also when ~ = k - 1), the two MPFs are 
NPFs. If, moreover, all interpolation points coalesce at 0, the MPFs are just Pad6 
forms, and the recurrence can be seen to be equivalent to the one applied by Cabay 
and Meleshko [ 10]. 

For the multipoint Pad6 table we present in Theorem 9' below a completely 
analogous recurrence: starting from a basic pair consisting of a [# - 1, n - 1] 

and a [#, n] MPF for ( f ,  g; f ,  g), we can construct a basic pair consisting of a 

[# + n - 1, n + k - 1] and a [# + e;, n + k] MPF for ( f ,  g; f ,  g) by computing a 
basic pair consisting of a In, k - 1] and a [n + 1, k] MPF for another multipoint 
Pad6 problem that is made up of the residuals of  the first pair. Again, t~ is restricted 
to - k  _< n < k, so that we can move in the multipoint Pad6 table in a 90 ~ sector 
with horizontal axis whose cusp is at [#; hi; see Figure 3. 

The natural way to apply these recurrences consists in computing NPFs (or 
MPFs) with slowly increasing n, leaving out values of n where the NPF (or MPF) 
and its upper left neighbor are not numerically well conditioned or not sufficiently 
independent. However, there is the other option of  applying recursive doubling. 
Assume we want to compute some (n, n) NPA, where n is large. For simplicity, let 
n be a power of  2 and assume that all the entries on the main diagonal of  the Newton- 
Pad6 table are distinct, and, hence, regular. According to the NPA recurrence, we 
can split up the problem and first compute a pair consisting of  a (n/2 - 1, n /2  - 1) 
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and a (n/2,  n /2)  NPF and then, for a multipoint Pad6 problem that depends on these 
solutions, compute a pair consisting of a [n/2;  n/2  - 1] MPF and a [n/2 + 1; n/2] 
MPF. (Actually, here these MPFs can be understood as NPFs.) To fulfill these two 
different tasks we can again apply, for each one, the same kind of splitting, using 
the NPA recurrence for the first task and the MPA recurrence for the second one. 
This can be continued until we get to problems where n = 1, and thus the solution 
becomes trivial. Unfortunately, this application of the divide-and-conquer strategy 
has a weak point: since the data for each subproblem depend on the solution of the 
previous problem, the subproblems cannot be solved in parallel. Hence, there is no 
gain from the point of view of parallel computing. The divide-and-conquer strategy 
is here not applied in its form amenable to parallel computation, but in its original 
sense, where an enemy is split up and its sections are conquered one after another. 
Nevertheless there can be some gain here too, since the original problem is split up 
repeatedly until each subproblem becomes trivial. If the work for the reduction is 
sufficiently small, the computational cost for solving the original problem may be 
smaller than when applying the straightforward recurrence. We will return to this 
question in w 

4. Genera l  Recurrence  Relat ions  for  NPAs 

Assuming that, for the sequence of  NPFs we are going to construct, the numerator 
degree m : re(n) is a function of the denominator degree n, we write {(Pro qn)} 
instead of  {(Pm(u),n, qm(n),n)}. For example, re(n) : n + l, with fixed I, for a 
diagonal sequence, and m(1) = l, with fixed 1, for a row sequence in the Newton- 
Pad6 table. (Note that m has here another meaning than in w Actually, there is 
normally no point in computing the full sequence { (Pro q~) }; only the subsequence 
of  weakly regular NPFs, or rather, the subsequence of well-conditioned weakly 
regular NPFs will be constructed, together with their upper left neighbors 

(~)n, qn) : =  (Pm(n)-l,n-1, qm(n)-l,n-1). (4.1) 

(Pro q,~) and (/5,~, ON) can be normalized by letting the sum of the squares of the 
coefficients of each pair be 1. Other options for normalization follow from Lemma 4 
below. 

When n = 0 or re(n) = O, the upper left neighbor (ibn, 0n) lies outside the 
Newton-Pad6 table, but the following definitions prove to be useful: 

~)o(Z) := tm-l(Z), O0(Z) : ~  0, 
: -  o, Oo(z) :=  

 o(z) : -  1, 0o(z) :-= o, 
/5o(Z) : -  0, 0o(Z) := 1, 

i f n  = O, ra > 0 ;  
i f n  > O, m = O; 
if n = m = 0 and qo ~ O; (4.2) 
i f n  = m = 0 and qo = O; 

We could use the fourth definition whenever Po ~ 0 (and, actually, we should 
when [qol is small). That would leave a free choice between the third and the fourth 
definition when Po ~ 0 and qo ~ O. 
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These special definitions allow the following interpretation: we can extend the 
Newton-Pad6 table to the left by adding an infinite block of the constant oo, and 
we can extend it above by adding an infinite block of the constant 0, as suggested 
in [19] for the Pad6 table. The quadrant m < 0, n < 0 can be filled with either 0 or 
cx~, but if  ro,o = 0 (or oo), it is preferable to choose oo (or 0, respectively). 

We call the NPF (Pn, qn) := (Pm(n),n, qra(n),n) weakly regular if  

Pn ~,n, i.e., ~gnqn - Pn~ln ~ 0 E 79. (4.3) 
qn q~ 

Likewise, we call (ion, qn) weakly row-regularifthe (re(n),  n - 1 )  and the (m(n), n) 
NPA differ, and we call it weakly column-regular if  the (m(n) - 1, n) and the 
(m(n) ,  n)  NPA differ. According to the Block Structure Theorem, (Pn, qn) is 
weakly regular if  and only if it is weakly row-regular or weakly column-regular. 

