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Abstract: A unifying treatment of methods for computing conformal maps from the unit disk onto a Jordan region is
presented. Integral and integro-differential equations (involving the conjugation operator) for the boundary correspon-
dence function are first derived using an arbitrary auxiliary function having certain properties. Then various iteration
methods for solving these equations are described in this generality, so that the basic ideas become manifest. Specific
methods are then treated as examples of the general theory. Among them are, in particular, the successive conjugation
methods of Theodorsen, Melentiev and Kulisch, Timman, and Friberg, the projection method of Bergstrom, and the
Newton methods of Vertgeim, Wegmann, and Hubner (which make use of the easy construction of the solutions of
Riemann-Hilbert problems). Many of these methods are treated in greater generality than in the literature. The
connections with the methods of Fornberg, Menikoff-Zemach, Chakravarthy-Anderson, and Challis—Burley are also
outlined.

Keywords: Numerical conformal mapping, conjugate function, conjugation operator, method of successive conjugation.
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0. Introduction

Let g be a conformal map of the unit disk D in the w-plane onto a given Jordan domain A
with boundary I' in the z-plane. The function g can be extended to the closure D of D insuch a
way that g is a homeomorphism of D onto A. We assume that 0 € A and that g is normalized
either by

g(0)=0, g’(0)>0 (0.1)

or by
g(0)=0, g(1)=z,€r. (0.2)
Most numerical methods for computing g are in one or another sense based on the conjugation
of periodic functions, i.e. on the possibility of constructing for a (usually real-valued) function u

defined on the unit circle S another function v such that the values of u + iv are the boundary
values of a function analytic in D. This fact is often applied not to the mapping function g itself,
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Table 1
Classification of mapping methods. (i /e: method for the interior or tha avtariar Manming nro blem. respectively.)
SR SR ¥ 8 LTV 4 44 iuappiig ICLHIVAS. 1/ Ve LS LHVU 1V U UL ivie vl i bAt\vl jive lllaPPllls Pl iy, |C3PC\1L1VCIY ’
type of method auxiliary function /e method of Section no.
Successive log(g(w)/w) i.e Theodorsen 6.1
conjugation g(w)/w i Melentiev-Kulisch 6.2
(Section §) log g'(w) e Timman 6.5

log g'(w)—2log(g(w)/w) i - 6.5

log g'(w)—log(g(w)/w) I, € Friberg 6.6
Projection g(w)/w i e Bergstrom 6.3
(Bergstrom) log(g(w)/w) ie - 6.3
(Section 5)
Newton log(g(w)/w) i.e Vertgeim-Hubner 8.1
(Vertgeim—-Hubner) g(w)/w e - 8.2
(Section 7)
Newton log(g(w)/w) i,e - 8.1
(Wegmann) g(w)/w i,e Wegmann 82
(Section 7)
Various g(w)/w i,e Fornberg
related log(g(w)/w) e Menikoff-Zemach 9.1
methods g(w) i Chakravarthy-Anderson 9.2

fog{g{w)/w) i Chatllis—Buriey 9.3

but instead to an auxiliary function h that is related to g. It leads readily to various integral
equations for the boundary correspondence function (defined in Section 4).

However, this construction is also fundamental for solving Riemann-Hilbert problems on the
disk, which is the key step in the very efficient methods of Vertgeim [62], Wegmann [69,70] and
Hiubner [34].

The efficiency of these and many other methods based on conjugation is due in the first place
to the fact that in practice the conjugate function (or rather its approximate values on a regularly
spaced set of points) can be computed by just two fast Fourier transforms (FFTs).

The aim of this paper is to describe various basic principles that can be and have been used to
find such numerical methods, and to classify classical, recent, and new methods according to
these principles, cf. Table 1. The description of particular methods in the literature is often
obscured by the use of a specific auxiliary function and a specific representation of the boundary
I', not to speak of the wide variety of notation in use. Our treatment is based on a general
definition of the auxiliary function h as the image of an operator having certain properties. The
basic ideas of the various methods are then first described in terms of this general auxiliary
function. Later, most of the methods that have appeared in the literature are presented in detail
as examples of the general theory.

However, this paper is neither a compiete survey of ail the work that has been done, nor a
serious Judgement and evaluation of methods currently available. (We hope to present a
comparison of numericai resulis for many of the methods discussed here in the near
comprehensxve survey of results known in 1964 xs Galer s well-known book [13]. An excellent
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of the methods of Theodorsen, Timman, and Wegmann. A general definition of the auxiliary
function was proposed by Jeltsch [37] in his diploma thesis; his definition is similar in spirit to
ours, but the details are quite different. (In particular, he did not introduce an operator.)

We partially also discuss the corresponding exterior mapping problem, where g maps the
exterior of the unit circle S (including the point at infinity) onto the exterior of the curve I'. The
normalizations (0.1) and (0.2) are then replaced by

g(wo) =00, g'(e0)>0 (0.3)
and
g(oo) =0, g(1)=2z,€T, respectively. (0.4)

However, the related methods for doubly connected or multiply connected regions are not
treated. (Some references are given in Section 9.)

The paper is organized as follows: In Sections 1-3 we summarize some mathematical
background material on function spaces, the conjugation of functions, and the Riemann—~Hilbert
problem on the disk. In Section 4 we then present our general definition of the auxiliary function
and derive the corresponding integral or integro-differential equation for the boundary corre-
spondence function. Associated direct iteration methods (namely, the method of successive
conjugation and a projection method due to Bergstrom) are described in Sections 5 and 6, first in
our general framework, then for specific auxiliary functions. In the next two sections Newton
methods, where each step mainly consists of solving a Riemann-Hilbert problem, are discussed
in a similar way. In particular, we show that the methods of Vertgeim-Hiubner [62,34] and
Wegmann [69,70] are equivalent in the sense that they produce the same iterates, if they are
applied undiscretized to the same auxiliary function. Finally, in Section 9, we briefly mention
some further related methods. In the whole paper we mainly consider known methods, but it
should become clear that our general approach also suggests a number of new methods or at least
variants of old ones. Only a few of these are mentioned explicitly.

Concerning applications of conformal mapping we refer, e.g., to [1,25,35,36,45] and the
references in [43], and note that conformal mapping is a competitive tool for grid generation,
which is surveyed in [47,58,59,60].

1. Function spaces

Let us fix some of our notation now and define a number of function spaces that are either
relevant for the problem or helpful for understanding the background material. )

2m-periodic functions are written either in terms of a variable 1 € T (where T is the quotient
space T:=R/2wZ) or in terms of w = e'’ € S. The complex function spaces L?(T) (1 < p < o),
C(T), C™(T) (m € Z™) are defined as usual, see, e.g. [40,53]. For 1 <p < o

N/, = [(Zﬂ)_l'frlf(t)vdt]l/p.

If the variable is w=e'’ instead of ¢, we write L?(S), etc., and if we want to stress that a
function f&€ L?(T), say, is real-valued, we write f& L?(T, R). Equalities between values of
L?-functions are in general assumed to hold a.e. only.
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The Fourier coefficients of a function f& LY(T) [or f& L'(S)] are denoted by f,:

£ :=—2%frf(t) e ikid {orfk :=21—ﬂfrf(e“) e_“"’dt], kez (1.1)

By using the Fourier coefficients with nonnegative index as Taylor coefficients we can associate
with f€ LY(T) [or L}(S)] the function

f(z)=Y fiz*, zeD, (1.2)
k=0

which is analytic in D. (According to the Riemann—Lebesgue lemma f, — 0 as | k| — oo, hence
the radius of convergence of (1.2) is at least 1.)
The Hardy space H? (1 < p < o) can be defined as a subspace of L?(S):

HP={feL?(S); f,=0(Vk<0)}. (1.3)

However, it is clear from the above that the domain of the functions in H” can be extended to D
by setting f(z):=f"(z) (z € D). One can then show that

f(e)= liﬁf(p e’) ae.onS (1.4)

[16, p. 57; 40, p. 86; 53, p. 368]. (More generally, this holds with any nontangential limit.)
Therefore, a better definition of H” is

H?:=={f: D>C; fl,€A4(D), fls€L?(S), (1.4) holds}. (1.5)

Here f|, and f | are the restrictions of f to D and §, respectively, and 4(D) is the space of
functions analytic in D. By 4(D) we denote the space of functions analytic in D and continuous
in D. Of course, A(D) is a subspace of H*, which is often introduced as the space of bounded
analytic functions in D. (In fact, a third, analogous definition of H” is the most satisfactory
[9,16,40,53}).

