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Abstract: A unifying treatment of methods for computing conformal maps from the unit disk onto a Jordan region is 
presented. Integral and integro-differential equations (involving the conjugation operator) for the boundary correspon- 
dence function are first derived using an arbitrary auxiliary function having certain properties. Then various iteration 
methods for solving these equations are described in this generality, so that the basic ideas become manifest. Specific 

methods are then treated as examples of the general theory. Among them are, in particular, the successive conjugation 
methods of Theodorsen, Melentiev and Kulisch, Timman, and Friberg, the projection method of Bergstram, and the 
Newton methods of Vertgeim, Wegmann, and Hiibner (which make use of the easy construction of the solutions of 
Riemann-Hilbert problems). Many of these methods are treated in greater generality than in the literature. The 
connections with the methods of Fornberg, Menikoff-Zemach, Chakravarthy-Anderson, and Challis-Burley are also 
outlined. 

Keywords: Numerical conformal mapping, conjugate function, conjugation operator, method of successive conjugation. 
Riemann-Hilbert problem. 
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0. Introduction 

Let g be a conformal map of the unit disk D in the w-plane onto a given Jordan domain A 
with boundary I’ in the z-plane. The function g can be extended to the closure 5 of D in such a 
way that g is a homeomorphism of 5 onto 2. We assume that 0 E A and that g is normalized 
either by 

g(0) = 0, g’(0) ’ 0 (0.1) 

or by 

g(0) = 0, g(1) = zo E r. (0.2) 

Most numerical methods for computing g are in one or another sense based on the conjugation 
of periodic functions, i.e. on the possibility of constructing for a (usually real-valued) function u 
defined on the unit circle S another function u such that the values of u + iu are the boundary 
values of a function analytic in D. This fact is often applied not to the mapping function g itself, 
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Table 1 
Classification of mapping methods. (i/e: method for the interior or the exterior mapping problem, respectively.) 

type of method auxiliary function i/e method of Section no. 

Successive 
conjugation 

(Section 5) 

Projection 

(Bergstrom) 

(Section 5) 

Newton 
(Vertgeim-Hubner) 

(Section 7) 

Newton 

(Wegmann) 
(Section 7) 

Various 
related 
methods 

e 
i 
e 
i 

e 

e 

e 

Theodorsen 

- 8.1 
i, e Wegmann 8.2 

i, e Fomberg 7 
i, e Menikoff-Zemach 9.1 
i Chakravarthy-Anderson 9.2 
i Challis-Burley 9.3 

but instead to an auxiliary function h that is related to g. It leads readily to various integral 
equations for the boundary correspondence function (defined in Section 4). 

However, this construction is also fundamental for solving Riemann-Hilbert problems on the 
disk, which is the key step in the very efficient methods of Vertgeim [62], Wegmann [69,70] and 
Hiibner [34]. 

The efficiency of these and many other methods based on conjugation is due in the first place 
to the fact that in practice the conjugate function (or rather its approximate values on a regularly 
spaced set of points) can be computed by just two fast Fourier transforms (FFTs). 

The aim of this paper is to describe various basic principles that can be and have been used to 
find such numerical methods, and to classify classical, recent, and new methods according to 
these principles, cf. Table 1. The description of particular methods in the literature is often 
obscured by the use of a specific auxiliary function and a specific representation of the boundary 
r, not to speak of the wide variety of notation in use. Our treatment is based on a general 
definition of the auxiliary function h as the image of an operator having certain properties. The 
basic ideas of the various methods are then first described in terms of this general auxiliary 
function. Later, most of the methods that have appeared in the literature are presented in detail 
as examples of the general theory. 

However, this paper is neither a complete survey of all the work that has been done, nor a 
serious judgement and evaluation of methods currently available. (We hope to present a 
comparison of numerical results for many of the methods discussed here in the near future.) A 
comprehensive survey of results known in 1964 is Gaier’s well-known book [13]. An excellent 
introduction to the subject is given by Henrici [30]; it includes, for example, elegant presentations 
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of the methods of Theodorsen, Timman. and Wegmann. A general definition of the auxiliary 
function was proposed by Jeltsch [37] in his diploma thesis; his definition is similar in spirit to 

ours, but the details are quite different. (In particular, he did not introduce an operator.) 
We partially also discuss the corresponding exterior mapping problem, where g maps the 

exterior of the unit circle S (including the point at infinity) onto the exterior of the curve r. The 

normalizations (0.1) and (0.2) are then replaced by 

g(oo)=m, g’(c+O (0.3) 

and 

g(m)= 00, g(1) = z0 E r, respectively. (0.4) 

However, the related methods for doubly connected or multiply connected regions are not 
treated. (Some references are given in Section 9.) 

The paper is organized as follows: In Sections 1-3 we summarize some mathematical 
background material on function spaces, the conjugation of functions, and the Riemann-Hilbert 
problem on the disk. In Section 4 we then present our general definition of the auxiliary function 
and derive the corresponding integral or integro-differential equation for the boundary corre- 
spondence function. Associated direct iteration methods (namely, the method of successive 
conjugation and a projection method due to Bergstrom) are described in Sections 5 and 6, first in 
our general framework, then for specific auxiliary functions. In the next two sections Newton 
methods, where each step mainly consists of solving a Riemann-Hilbert problem, are discussed 
in a similar way. In particular, we show that the methods of Vertgeim-Hiibner [62,34] and 
Wegmann [69,70] are equivalent in the sense that they produce the same iterates, if they are 
applied undiscretized to the same auxiliary function. Finally, in Section 9, we briefly mention 
some further related methods. In the whole paper we mainly consider known methods, but it 
should become clear that our general approach also suggests a number of new methods or at least 
variants of old ones. Only a few of these are mentioned explicitly. 

Concerning applications of conformal mapping we refer, e.g., to [1,25,35,36,45] and the 
references in [43], and note that conformal mapping is a competitive tool for grid generation, 
which is surveyed in [47,58,59,60]. 

1. Function spaces 

Let us fix some of our notation now and define a number of function spaces that are either 
relevant for the problem or helpful for understanding the background material. 

2n-periodic functions are written either in terms of a variable t E T (where T is the quotient 
space T:= R/2nZ) or in terms of w = ei’ E S. The complex function spaces L.J’(T) (1 <p < CO), 

C(T), C”(T) ( m E Z ‘) are defined as usual, see, e.g. [40,53]. For 1 G p -c CO 

If the variable is w = ei’ . mstead of t, we write LP(S), etc., and if we want to stress that a 
function f E Lp( T), say, is real-valued, we write f~ LP( T, R). Equalities between values of 
LP-functions are in general assumed to hold a.e. only. 
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The Fourier coefficients of a function f E L’(T) [or f E f.‘(S)] are denoted by jk: 

fk:=&lir(r) e-‘&‘ddt [orfk:=& jif(e”) e-‘*‘drl, kE i2 (l-1) 

By using the Fourier coefficients with nonnegative index as Taylor coefficients we can associate 
with f E L’(T) [or L’(S)] the function 

f+(Z) := E j&P, z E D, (1.2) 
k=O 

which is analytic in D. (According to the Riemann-Lebesgue lemma fk + 0 as 1 k 1 + co, hence 
the radius of convergence of (1.2) is at least 1.) 

The Hardy space HP (1 G p G 00) can be defined as a subspace of LP( S): 

HP:= {fELP(S); ~k=O(V’k<O)}. (1.3) 

However, it is clear from the above that the domain of the functions in HP can be extended to D 
by setting f(z) := f+( z) (z E II). One can then show that 

f(ei’)=F;f(p e”) a.e. on S (1.4) 

[16, p. 57; 40, p. 86; 53, p. 3681. (More generally, this holds with any nontangential limit.) 
Therefore, a better definition of HP is 

HP:= {f: %-+C; f 1,&4(D), f IsUp( (1.4) holds}. (1.5) 

Here f 1 D and f I s are the restrictions of f to D and S, respectively, and A( 0) is the space of 
functions analytic in D. By A(z) we denote the space of functions analytic in D and continuous 
in 0. Of course, A( 0) is a subspace of H”, which is often introduced as the space of bounded 
analytic functions in D. (In fact, a third, analogous definition of HP is the most satisfactory 

[9,16,40,53]). 
Since ,!,q( S) c Lp( S) if 1 < p < q G co, we have also Hq C H P. Furthermore, it is worth noting 

that Cauchy’s integral formula holds for f E HP [9, p. 40; 53, p. 3691. 
For the discussion of the exterior mapping problem we denote by Z” the complement with 

respect to the extended plane of any set Z c C, and we consider spaces of functions analytic in 

0’ (including co), such as A( DC) and Hp( DC). 

There is often the need to indicate that the values of some f E C.(J) [or f E C( TJ are 

boundary values of some function in A(o), and we simply write f E A(D) Is [or f E A(D) I T] 

then. 
Further function spaces playing an important role here are the Lipschitz classes Lip”(T) 

(0 < a < I), 

Lip”(T):={fEC(T); v,(f)<co}, 

with the semi-norm 

(1.6a) 

v,(f):= sup 1f(7+@-f(41 
ISI” ’ 

(1.6b) 
7ET 
szo 

the HGlder spaces Cm*a( T) (WI E Z, M > 0, 0 < a < l), 

P+(T):= {f E Cm(T); f(“)E Lip”(T)}, (I -7) 
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and the Soboleo spaces Wm,p( T) (m E B, m 2 0, 1 <p G 30). 

Wm*r( T) := { f~ Cm-‘(T); f(m-‘)abs.cont., f(“‘)~ LP( T)}. (1.8) 

In particular, C”*a( T) = Lip”(T) and W”.p( T) = Lr( T). Several norms are in use for (1.6), (1.7). 
and (1.8), e.g., 

Ilfll := Ilfll, + %(_F> 0.9) 
for C”‘.a( T) (m 2 0, 0 < a G 1) and 

Ilfll :=max Ilfll,. IIf’IL-, Ilf(m-‘)Ilm~ llf(m)llp) ( (1.10) 

or 

Ilf II := 
i 

[ Ijo lp+ l/ f(“’ ]],P]l” if 1 <p < cc, 

ma,{ Ijol, Ilf(m)Ilm} ifp=m 
(1.11) 

for W”+‘(T) (m > 0) I. With these norms the spaces are Banach spaces. However, we will often 
make use of the fact that apart from addition and scalar multiplication a number of further 
operations do not lead out of these spaces: 

L.emmal.l. LetcEc andf, g~Cm~a(T)(m>O,O~a~l)[orf, gE W”+‘.P(T)(m>O,l<p 
< oo)]. Then the following functions lie in Cmqa( T) [or Wm+*.p( T)] also: 

cf+g, (1.12a) 

f*g7 (1.12b) 

f/g ifOgg( (1.12c) 

Ref, Lm f, (1.12d) 

exp(f )3 (1.12e) 

If] ifOGf(T) or m=O, (1.12f) 

logf ifOPf(T), #f(T)=09 (1.12g) 

hof ifeitherm~landhECm*a(f(T)) (1.12h) 

orm=OandhELip’(f(T)) 

[ifhE Wm+‘@(f(T))], 

f (g( ) + ( )) ifg is real-valued and either (1.12i) 

m > 1 or m = 0 andf E Lip’(T) 

[ifgisreal-ualuedandfE Wm+l*r(T)]. 

In (1.12g) #f(T) d enotes the winding number of f(t), t E T, with respect to 0. Since it is 0, there 
exists a continuous branch of the logarithm. In (1.12i) we used an empty bracket to denote the 

’ One could replace the sum in (1.9) by a maximum and the maximum in (1.10) by a sum. For Sobolev spaces of 
non-periodic functions the norm (E,“_, 11 f(J) II,P)‘/P is widely used. 
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identity function (following a proposal of C. de Boor): 

( ): tc-, t. (1.13) 

In particular, g( ) + ( ) is the function t - g(t) + t. The composition f( g( ) + ( )) involves an 
implicit equivalence modulo 27r. 

The rules (l.l2a)-(1.12h) have been compiled by Bernhardsgriitter [3], except that he restricted 
W m+l*~ to W’.2; our assumptions in (1.12h) are also less restrictive than his. The crucial 
properties (1.12b) and (1.12h) of C”‘*,(r) are, e.g., also proven in Hiirmander [31], where many 
results on multivariate Holder spaces are summarized. 

Outline of the proof of Lemma 1.1. All the functions involved’are continuous on a compact set. 
Therefore 0 Gf( T) implies that f(T) is bounded away from zero, hence (l.l2e)-(1.12g) are 
special cases of (1.12h). The rules (1.12a) and (1.12d) are trivial. 

For the case [0, a] the somewhat surprising results (1.12b) and (1.12~) are proved in [48, p. 131. 
(1.12h) and (1.12i) are readily verified. In particular, 

%(h o I) G ?(+,(f). (1.14) 

In the cases [m, a] with m > 0 [and (m + 1, p) with m >, 0] (1.12b) is verified by applying the 
Leibniz product rule for differentiation, and for (1.12~) one has just to insert the derivatives of 
l/g instead of those of g. For (1.12h) one proves first by induction that 

fECC”**(T), ~EC”‘+(~(T)) =$ h Q f~C”‘+(T) (1.15) 

[and 

fEW m+l*p(T), h E W’“-( f(T)) ==a h 0 f E WmJ’(7’), (1.16) 

respectively]. For m = 1 one has in particular 

r&r o f) G v,(h) II f’ll: (1.17) 

[and, since ll(h o f >‘I1 p Q II h’ll o. II f’ll py 
Ilh Of II -ax{ Ilhll,~ Ilh’llm llf’ll,} G llhll(1 + Ilf II) (1.18) 

in the case (1, p)]. The induction step is then an immediate consequence of the chain rule 
(h 0 f)‘(t) = h’( f(t))f’(t), and (1.12h) follows from the chain rule and (1.15) [(1.16)]. 