The residual e~ of  the NPF (Pn, qn) is defined by 

g(z)pn(z) + f(z)qn(z) = tm(n)+n+l(z)e~(z)- (4.4) 

This residual can be written as a formal Newton series for the points Zrn(n)+n+i, 
i = 1 ,2 , . . . ,  i.e., as a series of  the polynomials 

k 

t~m+n)(z) :---- 1, t(m+n)(z):= l--[(z-zm(n)+n+i), k = 1,2, . . . .  (4.5) 
i=1 

In practice, this Newton series can be replaced by some other representation of the 
data determining the residual. The definitions of  the residual en of (Pn, qn) and the 
residual ~ of (ibn, 0n) can be summarized in 

[qn qn ~ ( ~ ) + n - l [ ~  Tne~], (4.6) 

where 

. ( r e + n - 2 )  
~-n(Z) := (Z -- Zm(n)+n--1)(Z -- Zm(n)+n) = ~2 (Z). (4.7) 

When n = 0 and m > O, (4.6) still holds with 

~o = g, eo = (919o + f qo) /t,,+l, (4.8) 

where qo is a nonzero constant that can be normalized to 1. Moreover, (4.3) holds 
when qo ~ 0. Analogous statements can be made for the other special cases from 
(4.2). 

The following three lemmas were proved in [28] for m, n > 0. Here, we cover 
also the cases n = 0, m > 0 and n > 0, m = 0. The latter always follows from the 
former by symmetry. We leave out the case m = n = 0 because it requires special 
treatment. 
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L E M M A  4. Let (Pr*,qn) be an (m(n) ,n )  NPF (with n > 0 or re(n) > 0), and 
let ~ be the residual of an (rn(n) - 1 ,n  - 1) NPF (~9r*, Or*). Then the following 
statements are equivalent: 

(i) (p~, qn) is weakly regular, i.e., (4.3) holds; 
(ii) b_~(zm(r*)+r*) # 0 and (pr*(z.~(n)+~) # 0 or q,~(z.~(n)+~) # 0); 
( i f )  ~n(Zm(n)+r*-l) r 0 and (pn(Zm(n)+n_l) ~ 0 or qn(Zm(n)+n_l) 7 L 0). 

Proof for n = 0, m > 0. In this case all three statements hold if  and only 
if  qo # 0. First, ~boqo - Po0o = tm-aqo. Second, ~o = g, and g(z,~-l)  = 0 or 
9(Zm) = 0 imply by  (1.4) that qo = 0. Conversely, qo = 0 implies by (1.4) that, 
for i = 0 and i = 1 either g(zm-i)  = 0 orp(zra_i) = 0. Q . E . D .  

L E M M A  5. If  (p~, qr*) is a weakly regular (rn(n), n) NPF (with n > 0 or re(n) > 
0), then 

(i) Oq~ = n and Ofg~ = re(n) - 1 
or 

(ii) Opn = re(n) and OOr* = n - 1. 

Proof for n = 0, m > 0. From the previous proof  we know that qo # 0. But  
then, in view of  (4.2), statement (i) is clearly true. Q . E . D .  

L E M M A  6. Let (p~, q~) be an (re(n), n) NPF (with n > 0 or re(n) > 0); then 

[ qn qn = 6r*t,~(r*)+r*_l, (4.9) 

where 5r* is the leading coefficient of lS,~qr* - O,~Pr* ~ P,~(r*)+r*-l, which does not 
vanish if and only if (pn, qr*) is weakly regular. 

Prooffor n = 0, m > 0. The determinant in (4.9) is equal to tm-lqo; hence, 
(4.9) holds with 50 = qo, which in this case is also the leading coefficient o f  
iboqo - 0opo E P , ~ - I .  Q . E . D .  

C O R O L L A R Y  7. If  the (re(n), n) NPF (Pn, qn) (with n > 0 or rn(n) > O) is 
weakly regular, then any common zero of the polynomials ~9n and pr* is a zero of 
f or an unattainable interpolation point ofp~/qn. In particular, ifpn/q,~ is a true 
(rn(n),  n) interpolant and f does not vanish at any interpolation point, then ~gr* 
and pr* are relatively prime. These statement remain true when ~9n, p,~, and f are 
replaced by qr*, q~, and 9, respectively. 

Proof. Assume rn, n > 0 first. By  (4.9), i f  (pr*,q,~) is weakly regular, any 
common zero of/)r* and pn must be  a zero of  tm(r*)+n-1.  On the other hand, since 
Ow = 0 in the factorization (1.5) o f  (pr*, qr*) (because of  uniqueness), such a zero 
must be  either a zero of  sin,n, i.e., an unattainable point, or a zero Of#m,r,, in which 
case it must be a zero o f  f ;  see (1.4). The statement about exchanging/3,~, pr*, and 
f for Or,, qn, and g holds by  symmetry. If  n = 0, a zero of/~n = tin- 1 is by (4.4) 
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also a zero of  gpo - fqo. Hence, a common zero of ;bo and Po must be a zero of f 
unless qo = 0, in which case a zero o fpo  is an unattainable point. Q .E .D .  

Finally, we need to justify the later usage of  the pair of residuals (en, ~ )  as data 
of a Newton-Pad6 or multipoint Pad6 problem. 

LEMMA 8. Assume that (Pro q,~) is a weakly regular (m(n),  n) NPF (with n > 0 
or re(n) > 0), and let Z(n)  :=  {zj E Z ; j >_ m(n)  + n - 1 }. Then ~,~ and "r~e,~ 
are relatively prime elements of  Afz(,~). 