Since LY(S)c L?(S)if 1 < p < g < oo, we have also H? C H?. Furthermore, it is worth noting
that Cauchy’s integral formula holds for f&€ H” [9, p. 40; 53, p. 369].

For the discussion of the exterior mapping problem we denote by Z° the complement with
respect to the extended plane of any set Z C C, and we consider spaces of functions analytic in
D¢ (including o), such as A(D°) and H?(D°®).

There is often the need to indicate that the values of some fe& C(S) [or f€ C(T)] are
boundary values of some function in A(D), and we simply write f€ A(D)|s [or f€ A(D)]]
then.

Further function spaces playing an important role here are the Lipschitz classes Lip*(T)
(0<axl,

Lip(T) = { f& C(T); 5 (f) < 0}, (1.62)
with the semi-norm
vo(f) = sup 'f(”l?l:f“)' , (1.6b)
157

the Holder spaces C™*(T)(m€Z, m>0,0<a<]l),
cme(T)={feC™(T); fmeLip(T)}, (1.7)
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and the Sobolev spaces W™P(TYy(me Z, m>0,1 < p < o).
wme(T)={fe C" Y(T); f" Vabs.cont., f™e& L°(T)}. (1.8)

VoV 2k vrrQ. 070 TN /1 £

In particular, C%*(T) = Lip*(T") and W%?(T)= L?(T). Several norms are in use for (1.6), (1.7),
and (1.8), e.g.,

WA =11 fllo+ vl f™) (1.9)
fr\rfm“’/’r / >n n<m<1\onr‘
AN N \‘ \ll/\l,v M\L/ CLLENG

A0 =max{ [l fllos I/ Wareos NS M en 1S, ) (1.10)

or

/r - 11/ .
(oIP+I/ ™07 ifl<p<eo,

Nfll= (1.11)

if p=o0

for W™?(T) (m > 0) !. With these norms the spaces are Banach spaces. However, we will often
make use of the fact that apart from addition and scalar multiplication a number of further
operations do not lead out of these spaces:

Lemma 1.1. Letc€C andf, ge C™NT)(m>0,0<a< 1) [orf, ge W' (T)(m>0,1<p
< o0)]. Then the following functions lie in C™*(T) [or W"'+1 ?(T)] also:

of + 8, (1.12a)
i (1.12b)
f/g if 0&g(T), (1.12¢)
Re /, Im f, (1.12d)
exp(f), (1.12¢)
|f| if0&f(T) or m=0, (1.12f)
log f if 0&f(T), #f(T)=0, (1.12g)
hof ifeitherm>1andhe C™*(f(T)) (1.12h)

orm=0 and h € Lip'(f(T))

[if he wm+l=(£(T))],
flg()+()) zfgis real-valued and either (1.12i)

>1orm=0 andfe Lip(T)
[if g is real-valued and f€ W™ +1=(T)].

In (1.12g) #£(T) denotes the winding number of f(¢), ¢t € T, with respect to 0. Since it is 0, there
exists a continuous branch of the logarithm. In (1.12i) we used an empty bracket to denote the

' One could replace the sum in (1.9) by a maximum and the maximum in (1.10) by a sum. For Sobolev spaces of

non-nariadic functians the norm /\" u £ nerl/p sdaly sead
A1V y\vll\lul AUV LIVLIID WIC 1IVLIL \ 0 ” j ”p } la Wlucly ubcu
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identity function (following a proposal of C. de Boor):
():t—>r. (1.13)

In particular, g( )+ ( ) is th

the
implicit equxvalence mod lo 2.
The rules (1.12a)—(1.12h) have been compiled by Bernhards

n
The rules (1.12a)—(1.12h) ha P
Wmtle to W"Z; our assumptions in (1.12h) are also less restrlctxve than his.
nrnnerhec (1 17h\ and (1 12h) of C™ T) ar

ties (1.1 and (1.1Zh) (1 e.g., also proven in Hormander [31], where many
results on multlvanate Holder spaces are summarized.

—..', Loy G300 P PGS0

Outline of the proof of Lemma 1.1. All the functions involved are continuous on a compact set.
Therefore 0 & f(T') implies that f(7) is bounded away from zero, hence (1.12e)-(1.12g) are

special cases of (1.12h). The rules (1 12a) and (1.12d) are trivial.
For the case [0, a] the somewhat surprising results (1.12b) and (1.12c) are proved in [48, p. 13].
(1.12h) and (1.12i) are readily verified. In particular,

L (L .
v (ko fy<w(h)idf).

In the cases [m, a] with m >0 [and (m + 1, p) with m > 0] (1.12b) is verified by applying the
Leibniz product rule for differentiation, and for (1.12c) one has just to insert the derivatives of
1/g instead of those of g. For (1.12h) one proves first by induction that

fec™T), heCm ' (f(T)) = hofeCm (T) (1.15)

o~
pnd
~——

fEWHT), he Wn=([(T)) = hofe WmH(T), (116)

respectively]. For m = 1 one has in particular

1\

vlho fi<vR}iiflis
{and, since [[(he fY N, <A N1 f1l 5
lhefll < maX{Ilhllw WA N LS, } < RN+ £1) (1.18)

in the case (1, p)]. The induction step is then an immediate consequence of the chain rule
(heo fY(t)y=hn(f(t))f'(2), and (1.12h) follows from the chain rule and (1.15) [(1.16)].
Of course, (1.121) is proved analogously. O

?

—~
[
—
~J

—

One may wonder how the spaces C™*(T) and W™ ?(T) relate to each other. Clearly,

c™*(T)c c™(T)cC™*(T)c C™(T) if0<a<axl (1.19)
and

wmri N (TYc wmP(T)c W™P(T)c W™ (T) if1<p<p< co. (1.20)
Moreover, it is easy to see that

wmrlte(T)= C™Y(T) (1.21)
and from a result of W.H. Young [75, p. 105] one knows that

wmrle(Tyc C™1-VP(T) if p>1. (1.22)
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As mentioned, functions defined on S can be considered as functions on 7, and vice versa.
Corresponding to this substitution we define operators I, and I, =I5} by

h=Igf, f=Iysh, if f(1)=h(e"). (1.23)

2. The conjugate periodic function

The conjugatzon operator K: L*(T)— L*(T) is defined by associating to f € L*(T) with the

f~ X fe (2.1)

kel

the conjugate periodic function Kf with the Fourier series

Kf~ —i Y sign(k)f, e'*. (2.2)
kez
Since | f, | = | —i sign(k)f, | (k+0), since f& L¥(T)iffL|f, |>< o0, andsince || f|2=X]| [ |2

it is clear that Kf€ L*(T) and || Kf |7 = flI7 — |/, |* Hence K is a bounded linear operator
on L*(T), and its norm is

”‘\ “2= 1. (2'3)

The same remark applies to the Sobolev space W™2(T) with norm (1.11) since its elements can

also be characterized by a growth condition on the Fourier coefficients, Lk>™ | fk |* < o0, and
since the norm depends only on the moduli of the Fourier coefficients. Thus

m2 m2 —

K(wm(T))c W™X(T), |K|=1 (2.4)
if the norm (1.11) is used. Wegmann [70] has shown with an ingenious construction that in the
case of W'? (i.e. m=1) with norm (1.10) one has || K || < w/V3. (Actually, the main estimate
NKf . <wm/V3 )| fIl, of the proof was also given by Friberg [12].)