Of course, (1.12i) is proved analogously. q 

One may wonder how the spaces C ,.a( T) and Wm,p( T) relate to each other. Clearly, 

Cm+l(T)c Cm*a(T)cCm++(T)C Cm(T) ifO<c<cy<l (1.19) 

and 

W m+*J(T)c Wm*P(T) c Wm*P(T) E Wm*‘(T) if 1 <p <p =G 00. (1.20) 

Moreover, it is easy to see that 

wm+r.m( T) = CmJ( T) (1.21) 

and from a result of W.H. Young [75, p. 1051 one knows that 

W m+l*p( T) E c m*l-l/p(T) if p > 1. (1.22) 
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As mentioned, functions defined on S can be considered as functions on T, and vice versa. 
Corresponding to this substitution we define operators Z,, and I, = I,)’ by 

h=Z,,f, f=I,h, iff(t)=h(e”). (1.23) 

2. The conjugate periodic function 

The conjugation operator K: L2( T) + L2( T) is defined by associating to f E L2( T) with the 
Fourier series 

f - C fk eikf (2.1) 
k=Z 

the conjugate periodic function Kf with the Fourier series 

Kf- -i c sign(k)jk eikr. (2.2) 
kE2 

SinceIj,)=I-isign(k)f;,I(k#O),sincef~L2(T)iffCI~,I2<oo,andsinceIIf1l~=CI~~l2, 
it is clear that KfEL2(T) and IIKf II;= IIf II;- If0 1’. H ence K is a bounded linear operator 
on L’(T), and its norm is 

IIKII,=l. (2.3) 

The same remark applies to the Sobolev space W”‘*2(T) with norm (1.11) since its elements can 
also be characterized by a growth condition on the Fourier coefficients, Ek’” I fk 1’ < 00, and 
since the norm depends only on the moduli of the Fourier coefficients. Thus 

K( Wm.2(T)) c W”‘*‘(T), II K II = 1 (2.4 

if the norm (1.11) is used. Wegmann [70] has shown with an ingenious construction that in the 
case of W’v2 (i.e. m = 1) with norm (1.10) one has II K II G IT/~. (Actually, the main estimate 
II Kf II o. G ~/a I/ f’ll 2 of the proof was also given by Friberg [12].) 

If we consider only functions with f0 = 0, which form subspaces of codimension 1 of the 
Hilbert spaces L2( T) and IV’*‘(T), the restrictions &, of K to these subspaces are unitary 
operators, and 

K,‘=K,*= -K,. (2.5) 

On L’(T) and W”‘,‘(T), K is still skew-symmetric, 

K*= -K, (2.6) 

but no longer invertible, since its kernel is the set of constant functions. 
The domain of K can be extended to L’(T): f E L’(T) is replaced by a function f, smoothed 

by the Poisson kernel; then, for almost every t the limit of 

Kf,(t) = -i E sign(k)rIklfk eik’ (2.7) 
k= -cm 

as r t 1 can be seen to exist; however, the limit function Kf need not be in L’(T) [40, p. 641. If it 
is, then formula (2.2) still holds, and only in this case is the series in (2.2) a Fourier series of some 
function in L’(T) [40, p. 641. For 1 <p < 00 it was shown by M. Riesz that K is a bounded 
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linear operator from Lp( T) into itself: 

WJV-))CWT), IlKlIp< 00, l<p<w (2.8a) 

(see, e.g., [16, p. 1131, 140, p. 681, or [53, p. 3801). However, I] K ]I p = O(l/( p - 1)) as p --, 1, and 

lWll,=O(~) as P --) 00 [16, p. 1131. Earlier, Privalov had already shown that 

K(Lip”(T)) c Lip*(T), II K II < 00, O<cy-=l (2.8b) 

[16, p. 1061. From the fact that conjugation and differentiation commute as long as all functions 
involved remain in L’(T), it follows then that in any of the norms mentioned 

K(W”.P(T))C Wrn.P(T), ]]K]] <co, m20, l<p<oo, (2.8~) 

K(C”.“(T))C Cm*=(T), llK(( < cc, m>O, O<(Y<~. (2.8d) 

Unfortunately, some other important spaces besides L’(T) are not mapped into themselves by 
K. There exist continuous functions whose conjugate functions are unbounded [16, p. 1051; hence 

mu-)) e WL 
JW”(T)) e W7-). 

Other examples (e.g., [75, p. 1571) show that 

(2.9a) 

(2.9b) 

K(Lip’( T)) g Lip’(T). (2.9~) 

A fortiori, (2.8~) does not hold for p = 1 and p = co, and (2.8d) does not hold for (Y = 1. The 
so-called Din&continuity of f suffices to guarantee that Kf E C(T) [16, p. 1061; this is a weaker 
condition than assuming that f E Lip”(T) for some cx > 0, but it is rather impractical. 

In the basis (eik’}kEZ of L2(T) the conjugation operator as defined by (2.1), (2.2) is 
represented by the biinfinite diagonal matrix 

f::= diag( -i sign(k)),,,. (2.10) 

Hence, once a function is represented in this basis, conjugation is nearly trivial. Concerning the 
numerical implementation of the conjugation process we are therefore motivated to approximate 
f (which in practice may be given on a discrete point set only) by a function whose Fourier 
coefficients can be computed rapidly; in addition, it should also be possible to evaluate the 
conjugate series fast. Trigonometric interpolation on a set of N equispaced points is a natural 
choice since both the (Fourier) coefficients of the interpolating trigonometric polynomial (Four- 
ier analysis) and the values of the conjugate trigonometric polynomial at the same points (Fourier 
synthesis) can be computed by a fast Fourier transform (FFT), so that the costs are only 
0( N log N) operations, see [20,28] for details. Surprisingly, except for a larger overhead, 
conjugation of a periodic spline interpolant can be implemented equally efficiently [24]. Both the 
trigonometric and the spline interpolant are optimal approximations in certain appropriately 
chosen function spaces 16,241. Unfortunately, trigonometric interpolation suffers often from 
Gibbs oscillations. In practice this occurs even when f is analytic but has singularities close to T. 
The effect of these oscillations in numerical conformal mapping is often devastating [22]. A 
simple but effective remedy is smoothing, which amounts to multiplying the Fourier coefficients 
by certain constants. Step type singularities of f or its derivatives can be taken into account 
analytically [24]. For some situations rational trigonometric approximation (or interpolation) of f 
seems promising, cf. [23]. 
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The importance of the conjugation operator for our conformal mapping problem (or, gener- 
ally, for functions analytic in the unit disk) is apparent from the following two theorems. 

Theorem 2.1. Let h E H’, and set 

S(t):= Re h(e”), q(t):= Im h(e”‘), t E T. (2.11) 

Then, 

v(t) -fjo = K<(t) (a.e. on T), (2.12a) 

s(t)-&,= -Kq(t) (a.e. on T), (2.22b) 

and 

i,=Reh(O), &=Im h(0). (2.12c) 

Proof. By our definition of H *, h E L’(S); hence, trivially, 5 E L’(T) and 7~ E L’(T). For any 

h E L’(S) the relations 

.$‘(t)= i[h(e”)-th(e”)], q(t)= i[h(e”)-h(e”)] (2.13) 

are transformed into 

ik=f[hk+h_J, (2.14) 

But here h E H’, hence gi,, k > 0, 

I- I 
k> 0, 

&= Reh,, k=O, tik = Im ho, k=O, 

$jz_k 1 k < 0, k -C 0. 

(2.15) 

In view of (2.10) the relations (2.12) are now readily verified. q 

Theorem 2.1 of course applies in particular to h E HP (1 <p G 00) and to h E A(B). In the 
latter case 6, q E C(T). 

For our application to’conformal mapping it is also important that the converse of Theorem 
2.1 is true: 

Theorem 2.2. Assume <, 7 E LP( T, W) (1 <p < co) satisfy (2.12a) or (2.12b). Then the function h 

defined by 

h(e”) := t(t) + iq(t) (2.16) 

is in HP, and all relations (2.12a)-(2.12c) hold. 
If 5, 77 E C( T, R), then h E A( 0). 

Proof. Clearly, h E Lp(S) and h, = <, + ifik. From (2.10) it follows that h, = 0, Vk < 0; hence 
h E HP, and Theorem 2.1 holds. 
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If 5, 77 E C(T, Iw), then Re h and Im h are both solutions of a Dirichlet problem (with 
continuous boundary values), hence h E A(B). 0 

Naturally there are also versions of Theorems 2.1 and 2.2 that apply to functions analytic 
outside the disk (including at cc). 

Theorem 2.1’. Let h E H’( DC), and define 5 and q by (2.11). Then 

~(t)-$~= -K<(t) (a.e. on T), 

t(t) -&, = Kq(t) (a.e. on T), 

and 

&, = Re h(m), $, = Im h(m). 

(2.12a’) 

(2.12b’) 

(2.12c’) 

Theorem 2.2’. Axsume [, 77 E LP(T, R) (1 <p < co) satisfy (2.12a’) or (2.12b’). Then h defined by 
(2.16) is in HP( DC), and all relations (2.12a’)-(2.12c’) hold. If 4, 77 E C( T, R), then h E A( 0’). 

By simply computing a conjugate function, Theorems 2.2 and 2.2’ allow us to construct for a 
given real part 5 (or an imaginary part 7) two functions L”,[ and L;< (or LTV and L;q) that 
are analytic inside and outside the unit circle, respectively. If 1 <p < 00, 

L;: L“(T, R) + HP, L+,<(e”) = ((I + iK)t)( t), (2.17a) 

L,: LP(T, lR)+HP(DC), L,<(e”)=((I-iK)t)(t), (2.17b) 

L:: LP(T, R) + HP, LT7j(ei’) = ((-K+ iZ)q)(t), (2.17~) 

L; : Lp( T, R) + HP( DC), L;q(e”) = ((K+ i1)v)(f), (2.17d) 

and 

[Lit]:, [Lit];, i[ L;v]t, i[ L;9]C; E Ft. (2.18) 

Similarly, for every (Y E (0, 11, 

Li, L:: Lip”(T)+A(z), LR, L;: Lip*(T)+A(D’). (2.19) 

Often, in particular when solving the Riemann-Hilbert problem of Section 3, we are interested in 
these operators rather than in the conjugation operator, which serves here as a tool. In practice, 
the Fourier analysis of 5 (or 71) furnishes us with the Taylor coefficients of 
and L;) directly. 

Finally, we should mention that the conjugation operator is a singular 
f E L’(T), then for almost every t E T 

K-f(t) = &PVjcot( y)f(s)ds 
T 

Lf, and L; (or Lt 

integral operator: if 

(2.20) 

[16, p. 103; 40, p. 791. Often this principal value is used to define the conjugate function. But we 
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believe that definition (2.2), which is linked to Fourier analysis, is preferable since some of the 
main applications (such as Theorems 2.1, 2.2) and one of the best numerical implementations 
(trigonometric interpolation using the FFT) become immediate. There are a few instances where 
(2.20) is actually used in applications. One is the method of Menikoff and Zemach [46], see 
Section 9; another is Berrut’s integral equation [5]. 

Using (2.20) it is not difficult to prove 

Kf( -( ))(t) = -Kf( -t) (a.e. on T). (2.21) 

Similarly, the operators in (2.17) can be written in integral form. For example, LL is given by 
Schwarz’s integral [16, p. 1021: 

(2.22) 

The formula remains correct a.e. on S if we replace the integral by a principal value integral. 

3. The Riemann-Hilbert problem on the disk 

The most promising methods for mapping the disk conformally onto a Jordan region with 
smooth boundary make use of the fact that Riemann-Hilbert problems on the disk can be solved 
very efficiently. In theory, the solution can be written explicitly in terms of two conjugate 
functions; in practice basically just four FFTs are needed to compute it. In our nonstandard 
setting the basic result is 

Theorem 3.1. Let a E C(T) be nonvanishing on T, so that it has the form 

a(t) = a(t) e-i(mt++(f)) (3.1) 

with (Y E C( T, Iw +), + E C( T, Iw), and m E Z ( -m is the winding number of a(T) with respect to 
0). Assume that KG E C( T, IR), and let j3 E Lp( T, W) (1 <p c 00). The Riemann-Hilbert problem 

consists in finding a function f E HP such that 

Re{a(t)f(e”)} =/3(t) (a.e. on T). (3.2) 

If m >, 0, this problem has the general solution 

where 

f(w) = [iq( w) + w~L+RcJ( w)] eL;G(w), (3.3) 

and q is an arbitrary self-reciprocal polynomial of degree 2m ( i.e. q satisfies q( w) = w *“4( l/w)). * 
If m < 0, (3.2) h as no solution f E HP unless 

Sk = 0, k=O,..., -m - 1, (3.5) 

in which case the function f of (3.3) with q = 0 is the unique solution. 

’ p denotes the p 01 y nomial with the conjugate complex coefficients. 
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Proof. Assume a solution f E HP of (3.2) exists. Since 9, K+ E C( T, [w). we have Lt+ E A(z), 
and hence s defined by 

s(w) := w-"f (w) epLi*(“) 

is in wern HP (i.e. w e wn’s( w) E HP). According to (3.2) and (2.17~) 

p(t) = Re{ a( t)s(e”) exp[ LFQ(e”) - i+(t)]} 

= a(t) emK@(‘)Re s(e”), 

i.e. 

Re s(e”) = a(t). 