Proof. In [23] we established this lemma under the additional assumption of 
distinct interpolation points. Here we give a short proof that does not require this 
assumption. Let n > 0, and let (p,~, q,~) be a weakly regular NPF. Then, after 
normalizing an appropriate coefficient to 1, the other coefficients of  these two 
polynomials and likewise those oflb,~ and 0,~ are determined by a nonsingular linear 
system that depends on f and g. Clearly, under small perturbations of  the data, the 
coefficients and values of these polynomials and of  tra+n- 1 depend continuously 
on the data, and, hence, the same is true for ~ and r (Note that under such a 
perturbation t~+,~-i remains a factor of g0,~ + f~b,,, and tm+~+l remains a factor 
of  9qn + fpn.)  By such small perturbations we can make that none of  the points 
zj ~ Z(n)  is a zero of tr~+,~-l. (Actually, we could keep the zeros oft,~+,~-I fixed; 
but this is not required.) Applying Cramer's rule to (4.6) and making use of (4.9) 
we get, after canceling tin+n--1, 

g = ~  det qu" q,~ , f = ~  d e t L ~ . r , ~ e n  . (4.10) 

These formulas remain true if  some points zj converge to zeros of tin+n- 1. There- 
fore, clearly, at any point where both b_~ and ~ vanish, f and 9 must vanish also, in 
contrast to the assumption that f and 9 are relatively prime. Finally, if n = 0 and 
m > 0, then, for i ~ N +, 0 = ~O(Zr~+i) = g(z,~+i) implies that 9Po + fqo does 
not vanish at Zm+i since f and 9 are relatively prime and qo is a nonzero constant. 
Q .E .D .  

Note that the formulas (4.10) can be summarized as 

[g f] = L[+,~On The.n][ --On q'~ -P'~]~,~ " (4.11) 

Both for the general NPF recurrence and, of course, for the MPF recurrence to 
be discussed later, we need analogous definitions and statements for MPFs. For a 
[~(n) ;  ?2] M P F  (un, vn) :---- (U~(n);n , V#(n);n ) of  ( ] ,  if; f ,  g) ,  we let 

(/~n,/;n) :=  (uu(n)-l;z~-l, v~(n)-k,~-l) (4.12) 

denote its upper left neighbor. We call the MPF (urn v,~) weakly regular if 

_ _  / t n  " v un ~ ~__, i.e., un ~ -- u~i~n r O c s (4.13) 
Vn Vn 
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The residual (~n, en) of the MPF (un, vn) consists of a formal Laurent series 
�9 E~ and a formal Newton series en for the points zt4,9+~+~, i = 1,2, . . . .  

defined implicitly by 

~(z)u~(z) + ](z)v~(z) = z t'(u) ~ ( z ) ,  (4.14a) 

g(z)un(z) + f(Z)Vn(Z) ---- t~(n)+n+l (Z) en(z). (4.14b) 

The definition of this residual and of the residual ( ~ ,  ~ )  of ( /~ , /~ )  can be sum- 
marized in 

g On Vn [ ttz(n)+n_l b~n t~(n)+n+l, en J 

[ 0 .I / j ' 

(4.15) 

where 

~'n(z) := (z - z~,+~_l)(z - zt,+n) = t(~+~-2)(z). (4.16) 

However, in the following we first consider [t~ + 1;k] MPFs (k > 1); i.e., 
we have to replace # and n by ~ + 1 and k in all formulas. We let (Pn, qn) := 
(P~(r,),n, qm(,~),,~) be a fixed weakly regular (m, n) NPF. We assume that its upper 
left neighbor (~b,~, On) and the residuals en and b~ of this pair are also at our disposal. 
Then we can consider the following [n + I; k] multipoint Pad6 problem for the 

polynomials u(k n) and v (n), which will play the role of "recurrence coefficients": 

z--m+l , (n) ~n(z)u k (z) + p,,(z)v~'~)(z)] = O_(z'~+I), (4.17a) 
(m+r~-2) 

= o(t +k+2 (z)). (4.17b) 
�9 (re+n--2) The polynolmal t~+k+ 2 is still defined by (4.5). In our notation from w we have 

for this problem to substitute ( f ,  ~; f, g) by 

z-m+%(z); �9 
s x E;  x Afz(r,) x JV'z(,~). (4.18) 

(Recall that Z(n) was defined in Lemma 8.) By Lemma 5 we know that 
O(z-m+l~n) = 0 if (p,~, qn) is weakly row-regular, and that O(z-m+lp,~) = 1 
if (Pn, q,~) is weakly column-regular. Hence, the assumption of w that % r 0 or 

r r 0 is fulfilled i f w e  let~ = 1. In addition to this [n + 1;k] MPF (u(~),v (~)) 
we consider its upper left neighbor in the multipoint Pad6 table for the data (4.18), 
denoting it by (~ 09 ,,(n)a k~k ' t 'k }" 

We restrict n to - k  < n < k, so that according to (2.3) 

(~k ,  Vk) � 9  X P k - 1 ,  tUk ,V k ) �9 X Pk.  (4.19) 



GENERAL RECURRENCES FOR RATIONAL INTERPOLATION 183 

Accord ing to (4 .15) the res idua l , ^ (n )  (~,), ~-, (n) (,~) "(~) z(n)~ (e k , e k ) o l t u  k , v k ) and the residual (ek , '~k J 

of &)) satisfy 

z--rr~, q-l~n Z-m-k lpn  / ,~n) V!n ) 

e~ 7~en [ v~ (4.20) 

= 0 § ~(~) k ('~ ' 
'~t~q-k Tnq-k ele ) 

where 

r,~+k(z) :=  ( z  - z ~ + k + . , + ~ - ~ ) ( z  - z ~ + k + , ~ + ~ )  
(taTk-kmq-n-1) ~~ (4.21) 

= t 2 (z) .  