fu

sa
nctions with f, =0, which form subspaces of codimension 1 of the
nd Wm™(T), t

J
If we consider on
Hilhert spaces LZ(T

LAAAUVI!- Spaves

operators, and

K;'=K¥r=-K,. (2.5)
On L*(T) and W™¥(T), K is still skew-symmetric,
K*= -K, (2.6)

but no longer invertible, since its kernel is the set of constant functions.
The domain of K can be extended to L'(T): f€ LY(T) is replaced by a function f, smoothed
by the Poisson kernel; then, for almost every ¢ the limit of

oC
el VU ol LYk F -ikt /i~
Kf(t)= L, SIBMAK)rj, € \<.7)
k=—o0
as r 2T ranm bha caanm ta avigts hawviacae tha Timars £ nel o mmaad s b S Tl TAN . LAY YL
as { 1 Can o€ SCCIn 10 CXist; NOWCVCI, ulc uuuL luuu.luu 1\_/ 1CCA 110t DT 11 L (1 ) |9V, P. O4]. 11 11
is, then formula (2.2) still holds, and only in this case is the series in (2.2) a Fourier series of some
function in LY(T) [40, p. 64). For 1 <p < co it was shown by M. Riesz that X is a bounded
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linear operator from L?(T) into itself:
K(L?(T))cL/(T), |K|,<oo, l<p<oo (2.8a)

(see, e.g., [16, p. 113], [40, p. 68], or [53, p. 380]). However, || K| ,=0(1/(p—1))as p—1, and
IK|i,=0O(p)as p— oo (16, p. 113]. Earlier, Privalov had already shown that

K(Lip*(T)) cLip™(T), K<, O<a<l (2.8b)

[16, p. 106). From the fact that conjugation and differentiation commute as long as all functions
involved remain in L'(T), it follows then that in any of the norms mentioned

K(Wmr(T)c Wme(T), ||K||<o, m>0, 1<p<oco, (2.8¢)
K(cma(T)) cC Cm.a(T)’ ”K” < oc, mz> O, O<a<l. (28d)

Unfortunately, some other important spaces besides L'(T) are not mapped into themselves by
K. There exist continuous functions whose conjugate functions are unbounded [16, p. 105]; hence

K(C(T)) ¢ (1), (2.92)

K(L=(T)) ¢ L=(T). (2.9b)
Other examples (e.g., [75, p. 157]) show that

K(Lip'(T)) ¢ Lip'(T). (2.9¢)

A fortiori, (2.8¢c) does not hold for p=1 and p = oo, and (2.8d) does not hold for a« = 1. The
so-called Dini-continuity of f suffices to guarantee that Kf € C(T) [16, p. 106]; this is a weaker
condition than assuming that f& Lip*(T) for some « > 0, but it is rather impractical.

In the basis {e'*'},., of L*(T) the conjugation operator as defined by (2.1), (2.2) is
represented by the biinfinite diagonal matrix

K = diag(~1i sign(k))cz. (2.10)

Hence, once a function is represented in this basis, conjugation is nearly trivial. Concerning the
numerical implementation of the conjugation process we are therefore motivated to approximate
f (which in practice may be given on a discrete point set only) by a function whose Fourier
coefficients can be computed rapidly; in addition, it should also be possible to evaluate the
conjugate series fast. Trigonometric interpolation on a set of N equispaced points is a natural
choice since both the (Fourier) coefficients of the interpolating trigonometric polynomial (Four-
ier analysis) and the values of the conjugate trigonometric polynomial at the same points (Fourier
synthesis) can be computed by a fast Fourier transform (FFT), so that the costs are only
O(N log N) operations, see [20,28] for details. Surprisingly, except for a larger overhead,
conjugation of a periodic spline interpolant can be implemented equally efficiently {24]. Both the
trigonometric and the spline interpolant are optimal approximations in certain appropriately
chosen function spaces [6,24]. Unfortunately, trigonometric interpolation suffers often from
Gibbs oscillations. In practice this occurs even when [ is analytic but has singularities close to 7.
‘The effect of these oscillations in numerical conformal mapping is often devastating [22]. A
simple but effective remedy is smoothing, which amounts to multiplying the Fourier coefficients
by certain constants. Step type singularities of f or its derivatives can be taken into account
analytically [24]. For some situations rational trigonometric approximation (or interpolation) of f
seems promising, cf. [23].
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The importance of the conjugation operator for our conformal mapping problem (or, gener-
ally, for functions analytic in the unit disk) is apparent from the following two theorems.

Theorem 2.1. Let h € H', and set

£(t)=TRe h(e"), mn(t)=1Im h(e"), teT. (2.11)
Then,

n(t) =%, =K&(t) (a.e.onT), (2.12a)

£(t)—€,= —Kn(t) (ae.onT), (2.12b)
and

£, =Re 4(0), #,=1Im h(0). (2.12¢)

Proof. By our definition of H', h € L!(S); hence, trivially, ¢ € L'(T) and n € L'(T). For any
h € L'(S) the relations

§(0) = [m(e) +FEN]. (1) = 3 [A(e) — 7] (2.13)
are transformed into
b= bt b = g he-Ty). (2.14)
But here 4 € H!, hence
Lhy, k>0, —%ilk, k>0,
£ ={Reh,, k=0, f,={Imh,, k=0, (2.15)
Vi k<O, %E k <0.

In view of (2.10) the relations (2.12) are now readily verified. O

Theorem 2.1 of course applies in particular to h € H? (1 <p < ) and to h € A(D). In the
latter case &, n€ C(T).

For our application to conformal mapping it is also important that the converse of Theorem
2.1 is true:

Theorem 2.2. Assume £, n € LP(T, R) (1 < p < o) satisfy (2.12a) or (2.12b). Then the function h
defined by
h(e):=¢(¢) +in(z) (2.16)
is in H?, and all relations (2.12a)-(2.12¢) hold.
If §, € C(T, R), then h€ A(D).

Proof. Clearly, h € L?(S) and h, = £, + i%,. From (2.10) it follows that &, =0, Vk < 0; hence
h € H?, and Theorem 2.1 holds.
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If £, ne (T, R), then Re & and Im h_are both solutions of a Dirichlet problem (with
continuous boundary values), hence h€ A( D). O

Naturally there are also versions of Theorems 2.1 and 2.2 that apply to functions analytic
outside the disk (including at co).

Theorem 2.1". Let h € H\(D®), and define ¢ and w by (2.11). Then

n(t)—9,=—K&(r) (ae.onT), (2.122")

£(t)—£,=Kn(t) (ae.onT), (2.12b")
and )

£,=Re h(w), #y=1Im h(e0). (2.12¢")

Theorem 2.2’ Assume &, n€ L?(T, R) (1 < p < o0) satisfy (2.12a’) or (2.12b°). Then h defined by
(2.16) is in H?(D*®), and all relations (2.12a")—(2.12¢") hold. If £, n € C(T, R), then h € A(D°®).

By simply computing a conjugate function, Theorems 2.2 and 2.2" allow us to construct for a
given real part £ (or an imaginary part n) two functions L& and Lgé (or LTn and Ly n) that
are analytic inside and outside the unit circle, respectively. If 1 < p < o0,

Ly: L°(T,R)— H”, Ye(e)=((I+iK)¢)(1), (2.17a)
Lg: L°(T,R) - H?(D?), Lgé(e")=((1-iK)¢)(2), (2.17b)
Ly LP(T,R) > H”, Lig(e")=((-K+il)n)(1), (2.17¢)
Ly: L?(T,R)— H?(D®), Lin(e")=((K+il)n)(1), (2.17d)
and
'4-1./\ v—bA oI » 4+ A ry - A_n -~ 10
[Lkéio’ [Lkéjo’ i[L} 1o, {Linjo€ER (2.18)

Similarly, for every a € (0, 1],
, Ly : Lip” (T)— A(D), Ly, Ly: Lip*(T)— A(D°). (2.19)

Often, in partlcular when solving the Riemann--Hilbert problem of Section 3, we are interested in
these operators rather than in the conjugation operator, which serves here as a tool. In practice,
the Fourier analysis of £ (or 7) furnishes us with the Taylor coefficients of Li and Ly (or Ly
and L7) directly.