(3.6) 

(3.7) 

On the other hand, it is easily verified that every solution s E W-“‘HP of (3.7) leads by inversion 
of (3.6), i.e. by setting 

f(w) := w”s( w) eL;+(“), (3.8) 

to a solution f E HP of (3.2). Hence we have to study the set of solutions of (3.7). 
Clearly u E Lp(T, rW), and thus Liu G HP, cf. (2.17a). Therefore s := Liu is an admissible 

solution of (3.7) if m > 0, and in the case m = 0 this solution is unique up to an additive 
imaginary constant i&,. If m > 0, the dimension of the solution space of the linear system (3.7) 
can increase by at most the real dimension 2m since H p has complex codimension m as a 
subspace of w -“HP. If .P2,, denotes the set of polynomials of degree at most 2m, then the set 

{ w c) iw-“q( w); q E.PZm, w-“q( w) = w”q(l/w)} c wemHp, (3.9) 

which forms a real linear space of dimension 2m + 1, consists of solutions of the homogeneous 
equation Re s(e”) = 0. By our dimension argument it must be the full solution space of the 
homogeneous equation. Hence (3.7) has the general solution s(w) = Lf,a( w) + iw-“q( w) with q 

as in (3.9). Inserting it into (3.8) finally yields (3.3). 
If m -c 0, (3.2) can have a solution f in HP only if the solution Liu E HP of (3.7) happens to 

be in W-“’ HP. In view of (2.2) and (2.17a), the condition (3.5) is clearly necessary and sufficient 
for this. (The additive imaginary constant is no longer allowed since it is not in W-“HP.) 0 

The integer 2m is called the index of the Riemann-Hilbert problem (3.2). 
For the purpose of our applications to conformal mapping we are interested in certain 

particular solutions of problems with index 0 or 2: 

Theorem 3.2. Under the assumptions of Theorem 3.1 the following holds: 
(i) Zf m = 0 and &, - in 4 TZ, (3.2) has a unique solution f E HP satisfying Im & = 0, name,, 

the one where in (3.3) 

q(w)=&= -&tan&. (3.10) 

(ii) Zf m = 1 and &, - $IT 4 TZ, (3.2) h as a unique solution f E HP satisfying f0 = 0 and 

Im 1, = 0, name,,, the one where in (3.3) 
1 

q(w)=Q,w= -w&tan&,. (3.11) 
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Proof. (i) By the mean value principle for analytic functions and by (2.2) and (2.17a. c), we see 

that 

I 1 
&” A= eL;M3 = eii,, 

[L:O]; = Cto, 

7 

f. = [iq + L+,o]z[ eLT+]: = (iij, + So) e’&l. (3.12) 

The assumption on Go implies that eiio E S\ { i, - i}. Since q is a self-reciprocal polynomial of 
degree 0, q(w) = q. E Iw. Hence, if 15~ = 0, clearly Im f. = 0 iff q. = 0. If e. f 0. we need to 
determine q. such that 

arg(iq, + eo} = -I$~ (mod T), 

i.e. arctan( Go/Go) = - $o. 
(ii)_If m = l,_the additional factor w in (3.3) has the effect that (3.12) is replaced by f. = 

iqo e’+o. Hence f. = 0 iff q. = 0. But then 

J = (iq, + [ L~cr]~)[eLF+]~ = (iQ, + So) e’&), 

where qr E R since q is self-reciprocal of degree 2. Obviously the determination of 4, becomes 
identical to the determination of q. in (i). 0 

The smoothness of u and p has of course an effect on the smoothness of f. Assuming 

t c) e’“‘u(t) E C’vir(T) [or W’+‘*P(T)], 

_p E C’*“( T, IR) [or W’+l*P( T, R) respectively] 
(3.13) 

for some integer I > 0 and some & E (0, 1) [or p E (1, co)], we conclude from the rules (1.12) and 
the results (2.8) that the functions (Y, $, K+, eK*, u are all in C’*“( T, R) [ W’+‘J’( T. R)] and that 
Lfffa, LT+, eL;+, and finally f lie in C’.‘(S) [ W’+‘-p( S)]. Thus we get 

Theorem 3.3. In addition to the assumptions of Theorem 3.1 suppose that (3.13) holds for some 
integer Ia 0 and some 6 E (0, 1) [or some p E (1, ao), respectively]. Then the solutions f of the 

Riemann-Hilbert problem (3.2) satisb f ] s E C’+‘(S) [or W’+‘*r( S), respectioely]. 

The case I= 0, 6 E (0, 1) (i.e. e’“’ ) a E Lip”(T), f3 E Lip’( T, rW) corresponds to the standard 
treatment of the Riemann-Hilbert problem [30,48]. 

Naturally, there is also a version of the Riemann-Hilbert problem where the function sought is 
analytic in the exterior 0’ of the unit circle: 

Theorem 3.4. Under the assumptions of Theorem 3.1 the functions f E Hr( DC) satis_&ing (3.2) are 
in the case m < 0 given by 

f(w) = 

where 

u(t) := 

[iq(l/w) + w”L,o( w)] eL;cp(w), 

!$e-K+W 

(3.14) 

(3.15) 
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and q is an arbitrary self-reciprocal potjwomiai of degree - 2m. In the case m > 0, the problem has 

no solution except when Sx = 0, k = -m + 1,. . . , 0; then q = 0 yields the onb solution. 

The proof is nearly word-for-word identical to that of Theorem 3.1. The substitution of q(w) 
in (3.3) by q(l/w) in (3.14) is due to the fact that (3.9) is replaced by 

{w ++ iw”q( w); q E.FZmr wmq( w) = w-Yj(l/w)} C W-“HP( DC). 

The analogues of Theorems 3.2 and 3.3 for the exterior problem are also easily established. 

4. A general approach to deriving integral equations for the boundary correspondence function 

Now we are ready to attack the conformal mapping problem. The boundary r of the Jordan 
region A is assumed to be rectifiable and given in parametric form 

r:= {y(t); t E T}. (4.1) 

y is assumed to be a regular parametrization of I’, so that y E W1*p( r), l/y’ E L”. Further 
smoothness assumptions will be made later. 

We first concentrate on the interior mapping problem, but at the end of this section we 
indicate the few modifications required for the exterior problem, which will also be covered in 
some of the examples of Section 6. 

One of the key facts in numerical conformal mapping is that the mapping function, which we 
now call g, (i for interior), is uniquely determined by its boundary values. (Since gi E A(z), 
Cauchy’s integral formula is valid.) Hence, it suffices to compute first the reduced boundary 

correspondence function 7i E C( T, R) satisfying 

gi(ei’):=y(Ti(t)+‘t), (4.2) 

which is determined up to an irrelevant additive multiple of 21r, and thus may be normalized by 

(4.3a) 

or 

- 7T < 7i (0) < IT.. (4.3b) 

Many formulas involving y are simpler if one works instead with the boundary correspondence 
function 19~ related to ri by 

ei(t) := q(t) + t; 

which however is not periodic and therefore is not directly accessible to Fourier analysis. (Bi 
could be considered as an element of C( T, T), but then ei and ri would be related by an equality 
modulo 2n, which we prefer to take care of implicitly when composing y with ei, cf. (4.2).) 

Our basic notation for the interior mapping problem is summarized in Fig. 1. 
Of course, the smoothness of r and y is related to the smoothness of gi and 7i. In fact, many 

results on this connection have been obtained in the past [18, pp. 417-428; 41,44,51,52,54,55, 
63-65,67,68]. We cannot go into the details here, but we assume that one of the following typical 



M. H. Gutknecht / Mapping methods based on conjugution 45 

gi 
P 

Fig. 1. Notation for the interior mapping problem. 

situations applies to our problem: 

Case (m + 1, p) (m > 0,l <p < 00): 

YEW m+l-m( T, w) = P’( T, w), 

Ti E W m+‘-p(T-, R), y 0 0; E W~+‘*qT), 

gil.SE w “+‘qs), g;“‘GA(D). 

Case [m, a] (m 2 0,O -c a -c 1): 

i 

C”*“(T, R) if m 2 1, 

yE Lip’(T, W) if m=O, 

7; E c-(2-, ox), y 0 I$ E c-(2-), 

1 

+t) 

(4.4a) 

(4.4b) 

Note that by (1.12i) the assumptions on y and ri imply the statement on y 0 Bi, which in turn 
implies trivially the statements on gi. 

For example, if r is piecewise analytic and 1 y’(t) 1 is constant a.e., and if (~7; E (0, IT) is a 
lower bound for the smallest interior angle and 1 -zp -c (1 - a)-‘, then the cases (1, p) and [0, a] 
are known to obtain under mild additional assumptions, see [44,22] and [68], respectively. If 
y E C”‘*a( T, R) with m > 1, case [m, cx] is implied by a result of Kellog and Warschawski [18, p. 
414; 63,64,67]. 

We now introduce an operator H such that the auxiliary function mentioned in the introduc- 
tion is the image of gi under H. 9” -and gH denote the domain and the range of H. 

Definition of the operator H: Assuming case ( m + 1, p) or case [m, a] and 0 < 1 G m, let 

H: bBH c C’(S) -4%‘~ c C(S) (4Sa) 

be a (possibly nonlinear) operator of the form 

Hg(w):=h(g(w), g’(w),...,g”‘(w); w), WES, (4Sb) 
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with the following properties: 

(9 

(ii) 
(iii) 

(iv) 

(v) 

04 

9L := 9” n w’+‘q S) * 9; := H( 9;) c w’q S) 

or 

9;; := 53” n P(S) 2 9; := H( 9;) c Lip”(S), 

respectively; 

giIsEBH and H~;I,EA(B)I,; 
H is continuous at gi 1 s with respect to both the spaces in (4Sa) and those in (i); 
H is invertible, i.e. given r E .2’“, there is a unique H-‘r = g E SSH such that Hg = r; 

rE9HnA(D)I, 2 H-‘~--E.~(D)I~; 

H-’ is continuous at Hgi 1 s with respect to both the spaces in (4Sa) and those in (i). 

We are particularly interested in cases where both H and H-’ are given by simple formulas, 
e.g. 

Hg(w)=loge, g(w)=weHg”“). (4.6) 

Basically, iterative methods for the mapping problem iteratively modify some given function 
g E gH in such a way that its image under H approaches Hgi 1 s. (The reader may wonder why 
the trivial choice Hg = g is not the best. One reason is that, for example, the function Hg in (4.6) 
makes it easier to take care of the normalization (O.l).) 

A crucial point is that Hgi I s can be written in terms of h (known), y (known), and Bi or 7i 
(unknown, but real-valued). More generally, whenever 

@):=7(t)+t (4.7) 

and T E C’( T, IR), the function g defined by 

g(e”) := y( 0(t)) = y( r( t) + t) (4.8) 

satisfies 

g’(ei’) = -i e -i’y’( f3( ?))a’( t), . . . , g(‘)(e”) = . . . . (4.9) 

If g E QH, we get 

Hg(e”)=h(y(B(t)), -ie-“y’(0(t))&(t),...; e”) 

=h(y(r(t)+t), -ie -i’y’(+r(t)+t)(~‘(t)+l),...; e”) 

=: Gr( t). (4.10) 

Using our operator lrS, which redefines a function of w in terms of t, we can write this simply as 
Gr := ITsHg. Thus (4.10) defines an operator 

G: .QG -+gG E I&@~), r e Gr := ITsHg (4.11a) 

on some go E C’( T, R) containing 

$3: := { 7 E C’( T, R) ; (4.8) holds for some g E QH } . (4.11b) 
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From Lemma 1.1 and assumption (4.4) we know that 

7 E W+P(T, w> --, y o e E W+lq~), (4.12a) 

7 E C’,“(T, w) a y o e E C’-(T), (4.12b) 

respectively. Hence, property (i) implies that for gG = 9: 

Q;:=QGn W’+‘-P(T, w) => 926 := G( 9;) L W’-P( T), (4.13a) 

9; := 9G n C’q T, R) = .9?,!$:= G(~:)c Lip”(T), (4.13b) 

respectively, and we require that this hold still if gG =I 92. 
Now, Gri = I,Hgi 1 s E A(z) 1 T by property (ii), and hence Theorem 2.1 applies. More 

generally, whenever Gr E A( 0) 1 T, the relations (2.12a) and (2.12b) hold for 

< := Re Gr, v:= Im Gr, (4.14) 

and they yield two basically equivalent equations of the form 

sr(t):=#(r(t), r’(t),...,r(‘)(r); t)=o, (4.15) 

where either 

YIV(f):=7)(t)-+0-K<(t) (4.16a) 

or 

\kT(t):=<(t)-&+Ic?j(t). (4.16b) 

Note that in the case I= 0 we have simply 

s(t) = Re h(y(e(t)); ei’), q(f) = Im h(y(e(t)); ei’). 

Since @r contains the conjugation operator K, (4.15) is in view of (2.20) a nonlinear singular 
integral equation for r if I= 0 and an integro-differential equation for r if I > 0. 

The operator \k is naturally defined for any r E gG, but in general \k~ need not be a 
continuous function (cf. (2.9a)): 

\k: g*:=QG -+.&& L2(T, rw). (4.16~) 

However, in view of (2.8b), (2.8c), and (4.13) it is clear that 

.5@$ := ‘k( 9$) c W’*P( T, [w) (4.17a) 

(4.17b) 

Theorem 4.1. If r E 9: := 92 is a solution of (4.15), then 

(II-‘Is,G~)(e”)=y(7(t)+t), JET, (4.18) 

and these are the boundary values of some g E A(D) which maps D conformally onto A. There exists 
exactly one solution r normalized by (4.3a) or (4.3b) such that g satisfies the normalization (0.1) or 
(0.2), respectively. 

Proof. (A generalization of Gaier’s proof for Theodorsen’s equation [15, p. 551.) The existence of 
a solution r with the stated properties is an immediate consequence of the existence of the 
solution gi of our mapping problem and our derivation of (4.15); in particular, ri E 9:. 
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I,,GT~ = Hg,. hence by (4.2) T, satisfies (4.18). 
Let us in turn assume that T E 9: is any solution of (4.15). Then GT E A(z) 1,. by Theorem 

2.2, and according to properties (iv) and (v) of H, 

g:=H-‘Is,GTE~~nA(D)I,, 

and this function satisfies (4.8) and (4.10); hence (4.18) holds. From (4.8) it is clear that g maps 
S onto r and that g(e”) winds around r once while ei’ winds around S. By the argument 

principle g is therefore a one-to-one map of D onto A, and hence conformal. Finally, it is well 
known that the mapping function is uniquely normalized by (0.1) or (0.2). 0 

Note that properties (i), (iii) and (vi) of H have not been used in the proof of Theorem 4.1. 
In Section 6 we will apply the theorem to particular operators N, i.e. to particular integral and 

integro-differential equations. It will turn out that the assertion still holds under the weaker 
aSSUI'tIptiOn T Egq (instead of &!). 