Note that -r,~ is a factor of  u (n) since n + k _> 0, and a factor of /z  ('~) i f  n + k > 2. 
In particular, i f  n = k (_> 1), then this mulf ipoint  Pad6 problem with ~ = 1 can be 
reduced to one with c = - 1, which means reducing the degree o f  f reedom by 2. 

In the rest of  this section, f and g will again refer to the data for the Newton-Pad6 
prob lem for which  (p,,, q,~) is an (m,  n)  NPF. 

The  general  recurrence formula for NPFs from [23], which is stated next, as- 
sumes  that (Pn, qn), (ibm,, q,,), and (era b~) are known,  and relies on the pair o f M P F s  
just  considered.  

T H E O R E M  9 (General NPF  recurrence). Leta relatively prime pair ( f ,  g) E Afz x 
Afz be given. Let (re, n) E N + •  and let [~;k] E Z x N  + be such that 
- k  < ~ < k, ra + ~ > O. Assume that (p~,, q,~) is a weakly regular (m, n) 
NPF of ( f ,  9) with residual en, and let (~,,, ~,,) be an (m - 1, n - 1) N e e  of 

( f ,  g) with residual b~. Moreover, let (u(k '~) , v(k '~)) be a [~; + 1; k] MPF with residual 

(~('~) e(k '~)) ofthe data (4.18), and let (iz(k ~) ~ ('~)~ k , , ~k J bea [a ;k  - 1] MPFwith resMual 
(~(~) 

k , ~(~))for the same data. Then, the formulas 

[Pn+k Pn+k :=  P,n Pn ulr (4.22) 
[ qn+k qn+k qn qn v k'(n) v(r4 J 

and* 

.~+~+k+~-~ [e~+k rn+ke~+k] :=  .~+~-1 [e~ r,~ed L / ~k ~' (~) v(k ~) (4.23) 

yieldan (m + n ,n  + k) NPF (Pn+k, qn+k) andan (m + ~ - 1 ,n  + k - 1) NPF 
(Pn+k, 0~,+k) of  ( f ,9) ,  as well as the corresponding residuals en+k and b,~+k, 
which are equal to e(k ~) and b (n), respectively. The new NPF (P,,+k, q~+k) is weakly 

regular i f  and only if  also (u(k ,~) , v (~')) is weakly regular. 

* On the left-hand side of Eq. (5.20) in [23], rn should be replaced by ~-,~+k too. 
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Proof. The proof of this crucial result from [23] is so short that we can repeat it 
here. Since (p~, q~) E T'~ • 79~ and (ibn, ?in) E 7v~_1 • 79n_1, (4.19) indicates that 
the pair (P,~+k, q,~+k) defined by (4.22) lies in 7~m+k • 79n+k. However, by definition 
of (u(k ~) , v(k n)) as a [~ + 1; k] MPF of (4.18), we have actually P,~+k e 7:',~+,~, cf. 
(4.17a)-(4.17b). Analogously, it can be verified that (ib,~+k, ?in+k) defined by (4.22) 
lies in :P,~+,~-I • 7),~+k-1. Moreover, by (4.6) and (4.20), 

1. q~+k q.+k 

[+(.~+n-2),~(,~) +(,~+,~-2) o(n) l 
-= ~m+n--1 [ok+ ~ ~k ~'kq-t~q-2 ~"k J 

: tm-t-n+k+~_ 1 [e(k n) Tn+ke(kn)]. 

By (4.23), the expression on the second line is equal to 
t,~+~+k+~-i [&~+k "r~+ke~+k]. Altogether, this shows that (~On+k, ?In+k) and 
(Pn+k, qn+k) are an (m + tr -- 1,n + k - 1) and an (m + ~;,n + k) NPF of 
(f, g), respectively, and that ~n+k and en+k defined by (4.23), as well as ~('~) and 

e (r') defined by (4.20), are equal to their residuals. Finally, if and only if both 

(Pn, qn) and (u~) , v (k)) are weakly regular, the determinants* of both matrices on 
the fight-hand side of (4.22) do not vanish identically, hence the same is true for 
their product, which means that (Pn+k, qn+k) is weakly regular. Q.E.D. 

As pointed out in [23], Theorem 9 has an interpretation in terms of continued 
fractions. For example, for a diagonal sequence of weakly regular NPFs, Pn/qn is 
a convergent (i.e., a 'partial sum') of the diagonal G-fraction [25] of - f / g ,  and 
e~/~n is a representation of the corresponding tail of the G-fraction. Hence, to get 
Pn+k/q,~+k we just combine the nth convergent of the continued fraction with the 
kth convergent of its tail. In the Pad6 case, the diagonal G-fraction becomes a (di- 
agonal) P-fraction [35]. This interpretation is not restricted to diagonal sequences, 
however. 

5. General Recurrence Relations for Proper MPAs 

Let us return to the multipoint Pad6 problem of w Again, consider a [#(n); n] MPF 
(un, vn) :-- (u~(n),,~, V~(n);n) of (], g; f, g) and its upper left neighbor (/Zn,/~r,)- 
Recall from (4.13)-(4.15) the definitions of weak regularity and of the residuals of 
this pair of MPFs. First, we want to establish analogues of the Lemmas 4--6. 