Finally, we should mention that the conjugation operator is a singular integral operator: if
fe€ LY(T), then for almost every t€ T

Kf(1) = ——Pvfcot( )f(s)ds |
= 2% lim /; cot( )f(s)ds (220

[16, p. 103; 40, p. 79]. Often this principal value is used to define the conjugate function. But we
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believe that definition (2.2), which is linked to Fourier analysis, is preferable since some of the
main applications (such as Theorems 2.1, 2.2) and one of the best numerical implementations
(trigonometric interpolation using the FFT) become immediate. There are a few instances where
(2.20) is actually used in applications. One is the method of Menikoff and Zemach {46], see
Section 9; another is Berrut’s integral equation [5].

~ AN

Using (2.20) it is not difficult to prove

Kf(=( )(t)=—Kf(-t) (ae.onT). (2.21)
Similarly, the operators in (2.17) can be written in integral form. For example, L is given by
Schwarz’s integral [16? p. 102]:

fmg(s), weD. (2.22)

The formula remains correct a.e. on S if we replace the integral by a principal value integral.

3. The Riemann-Hilbert problem on the disk

The most promising methods for mapping the disk conformally onto a Jordan region with
smooth boundary make use of the fact that Riemann-Hilbert problems on the disk can be solved
very efficiently. In theory, the solution can be written explicitly in terms of two conjugate
functions; in practice basically just four FFTs are needed to compute it. In our nonstandard
setting the basic result is

Theorem 3.1. Let a € C(T) be nonvanishing on T, so that it has the form
a(t)=aft) e itm+etn (3.1)

with a € C(T R*) e C(T R), and me Z (—m is the winding number of a(T) with respect to
U} Assume that l\(p = \,\1 , IN), and let p S L”(T, R) (1 <p< w} The Riemann—Hilbert p‘i‘Obz’em

consists in finding a function f € H? such that

Re{a(t)f(e')} =B(t) (a.e.onT). (3.2)

If m > 0, this problem has the general solution

J e = 5 (1A

f(w)=[ig(w) +w"L}o(w)] eliet), (3.3)
where
0(1)’= B(t) eK¢a(l) (34)

alt)

and q is an arbitrary self-reciprocal polynomial of degree 2m (i.e. q satisfies g(w) = w?"g(1/w)). ?
If m <0, (3.2) has no solution f € H” unless

6,=0, k=0,...,—m~-1, (3.5)

in which case the function f of (3.3) with q =0 is the unique solution.
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Proof. Assume a solution f& H” of (3.2) exists. Since ¢, K¢ € C(T, R), we have LT ¢ € A(D),
and hence s defined by

s(w)=w""f(w)e Lietw (3.6)
i1s in w™"H? (i.e. w— w"s(w) € H?). According to (3.2) and (2.17¢)

B(t)=Re{a(r)s(e") exp[L{o(e") - i¢(1)]}

=a(t) e **Re s(e'),

Re s(e") =0 (7). (3.7)

On the other hand, it is easily verified that every solution s € w™"H? of (3.7) leads by inversion
of (3.6), i.e. by setting

f(w)=wrs(w) etiet), (3.8)

to a solution f& H? of (3.2). Hence we have to study the set of solutions of (3.7).
Flpar]v o LT LQ\ and thus *o = I—IP cf. {7 1'79\ Therefore s:= L;G is an admissible

..... — a4y isRY = 4 i lIvAvAIVI

solution of (3.7) if m=0, and in the case m= 0 tlns solution is unique up to an additive
imaginary constant ig,. If m > 0, the dimension of the solution space of the linear system (3.7)

.......... COIoE4l] - 223220032 2 L SRR Pkt cal

can increase by at most the real dimension 2m since H? has complex codimension m as a
subspace of w™"H?_ If 2, denotes the set of polynomials of degree at most 2m, then the set

{woiw™"g(w); g€ 2, w"g(w)=w"q(1/w)} C w "H?, (3.9)

which forms a real linear space of dimension 2m + 1, consists of solutions of the homogeneous
equation Re s(e'’)=0. By our dimension argument it must be the full solution space of the
homogeneous equation. Hence (3.7) has the general solution s(w) = Lzo(w)+iw~"g(w) with g
as in (3.9). Inserting it into (3.8) finally yields (3.3).

If m <0, (3.2) can have a solution f in H” only if the solution L}e € H? of (3.7) happens to
be in w™"HP’. In view of (2.2) and (2.17a), the condition (3.5) is clearly necessary and sufficient
for this. (The additive imaginary constant is no longer allowed since it is not in w™"H?.) O

The integer 2m is called the index of the Riemann~Hilbert problem (3.2).
For the purpose of our applications to conformal mapping we are interested in certain
particular solutions of problems with index 0 or 2:

Theorem 3.2. Under the assumptions of Theorem 3.1 the following holds:
(i) Ifm=0 and ‘.E’o — o & nZ, (3.2) has a unigue solution f & H” satisfying Im f; =0, namely
the one where in (3.3)
g{w) an ¢ . (3.10)
@) If m=1 and (2>0 —ineaZ, (3.2) has a unique solution f< H? satisfying fo =0 and
Im f1 =0, namely the one where in (3.3)

g(w)=gw= —wé, tan ;. (3.11)
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Proof. (i) By the mean value principle for analytic functions and by (2.2) and (2.17a, c), we see
that

[CL;¢](’)‘ = eLi®O _ gidy
[LKU]Q = 6y,
=[ig+ L}a]g [ ""] (1gy + 6,) €. (3.12)

The assumption on ¢0 implies that eive S \{i, —i}. Since q is a self-reciprocal polynomial of
degree 0, g(w)= g, € R. Hence, if é,=0, clearly Im f, =0 iff §,=0. If 6, # 0. we need to
determine g, such that

arg{igo+6,} = — ¢, (mod =),

L.e. arctan(g,/6,) = — &O
(i)) If m =1, the additional factor w in (3.3) has the effect that (3.12) is replaced by f0
ig, €. Hence f, = 0 iff Go = 0. But then

fi=(ia o+ [Lol)lete]s = G+ 50) e,
where §, € R since ¢ is self-reciprocal of degree 2. Obviously the determination of §, becomes
identical to the determination of §, in (i). O

The smoothness of a@ and B has of course an effect on the smoothness of f. Assuming
t—ema(t)e C'¥(T) [or w*io(T)],

Be C"%(T,R) [or W'*1P(T, R) respectively]

for some integer /> 0 and some & € (0, 1) [or p € (1, o0)], we conclude from the rules (1.12) and
the results (2. 8) that the functions a, ¢, K¢, eX*, o are all in C"4(T, R) [W'*?(T. R)] and that
L}o, LT¢, €M%, and finally f lie in C**(S) [W/*"7(S)]. Thus we get

(3.13)

Theorem 3.3. In addition to the assumptions of Theorem 3.1 suppose that (3.13) holds for some
integer 1> 0 and some & €(0, 1) [or some p € (1, 0), respectively]. Then the solutions f of the
Riemann—Hilbert problem (3.2) satisfy f|s € C"*(S) [or W!*1'2(S), respectively].

The case /=0, @ €(0, 1) (i.e. " a € LipX(T), B € Lip*(T, R) corresponds to the standard
treatment of the Riemann—Hilbert problem [30,48].

Naturally, there is also a version of the Riemann-Hilbert problem where the function sought is
analytic in the exterior D° of the unit circle:

Theorem 3.4. Under the assumptions of Theorem 3.1 the functions f € HP( D°) satisfving (3.2) are
in the case m <0 given by

f(w)=[ig(1/w)+w"Lza(w)] elie, (3.14)
where

o(t)= E((:—i —Ke® (3.15)
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and q is an arbitrary self-reciprocal polynomial of degree —2m. In the case m > 0, the problem has
no solution except when 6, =0, k= —m+1,...,0; then g =0 yields the only solution.

The proof is nearly word-for-word identical to that of Theorem 3.1. The substitution of g(w)
in (3.3) by ¢(1/w) in (3.14) is due to the fact that (3.9) is replaced by

{w—iwmg(w): g€ ?_,,,, wg(w)=w™"G(1/w)} Cw™"H?(D*).

The analogues of Theorems 3.2 and 3.3 for the exterior problem are also easily established.