When presenting examples in Section 6 it will be our policy to restrict the domain 9” so that 
(4.15) has only one solution, which takes account of the normalization (0.1) or (0.2). (In some 
cases g’(0) > 0 is actually replaced by the weaker conditon g’(0) E 08, so that there are two 
solutions.) 

Another simple but useful result is 

Theorem 4.2. If I < m, the operators G and 9, restricted to 9: fl W’+‘+‘( T, R), are continuous at 
T = 7i with respect to the norm of W ‘+‘J’( T) in the domain and the norm of W’qp( T) in the range. 

For the proof we need 

Lemma 4.3. If y E W’“+lsoc( T) and I < m, 1 <p < 00, the nonlinear operator F: W’+lsp( T, R) -+ 

W’+‘*P( T) defined by F: T - y( T( ) + ( )) is continuous. 

Proof. Let ? = 7 + 6, 8 = 8 + 8, and. j < I + 1. Note that 

$(Y o 8-y o e)(t)= $&[(y’D e)s’-(y’o e)e’](t) 

= $Jyt 0 e-y’0 8)B’-(y’o B)cY](t) 

= $Jj; ‘){ s(f 0 6 f 0 e)(t)P-s(t) + -$(yf o e)(t)W-s)(t)). 

Here, y’ 0 0 E W ‘+‘.P by (1.12i). If 11 - 11 denotes the norm (1.10) of W’+l.p( T), we conclude that 
for j ( I the Loo-norm and for j = I + 1 the LP-norm of the above function is bounded by 

We claim that 11 d’( y’ 0 8 - y’ 0 0)/d?’ 11 o. = O(Ci=, 11 a(‘) 11,) whenever y’ E Ws+‘am and 8, $ 
E W”*P. This can indeed be shown by induction, using the same arguments as above. 0 
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Proof of Theorem 4.2. By Lemma 4.3, 7 ~3 y 0 8 is continuous; by (iii), g := y 0 8 c, Hg = Is,G7 

is continuous; clearly, CT c-, 5 := Re CT and CT c-) n := Im CT are continuous; and by (2.8~) K is 
continuous on W’*PiT). Cl 

Our approach is readily modified for the exterior mapping problem. 
H remain basically the same; of course, gi is replaced by g,, and in 

A( DC). Moreover, (v) becomes 

No further modifications are necessary up to the definition (4.16) of 
between Theorems 2.1 and 2.1’ have their effect: now, either 

\k7(t):=~((f)-&)+K~(t) 

or 

\kr, where the sign changes 

(4.19a) 

?Pr(f) := t(t) -& - Q(t). (4.19b) 

The properties required for 
(ii) A(D) 1 s is replaced by 

There is always a trivial second approach to the exterior mapping problem: by inversions 
z c) l/z and w ++ l/w in both planes it can be transformed into an interior problem for the 
boundary curve ri := (z; l/z E r}. Let g,, Bi be the solution of the latter. Then we have 

yi(0i(i))=g;(ei’)=l/g,(e-i’)=l/y(8,(-t)). (4.20) 

If !Pik;7 = 0 is an equation of type (4.15) with I = 0 for the interior problem, substituting (4.20) 
into it leads to an equation of the same type for the exterior problem. If I> 0, substitution 
formulas for the derivatives v’ and 0: have to be derived by differentiating (4.20). Examples for 
this second approach are also given in Section 6. 

5. Direct iteration: methods of successive conjugation and Bergstriim type methods 

Theorem 4.1 motivates us to try to solve (4.15). A first approach to this is direct iteration or, as 
it may be called here, successive conjugation: Assuming that T(‘) is actually present in (4.15), we 
rewrite (4.15) in the form 

d’yt)=@T(f)=:~(7(t), 7’(t),...,@(t); t) (5.1) 

with an operator Qi defined in some _QO c g* = QG whose values on g$ := g@ n W’+‘J’ and 
9; := QQ n C’*” are supposed to satisfy 

~~:=~(~,~)~{uEW~,~(T,W); u=7”‘forsome7E~~}, (5.2a) 

W~:=@(~~)C {aELip”(T, IF!); a=r(‘)forsome +rEgz}. (5.2b) 

In particular, @T must be the Ith derivative of a periodic function, i.e. we must have 

[@r]t=O if I>O. (5 -3) 

We assume that (5.1) is equivalent to (4.15) in the sense that 

@7 = 7(‘) iff !Pr = 0, (5.4) 
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and we also suppose that the continuity of \k as expressed in Theorem 4.2 is reflected in 
continuity properties of @. In specific cases, such as when \11r = @r - 7, this is trivial. 

The following iteration suggests itself for solving (5.1): 

7 n+l := @7, if I=O, (5.5a) 

n=o, l,.... Of course, an initial approximation To E 98 (or 9:) must be given. Note that there 
is only one free constant in the integration in (5.5b) (all the others are eliminated by the 
periodicity requirement), and this constant is easily determined,in the case of normalization (0.2), 
which we assume to imply that rn+i E 9: (or 9;, respectively) in accordance with assumption 
(5.2). Then iteration (5.5) is well defined. 

Since r(l) may appear in Qi also, there are infinitely many ways to transform (4.15) into (5.1), 
but often there is a ‘natural’ one. The hope is to find one for which (5.5) converges fast. If 
convergence takes place, it is typically linear. 

In practice one of course has to discretize. If sufficiently many points are used, this usually has 
little influence on the local convergence behavior of (5.5), but discretization may create additional 
solutions of (4.15) for which 8 may not even be monotone [22,33]. 

Direct iteration methods include, e.g., Theodorsen’s method (I = 0), the Melentiev-Kulisch 
method (I = 0), Timman’s method (I= l), and Friberg’s method (I = l), see Section 6. 

In Theodorsen’s method convergence can be improved drastically by applying suitable 
convergence acceleration techniques [21,22,32], cf. Section 6; these, on the other hand, can be 
considered sometimes as direct iteration methods corresponding to another version of (5.1). 

The standard way to establish global convergence of (5.5a) for arbitrary initial approximations 
r0 in 9@ consists in proving that Q? is a contraction on 9*, i.e. @(B@) c Q0 and in some norm 

with a fixed L E (0, 1). If this holds only for some (possibly small) neighborhood 9; of Ti we get 
local convergence. In particular, the Lipschitz condition (5.6) follows if Cp is Frechet-differentia- 
ble at ri, @: is uniformly bounded on .9@, and any two points T and ? of 9* can be connected 
by a rectifiable arc whose length is 0( 7 - ?). According to Ostrowski’s theorem [50, p. 3001, the 
local convergence of discretized versions of (5.5a) can be proved by showing that the moduli of 
the eigenvalues of the discretized F-derivative @i, are bounded by some L < 1. 

The same remarks apply to (5.5b) except that @ is replaced by the composition of an l-fold 
integration operator with @. 

Unfortunately, it is often impossible to prove global convergence, and even local convergence 
can sometimes only be proved for curves r that are close to a circle with center at the origin. For 
specific relations between \k and Qi it is easy to show in view of Theorem 4.2 and property (vi) 
that convergence of 7n implies that the limit 7 solves (4.15) and that H-‘I,,Gr,, approaches a 
mapping function if { r, > C LSG. 

Another direct iteration method, completely different from (5.5), can be tried if in a suitable 
neighborhood of IrsHgi = Gri a continuous inverse of the operator G exists and can be 
evaluated easily. Then we have for r (close to Ti) satisfying GT E A(z) 1 T 

r=G-lP+Gr 3 (5.7) 
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where P+ denotes a suitable projection of .%‘G onto .?ZG f? A(z), which has no effect on GT 
though. Conversely however, if T E C(T, R) is any solution of (5.7), then G7 = P+GT, i.e. 
GT E A(z) I,-, and we can complete the proof of Theorem 4.1 as before: 

Theorem 5.1. Assume T E ~3~ is such that G-’ is (uniquely) defined at PfGr and (5.7) holds. Then 
(4.18) and the other assertions of Theorem 4.1 hold. 

Equation (5.7) is a nonlinear integral equation with Cauchy kernel (due to P’). It clearly 
suggests the iteration 

7 II+1 := G-‘P+G 7 “9 (5.8) 

which we call a Bergstriim type method since Bergstrijm’s method is of this kind (see section 6.2). 
Unfortunately, we can in general not assert that +rn+, is well defined by (5.8) since P+Gr,, need 

not lie in the domain of G-‘. 
Eoaluation of gi at interior points. Once 7i has been constructed as the limit of iteration (5.5) or 

(5.8), the values of the mapping function are known on S or, in practice, at the Nth roots of 
unity. For computing values of gi at points in D one could of course make use of Cauchy’s 
integral formula, but it is much more appropriate to remember that gi has been obtained via an 
approximation of Hgi = Is,GTi. In all our examples of Section 6 the inversion formula gi = 
H-‘( Hgi) is still correct at points in D, and at least in the examples with I = 0 it is very easy to 
evaluate. (If I > 0, one could switch to another H with I= 0 at this point.) There remains the 
question how to evaluate Hgi. Depending on the number and the location of the points where 
this has to be done there exist several good algorithms. Usually, the iteration process (5.5) 
automatically yields the Fourier oefficients, i.e. the Taylor coefficients, of Hgi. Evaluation on a 
set of equispaced points on a circle with center 0 can then be done with an FFT. To compute the 
values at a single point, Horner’s algorithm can be applied. To compute such a single value 
directly from the known values at the roots of unity, there exist special barycentric formulas for 
the interpolation polynomial. 

Let t, := 2nk/N, wk := exp(it,), qk := (Hgi)( wk) (k = 1,. . . , N), and let q(w) be the interpola- 
tion polynomial of degree N - 1 for the data (wi, v~)~=~,,..,~. The Lagrange representation of q 
is readily found to be 

WN-1 N Wk 
q(w)=i_ c ~ 

k-, w-wk 
vk, (5.9) 

usual, is brought into barycentric form by noting that q(w) = 1 if lk = 1 (Vk): which, as 

dw) = kcl fi% f 
k k=l 

wk 

W_Wk’ 
(5.10) 

If w = ei’ E S, this can be written as 

Iv IN 
q(e”) = 1 qk e”“‘* cosec i(t - tk) I c eirA’* cosec $(t - tk) (5.11) 

k=l k=l 

[cosec t = (sin t)-‘1. As in the trigonometric case [4,29], the formulas (5.10) and (5.11) are very ._ 
stable even if w is close to a wk. In contrast, Cauchy’s formula evaluated with the trapezoidal rule 
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yields 

which deviates considerably from q(w) if w is very close to or on S. 

(5.12) 

6. Examples of auxiliary operators and associated direct iteration methods 

6.1. Theodorsen’s method 

Theodorsen’s method makes use of the operator 

&(w):=log (g(w)/w), WES, (6.la) 

~,:=(gEC(S);O~g(S),#g(S)=l,4,:=[arg{g( )A )}]$=O)+ (6.lb) 

where #g(S) again denotes the winding number of g(S) with respect to 0. Since *g(S) = 1, a 
continuous branch of arg( g( w)/w) and hence of log( g( w)/ w can be defined on S, uniquely up ) 
to a multiple of IT and ia, respectively. We choose it in such a way that I&-, 1 < IT and restrict the 
domain of H so that +, = 0 for g E aH. If gEgHnA(z) and HgEA(D) we have then by the 

mean value theorem 

0 = +, = Im[log( g( )/( )}]t = Idlog g’(O)] = arg g’(O), (6.2) 

which is satisfied by g = gi if normalization (0.1) is used; hence property (ii) holds. Property (i) 
follows from the rules (1.12). Furthermore, it is easy to see that 

gH= (rE C(S); [Im r]t=O), (6.3) 

and that for any r E 9PH 

H-‘r(w) = w ercw), w E S (6 -4) 

(property (iv)). Clearly, (v), (vi) and (iii) hold also. 
Following the developments of Section 4 we further get 

&(f) = logy(r(t; + t) = logy(O~f)) , (6.5a) 
e e 

9, := C( T, R), (6Sb) 

a:=( TE C(T, R); fro:= [arg{ y(S( )) eTi( )}I: = 01. (6.5~) 

(Note that #y 0 B(T) = 1 whenever 7 E C(T, IL!).) Using version (4.16a) of ‘k, we obtain 

*T(t) := arg{ y(8(t)) e-“} -K[logjy 0 01](t) (6.6) 

(with $9* = gG), and (4.15) becomes the generalized Theodorsen integral equation 

arg{y(e(t)) e-“} = K[logly 0 01](t), t E T. (6.7) 

Our Theorem 4.1 readily leads to 
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Theorem 6.1. The generalized Theodorsen integral equation (6.7) has (up to an irrelevant additive 

constant 2kn) exactly one solution 6’ for which r E C( T, R), namely 19 = 8;, the boundary 

correspondence function of the conformal map g,: D --) A normalized by (0.1). 

Proof. If 8 is any solution, then to = 0 since by (6.7) arg{ . . - } is a conjugate function; hence 
T E 9:. In view of Theorem 4.1 it remains to prove uniqueness. We know already that 

g(e”) = v( 8( t)) are the boundary values of a conformal map of D onto A and that g = H-‘ZsrG7. 

By (6.4) it is clear that g(0) = 0, and (6.2) yields g’(0) > 0. Hence, g = gi. c7 

The classical assumption for Theodorsen’s method is that the region A is starlike with respect 
to the origin and that the boundary r is given in polar coordinates, i.e. 

y(t) = p(t) e”, (6.8) 

with p E W’*“O(T) = Lip*(T). Then (6.5) and (6.6) become 

GT(t)=logy(T(t)+t)+iT(t), (6.9a) 

Q= C(T, R), (6.9b) 

g;= {~EC(T,R); ‘iO=O}, (6.9~) 

qr0) = +)-K[log PM > +( ),1(t)? (6.10) 

and (6.7) specializes to the classical Theodorsen integral equation [56;57;13, p. 651 

7(t)=&(t):=K[logp(T( )+( ))](t). (6.11) 

Theodorsen’s equation has exactly one continuous solution, since it follows from (6.11) that any 
continuous solution T is a conjugate function, hence periodic with +, = 0. 