* In the proof in [23] we also meant the determinants of the matrices, not the matrices themselves. 
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LEMMA 4". Let (us, v~) be a proper [it(n); n] MPF (with n > litol _> o), and let 
('~, ~ )  be the residual of an [/z(n) - 1 ;n  - 1] MPF (r 5s). Then the following 
statements are equivalent: 

(i) (Un, vn) is weakly regular, i.e., (4.13) holds; 
(ii) ga(zt,(n)+n) 7 L 0 and (un(zt,(s)+n) r 0 or vn(zu(n)+n ) r 0); 
(iii) es(Zp(n)+n_l) • 0 and (us(Zp(n)wn_l) # 0 or vn(z#(s)+n-1) 7 s 0). 
Proof If  (Uu, vn) is weakly regular, one can conclude from the definition (2.4a)- 

(2.4b) or from Theorem 1' that (/Ls,/;,~) does not have Z~+s-1 or z~,+s as an extra 
interpolation point. If, say, zu+n were one, then (un, vs) :=  ((z - Z~+s- 1)/L~, (z - 
zu+s-~)5,~) would be a [it; n] MPF, possibly with Zu+s_l as an unattainable point, 
and consequently, (4.13) would not hold. Similarly we can conclude that u s  and vn 
cannot vanish simultaneously at zu+n_l or Zu+n. Because, if they did, say at zu+n, 
then we could obtain a [it - l; n - l] MPF (/ts,/;~) by canceling the common factor 
z - zu+u in (urn vn). The reverse directions of  these two conclusions are verified 
easily too. For assume that (Us, Vs) is not weakly regular and, say, Z~+s is not an 
extra interpolation point of  (/~s,/;,~). Then, z~,+s is an unattainable point of un/Vs, 
and hence, by Theorem 1', z - zu-~ is a factor of  so;n, and therefore a common 
factor of  u,~ and vn. Q . E . D .  

LEMMA 5'. I f(us,  vn) is a weakly regularproper [#(n); n] MPF (with n > I#ol >- 
0), then 

(i) Ovs = n and Oizn = it(n) - 1 
or 

(ii) Oun = it(n) and Oi~n = n - 1. 
Proof Assume (u~, vs) is weakly regular. Then not only the upper left neighbor 

of  the [it; n] entry r~ := u,~/v,~, but also the [ i t -  1; n] entry or the [it; n -  1] entry 
(or both) are different from r,~. If, say, the [# - 1;n] entry differs, then clearly 
Ous = #; otherwise (un, Vs) would qualify as an [# - 1; n] MPF. Hence, (ii) holds 
unless 0~3~ < n - 1, in which case the pair ((z - Zu+s_l)/ts,  (z - z#+s-1)Ss) 
qualifies as [it; n - 1] MPF, which means that also the left neighbor differs from r,~; 
consequently, OVs = n. Therefore, (i) holds unless 0/ts < it - 1. In the latter case 
we could conclude that the same pair is a [ i t -  1; n] MPF, and that the [it - 1; n - 1], 
the [it; n - 1], and the [it - 1; n] MPA are all the same; this would imply that they 
agree with the [it; n] MPA, in contrast to the weak regularity of the latter. Q .E .D .  

LEMMA 6'. Let (u,~, v,~) be a proper [#(n); n] MPF (with n > ]#ol -> 0); then 

det [ ,~s u n ]  A 
[ v,~ Vs = 6~tu(n)+r~_l, (5.1) 

where 5s is the leading coefficient of tt~v~ - i~u~ E Pt,(~)-~-l, which does not 
vanish if and only if (urn vs) is weakly regular. 

Proof The determinant is equal to itsV,~ - iJ,~us ~ P~+z,~-I, which, by the 
definition of  weak regularity, is identically zero if  and only if the MPF (u~, vn) is 
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not weakly regular. Multiplying (4.14a)-(4.14b) by 5s and/~s, and their analogues 
for (/tin/:n) by Vs and us, we obtain by pairwise subtraction 

O ( ~ t s V n  - -  ~ ) n U s )  = O - - ( Z t Z + n - 1 ) ,  g ( ~ t n V s  - -  ~ ) s U s )  = O(ttz-t-n-1), 
^ 

" V f(itnVn - i;nun) = O-(z*+#+n-1), f(Un n - -  ~ ; n U s )  ~- O(t#Wn-i) .  

Since f and g are relatively prime by assumption, and since r r 0 or % ~ 0 
in (2.1), it follows that 

U s V n  - -  ?3nUs  : O - - ( z l Z q - n - - 1 ) ,  ~ s V n  - -  ? ) n U s  : O ( t l z + n - - 1  ) .  

In other words,/~sV,~ -/J,,Us E Pu+n-1, and tu+s-1 is a polynomial factor of it, 
the quotient being a scalar 6,~, which, since tu+s_l is monic, is equal to the leading 
coefficient of iLsv,~ - i;sUs in 7~u+s_ 1. Q.E.D. 

COROLLARY 7'. If the [/z(n);n] MPF (Us, V,~) (where n > [IZo[ > O) is weakly 
regular, then any common zero of the polynomials itn and us is a zero of f or an 
unattainable interpolation point of un/  Vs. In particular, if u s /  Vn is a true [#(n); n] 
interpolant and f does not vanish at any interpolation point, then itn and us are 
relatively prime. These statements remain true when iZs, us, and f are replaced by 
i~s, vn, and g, respectively. 

Proof. By (5.1), if (Us, Vn) is weakly regular, any common zero of/~n and us 
must be a zero of tu(n)+s_ 1. On the other hand, since Ow = 0 in the factorization 
(2.6) of (us, vn) (because of uniqueness), such a zero must be either a zero of s~,;n, 
i.e., an unattainable point, or a zero of ~2u;s, in which case it must be a zero of f; 
see (2.4b). The statement about exchanging i~n, us, ], and f for/)s, vs, g, and g 
holds by symmetry. Q.E.D. 

Finally, we need to justify the later usage of the pair of residuals (e~, b~) as data 
of another multipoint Pad6 problem. Recall the definition of ~s from (4.16). 