4. A general approach to deriving integral equations for the boundary correspondence function

Now we are ready to attack the conformal mapping problem. The boundary I” of the Jordan
region A is assumed to be rectifiable and given in parametric form

I={y(t), teT}. (4.1)

y is assumed to be a regular parametrization of I, so that y€ W!*(T), 1/y’ € L®. Further
smoothness assumptions will be made later.

We first concentrate on the interior mapping problem, but at the end of this section we
indicate the few modifications required for the exterior problem, which will also be covered in
some of the examples of Section 6.

One of the key facts in numerical conformal mapping is that the mapping function, which we
now call g, (i for interior), is uniquely determined by its boundary values. (Since g; € A(D),
Cauchy’s integral formula is valid.) Hence, it suffices to compute first the reduced boundary
correspondence function 7, € C(T, R) satisfying

gi(e")=y(r (1) +1), (4.2)
which is determined up to an irrelevant additive multiple of 2x, and thus may be normalized by

--'n'<['ri]0'\<'n (4.3a)
or

—m<7,(0) <. (4.3b)

Many formulas involving y are simpler if one works instead with the boundary correspondence
function 8, related to 7, by

0,(1)=mr(2)+1,

which however is not periodic and therefore is not directly accessible to Fourier analysis. (8,
could be considered as an element of C(7, T), but then §; and 7, would be related by an equality
modulo 2w, which we prefer to take care of implicitly when composing y with 8,, cf. (4.2).)

Our basic notation for the interior mapping problem is summarized in Fig. 1.

Of course, the smoothness of I" and v is related to the smoothness of g, and 7. In fact, many
results on this connection have been obtained in the past [18, pp. 417-428; 41,44,51,52,54,55,
63-65,67,68]. We cannot go into the details here, but we assume that one of the following typical
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®

eit i(eit)
93 Y8, (t))
— S i
Y(ri(t)+t)

Fig. 1. Notation for the interior mapping problem.

situations applies to our problem:

Case (im+1, p)(m=0,1<p<o0):
y&€ WmH=(T,R)=C"YT, R),
r,€ WP (T, R), yo 8, € Wmtlr(T), (4.4a)
gls€Wme(S), g™meA(D).

Case [m, a] (m>0,0<a<]1):
c™(T,R) ifm>1,
Lip{T,R) ifm=0,
1€ C™(T,R), yo8C™(T), (4.4b)
gils€C™(S), gmeA(D).

Note that by (1.12i) the assumptions on y and 7; imply the statement on y e 8,, which in turn
implies trivially the statements on g;.

For example, if I is piecewise analytic and |y’(¢)| is constant a.e., and if ar€ (0, 7) is a
lower bound for the smallest interior angle and 1 < p <(1 — a)™!, then the cases (1, p) and [0, a]
are known to obtain under mild additional assumptions, see [44,22] and [68], respectively. If
vy &€ C™%T, R) with m > 1, case [m, a] is implied by a result of Kellog and Warschawski [18, p.
414; 63,64,67].

We now introduce an operator H such that the auxiliary function mentioned in the introduc-
tion is the image of g; under H. 9, and %, denote the domain and the range of H.

Definition of the operator H: Assuming case (m + 1, p) or case [m, a] and 0 </ m, let

H: 2,cC(S)->2,cC(S) (4.5a)
be a (possibly nonlinear) operator of the form

Hg(w):=h(g(w), g'(w),...,g"(w); w), weS, (4.5b)
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with the following properties:

(1) DE =D, N\ W*TP(S) = Rf=H(DE)C W"P(S)
or

DE=9,NC'S) = R5=H(D)C Lip*(S).

respectively;
(ii) 8ils€ €9, and Hg,|s€ A(D)|s;
(ii1) H is continuous at g;|; with respect to both the spaces in (4.5a) and those in (i);
(iv) H is invertible, i.e. given r € #,,, there is a unique H™'r =g € 2, such that Hg=r;
(v) re®,NA(D)|s = H 'reA(D)|s;
(vi) H™! is continuous at Hg,|¢ with respect to both the spaces in (4.5a) and those in (i).

We are particularly interested in cases where both H and H~! are given by simple formulas,
e.g.

g(w)

Hg(w)=log>=—=, g(w)=we"s™, (4.6)

Basically, iterative methods for the mapping problem iteratively modify some given function
g€ @H in such a way that its 1mage under H approaches Hgl |s- (The reader may wonder why
the trivial choice Hg = g is not the best. One reason is that, for example, the i
makes it easier to take care of the normalization (0.1).)

A crucial puuu is that ng |S can be written in terms o
(unknown, but real-valued). More generally, whenever

0(t)=r(t)+1 (4.7)
and 7 € C/(T, R), the function g defined by

g(e')=v(8(1)) = v(7(1) +1) (4.8)

satisfies
g'(e")=—ie "y (0())0(t),..., g0 ()= ... (4.9)
If g€2,, we get
Hg(e")=h(v(8(1)), —ie y'(8(1))8°(1),...; €")
= h(r( (1) +0), =iy () ) () 4 D), )
=:Gr(1). (4.10)

Using our operator I,¢, which redefines a function of w in terms of ¢, we can write this simply as
Gt = I, Hg. Thus (4.10) defines an operator

G: 95— R;C Irs(Ry), 17— Gr:= I, Hg (4.11a)
on some 9; C C'(T, R) containing
22:={7€ C'(T, R); (4.8) holds for some g €9,)}. (4.11b)
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From Lemma 1.1 and assumption (4.4) we know that

€ WP (T, R) —» yolfe Witle(T), (4.12a)

reC"(T,R) = yof8eC(T), (4.12b)
respectively. Hence, property (i) implies that for 2, = 22

DE=D;N WP (T, R) = RE=G(DE)c W'r(T), (4.13a)

DE=9;N C"*(T,R) = R&=G(2g) < Lip*(T), (4.13b)

respectively, and we require that this hold still if Z; > 2.
Now, Gr,=I;gHg|s€ A(D)|, by property (ii), and hence Theorem 2.1 applies. More
generally, whenever Gt € A( D) |, the relations (2.12a) and (2.12b) hold for

§:=Re Gr, n=ImGr, (4.14)
and they yield two basically equivalent equations of the form

Yr(t)=y(r(2), 7'(¢),...,7"(t); t) =0, (4.15)
where either

¥r(t)=q(t) — i — K&(1) (4.16a)
or

Pr(t)=4§(e) =&+ Kn(1). (4.16b)

Note that in the case /=0 we have simply

£(¢)=Re h(y(8(¢)); e), n(t)=1Im A(v(8(1)); e").
Since ¥ contains the conjugation operator K, (4.15) is in view of (2.20) a nonlinear singular
integral equation for 7 if /=0 and an integro-differential equation for 7 if /> 0.
The operator ¥ is naturally defined for any € 2, but in general ¥r need not be a
continuous function (cf. (2.9a)):

V: 9y:=9,-> R, C L*(T,R). (4.16¢)
However, in view of (2.8b), (2.8¢c), and (4.13) it is clear that

R = ¥(DL) < W' (T, R), (4.17a)

R = ¥(92&) C Lip*(T, R). (4.17b)

Theorem 4.1. If 1€ 2 := 2 is a solution of (4.15), then
(H_IISTG"')(CH)='Y(T(t)+t), teT, (4.18)

and these are the boundary values of some g € A(D) which maps D conformally onto A. There exists
exactly one solution T normalized by (4.3a) or (4.3b) such that g satisfies the normalization (0.1) or
(0.2), respectively.

Proof. (A generalization of Gaier’s proof for Theodorsen’s equation [15, p. 55].) The existence of
a solution 7 with the stated properties is an immediate consequence of the existence of the
solution g; of our mapping problem and our derivation of (4.15); in particular, T, €2,



48 M_.H. Gutknecht / Mapping methods based on conjugation

Is;GT = Hgl hence by (4.2) 7, satisfies (4.18).
Let us in turn assume that 7 € @ is any solution of (4.15). Then Gt € A(D) |, by Theorem
2.2, and according to properties (iv) and (v) of H,

g=H '1,Gre2,nA(D)|s,

and this function satisfies (4.8) and (4.10); hence (4.18) holds. From (4.8) it is clear that g maps
S onto I' and that g(e'’) winds around I' once while e winds around S. By the argument
principle g is therefore a one-to-one map of D onto 4, and hence conformal. Finally, it is well
known that the mapping function is uniquely normalized by (0.1) or (0.2). O

Note that properties (i), (iii) and (vi) of H have not been used in the proof of Theorem 4.1.