Theodorsen’s method is the direct iteration method (5.5a) associated with (6.11): 

r-+1(+= @r,(t)= K[log PM ) +( MO. (6.12) 

Among the numerical methods for mapping the disk onto a given Jordan region Theodorsen’s 
method is the most thoroughly investigated and the best understood. Gaier’s book [13, pp. 
64-1051 summarizes the work up to 1964; newer contributions include [19-22,32,33,49]. 

Under the assumption 11 p’/p 11 o. < 1 it is easy to prove global convergence of { r, > in the 
&norm. In fact, from 11 K 11 Z = 1 and 

G IIP’/Pll,Iw-wl (6.13) 

we see that L := 11 p’/p II m is a Lipschitz constant for 4p (as required in (5.6)). 
Geometrically, L is equal to the tangent of the largest angle between the radius vector 

y(t) = p(t) eir and the outward normal of r, whose direction is -iy’( t) = (p(t) - ip’(t)) e”. 
Hence, e.g., for a square with center 0 we get L = 1, but L > 1 for any other rectangle or for a 
square with another center. In practice, divergence is likely even when L is only slightly larger 
than 1. 

However, in 1965, Niethammer [49] made two new proposals for solving the discretized 
Theodorsen equation. One was to apply the nonlinear SOR iteration (after having permuted the 



54 M. H. Gutknecht / Mapping methods based on conjugation 

equations in order to attain a consistently ordered system). He conjectured that local convergence 
occurs and that 

ws := 2/( 1 + ill + L2 ) ( < 1) (6.14) 

is a nearly optimal underrelaxation factor. In [21] we were able to prove that this conjecture is 
indeed true for a class of symmetric curves r satisfying 

Assumption (SD,). r is symmetric about the real axis and, in addition. v-fold 3 rotationally 
symmetric about 0, where v >, 1. The function p E W1*m( T, W) is continuously differentiable and 
weakly monotone in (0, n/v). 

Some further assumptions bn the discretization and the (discrete) solution of the discretized 
Theodorsen equation have to be made, see [21, p. 4111 and [32]. In particular, the nonlinear SOR 
method can only be applied together with the standard discretization of K based on trigonomet- 
ric interpolation. In contrast, the nonlinear second order Euler method (or second-order Richard- 
son iteration) proposed in [21], 

5+1(t) := %@r&) +(1 - +Jr,-10) (6.15) 

(with the same relaxation factor ws) is conjectured to converge locally for a wide range of 
discretizations (but otherwise the same assumptions), the asymptotic convergence factor being 

L r’l + L2 - 1 
UE= = 

1+/C? L (< 1). (6.16) 

The nonlinear SOR method is known to converge twice as fast: us = CI~. For example, if 
L = 11 p’/p 11 m = 1, we obtain era A 0.4142, us G 0.1716. Thus convergence is quite fast. Experi- 
mental evidence presented in [22] suggests that in practice the convergence rate of these methods, 
when applied to nonsymmetric curves, is usually still close to uE or us, respectively. However, it 
is known that this is not true in certain pathological situations [33]. 

In contrast to Theodorsen’s equation (6.11), its generalized version (6.7) seems to have received 
no attention in the Western literature except for Gaier’s references to Vertgeim [62] and to a 
paper by Batyrev in [13]. We will return to it in Section 8. 

Theodorsen’s auxiliary operator (6.1) can also be applied to the exterior mapping problem 
normalized by (0.3). In particular, g, I s E gH. The definition (4.19a) of \k then leads to the 
exterior versions of (6.7) and (6.11), which differ from the interior ones only by a minus sign in 
front of K. (Henrici [30] presents a detailed derivation for the case where r is given in polar 
coordinates.) 

When we approach the exterior problem in the second way mentioned at 
and insert (4.20) into (6.7), we end up with the same integral equation after 
(2.21). 

6.2. The Melentiev-Kulisch method 

the end of Section 4 
having used relation 

The method of Melentiev and Kulisch [13, pp. 107-109; 421 is based on the operator 

Hg(w):=g(w)/w, WES, (6.17a) 

g”:= {gE C(S); 2, >,o}. (6.17b) 

’ The case Y = 1 is included. The > sign on p. 411, line 15, of [21] is a misprint. 



M. H. Gutknecht / Mapping methocis based on conjugation 55 

Clearly, 

&@+= {rEC(S); P&O}, (6.18) 

H-‘r( w) = wr( w), WES, rE.9ZH. (6.19) 

Let $BG := C(T, Iw) again; then in view of CT(~) = y(Qt)) e-” 

@= (&C(T,R); [y 0 e]:>O}. (6.20) 

If r E ~2~ n A(z), g := If-‘r E LSH n A(z) satisfies the normalization (0.1). When choosing \k~ 
as in (4.16a) we obtain in view of $, = [Im CT]; = [Im Hg]$ = Im 8, = 0 the integral equation 

Im{y(d(t)) e-“} =K[Re{y(e( )) e-” j}](l), (6.21) 

which in the case of polar coordinates simplifies to 

PC+) +t> sin 70) = J+(r( ) +( )) cos T( >I<t>. (6.22) 

On the other hand, from Im{ - - - } and Re{ - - a } we can of course retrieve arg{ * . . > modulo 27. 
(E.g., with the FORTRAN function ATAN and a continuation procedure if values beyond 
(-71, 7) occur.) Now, in polar coordinates, arg{ y(e(t)) eei’} = 7(t), hence we obtain the 
equation 

7(t)= &(t):=arg(t(t)+iKE(t)) (mod 27) (6.23a) 

with 

s(t):=&(t)+t) cos 7(t). (6.23b) 

Conversely, assume r E C(T, Iw) is a solution of (6.23). First, (6.23a) yields 

sin T=K.$/][+iKt], cos r=</]t+iKt], 

hence, by (6.23b), l<(t) + iKS(t) I = p(~(t) + t), and it follows that (6.22) holds. Defining 
r(e”) := t(t) + iKt( t) = p( T( t) + t) e”“’ we conclude from (6.22) and Theorem 2.2 that r E 

A(z) I s and P0 E. Iw; If_ f,, < 0, we replace r(t) by f(t) := T( t - IT) + IT and obtain another solution 
of (6.23), for which [(t) := 5( t - a), so that F,, > 0. Hence, we may assume that r E @!, i.e. 
Is,Gr E BH, and apply our Theorem 4.1. It follows that g := H- ‘I,,Gr is a conformal map of D 
onto A, and from (6.17)-(6.20) it is clear that the normalization (0.1) holds for g. Clearly, T is 
only determined up to an additive multiple of 2~. If we choose this multiple appropriately, we 
must obtain the same solution as for Theodorsen’s equation, namely one for which +, = 0, cf. 
(6.9~). Summarizing, we get 

Theorem 6.2. Equations (6.23) have exactly one solution r E C( T, W) for which +, = 0, nameb 
r = ri. Any other solution is obtained by adding a constant 7rk (k E h) and yields either the same 
mapping function gi (if k is even) or the mapping function normalized by g(0) = 0, g’(0) < 0. 

Kulisch [42] (and similarly Melentiev earlier, cf. [39, pp. 451-4781) proposed the iteration of 
(6.23). However, @7 is not defined for every 7 E gG = C( T, W); one has to make sure that a 
continuous argument exists: 

go:= {7EC(T,lR); K~EC(T,R), #(c+iKS)(S)=O}, 

where 5 is defined by (6.23b). Given r, E B$ (or gg), we can then define r,,+, by 

7 n+l = @T, (mod 2n) 

(6.24) 

(6.25) 
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and the condition [ T,+,]$ E ( - TT, a]. It follows that T,,+, E W1.p( T, R) (or Lip”( T. R)), cf. (1.12). 
(28b), (2.8c), but unfortunately we cannot exclude the possibility that r,,+i CE a@, since the 
winding number condition in (6.24) may fail to hold. It clearly holds if r,,+i is close enough to 
the solution ri, however. But little seems to be known about the convergence of (6.25). 

In practice, IT;(~) 1 is rarely greater than 71, so the principal branch of arg will usually be the 
correct one in (6.23) and (6.25). 

The two versions for the exterior problem are left to the reader. 

4.3. Bergstrtim’s method 

Bergstrom’s projection method [2;13, pp. 109-1101 looks similar to Kulisch’s method. It also 
makes use of the auxiliary operator (6.17). Assuming polar coordinates we have 

G-‘(G~)(t)=7(t)=arg{p(~(t)+t)eir(’)} =arg{Gr(t)}. (6.26) 

If P+ denotes now the orthogonal projection of L2 onto HZ, which is easily implemented with 
FFTs, (5.8) becomes 

?I+, (t):=arg{ F [p(rn( )+( )) eiGO]f ei*‘i-. 
k=O 

(6.27a) 

The second condition g’(0) > 0 (or 8, > 0) has not yet been taken care of. From Theodorsen’s 
method we know that in polar coordinates it translates into f. = 0. Hence, we suggest adjusting 

7 n+, by subtracting [?,,+,I;: 

r,+*(t) := %+1(t) - Ii.+& (6.27b) 

Bergstrom’s idea can also be applied to Theodorsen’s auxiliary operator (6.1). Then (6.27a) is 
to be replaced by 

+“+I (t):=arg(exp 2 [log p(~,( )+( ))+ir,( )]t eikf}. (6.27~) 
k=O 

Note that both iterations (6.27a, b) and (6.27c, b) may be undefined for functions r,, not close 
to ri since no continuous branch of arg needs to exist. (In contrast, in (6.26), before the 
projection, there is no problem with arg.) 

Not much seems to be known about the convergence of Bergstrom’s method either. Wohner 
[73] gave a formula for a Lipschitz constant L for the iteration operator, but no condition 
implying L < 1. 

It is not difficult to switch to the exterior problem, to which Bergstrom actually applied this 
method originally. 

6.4. The identity operator 

The identity operator 

Q?(w) = g(w) (6.28a) 

also satisfies the assumptions of Section 4. To take the normalization (0.1) into account, it should 
be restricted to 

Q= {gEC(S); g,=o, $i>O}. (6.28b) 
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Clearly, .GJ?” = 5B”, so that [ Hg]; = 0. However, whenever .%‘” is restricted by the condition 

[Hg]: = 0, we urge the replacement of H by 

fig(w) := Hg( w)/M?, (6.29) 

since figEA(b)ls implies then that this condition is satisfied. In particular, this means that 
(6.17) is preferable to the identity operator (6.28). 

Many methods that have been described by their authors directly in terms of g make actually 
use of the operator (6.17) if interpreted in the framework of our theory. e.g., those in (2.10,69,70]. 

6.5. Timman’s method 

Timman’s method [61] is widely used for airfoil analysis and design, usually after a preliminary 
Karman-Trefftz map has been applied to the airfoil profile [1,13,25,36,74]. Its popularity for this 
problem seems due partly to historical reasons and partly to the fact that it allows one to handle 
airfoils with an open trailing edge. 

The airfoil analysis problem i‘s an exterior problem normalized by (0.3), but it is easier to aim 
at the solution g, satisfying (0.4) first, and to rotate it afterwards. The second condition in (0.4) is 
now written as 

g,(l) = y(O), i.e. r,(O) = 0. (6.30) 

We assume m 2 1 in the exterior version of (4.4), so that g: E A( 0’). 
The auxiliary operator used here is 

Hg( w) := log g’(w), w E S, (6.31a) 

Q= {gEC’(S); OGg’(S), #g’(S)=O. g(l)=y(O)}. (6.31b) 

In (6.31a) any continuous branch of the logarithm can be chosen. In order to make the operator 
H continuous we may consider Hg modulo the constant function 2Ti, but we do not write this 
explicitly. If r := Hg, then e’ = g’ is a derivative of g E C’(S), hence [er]“, = 0: 

g”= (rEC(S); [e’]!,=O), (6.32) 

H-‘r( w) = 
/ 

Wer(s)dS + y(O), w E s, rELSH. 
1 

(6.33) 

The mapping function g, has a Laurent series of the form 

g,b> = cw + a, + a,w-’ + a*w-2 + * * * ) l<lwl<co. 

The series for g: and log g: are therefore Taylor series in l/w with no linear terms: 

(6.34) 

g$+c-a,w-*-2a2w-3- --*, l<l\r.l<x, (6.35) 

10gg~(w)=10gc-(a,/c)w-*- ***, l<lw],<oo. (6.36) 

The nonexistence of these linear terms turns out to be crucial for convergence [38]. It can be 

expressed as 

[g:]!, = 0, [1ogg:]2, = 0. (6.37) 

Note that the first condition is satisfied for every g E 9”. The second one has not been taken into 
account. however. 
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Following our construction in Section 4 we get 

G7(f) = log{ -i eKi’y’(O(t))O’(t)}, (6.38a) 

~c=52~={7EC’(T,[W); 650). (6.38b) 

The condition 8’ > 0 asserts the continuity of the logarithm in (6.38a). Thus t?” E C(S), but 

i ei’e “““=y’(0(r))0’(t)=dy(e(t))/dt (6.39) 

is the derivative of a periodic function, i.e. [e”]!, = 0, and hence eGs E .5&P”. In view of 

.$(t)=ReGr(f)=logB’(t)+log ]y’(f3(t))], (6.40a) 

~(f)=ImG7(f)=arg{y’(8(t))e-“}-~~. (6.40b) 

Equation (4.15) with the choice (4.19b) finally yields the generalized Timman integro-differential 
equation 

logB’(t)=K[arg{y’(B( ))e-iO}](t)-lOg ]y’(e(t))]+iO (6.41a) 

with 

go= [i0gef+i0g I+ el]& (6.41b) 

Note that the constant - $r in (6.40b) as well as the ambiguity in the definition of arg disappear 
when K is applied. 