LEMMA 8'. Assume that (urn vs) is a weakly regular [#(n); n] MPF (where n > 
I#ol >- 0), and let 2(n) := {z~ e Z;  j >/z(n)  + n  - 1}. Then b~ and ~se~ are 
relatively prime elements of N'2(n), and max{0~m 0 ~ }  = 0. 

Proof. By complete analogy to the proof of Lemma 8 we can conclude from 
(4.15) that the formulas 

1 det[~,n ?se~] f :  1 det[/~s us 1 g : ' . ( 5 . 2 )  

hold, even if some of the points zj converge to zeros of tu+s_ i. Moreover, by 
applying Cramer's rule to the first row of (4.15) we get 

/?~,s det e~ z~.n f----- ^ det - , (5.3) 
0 - &  ~,~ v,~ ~,~ e~z0~  
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where ~:,~ denotes the Laurent series at oc of the function z~'-l/t~,+,~_l (z). This 
Laurent series belongs to E_n and has exact degree - n ,  i.e., the coefficient of 
z -n  does not vanish. In view ofu,~ E P,+n,  v,~ E T',,, ~,~ E 7:',+,,-1,/~ E Pn-1,  
z ~  E s and ~,, E /2~, we see that the first determinant is in/2* and the second 

-k one in/2,+,~, so that the formulas confirm that 0 E/2~ and f E /2*. Clearly, if the 

leading coefficients of ~ and ~n both vanished, those of 0 and f would vanish also, 
contrary to the assumption for (2.1). Q .E .D.  

The Eqs. (5.2) and (5.3) can be combined into 

V. " = _b~ ,, (5.4) 

Now assume that (ur,, v,~) is weakly regular and that, moreover, (/~,,, b,,) and the 
residuals (g,,  g,,) and (b~n, e~) are at our disposal, so that we can additionally con- 
sider In + 1; k] MPFs of the following multipoint Pad6 problem for the "recurrence 

coefficients" u~ '~)- and V(kn): 

L,(~)~,(~)(z) + z~,(~)~(2)(z) = O_(z~+:), (5.5a) 
,~+k+2 tz)). (5.5b) 

Hence, here the data are 

(z~=(z) ,~n(z);~ '=(z)e~(z) ,~n(Z))Es163 x N'2(,~ ). (5.6) 

(Z(n) was defined in Lemma 8', and the polynomial § is still defined by 

(4.5).) From Lemma 5' we recall that 0 ( ~ )  = 0 or O(z~)  = 1. Hence, the 
assumption of w that % r 0 or ~ r 0 is again fulfilled for ~ = 1. 

In addition to this [t~ + 1; h] MPF (u (n) , v 0')) we consider its upper left neighbor, 
, ,  (~) , (~), 

denoting it by (ut: , v k ). Restricting ~; to - k  _< ~; _< k, we see that (4.19) still 
,-(~) , (~), 

holds. The residuals ,cO ('~)k , e ('~)) of (u('*),v(k '~)) and/ek ,ek ) o f  (/t(k '~), 5(k '~)) now 
satisfy 

"~ne~ r v(2) = o t(,,+,~_~)~+~ ~'('~) *,~+~e(2) , (5.7) 

where 

~-,~+~(z) := ( z  - z ~ + ~ + , + , ~ _ ~ ) ( z  - z,~+~+,+,d = t~'~+~+"+'~-~)(z). (5.8) 

THEOREM 9' (General proper MPF recurrence). Let a relatively pn/me pair 
( f ,g)  E Afz • Afz and a pair (f ,O) E s • F_.~ with ~ >_ - 1  and q3~ ~ 0 or 
% ~ 0 be given. Let [#; n], [n; k] E Z • N + be such that - n  - 1 < lz < ~ + n and 
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- k  < ~ <_ k. Assume that (un, Vn) is a weakly regular [/4; n] MPF of (], 9; f ,  9) 
with residual (en, er~), and let ( ~n, bn) be a [/~ - 1; n - 1] MPF o f ( f ,  9; f ,  9) with 
residual ( g~ , ~ ). 

"^('~) (~)" of the Moreover, let (U(kn),v(k ~)) be a [~ + 1;kl MPF with residual te k ,% ) 

data (5.6), and let k ak , v k ) be a In; k - 1] MPF with residual (b (n) , ~(n)) for  the 
same data. Then, the formulas 

 o+k] :_._ r. o .o] u,;:> ] 
v~+k vn+k k V~ v~ [5(k '~) V ) (5.9) 

and 

~247 L ~'~q-k r en 7-n~ g "uk 

yield a [# + n; n + k] MPF (un+k, Vn+k) and a [# + n - 1;n + k - 1] MPF 
(/Z~+k, "b~+k) of ( f ,  O; f ,  g), as well as the corresponding residuals (e~+k, e~+k) 

and (~+k,  ~n+k), which are equal to ts(~) ~ and (e~ n) x(n)~ respectively. 

The new MPF (un+k, vn+k) is weakly regular if  and only if also ~u k ~ (n) , vk(~)') is 
weakly regular. 