In Section 6 we will apply the theorem to particular operators H, i.e. to particular integral and
integro-differential equations. It will turn out that the assertion still holds under the weaker
assumption 7 € 9,, (instead of 29).

When presenting examples in Section 6 it will be our policy to restrict the domain 2, so that
(4.15) has only one solution, which takes account of the normalization (0.1) or (0.2). (In some
cases g’(0)> 0 is actually replaced by the weaker conditon g(0) € R, so that there are two
solutions.)

Another simple but useful result is

Theorem 4.2. If | < m, the operators G and ¥, restricted to 2{ N W'*1-#(T, R), are continuous at
T =T, with respect to the norm of W!+VP(T) in the domain and the norm of W'?(T) in the range.

For the proof we need

Lemma 4.3. If y€ W™*'(T) and [ <m, 1 < p < o, the nonlinear operator F: W'* (T, R) -
W!*1p(TY defined by F. 7~ y(1( )+ ( )) is continuous.

Proof. Let =7+, § =0+ 8, and_j </+ 1. Note that

& o=y e 8)(1)= 2 [(y s )8~ (v = 0)87](1)

de’ de/=!
d/7!
4
o e e R A A DLt (189=(1)).

Here, y' o § € W!*1» by (1.12i). If || || denotes the norm (1.10) of W'*!#(T), we conclude that
for j <! the L®-norm and for j=/+ 1 the L?-norm of the above function is bounded by

plORIlE ool o).

[(y' o8-y 28)8 (v 0)8](s)

||f7||+

dt’( dt‘(

We claim that ||d*(y’ e 8-y’ 8)/dt°|, = O(Zf(=0||8(")[|m) whenever y' € W**1* and 6, §
€ W**_ This can indeed be shown by induction, using the same arguments as above. 0O
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Proof of Theorem 4.2. By Lemma 4.3, 7 — y o 8 is continuous; by (iii), g:=y c 8§ » Hg=I3; G~
is continuous; clearly, Gt — §:= Re G7 and G+~ 7n:=Im G are continuous; and by (2.8¢c) K is
continuous on W'?(T). O

Our approach is readily modified for the exterior mapping problem. The properties required for
H remain basically the same; of course, g, is replaced by g, and in (ii) 4(D) | is replaced by
A(D°). Moreover, (v) becomes

H 'r(w

(v) re®,NA(D)|s = w'—*—;quA(DC)IS.

No further modifications are necessary up to the definition (4.16) of ¥, where the sign changes
between Theorems 2.1 and 2.1’ have their effect: now, either

Wr(t)=n(r) 7o+ KE(1) (4.19a)

r(t)=£(t)— & — Kn(1). (4.19b)
There is always a trivial second approach to the exterior mapping problem: by inversions

z—1/z and w— 1/w in both planes it can be transformed into an interior problem for the

boundary curve I';:= (z; 1/z € T'}. Let g;, 8, be the solution of the latter. Then we have
vi(0:(1)) = gi(e") =1/g.(e7) = 1/7(6.(~1)). (4.20)

If ¥.7=0 is an equation of type (4.15) with /=0 for the interior problem, substituting (4.20)

into it leads to an equation of the same type for the exterior problem. If /> 0, substitution

formulas for the derivatives v/ and §; have to be derived by differentiating (4.20). Examples for
this second approach are also given in Section 6.

5. Direct iteration: methods of successive conjugation and Bergstrém type methods

Theorem 4.1 motivates us to try to solve (4.15). A first approach to this is direct iteration or, as
it may be called here, successive conjugation: Assuming that ) is actually present in (4.15), we
rewrite (4.15) in the form

rO()=07(t)=¢(7(¢), 7'(¢),....,7V(2); 1) (5.1)

with an operator @ defined in some 9, C 9, = 9, whose values on D§:=%,N W+ and
D& =Dy N C"* are supposed to satisfy

Ry=0(25)c {0 € W'P(T, R); o =1 for some r€ D¢},

L=

~—
h
N
0

~—

xS )

A s — e
Ry=D(2;) < {0 €Lip’(T, R); o =1 for some TEDE].

o~~~
w
[\
o

p —

In particular, @7 must be the /th derivative of a periodic function, i.e. we must have

[®r]0=0 ifI>0. (5.3)
We assume that (5.1) is equivalent to (4.15) in the sense that

&Or=1" iff ¥r=0, (5.4)
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and we also suppose that the continuity of ¥ as expressed in Theorem 4.2 is reflected in
continuity properties of @. In specific cases, such as when ¥r = @r — 7, this is trivial.
The following iteration suggests itself for solving (5.1):

=@r, if =0, (5.5a)
7,..(¢) _ff V@1, (1)dt,...dt, teT,if >0, (5.5b)
n=20,1,.... Of course, an initial approximation 1, € & (or Z¢&) must be given. Note that there

is only one free constant in the integration in (5.5b) (all the others are eliminated by the
periodicity requirement), and this constant is easily determined in the case of normalization (0.2),
which we assume to imply that 7,,, € @& (or D¢, respectively) in accordance with assumption
(5.2). Then iteration (5.5) is well defined.

Since 7Y may appear in @ also, there are infinitely many ways to transform (4.15) into (5.1),
but often there is a ‘natural’ one. The hope is to find one for which (5.5) converges fast. If
convergence takes place, it is typically linear.

In practice one of course has to discretize. If sufficiently many points are used, this usually has
little influence on the local convergence behavior of (5.5), but discretization may create additional
solutions of (4.15) for which § may not even be monotone [22,33].

Direct iteration methods include, e.g., Theodorsen’s method (/= 0), the Melentiev—-Kulisch
method (/ = 0), Timman’s method (/= 1), and Friberg’s method (/= 1), see Section 6.

In Theodorsen’s method convergence can be improved drastically by applying suitable
convergence acceleration techniques [21,22,32], cf. Section 6; these, on the other hand, can be
considered sometimes as direct iteration methods corresponding to another version of (5.1).

The standard way to establish global convergence of (5.5a) for arbitrary initial approximations
T, in D, consists in proving that @ is a contraction on D, i.e. P(D,) € D, and in some norm

| @7~ ®F|| < L|7—=7||, 7,7€ED, (5.6)

with a fixed L € (0, 1). If this holds only for some (possibly small) neighborhood 2 of 7, we get
local convergence. In particular, the Lipschitz condition (5.6) follows if @ is Fréchet-differentia-
ble at 7, @ is uniformly bounded on 2,, and any two points 7 and 7 of &, can be connected
by a rectifiable arc whose length is O(7 — 7). According to Ostrowski’s theorem [50, p. 300}, the
local convergence of discretized versions of (5.5a) can be proved by showing that the moduli of
the eigenvalues of the discretized F-derivative @; are bounded by some L <1.

The same remarks apply to (5.5b) except that @ is replaced by the composition of an /- fold
integration operator with @.

Unfortunately, it is often impossible to prove global convergence, and even local convergence
can sometimes only be proved for curves I" that are close to a circle with center at the origin. For
specific relations between ¥ and @ it is easy to show in view of Theorem 4.2 and property (vi)
that convergence of 7, implies that the limit = solves (4.15) and that H~'I;,G7, approaches a
mapping function if {7,} C 2.

Another direct iteration method, completely different from (5.5), can be tried if in a suitable
neighborhood of I Hg = Gr; a continuous inverse of the operator G exists and can be
evaluated easily. Then we have for 7 (close to ;) satisfying Gr € A(D)|

=G 'P*Gr, (5.7)
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where P* denotes a suitable projection of %, onto %, N A(D), which has no effect on G
though. Conversely however, if 7€ C(T, R) is any solution of (5.7), then Gr=P*Gr, ie.
Gt € A(D)|+, and we can complete the proof of Theorem 4.1 as before:

Theorem 5.1. Assume 1 € D is such that G™" is (uniquely) defined at P* Gt and (5.7) holds. Then
(4.18) and the other assertions of Theorem 4.1 hold.