Timman and the other authors mentioned above assumed that r is parametrized by the 
arclength; in our notation this means that ] y’(t) I is a known constant, namely 27: divided by the 
length of r, and this obviously simplifies (6.41). 

As a corollary to the analog of Theorem 4.1 for the exterior mapping problem we again obtain 
a uniqueness result: 

Theorem 6.3. The generalized Timman equation (6.41) has exacrb one solution 8, name& 8 = e,, 
such that 7 E .@’ (i.e. 7 E C(.T, R), 8’ > 0) and T(O) = 0. 

Proof. Let r be such a solution. We want to show that the conformal map g given by (4.18) is 
unique. By construction, Gr E A( DC) I T, hence eGT E A( DC) I T. But g’] s = IsT ec7, so g’ cannot 
have a finite pole; hence the pole of g is at co. The condition r(O) = 0 asserts that g(l) = y(O), 
Therefore T 7,. 0 

equation can be written 

ef(t)= exp( K[w{ YW 1) em” ‘}](d +&} 
IY'tw) I 

, (6.42) 

but before we start to iterate here, we must make sure to define @ in such a way that [@r]$ = 0, 
cf. (5.3). Since [r’]: = 0, [e$ = 1, and hence the zeroth Fourier coefficient of the right-hand side 
of (6.42) is also 1 if 8 is a solution. In general, in view of r’(t) = e’(t) - 1, let @T + 1 be defined 
by this right-hand side devided by its zeroth Fourier coefficient, or, equivalently, let 

x(t):=arg{y’(f9(t)) e-“}, (6.43a) 

+(t):=e KxV]YQ(t)) I, (6.43b) 

@T(t):=+(t)/& 1. (6.43~) 



M. H. Gutknecht / Mupping methods based on conlugation 59 

Then [!&I$ = 0, so that iteration (5.5b) can be executed: 

I,, := j&,_,(s)ds. 
0 

As we have seen in (6.39), the fact that 0, is the derivative of a periodic 
that [eGGI!, = 0, and thus g, := H-‘ZSrG~~ satisfies 

[g:]!, = [eHg,t]l, = [e’,]!, = 0 

in accordance with the first condition in (6.37). If g, were in A( DC) IS, it 
(6.34)-(6.37) that also 

[log g;]l, = 0, 

(6.44) 

function en implies 

(6.45a) 

would follow as in 

(6.45b) 

but this assumption is only true if g, equals the solution g, of our mapping problem. However, it 
seems that often the convergence can be improved if @ is further modified so that condition 

(6.45b) is imposed approximately ([25] and private communications by N.D. Halsey and A. 
Kaiser). By definition 

[log &I!!,= [Q,]!, = [G&= [E,,+h,]!, 

= [log e;( )+lOg Iu'(e,( )>l+i arg{y'(eJ >) epic '}]fr,, 

and by construction 

(6.46) 

[log e;]tl = [iogph,_,+ I)]!,= [log +JC, 

= [~~,-~]!,-[lOg IY'O e,-,I]!,. 

Hence, if we modify the iteration by deleting [x,-,1!, and [x,-i];, the new function 0, satisfies 

[log e;+log IY'O e,_,~];~ =o, 

and in a rough sense we have taken care of the requirement that the quantity in (6.46) should 
vanish. This modification means that (6.43b) is replaced by 

+(t) := exP{ K[x( 1 -k eic ‘-k-, e-‘( ‘](d} 
I Y'(W)) I 

(6.47) 

The local convergence of iteration (6.44) with @ defined by (6.43a), (6.47) and (6.43~) can be 
proved for certain nicely behaving curves r [38]. Halsey [25,26] and others [1,36] report favorably 
about the performance of this method in practice; their implementations require y as a function 
of arclength, however. 

At first sight, one is tempted to think that the operator (6.31) can be applied to the interior 
mapping problem with equal success. However, in repeating our derivation of Timman’s equation 
(6.41) it becomes clear that every boundary correspondence function 8 for a conformal map g of 
D onto A is a solution of the interior version of Timman’s equation, differing from (6.41) only in 
a minus sign in front of K. While the normalization g(1) = y(O), i.e. ~(0) = 0, is taken into 
account in (6.33) and (6.44), there seems to be in general no simple way to impose the condition 
g(0) = 0 in the iteration. But unless this condition is imposed the iteration cannot converge in 
general since it does not know to which solution it is supposed to converge. (The exterior map is 
different since g’ E A( II’) iff g( cc) = 00.) 
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However, if r is rotationally symmetric about 0, it follows again that the interior Timman 
equation has a unique symmetric solution and that the iteration converges locally under suitable 
assumptions [38]. (In fact, the higher the order of symmetry. the faster the convergence.) 

At the end of Section 4 we mentioned that there are two ways to transform a method for the 
interior problem into one for the exterior problem. Likewise, there is also a second way to 
transform Timman’s method into one for the interior problem. namely by composing gi with two 
inversions: 

Hg,(l/w) = logd l &(l/w) - 
dw gi(l/w) = log wzg;(l,w) ’ ‘I’ E ‘- 

This suggests the general definition 

g(w) 
Hg( w) := log g’(w) - 2 log- 

w ’ 
WES. 

(6.48) 

(6.49) 

We do not want to go through all the details here, but it is worth mentioning that 

H-i+)= [--& - [$)dr]-‘. (6.50) 

The local convergence of the associated successive conjugation method to ri can be proved again 
under certain fairly restrictive assumptions on r [38]. 

6.6. Friberg s method 

Friberg’s method [12;13, pp. 113-114; 66, pp. 228-2331 for the interior or exterior problem 
normalized by (0.2) or (0.4), respectively, is based on the operator 

g(w) 
Hg( w) := log g’(w) - logy = log 

WY 4 
g(w) ’ 

M’s s, (6Sla) 

c&:= {gd(S); oeg(s), #g(S)=1,04g’(S), #g’(S)=O, g(l)=y(O)}. 

(6Slb) 

Its range and the inverse operator are given by 

.G@“= (TE C(S); [er];= l), (6.52) 

H-‘r(w)=y(O)wexp 

For the latter formula we have made use of 

(6.53) 

(6.54) 

from which it also follows that the condition [e’]; = 1 must occur in (6.52). To prove (6.52) we 

note that whenever r E C(S) satisfies this condition, the integral in (6.53) is a function u E C(S); 
then #exp( u)( S) = 0, hence #H-‘r( S) = 1. Therefore, log( g( w)/w) is well-defined for g := 
H-‘r. Moreover, since wg’( w)/g( w) = er(“‘), this function has winding number 0, and its 
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logarithm is also well-defined up to irrelevant multiples of 2Ti. Consequently. log g’(w). being 
the sum of the two logarithms, is also well defined. 

The operator (6:51) (as well as the operator (6.49)) is a linear combination of the operators in 
Theodorsen’s and Timman’s method. By combining (6.5) and (6.38) or by direct derivation we 
easily get 

Gr(f) = log -i 
i 

Y’(W) &([) 

i YW>> ’ 
(6.55a) 

Jai= {rEC’(T,lR); O-0). (6.55b) 

Defining \k by (4.16b) or (4.19b) we obtain now the genera/Led Friberg integro-differential 

equation 

log e’(t) = TK arg [ f-g-$ - 1og~;;g8j;;j) j + io, 

with 

(6.56a) 

(6.56b) 

the minus sign belongs to the interior problem, the plus sign to the exterior one. 
Note that (6.56) is just the sum of the generalized Timman equation (6.41) and an equation 

derived from the function GT of Theodorsen’s method by applying the second version (4.16b) of 
Ik (instead of the first, as for Theodorsen’s equation). 

Friberg [12,13,67] derived (6.56) for the interior problem and polar coordinates. 
If r = Is,Gr E A(z), it is clear from (6.53) that the normalization (0.2) holds with z0 = y(0) 

for g := H-‘r. If r = Is,G7 E A( DC), then the integrand (er(‘) - 1)/s in (6.53) lies in A( DC) also 
and vanishes at co; hence, the integral is in A( DC) too, and g := H-‘r has a simple pole at 3c, as 
required in (0.4). Application of our Theorem 4.1 and its exterior version therefore yield 

Theorem 6.4. Friberg’s equation (6.56) has exactly one solution 8 such that r E 23: (i.e. 

r E C’( T, R) and 8’ > 0) and r(0) = 0. This solution is equal to 8, in the case of a minus sign in 
(6.56a) and equal to 0, in the case of a plus sign. 

The iterative solution of Friberg’s method by successive conjugation parallels that of Timman’s 
equation: (6.44) is now applied with 

+(t) := 
I I 

Y(W) e + KX(f) 

Y’(W) ’ 

(6.57a) 

(6.57b) 

@r(t):=c#a(t)/&)- 1. (6.57~) 

Friberg missed the last step, which makes his convergence result somewhat suspect [13, p. 1131. 
For the exterior problem a modification similar to (6.47), proposed by Kaiser [38], leads to an 
iteration whose convergence can be proved for well behaved curves r; it consists in replacing 
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exp{~[X( )-i, ei( ~->i_~ e-” j](t)-5, ei’-G__, edi’}, (6.58) 

with w(t):= log Iy(O(t)) I. 

While for Timman’s method and for its equivalent interior method based on (6.49) the linear 
term in the power series expansion of Hg vanishes if g E A( DC) 1 s or g E A(z) 1 s, respectively, 
Friberg’s choice (6.51) of the auxiliary operator yields a vanishing constant coefficient in this 
power series. Kaiser’s detailed analysis [38] shows that if r is in a certain sense close to a circle, 
then the Lipschitz constant in (5.6) is close to 0 for Friberg’s method, while it is close to 0.5 for 
Timman’s method. This result suggests that at least for such curves Friberg’s method is definitely 
superior. 

7. Newton methods: Vertgeim-Hiibner and Wegmann type methods 

Instead of trying to solve our basic equation (4.15), \k~ = 0, by direct iteration, we may attack 
it by Newton’s method. We discuss the case I = 0 only. (Otherwise one has to solve a differential 

equation in each step.) As usual for Newton’s method one has to assume that the function is 
differentiable, but, on the other hand, one can expect quadratic convergence for sufficiently 

smooth boundaries r. 
To fix our minds we assume y E W3*rr( T) = C*,‘(T) in this and the next section. In contrast to 

statement (4.4a) we will allow iterates r,, E I@‘( T, R) and associated functions g, E W’*P(S), 
however, where p E (1, co) is arbitrary. As mentioned in Section 4, by a result of Kellog and 
Warschawski [l&63,64,67], y E C*,‘(T) c C2qa(T) (Va E (0, 1)) can be seen to imply r E 
C2qa( T, W) c W*J'( T, R) (Vp 2 1). (The last inclusion is of course very crude.) Hence, if the 
iterates will converge, the limit function will be smoother than the iterates. To simplify notation 
we set 

W, := W’q S), W,:= W’q T, R). (7.la) 

In accordance with (1.10) we choose in W, and W, the norm 

Ilfll :=max{ Ilfll,~ IIf’llpL (7Sb) 

which is easily seen to satisfy 

II fs II G 2 II f II II g II * (7.2) 

We further assume that the operator H, which now has the simple form 

Hg(w) = Mw); w), w E S, (7.3) 

has in addition to the properties (i)-(vi) postulated in Section 4 the following two: 

(vii) The domain of H can be extended from Qi to an open set 9; 2 ~~ of IV, in such a 
way that 9; := H( 9;) c W, still holds and the function h( u; u) has continuous partial 
derivatives up to a4h/( au3au) on 

U {(u; +=Q=*; ]U-g(u)] <e(g), u=S}, 
g=% 



M. H. Gurknecht / Mapping methods based on conjugation 63 

where 6: ~3; + [Wf is a certain continuous function. (In particular. the function h, 
defined by 

belongs to C’(S) c IV,.) 
(viii) hg( S) has winding number #h,(S) = - 1, and Hg satisfies 

Im[Hg]t=O if gEBR. (7.4) 

The case described in (viii) is not the only one that can be handled, but we want to avoid treating 
various cases in parallel in this section. For example, we could equally well require Re[ Hg]$ = 0 
in (7.4) or assume #h,(S) = 0, Im[Hg]r = 0 if g E 9;. The latter case can be reduced to the one 
in (viii) by redefining H according to (6.29). Therefore, our examples with I = 0 in Section 6 are 
all covered. 

The operators G and 9 can now be defined on 

~32 := (7 E IV,; (4.8) holds for some g E 9; }, (7Sa) 

and it is advantageous to redefine 9: here by 

9: := { 7 E IV,; (4.8) holds for some g E LB:}, (7.5b) 

so that 9: c ~3:. In view of (7.4) it is natural to use definition (4.16a) of ‘k, since for 7 E 9: we 
have 

to = Im[ Gr]: = Im[ Hg]; = 0; thus, 

\kr:=q--6, where [ + iv = Cr. (7.6) 

From now on we use this definition also on gz, though the term $, does not in general vanish if 
T E 9: \@. This has the effect that although we are solving % = 0 for 7 E @, every solution 
will satisfy (7.4). 