Proof. Since (u,~, vn) 6 7:'~+n x P~ and (5~, bu) ~ P~+n-1 • 79~-1, (4.19) ira- 
pries that the pairs (u~+k , v,~+k) and (~,~+k, O,~+k) defined by (5.9) lie in 79,+,~+k • 
7~,~+k and P~+,~+k-1 x T'~+k-1, respectively. Moreover, by (5.9), (4.15), and (5.7), 

__ [Z/~-1 0 )[,~ Z~. ] r,~(n) u (~) ] 
- o u Ld:) q) 
: CZ~;#--I 0 ] [~:r~) Ze(k rt) ] 

t~+k+l~+n- 1 e kx(n) xfn+k e~) ' 

while applying (5.7) instead of the last step yields 

Z ~+~-1 0 e n+k Z g-~n+k 
0 tn+k+tt+n-1 en+k ~'n+ken+k 

This shows that ( ~+k,v~,+k) and(un+k ,v~+k)area[#+n  1 ; n + k  1]anda 
[/~ + ~; n + k] MPF of (f,  0; f, g), and that (~+~, ~+e) and (~+~, e~+~) defined 

,,.. ( r t )  , ( ~ ) ,  r # ( n )  - 
by (5.10) as well as tek , e~ ) and ~ k , e (~)) defined by (5.7) are equal to their 
residuals. 

, (~) (~), 
Again, if and only if also t, Un , Vn ) iS weakly regular, the determinants of both 

matrices on the right-hand side of (5.9) do not vanish identically, and thus the same 
is true for their product, which means that (un+~, V~+k) is weakly regular. Q .E .D.  



GENERAL RECURRENCES FOR RATIONAL INTERPOLATION 189 

6. Comments and Conclusions 

6 . 1 .  P R O D U C T REPRESENTATION OF BASIC PAIRS 

For the recursive construction of  a regular NPF, say (Pnj, qnj), we apply Theo- 
rem 9 repeatedly. Not only yields it such an NPF, but it also provides us with a 
representation of (p,~j, q,~j) and its upper left neighbor in terms of a product of  
2 x 2 matrices whose elements are polynomials: 

[qnj q,~j Iqo qo j=o /)(~)k s V~ jj)- 
(6.1) 

Here, kj :=  n j+ l  - n j  and n0 := 0. The index j in the product increases from 
left to right. In exact arithmetic we can choose k~ in each step as small as possible, 
namely just such that the determinant of the new factor is not identically zero. If 
h = - f / g  does not represent a rational function, we can let na  go to infinity. The 
formal infinite product that is then obtained by proceeding, say, along a diagonal 
(i.e., by choosing ~ = k) is a matrix representation of  the diagonal G-fraction. 

In floating-point arithmetic, one has to avoid those factors in (6.1) that are "nearly 
singular". For special cases, the question what "nearly singular" means, has been 
addressed in [10], [37], [28], [30], [29], but it still requires further investigation. 

6 . 2 .  A CONNECTION BETWEEN NPFS AND MPFS 

By the close analogy between the theory of  weakly regular NPFs and MPFs, and, 
in particular, between the general recurrences of  Theorems 9 and 9' most of what 
can be said on the computation of  NPFs holds with minor modifications for the 
computation of MPFs. In particular, the product representation (6.1) has an MPF 
analogue. This is no surprise since the 2 x 2 polynomial matrices that are used to 

ru (~ , v (~ ~ and update the pair of NPFs at the same time update a pair of MPFs, ~ Nj N: / 

N.z 1" 

�9 Po [/t(N ~ U (~ ] k I p'nJq-. Pn.]qnj = k[P~ qo ] [~(~! v(~f" j . (6.2) 

The data of  the corresponding multipoint Pad6 problem are 

(z-m+lpo(z), z-m+ltm-l(z); "ro(z)eo(z), b.o(z)) e 
s x s x Nz(o) x A/'z(o), (6.3) 

where ~o = g, "roeo = (gPo + fqo)/tm-1. 
One might guess that most results for the MPF recurrence can be proved by 

determining first a Newton-Pad6 problem such that (6.2) holds. However, the data 
(6.3) do not look general enough so that any data (f ,  g; f ,  g) admitted for a mul- 
tipoint Pad6 problem could be interpreted in this way. But we could establish the 
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MPF results in this way for any such quadruple with ~ = - 1, finite series f and 
0 with at most m terms and q'o := )(oe) = 1, and a Newton series f satisfying 
f(zm) = f(Zm+l) = 0. Setting 

po(z) := z""-lf(z), ibo(Z) := tm-l(Z) 
at(z) : -  l, Oo(Z) : -O,  
eo(z) :---- f(Z)/TO(Z), ~(Z) := g(z). 

: =  

(6.4) 

we could find from (4.11) data (fNP,gNP) [not to be mixed up with the given 
multipoint Pad6 data (f ,  0; f ,  g)] for a Newton-Pad6 problem related to the given 
multipoint Pad6 problem by (6.3). 

6.3. L E V I N S O N - T Y P E  A N D  S C H U R - T Y P E  A L G O R I T H M S  

As long as a small step size k is used in Theorem 9, the recurrence coefficients 
only depend on few initial coefficients of the Newton series for the residuals (or 
equivalent data) and the few highest coefficients of the numerators p,~ and ~b~. 
There are two ways to deal with the data of the initial problem. In each step we 
either transform all the remaining data, i.e., compute a full representation of the 
residuals (either as Newton series or as functions values and, possibly, derivatives), 
or we have to compute the data needed for the next step from the definition (4.6) 
of the residuals. Adopting the terminology used for fast Toeplitz solvers, which 
correspond to recurrences along two adjacent rows in the Pad6 table, we can say 
that in the first case we obtain a Schur-type algorithm, and in the second case 
a Levinson-type algorithm. The superfast algorithms discussed next combine the 
merits of both approaches. 

Again, these remarks also apply to the multipoint Pad6 problem, except that the 
numerators ~bn and Pn are replaced by the Laurent series residuals b~n and en. 