Equation (5.7) is a nonlinear integral equation with Cauchy kernel (due to P*). It clearly
suggests the iteration

Tper =G 'P*Gr,, (5.8)

which we call a Bergstrom type method since Bergstrom’s method is of this kind (see section 6.2).
Unfortunately, we can in general not assert that 7, is well defined by (5.8) since P* G, need
not lie in the domain of G™'.

Evaluation of g; at interior points. Once 7, has been constructed as the limit of iteration (5.5) or
(5.8), the values of the mapping function are known on S or, in practice, at the Nth roots of
unity. For computing values of g; at points in D one could of course make use of Cauchy’s
integral formula, but it is much more appropriate to remember that g, has been obtained via an
approximation of Hg; = I¢;Gr. In all our examples of Section 6 the inversion formula g, =
H™(Hg,) is still correct at points in D, and at least in the examples with /= 0 it is very easy to
evaluate. (If /> 0, one could switch to another H with /=0 at this point.) There remains the
question how to evaluate Hg;. Depending on the number and the location of the points where
this has to be done there exist several good algorithms. Usually, the iteration process (5.5)
automatically yields the Fourier oefficients, i.e. the Taylor coefficients, of Hg,. Evaluation on a
set of equispaced points on a circle with center 0 can then be done with an FFT. To compute the
values at a single point, Horner’s algorithm can be applied. To compute such a single value
directly from the known values at the roots of unity, there exist special barycentric formulas for
the interpolation polynomial.

Let ¢, :=2mk/N, w, = exp(it,), n, = (Hg)(w,) (k=1,..., N), and let g(w) be the interpola-
tion polynomial of degree N — 1 for the data (w,, m;),~,. - The Lagrange representation of ¢
is readily found to be

.....

qw) =Ly M, (59)

o1 W Wi

which, as usual, is brought into barycentric form by noting that g(w) =1 if 7, = 1 (Vk):

Y M)y
g(w)= 7 . 5.10
W W k A W W ( )
If w=el’€ S, this can be written as
- N . N o
g(e")= Y n e cosec 1(r—1,)] ¥ /% cosec 3(r~1,) (5.11)
k=1 k=1

[cosec £ = (sin ¢)7']. As in the trigonometric case [4,29], the formulas (5.10) and (5.11) are very
stable even if w is close to a w,. In contrast, Cauchy’s formula evaluated with the trapezoidal rule
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yields

=_ Z Wkn/. _ q(w) (5.12)

b
-w 1-wV

which deviates con51derably from g(w) if w is very close to or on S.

6. Examples of auxiliary operators and associated direct iteration methods
6.1. Theodorsen’s method

Theodorsen’s method makes use of the operator
Hg(w):=1log (g(w)/w), weS, (6.1a)

y={geC(S); 0&g(S), #g(S)=1, %= [arg{g( )/( )}]5=0}. (6.1b)

where #g(S) again denotes the winding number of g(S) with respect to 0. Since #g(S)=1, a
continuous branch of arg(g(w),/w) and hence of log(g(w)/w) can be defined on S, uniquely up
to a multiple of = and i, respectively. We choose it in such a way that |f),| <= and restrict the
domain of H so that §,=0 for g€ 2,,. If g€ P, N A(D) and Hg € A(D) we have then by the
mean value theorem

0=, =Im[log{ g( )/( )}]5 = Im[log g’(0)] = arg g’(0), (6.2)

which is satisfied by g = g; if normalization (0.1) is used; hence property (ii) holds. Property (i)
follows from the rules (1.12). Furthermore, it is easy to see that

Ry ={rec(s); [Imrlg=0}, (6.3)
and that for any r € Z,,
H'r(w)=we'™, wes (6.4)

(property (iv)). Clearly, (v), (vi) and (iii) hold also.
Following the developments of Section 4 we further get

G'r(t)=logY(T(t_) *1) = logY(a.(t)) , (6.5a)
eV e

9;=C(T, R), (6.5b)

2e= {TE C(T, R); o= [arg{¥(8( )) e O )]0 = 0}. (6.5¢)
(Note that #y o 8(T) =1 whenever 7 € C(T, R).) Using version (4.16a) of ¥, we obtain

Pr(r)=arg{v(6(z)) ™} —K[log|y * 8]](¢) (6.6)
(with D, = 9,;), and (4.15) becomes the generalized Theodorsen integral equation

arg{y(6(¢)) e "} =K[log|y ° 8]](¢), t€T. (6.7)

Our Theorem 4.1 readily leads to
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Theorem 6.1. The generalized Theodorsen integral equation (6.7) has (up to an irrelevant additive
constant 2km) exactly one solution 8 for which v€ C(T,R), namely =46, the boundary
correspondence function of the conformal map g;: D — A normalized by (0.1).

Proof. If 6 is any solution, then , =0 since by (6.7) arg{ - -+ } is a conjugate function; hence
r€9. In view of Theorem 4.1 it remains to prove uniqueness. We know already that
g(e'') = y(8(t)) are the boundary values of a conformal map of D onto A and that g = H ™ 'I5;Gr.
By (6.4) it is clear that g(0) =0, and (6.2) yields g’(0) > 0. Hence, g=g;,. O

The classical assumption for Theodorsen’s method is that the region A is starlike with respect
to the origin and that the boundary I is given in polar coordinates, i.e.

y(1)=p(1)e", (6.8)
with p € W'®(T) = Lip"(T). Then (6.5) and (6.6) become

Gr(t)=log y(r(r)+1)+ir(z), (6.92)

2= C(T, R), (6.9b)

22={reC(T,R); =0}, (6.9¢)

Pr(e) =7(1)-K[log p(7( ) +( ))](2), (6.10)
and (6.7) specializes to the classical Theodorsen integral equation [56;57;13, p. 65]

(1) = ®7(1) =K [log p(r( ) +( )] (2). (6.11)

Theodorsen’s equation has exactly one continuous solution, since it follows from (6.11) that any
continuous solution 7 is a conjugate function, hence periodic with 7, = 0.
Theodorsen’s method is the direct iteration method (5.5a) associated with (6.11):

T (1):=1,(1) = K [log p(7,( ) +())](1). (6.12)
Among the numerical methods for mapping the disk onto a given Jordan region Theodorsen’s
method is the most thoroughly investigated and the best understood. Gaier’s book [13, pp.
64-105] summarizes the work up to 1964; newer contributions include [19-22,32,33,49).
Under the assumption ||p’/p|l <1 it is easy to prove global convergence of {7,} in the
L,-norm. In fact, from || K[|, =1 and
fomp (¢)d¢l
]

llog p(8(t)) —log p(8(t))| = o (%)

<11e'/pll18(1) = 6(1)] (6.13)
we see that L:= ||p’/p|l. 1s a Lipschitz constant for ¢ (as required in (5.6)).

Geometrically, L is equal to the tangent of the largest angle between the radius vector
Y(?) = p(t) " and the outward normal of I', whose direction is —iy’(¢)=(p(t) —ip’(t)) €.
Hence, e.g., for a square with center 0 we get L =1, but L > 1 for any other rectangle or for a
square with another center. In practice, divergence is likely even when L is only slightly larger
than 1.

However, in 1965, Niethammer [49] made two new proposals for solving the discretized
Theodorsen equation. One was to apply the nonlinear SOR iteration (after having permuted the
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equations in order to attain a consistently ordered system). He conjectured that local convergence
occurs and that

ws=2/(1+V1+L?) (<1) (6.14)

Y

is a nearly opt1ma1 nderrelaxation factor. In [21] we were able to prove that this conjecture is
n 1 S o
b =]
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Assumption (SD.). I is symmetric about the real axis and, in addition, »-fold * rotationally
symmetric about 0, where » > 1. The function p € W*(T, R) is continuously differentiable and
weakly monotone in (0, w/v).