Lemma 7.1. The operators defined by (7.3), (4.11), and (7.6), restricted in domain according to 

H: 9;~ Ws-,.4?~~ Ws, (7.7a) 

G: 9; 5 W,--GS’; G W’*P(T), (7.7b) 

!P: 9; c w,--+Lz;c w,, (7.7c) 

are Frechet differentiable (with respect to the norm (7.lb) in domain and range), and their 
F-derivatives are local& uniformly bounded and satisfy locally a Lipschitz condition. If we simp!) 
writeh,,, instead of htS,Cv o BJ, and if we define 

s(t) := h, D ,(@>f@(t)), (7.8) 

the following formulas hold for the F-derivatives: 

H;d(w) = h,(w)d(w), dE W,, WES, (7.9) 

GP(t) = {@)6(t), SE W,, t E T, (7.10) 

!PiS(t)=G(t) Imc(t)-K[GRel](t), SE w,, t E T. (7.11) 
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Proof. By straightforward but lengthy calculations involving the Taylor formula with remainder 
one can verify that indeed for HA defined in (7.9) 

II~(g++~g-~,;~lI =0wll’) as Ildll -0 (7.12) 

uniformly on any sufficiently small neighborhood yq of g and that there is a Liptschitz constant 

L such that for g, g E Ug 

II JJ;d - H,;d I/ < L II 2 - g II II d II . (7.13) 

We omit the details. By (7.2), 11 Hill < 2 II h, II. 
Next we observe that according to the rules (1.12), 8, T E W, implies y 0 (0 + a), y 0 8, 

(y’ 0 0)s E W’*p( T). Moreover, one can verify that as a consequence of y E W3*=( T), 

IIY +++v o WY’W~II =o(ll~l12L (7.14a) 

IIY’~(~+W-Y’~ 011 =WIW as 1141 -4. (7.14b) 

Applying (7.12) to g(e”) := y( 13( t)), d(e”) := y( 0( t) + S(t)) - y( 0( t)) then yields in view of (7.2), 
(7.9) (7.10) and (7.14a) 

(7.15) 

Similarly, using (7.2), (7.9), (7.10) (7.13), and (7.14b) we get 

IIG,‘S-G:Q <2llf$(y’4-f$(~‘~ e)ll II~II 

G 2Lll2--gll IIY’O ~ll+4ll~,lI IIY’O fi-Y’O fill] IISII 1 

G L’II + - 7 II II 6 II (7.16) 

for some L’ > 0 depending on the neighborhood Ug of g. 
Finally, since II K 11 < cc (see 2.&c)), and since the operators associating to a function in 

W’.P( T) its re al p art, its imaginary part, and its zeroth Fourier coefficient (i.e. its mean value), 
respectively, all clearly have norm 1; (7.15) and (7.16) are easily seen to imply the corresponding 
inequalities for the operator \k: 

II\k(7+6)-!Pk7-- \k:SII =o( IlSl12), (7.17) 

II\k,‘S-- \k:SII <L”II?-711 IISIJ. cl (7.18) 

Assuming that the F-derivative q,! is invertible we can now define the Newton method for 
(4.15), 97 = 0, as usual: In the n th step 9 is linearized at the n th iterate r,, E 9: : 

9( 7, + 8,) = !I-?, + Yq3,; (7.19) 

then the linearized function is equated to zero, and the resulting equation is solved for the 
correction 8,: 

\k:S” + ‘kr, = 0; (7.20) 
” 

finally, one lets 

7 I?+1 := 7, + 8,. (7.21) 
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The important point, which in special situations was observed by Vertgeim [62] and Hiibner 
[34], is that (7.20) can be solved explicitly by reducing it to a Riemann-Hilbert problem and the 
solution is unique (even when ‘k~,, is replaced by any I/ E W,), so that !P,! is indeed invertible. 
We basically follow Hiibner’s treatment [34]. 

Inserting (7.11) into (7.21) (with the index n deleted for simplicity), we get 

O=\k:6+\kr=6Im[--K(6Re{)+9~. 

By Theorem 2.2 we conclude that 

lS+i%=6Re[+i(6Im 

Im[[G + i+r]: = [6 Im S + 

and that the function f defined on S 

f(e”) := {(t)s(t) + i%(t) 

satisfies 

fEA(B), Im f (0) = 0, 

(7.22) 

bY 

(7.23) 

(7.24) 

when extended analytically to D. Consequently f is a solution of the Riemann-Hilbert problem 

O=Re{i(S(t)]*S(t)} =Re{m[if(ei’)+\1’7(t)]}, (7.25) 

whose index is 0 since #l(T) = #h y o s(S) + 1 = 0, cf. (7.8) and property (viii). The function $I 
of (3.1) becomes r#~( t) := arg l(t) - + 7. To formulate our result for (7.20) we of course let 
e,(t)=r,,(r)+f and 

L(t):= h, o &W(4(d). (7.26) 

Theorem 7.2. If [arg [,,I; P nZ, the Newton correction S, satisfying (7.20) can be computed by 
solving the Riemann-Hilbert problem 

Re{imfn(ei’)} = - %, Re{ L(r)} (7.27) 

(with index 0) for f, E A(z) satisfying Im f,(O) = 0. Its unique solution is given by the Theorems 
3.1 and 3.2 and satisfies f, 1 s E Ws. In terms off,, 

sntt) = f,te”) --i%(f) 

Ll(d * 
(7.28) 

Proof. The result is an immediate consequence of the above and the Theorems 3.1-3.3, except 
that the assumptions of Theorem 3.3 have to be verified by tedious applications of the rules 
(1.12). 0 

By replacing ‘kr, in the above formulas by an arbitrary function # E W, it can be seen that 
the equation 

!P;s + 4 = 0 

(with r ~92) has a unique solution 6 E W, whenever #E W,. Hence, the operator !PJ: 
W, + W, is bijective. The closed graph theorem then implies that +J has a bounded inverse [17, 
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p. 2211. One can show further that the norm of \k,-’ is uniformly bounded for r in a 
neighborhood of ri. This allows us to prove in a standard way 

Theorem 7.3. Assume that y E C’*‘(T) and 

[argl(t)]t@nZ ijr-7,. (7.29) 

Then the Newton iterates (defined by (7.20) and (7.21)) conoerge in the norm (7.lb) locally and 

quadratically to ri, the reduced boundary correspondence function of the interior map gi E 94 

normalized by (7.4). 

Proof. In view of (7.17), (2.20) and \kri = 0, 

II ‘n+l - ‘i II = II ‘n + ‘~2 -Till = Il(\k:~)-‘(~~(7,--i)--\k7,) II 

g ll(~~n)-lIlo( II~n-Til12)9 
with a locally uniform O-term. Hence the assertion follows from the above remarks. 0 

Computing the Newton corrections according to formula (7.28) was proposed for the first time 
by Vertgeim in connection with the generalized Theodorsen equation (6.7) [62]. However, in his 
very brief article Vertgeim actually proposed application of the modified Newton iteration, 
7 n+l := r., + ( \k:)- ’ !Pr,,, with a fixed inverse operator, leading to only linear local convergence, 
which he indeed proved. Moreover, it is likely that this method has never been seriously tested 
and used. Recently, when investigating Newton’s method for the classical Theodorsen equation, 
Hiibner [34] has reinvented this elegant and efficient approach and proved the quadratic local 
convergence of the Newton iteration. Note that in each step only three conjugations are needed, 
i.e., in practice, six real FFTs, plus calculations of the lower complexity O(N). The modified 
Newton iteration requires four real FFTs per step, and it is unlikely that this reduction can make 
up the loss in convergence speed. 

We call a conformal mapping method based on (7.20), (7.21), and Theorem 7.2 a Vertgeim- 

Hiibner type method. 
Instead of applying Newton’s method to *T = 0 one can apply the idea of linearization to the 

conditions Gr E A(z) I =, Im[Gr]; = 0 directly: In analogy to (7.19) we write 

G(r,, + 8,) = Gr, + G;J,, (7.30) 

but now we want to determine S,, such that 

G~,+~~~~,=G~,+~~S,EA(D)I~, (7.31a) 

Im[ Gr, + ~~~6,]~ = Im[ Gr, + S,S,]t = 0, (7.31b) 

i.e. such that h, defined on S by 

h,(e”):=S,(t)G,,(t) + GT,(t) (7.32) 

satisfies 

h,, E A(B), Im h,(O) = 0. (7.33) 

This is again a Riemann-Hilbert problem: 

O=Re{i]S,(t)]*8,,(t)}=Re(iS,(t)[h,(e”)-Gr”(t)]}. (7.34) 



M. H. Gutknecht / Mapping metho& based on conjugation 67 

Its function a(t) = ifn(t) is the same as in (7.25) and in particular the index is 0 again. 
The fact that (7.31) is equivalent to a Riemann-Hilbert problem we first made use of for 

numerical conformal mapping by Wegmann [69,70], who chose Hg := g, which leads to a 
Riemann-Hilbert problem with index 2 normalized as in part (ii) of Theorem 3.2. This problem 
can be reduced to one with index 0 normalized as in part (i) of Theorem 3.2 (cf. the proof of that 
theorem). In fact, one just has to make the substitution (6.29) cf. the remark following (7.4). 
Therefore, we call an iterative method based on solving a sequence of problems (7.31) as 
Riemann-Hilbert problems a Wegmann type method. 

In analogy to Theorem 7.2 we have 

Theorem 7.4. If [arg [,,I; 4 TB, the corrections 8, satisfying (7.31) can be computed by solving the 
Riemann-Hilbert problem 

Re{imh,(e”)} = -Im{mGr,,(I)} (7.35) 

(with index 0) for h, E A(z) satisfying Im h,,(O) = 0. Its unique solution is gioen by the Theorems 

3.1 and 3.2 and satisfies h, 1 s E W,. In terms of h,, 

W) = 
h,(e”) - G7,,(t) 

S,(t) * 
(7.36) 

One may wonder whether the Vertgeim-Hiibner type methods and the Wegmann type 
methods are more closely related than by the obvious similarity of the formulas. The answer is 
affirmative: 

Theorem 7.5. The Newton corrections 8, (defined by (7.20) are identical with the corrections S,, 

defined by (7.31) and constructed in the Wegmann type method which corresponds to the same 
auxiliary operator H and is started with the same initial approximation rO. The functions f, of 

Theorem 7.2 and the functions h, of Theorem 7.4 are related by 

h, =f, + L&E,, 

where .&, := Re Gr,, while L+R is defined by (2.17a). 

Proof. 4 In view of (7.6), adding 

(7.37) 

t,, + iJ2, EA(B), Im[<,+iKE,]t= [K&It=0 (7.38) 

When reading this manuscript Wegmann suggested a different exposition of this proof: First, the operator 1c, of (7.6) 
is just the composition * = M 0 G, where M is the operator 

M: W’*“(T) + W,, $HM+:=Im+-K(Re+), 

which, in view of (2.8~). is Lipschitz continuous. According to Theorem 2.1 the kernel of M consists of the functions 
S#J E A(z) 1 T satisfying Im &, = 0 (i.e., +(t) = f(e”), where f E A(z), Im f(0) = 0). Hence, with the index n deleted, 
(7.31) can be written 

M( GT + G;6) = 0, (*I 

Now, since M+ is real-valued, M(iM+) = M+ (i.e. iM is a projector). Therefore, ( * ) is equivalent to 

M(iMGT + G$3) = 0, 

which is equivalent to (7.23)-(7.24). 
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to (7.23) yields 

which is identical with (7.31) since CT, = 5, + iv,. Therefore, if 6, is the unique solution of (7.23) 
and (7.24), it is also the unique solution of (7.32) and (7.33), and the functions f, and h, satisfy 
(7.37). 0 

Corollary 7.6. Under the assumptions of Theorem 7.3, if r0 is sufficiently close to the solution 7; of 
!PT = 0, the functions f, of Theorem 7.2 converge quadratically to the zero function, and the 
functions h, of Theorem 7.4 converge quadratically to Hgi = Is7Gri, where gj E 9; is the interior 
map normalized by (7.4). 

Proof. From (7.17) (with r = ri, 6 = r,, - 7i) we see that the quadratic convergence of S to 0 
(established in Theorem 7.3) implies the quadratic convergence of ?I%,, to 0. Solving (7.28) for f, 
then leads to the claim concerning { f, }, since the norm of the functions [, is bounded in a 
neighborhood of the solution. Similarly, by (7.15), G r,, + Gri quadratically, and thus the claim 
concerning {h,} follows from Hgi = IsrG~i and (7.36) or (7.37). 0 

Remarks. The equivalence stated in Theorem 7.5 is no longer true for discretized methods. It is 
likely that the effect of discretization is not very different for the two methods, but that 
Vertgeim’s formula (7.28) is superior with respect to roundoff, since ‘kr, and f, are small if r,, is 
close to the solution ri of ?Pr = 0, while this is not true for CT, and h,, so that cancellation is 
inherent in (7.36). On the other hand, the evaluation of Wegmann’s formula (7.36) requires only 
two applications of the conjugation operator (Gr, does not involve K, in contrast to \kr,), so that 
the costs are reduced by about one third. 

In view of Theorem 3.4 both methods are easily adapted to the exterior mapping problem. 
For the Riemann-Hilbert problems (7.27) and (7.35), the function P/a needed in (3.4) can be 

expressed in an elegant way in terms of + defined by (3.1) or in terms of 6(t) = +(t) + f~: We 
have 

a(t) = IL(t) 19 (7.39) 

+(t)=argS;,(t)-h, $(t):=argl,(t), 

p(t) ‘kr, sin+(t)= -YPr,cOs~(t) for (7.27), - 
a(t) Re{ Gr, e-i+(r)} = -Im{ Gr, e-ii(f)} for (7.35). 

(7.40) 

(7.41) 

Concerning the evaluation of g, at interior points, most of what we said at the end of Section 5 
still remains valid. In Vertgeim-Hiibner type methods, where according to (7.37) and Corollary 
7.6 

Hg;= lim h, = lim Li.& = L+, lim t,, (7.42) 

the Taylor coefficients of Hgi are still a by-product of the iteration, since the Fourier coefficients 
of 5, are needed to compute \kr,, cf. (7.6). In each step of a Wegmann type method solving the 
Riemann-Hilbert problem (7.35) yields an approximation h, of Hgi, and this h, is repesented 
by a power series times the exponential of another power series, cf. (3.3). (In practice, if 
conjugation is performed via trigonometric interpolation, these power series are just polynomials.) 
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Independently of the work of Vertgeim and Wegmann, Fornberg [lo] also proposed a method 

based on computin, (J corrections 13, such that (7.31a) holds. However, he made use of this 

condition by transforming it into the space of Fourier coefficients: 

[G7,+5,6,]:=0, k<O. (7.43) 

Actually, Fornberg was working with Hg = g, allowing k < 0 in (7.43). which is equivalent to 
working with Hg( w) = g( w)/w and (7.43). He derived an ingenious and efficient method for 
solving finite systems (with -N < k c 0) of type (7.43). (From this system a positive definite 
system is derived, to which the conjugate gradient method is applied.) According to [lo] about 30 
complex FFTs with +N points are typically needed to solve the system, i.e. to determine a 
discrete version of S,,. This makes the method asymptotically about 7.5 times slower than 
Wegmann’s, but, on the other hand, Wegmann [70] reports favorably on the numerical stability 
of Fornberg’s method. 