6.4. S U P E R F A S T  R A T I O N A L  I N T E R P O L A T I O N  

The straightforward way of evaluating the product (6.1) consists in multiplying it out 
from left to fight. In other words, the partial product represented by the polynomials 
~b~s, q~5, Pw, and q~s (whose degrees are growing) is multiplied by the next factor 

with the polynomials ~" (~s) ~ (~s) /~(,~s) and v ('~s) (whose degrees are normally 
,*ks , ,*ks , k s , k s 

small). In the generic situation, where the Newton-Pad6 table is normal, i.e., has 
no singular blocks, we do N := Nj steps of total cost o ( ~ N _ I  n) = O(NU). 

The fastest way of evaluating the product (6.1) is by a binary tree. Assuming 
a normal table and N = 2 M, we compute at the lowest level 1 N matrix products 
at cost O(1) each. At the highest level, there is just one matrix product involving 
polynomials of degree ~,, 1N. Using the fast Fourier transform (FFI) this last 
product costs O(N  log N). At an intermediate level j ,  there are 2 - i N  products 
costing O(2J log 2 j) each; so the cost of this level is O(Nj). Since j runs from 1 
to M -- log 2 N, total cost is O(N log 2 N). 
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However, before we can evaluate product (6.1), we need to determine its factors. 
The individual factors are found by solving small, particularly structured linear 
systems. In the generic case they have order 2, and since there are N such factors, 
the total cost for solving these systems is O(N) .  But before we can solve them, 
we need to prepare the corresponding data, and this is the most cost-critical part of  
the whole recursive process. The divide-and-conquer strategy allows us to reduce 
the given data according to a binary tree: whenever we have solved a problem of 
size n = 2 j, we can use the definitions (4.20) or (5.7), respectively, to find the 
corresponding new residuals of  which we need to compute O(n) terms in order to 
have the data for a new step of  size k = n ready. (The exact number of terms needed 
depends on the path taken in the Newton-Pad6 table.) Unless k = 1, this step will 
be divided further, but this is of no concern. The cost of  computing residuals clearly 
depends on how the data and the residuals are represented. If this is by Newton 
series, then one can not expect, in general, to compute n coefficients of  a residual in 
less than O(n  2) operations. In contrast, in the case of  Pad6 approximation or two- 
point Pad6 approximation, where data and residuals are represented by power and 
Laurent series, FFFs can be applied and reduce the cost to O(n log 2 n) operations. 
This gives rise to algorithms of  total complexity O ( N  log 2 N).  This principle was 
first explored by Brent, Gustavson, and Yun [6] for Pad6 recursions along a staircase, 
which lead to a superfast Hankel solver; see also [18]. Since 1980, it has appeared 
in many forms in superfast Hankel and Toeplitz solvers; for references see, e.g., [8], 
[28], [30], [31]. It is a natural question to ask whether this operation count persists 
for certain rational interpolation problems involving more than two interpolation 
points. (Any two finite points could be mapped into 0 and cx~ by a fractional linear 
transformation that leaves 7~,,~ invariant.) Of particular interest are the diagonal 
recurrences (m = n - 1 or m = r~, n = k), which generalize the Hankel solvers, 
and the row recurrences (m = �89 - 1, n = 0), which generalize the Toeplitz 
solvers. 

For interpolation in a few, say L, points & that all carry the same amount of 
data to be taken into account in a cyclic manner, a superfast rational interpolation 
algorithm indeed exists. Let in each point the data be given as a finite power series 
in z - ze. In all our computation we want to store L different representations of the 
NPFs and MPFs involved, namely as power series in z - ze. To switch between them 
would be more expensive than to build them up in parallel. Since L is independent 
of N, this does not increase the order of complexity. Assuming a normal Newton- 
Pad6 table, we can concentrate on step sizes where n + k is a multiple of L. Then 

~(m+n--2) § 
the polynomials o~+ k and in (4.20) and (5.7), by which we need to ~ 
divide, are powers of tL(z) = (z - z0) �9 �9 - (z - zr-1) .  The FFF can be applied to 
build up these powers by recursive doubling and to perform the division. 

Rational interpolation at the 2Nth roots of  unity by r E "]PoN_I,N is another 
interesting case that can be solved in O ( N  log 2 N) operations. At the lowest level 
of  the row recurrence we interpolate at one new root (i.e., n = 0, k = 1). For the 
diagonal recurrence we add at the lowest level two new roots (i.e., n = k = 1) that 
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lie on opposite sides of  the unit circle; they are zeros o f z  2 ~- ze, where ze is any zero 

o f z  if/2 = - 1. At the jth level of  the row recurrence, and at the (j - 1)th level of  the 
diagonal recurrence, we interpolate additionally at the n -- 2J- ~ zeros of  z ~ = ze, 

where ze is any zero of  z N/n = - 1. Since all interpolation points are distinct, the 
data will normally be given as function values. The computation of  the values of  
the residuals at all nth roots of  ze, which is done according to the definitions (4.20) 
and (5.7), requires the evaluation of  the NPFs or MPFs at these points. Once more, 
with FFTs of  length 2n this is accomplished in O(n log 2 n) operations. Altogether 
one obtains again the bound (N/n)  O(n log n) = O(N log n) = O(Nj)  for level 
j,  and an overall complexity of  O(N log 2 N)  for the algorithm. 

An alternative is to apply the Kronecker algorithm [33], [45], [2] to this problem: 
first, one has to compute the interpolation polynomial of  degree 2 N  - 1 by an FFr 
of  length 2N; then one applies the O(N log 2 N )  version of  the Euclidean algorithm 
[6] to this polynomial and z 2N - 1. 

The treatment of  non-normal tables and the inclusion of look-ahead for avoiding 
unstable intermediate results makes these superfast algorithms more complicated, 
but the complexity remains O ( N  log 2 N)  as long as the look-ahead step size remains 
bounded independent of  N.  
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