Fornberg’s description of his method deviates from ours in that he does not update 7 
according to r,, + 1 = T, + 8,. In fact he does not work with 7 or 0 at all. The boundary may be 
given either by y or in the implicit form F(z) = 0. Fomberg then considers N points on f, and 
in each step these points are first moved along the tangent (as suggested by (7.30) with 
Gr, = I,,g,) and then projected back on the curve r (e.g., by solving F(z) = 0 approximately 
with Newton’s method). This procedure is appropriate if r is given implicitly, but not if r is 
parameterized, as it is in most applications. 

An explanation of the efficiency of Fornberg’s method was first given by 0. Widlund at the 
Workshop on Computational Problems in Complex Analysis at Stanford University, September 
1981 (unpublished). After the completion of our present paper, Wegmann [72] has presented a 
more detailed analysis 5. The non-discretized version of Fornberg’s method, which is instrumental 
for this analysis, is derived along the following lines: As for Wegmann type methods we start 
from (7.31), but drop the index n for simplicity and replace 2 and S by f := [/I 5 1 and 3 := S I[ I. 

If P, and P_ denote the orthogonal projections of L2(r) onto I& Hz) and Irs(( Hz) I), 
respectively, then (7.31a) is clearly equivalent to P_( GT + @i) = 0, which implies 

Re(K)P_ (GT + al)(t)) = 0. (7.44) 

Here, P_(Gr + la) can be thought of as a (Hz) L solution of a homogeneous exterior 
Riemann-Hiibert problem. By a variation of Theorem 3.4 the solution in (Hz) L is unique 
(m= 0, but f0 = 0 is required). Hence, (7.44) is equivalent to P_(GT + 48) = 0, and thus also to 
(7.31a). 

Now, let + := arg 5, and define the linear operator R: W, --, W, by 

Rf(t) := Re(eeifG)([ei( ‘if]: - iK[e” ‘@l(r))]. (7.45) 

R has norm 1, and it is compact if + E Lip” for some (Y > t. In addition, it can be seen that R 
has a simple eigenvalue at - 1, while the other eigenvalues have smaller modulus and lie 
symmetrically about 0. On the other hand, 

(I+ R)f= 2 Re{&‘,(if)}, (7.46) 

5 This paragraph was added in December 1984. 
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so that (7.44) is equivalent to 

(I+R)B=K:= -(Z+R)(:Gr). (7.47) 

By various applications of Theorems 3.1 and 3.4 Wegmann shows further that (I - R) is an 
automorphism of Lz( T) and that under the assumption [eeK*K]t = 0, which is satisfied for the 
above K, the equation (I + R)$ = K and hence also the equation 

(r-R2)8=r7:=(I-R)K= -(I--R*)(jGr) (7.48) 

has a one:dimensional manifold of solutions, from which a unique solution can be chosen by 
requiring 6(O) = 0. Equation (7.48) defines a non-discretized version of Fornberg’s method, which 
up to the difference in the-normalization of the corrections (S(0) = 0 in contrast to (7.31b)) is 
again mathematically equivalent to the Wegmann type method using the same operator H. In [72] 
Wegmann also discusses in detail the effects of discretization and suggests new variants of the 

method. 

8. Examples of Vertgeim-Htibner and Wegmann type methods 

In this section we briefly discuss the methods resulting from applying the ideas of the previous 
section to the auxiliary operators (6.1) and (6.17). 

8.1. Application to the auxiliary junction Hg( w) = log( g( w)/w) 

For Theodorsen’s auxiliary function (6.1), Hg( w) = h( g( w); w) = log( g( w)/w), we let 

9;:= {K=(S); o%?(s), #g(S)=I, ]iol CT}, (8.1) 

so that gH = (gE9;; ‘ilo = O}. If g( w is substituted for u, the derivatives required in property ) 
(vii), Section 7, are 

h,(w)= -!- 
g(w) ’ 

hgg(w) = --& h,,,(w) = -?- 
g3(w) ’ 

$(g(w);w)=+ f&-$-&o. 

(8.2) 

Property (viii) is clearly satisfied. The function l defined in (7.8), which plays a prominent role in 
the formulas of the Theorems 7.2 and 7.4, is 

s(t) = Y’@(t))/Y@(t>). (8.3) 

In the case of polar coordinates (6.8) it becomes 

S(t) = p’(fl(t))/Mt>) + i. (8.4) 

Inserting (8.3) or (8.4) into the Riemann-Hilbert problem (7.27), solving the latter according to 
Theorems 3.1 and 3.2, and inserting the solution j, into (7.28) yields the methods of Vertgeim [62] 
and Hiibner [34, Theorem 21 except that (as mentioned in Section 7) Vertgeim actually proposed 
a modified Newton iteration. The idea of applying instead the construction of Theorem 7.4 to 
this auxiliary function may be new in the case of an arbitrary parametrization, but the formulas 
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resulting in the case of polar coordinates appear in Hubner [34, Theorem 41 as a second version 
of his method. 

Relation (8.4) clearly implies that arg l(t) E (0, n) (mod 2~); thus +(t) E ( - in, $IT) (mod 2~) 
and [arg S]; = &, - $rr G TZ, as noticed by Hiibner [34]. However, using polar coordinates is not 
essential for this property. Whenever r is starlike (and positively oriented, as we always assume), 

arg l(t) = arg y’(8(t)) - arg y(8(t)) E (0, 7) (mod 271). 

Hence, we get 

Theorem 8.1. If Hg( w) = log( g( w)/w) and r is starlike with respect to the origin, then the 
Riemann-Hilbert problems (7.27) and (7.35) always have unique solutions f, and h, normalized by 
Im f, = 0 and Im h, = 0, respectively. 

If r is not necessarily starlike we can still show that 

[arg {]t= &T (mod 271) if 7=7i, (8.5) 

so that the assumption (7.29) of Theorem 7.3 holds. Therefore, in practice it is unlikely that the 
iteration will break down except if we are far off the true solution. To prove (8.5) we use (8.3) 
and (4.9) to get 

arg l(t) = arg Y’(W) 
i eifgr(eif) 

y(e(t)) = arg g(e”) 

= Im{log g’(e”) - log(e-“g(e”))} + $r (mod 271). 

Now, if g = gi, then log g’ E A(B) and log[g( )/( )] E A(D), so that by the mean-value theorem 

[arg 11; = Im(log g’(0) -log g’(O)} + $TT = +T (mod 27~). 

8.2. Application to the auxiliary function Hg( w) = g( w)/w 

For the auxiliary operator (6.17) of the Melentiev-Kulisch method, Hg( w) = g( w)/w, we let 
LBA := C(S), so that 

gH= {g&A; g,aoo)= {g&L; &>,o, q,=o}. 

We get 

h,(w)=;, h,,(w) = h,,,(w) = 0, 

E(g(w); w‘)= -“,!“I, &(g(w); w)=$, --&$-&=o. 
(8.6) 

Again, the properties (vii) and (viii) are obviously satisfied. For { we obtain 

[(t) = v’@(t)) 

e it ’ (8.7) 
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and in the case of polar coordinates, 

S(t)= [$(0(t))+ip(B(t))] e”“. (8.8) 

Theorem 7.4 yields now WegmannS method [69,70], while the Vertgeim-Hiibner type method of 
Theorem 7.2 corresponding to this auxiliary function has not yet been proposed, at least to our 
knowledge. 

There is again the question of whether the condition [arg []t E ITZ is always satisfied. 
Theoretically, this is not true, but as shown by Wegmann [70], (8.5) holds again, so that the same 
remark as above can be made. To prove (8.5) now, we again make use of (4.9) and get 

arg l(t) = arg{ e-j’y’( t?( t))} = arg{ ig’(e”)/P( t)} 

= arg g’(e”) + &r = Im log g’(e”) + $T (mod 27). 

The result then follows as above. 
Summarizing, we get as a corollary of Theorem 7.3: 

Theorem 8.2. Assume y E C2*‘( T). Then for both the auxiliary operators Hg( w) = log( g( w)/w) 
and Hg( w) = g( w)/w, both the Vertgeim-Hiibner type method of Theorem 7.2 and the Wegmunn 
type method of Theorem 7.4 converge locally and quadratically in W, = W’qp( T, R). 

The respective result for their particular methods was established by Htibner [34, Theorem 51 and 
Wegmann [70]. Wegmann gave further convergence results under weaker assumptions, and 
Htibner proved also global convergence in the case p E W2*m, 11 p’/p 11 m < f . 

9. Further related methods 

9.1. The Menikoff-Zemuch method 

The method of Menikoff and Zemach [46] applies to the same situation as the classical 
Theodorsen method: Hg( w) = log( g( w)/w), y(t) = p(t) e”. However, version (4.16b) of \k is 
used, so that the integral equation (4.15) becomes 

5(0=ie-G(f> (9.la) 

with 

s(t) = log P(e(t>)P q(t) = B(t) -t = T(f). (9.lb) 

The basic idea is now to transform first the principal value integral (2.20) for Kq by subtraction 
of 9 and integration by parts into a nonsingular integral involving 9’ and then to get rid of this 
factor 7’ by the (unknown) variable substitution t = a(O), which has the effect that the given 
integral equation for 0 becomes an integral equation for the inverse boundary correspondence 
function 8 * a( 0) (which is the inverse function of 8, but also the boundary correspondence 
function of an inverse map from A to D). In the first step, using (2.20) and the fact that Kc = 0 
for the constant c = q(t) (t fixed), we have 
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which in view of 

t-a 

t (its actual value is - 2 log 2); therefore we may replace t by 8 there. Then, we 
call the integration variable in both integrals 8, replace Kq( t) according to (9.1) and substitute t 

by a(0) (SO that e(t) = B(a(0)) = 0) to obtain 

hde)=i,- +/,l0p sin+(a(B)-a(8)) de 

sin :(8-J) ’ 
(9.3) 

which is an integral equation for a and the unknown constant i,,. Basically, Menikoff and 
Zemach [46] discretize this integral equation by applying Gauss quadrature to the integral, and 
then they solve the resulting nonlinear system of equations by Newton’s method. In each step 
0( N3) operations seem to be necessary to solve the linear system for the corrections. Hence, the 
method is much slower for fixed N than the methods (using the FFT) considered so far, where 
each step requires only O(N log N) operations. On the other hand, as is known from other 
methods for computing a, such as methods for solving the Symm-Gaier integral equation, a 
often behaves much better than 8. In particular, this is true for flat ellipses and smooth curves of 
similar shape, where the Fourier series for a converges very fast, while the series for 0 converges 
slowly. In such cases a very coarse discretization (i.e. small N) may still yield a relative accurate 
solution a of (9.3) while a method based on B would require a very large N, at least if 
conjugation is based on trigonometric interpolation. 

9.2. The Chakravarthy-Anderson method 

The method of Chakravarthy and Anderson [7] can be understood as a method for solving a 
discretized version of ] \kr ] 2 = 0 (with Hg = g) by a minimization method, such as the conjugate 
gradient or the damped Newton method [50]. However, the computation of the conjugate 
function needed for the evaluation of \k~ is done by multiplication with a certain ‘influence’ 
matrix, constructed in advance by solving N systems of discretized Cauchy-Riemann equations 
on a 0( iV’)-point grid on D by cyclic reduction. This preliminary work alone requires 
0(N3 log N) operations. The authors were obviously unaware of the fact that the explicitly 
known Wittich matrix [13, pp. 76-801 or, better, the now-standard conjugation process using two 
real FFTs [27,28], would have served the same purpose. (Actually, their conjugation procedure 
computes the odd-indexed components of K.$ from the even-indexed components of ,$ only. A 
fast algorithm for this task was presented in [20].) 

9.3. The Challis-Burley method 

The method of Challis and Burley [8] is closely related to Theodorsen’s method (though the 
latter is not mentioned in [S]), but the setting is different: A rectangle of unknown side length 



74 A4 H. Gutknecht / Mapping methods based on conjugation 

ratio is to be mapped conformally onto a region of the form 

{z=x+iy;O,<x~1,O~~L’~(x)}, (9.4) 

so that the corners of the rectangle are mapped onto those of the region ($ is a given positive 
function). By adding to both regions their mirror images at the imaginary axis,and by applying in 
both planes an exponential map, the problem can be seen to be equivalent to a special doubly 
connected mapping problem, where the outer boundary curve is exactly the unit circle. It turns 
out that for such a region Garrick’s method [13, pp. 194-207; 30, 351 can be simplified in such a 
way that the iteration becomes formally similar to Theodorsen’s iteration for simply connected 
regions. This method is fast in the sense that each iteration requires only 2 real FFTs plus O(N) 

operations. If the region (9.4) is replaced by {z =x + iy; 0 < x < 1, +,(x) <y < G*(X)} (as in the 
problem of Wanstrath et al. referenced in [60, p. 12]), the equivalence with the standard 
doubly-connected problem persists and, e.g., Garrick’s method can be applied. 

9.4. Adaptations to the conformal mapping problem for doubly connected regions 

Many of the methods we have discussed in previous sections have been or can be adapted to 
the conformal mapping problem for doubly connected regions. Best known and widely used is 
Garrick’s extension of Theodorson’s method [13, pp. 194-207; 30, 351. Wegmann’s [71] and 
Fornberg’s [ll] methods have also been adapted by their authors. Moreover, there is always the 
possibility (proposed and justified first by Komatu [13,14]) of solving this mapping problem via 
the construction of a sequence of maps for simply connected regions. For example, Halsey [25] 
has applied Timman’s method in a similar way very successfully to the flow analysis of 
multielement airfoils. 

Constructive aspects of the conformal mapping problem for doubly and multiply connected 
regions are discussed in detail in [13,14,30]. 
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