Some further assumptions on the discretization and the (discrete) solution of the discretized

Thandarcan aqiiatian hava ta ha mada cea 2?1 n AT111 anAd 2)1 Tn narticnlar tha nanlinear CNOD
4 11INvUAIVL ORI \r\-luall\lll uave LU UL iliauy, ove ll-L, P' "'LLJ ailu lJL] 111 lJ 1uivuial, LV 11UlLiILval O
method can only be applied together with the standard discretization of K based on trigonomet-
rlr\ internnlatinn In crantract the nanlinaar cerand Aarder Fular mathad 7Ar cnnr\nrl:nrr‘nr 1 c\rr‘=
A 8 llll\tl}l\ll“‘l\lll 41F WULILLAOL, LilV 11V AL OVWULINL ViUVl Uil aviiiva \\}l OWALULEVLTUVL UG L ANV LLIALNG
son iteration) proposed in [21],
{4\ [P P {4\ (£ 1&)
n+1\’l —wsz \‘}'7'\1 Ws)Th-1\t) \L.17)

(with the same relaxation factor wg) is conjectured to converge locally for a wide range of
discretizations (but otherwise the same assumptions), the asymptotic convergence factor being

—_—
/ 2 _
L _‘1+L 1 { - 1\ {£ 12\
Og = 12 (<1j. 10.10)
1+V1+L
AL 1o QMDD sl 4 l---..... 4 o mm < rmm dissimmn ac Fact- e 22 T A aosmmim
1NC noinincdar SURN ImMeiod 15 KNOowil 10 COIIVEIEC LwWIle S IddL OS—UE. rol C)\dlllplc, 11
L=|p/pll., =1, we obtain o = 0.4142, o5 =0.1716. Thus convergence is quite fast. Experi-
mmasatenl Al daman smeacamtad 1m [ ciiogoacte that 1 samantina tha Annewvansganca rata AF thaca mathade
111C11Lal CVIUCIILC plcacutcu 111 lLLJ buéscota tliat tii Pl ALLILL LT VUILVOLEULILL Tall U1 LIRS0 THULHUUD,
when applied to nonsymmetric curves, is usually still close to o or o, respectively. However, it
ic brnawn that thic 1o triia 1in rartain nathalagical citiatiane 1221
43 RILVUWIL Lllal uilld 1o llUl UL 11 vvilwaillil yatu\quu.cu SllUALIVIL lJJ].

In contrast to Theodorsen’s equation (6.11), its generalized version (6.7) seems to have received
no attention in the Western literature except for Gaier’s references to Vertgeim [62] and to a
paper by Batyrev in [13]. We will return to it in Section §

Theodorsen’s auxiliarv operator (6.1} can also be annlied to the exterior mapping problem

Theodorsen’s auxiliary operator (6.1) can also be applied to the exte pping p
normahz d by (0.3). In particular, g.|s € 9D,. The definition (4.19a) of ¥ then leads to the

s an m ly b

nd (6.11), which differ . .
front of K. (Henrici [30] presents a detailed derivation for the case w here F is ng in polar
coordinates.)

When we approach the exterior problem in the second way mentioned at the end of Section 4
and insert (4.20) into (6.7), we end up with the same integral equation after having used relation

(2.21).
6.2. The Melentiev—Kulisch method

pp.- 107-109; 42] is based on the operator

Hg(W)==g(w)/w, weS, (6.17a)

B =l rr{CY. 3 <0 (6 17h)

“H" 18 =%\ ) 51 =V \V.170)
* The case » =1 is inciuded. The > sign on p. 411, line 13, of {21] is a misprint.
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Clearly,
Ry={reC(s); #,>0}, (6.18)
H7'r(w)=wr(w), weS, rea,. (6.19)
Let 9, := C(T, R) again; then in view of G7(t)=y(8(¢)) e "
23={r€C(T,R); [y - 8]} = 0}. (6.20)

If rez,n A(D), g==H 're 2,0 A(D) satisfies the normalization (0.1). When choosing ¥r
as in (4.16a) we obtain in view of #, =[Im G7]) =[Im Hg]) =1Im g, =0 the integral equation

Im{v(6(¢)) e "} = K[Re{y(ﬂ( ) e= O} (1), (6.21)
which in the case of polar coordinates simplifies to
p(r(t)+1)sin7(t)=K[p(r( )+()) cos 7( )](2). (6.22)

On the other hand, from Im{ - -- } and Re{ - - - } we can of course retrieve arg{ - - - } modulo 2.
(E.g., with the FORTRAN function ATAN2 and a continuation procedure if values beyond
(—m, m) occur.) Now, in polar coordinates, arg{y(#(t)) e™'}=7(¢), hence we obtain the
equation

()= &7(t):=arg(¢é(t) +iKé(r)) (mod 27) (6.23a)
with

£(t)=p(7(t)+1t) cos 7(1). (6.23b)

Conversely, assume 7 € C(7T, R) is a solution of (6.23). First, (6.23a) yields

sintT=K§/|§+1K¢|, cosT=§/16E+1K¢E],
hence, by (6.23b), |&(¢)+iKE(t)| =p(7(r)+1¢), and it follows that (6.22) holds. Defining
re):=¢(1)+iKE&(t) = p(r(t) +1) € we conclude from (6.22) and Theorem 2.2 that re
A(D)|sand 7, €R: If 7, <0, we replace 7(¢) by 7(¢) = (¢ — w) + 7 and obtain another solution
of (6.23), for which §(¢z)=£(t—m), so that 7, > 0. Hence, we may assume that €2, ie.
IsrGT € Z,;, and apply our Theorem 4.1. It follows that g:= H~ oG is a conformal map of D
onto 4, and from (6.17)-(6.20) it is clear that the normalization (0.1) holds for g. Clearly, 7 is
only determined up to an additive multiple of 2m. If we choose this multiple appropriately, we
must obtain the same solution as for Theodorsen’s equation, namely one for which 7, =0, cf.
(6.9c). Summarizing, we get

Theorem 6.2. Equations (6.23) have exactly one solution v € C(T, R) for which 7,=0, namely
T =1,. Any other solution is obtained by adding a constant wk (k € Z) and yields either the same
mapping function g, (if k is even) or the mapping function normalized by g(0)=0, g’(0) < 0.

Kulisch [42] (and similarly Melentiev earlier, cf. [39, pp. 451-478]) proposed the iteration of
(6.23). However, @1 is not defined for every 1€ 2, = C(T, R); one has to make sure that a
continuous argument exists:

2,={1€ C(T,R); K§€ C(T, R), #(£+iK¢)(S)=0}, (6.24)
where § is defined by (6.23b). Given 7, € 2§ (or 2g), we can then define 7,,, by
7..,=®7, (mod2m) (6.25)
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and the condition [7,, ,]A € (—m, =]. It follows that 7, ., € W'?(T, R) (or Lip*(T. R)), cf. (1.12).
(2.8b), (2.8¢c), but unfortunately we cannot exclude the possibility that 7., & Z4, since the
winding number condition in (6.24) may fail to hold. It clearly holds if 7,,, is close enough to
the solution 7,, however. But little seems to be known about the convergence of (6.25).

In practice, |7;(¢)| is rarely greater than m, so the principal branch of arg will usually be the
correct one in (6.23) and (6.25).

The two versions for the exterior problem are left to the reader.

6.3. Bergstrom’s method

Bergstrom’s projection nrethod [2;13, pp. 109-110] looks similar to Kulisch’s method. It also
makes use of the auxiliary operator (6.17). Assuming polar coordinates we have

“NGr)(t)=71(¢t)=arg{p(r(r) +1) e} = arg{Gr(r)}. (6.26)
If P* denotes now the orthogonal projection of L? onto H?, which is easily implemented with
FFTs, (5.8) becomes

=]

(1) = arg{ S [o(n()+( ) 0] } (6.272)

k=0

The second condition g’(0) > 0 (or g, > 0) has not yet been taken care of. From Theodorsen’s
method we know that in polar coordinates it translates into 7, = 0. Hence, we suggest adjusting
7, ., by subtracting [7,,,]5:

To(8) =7, (1) =7 +1]o (6.27b)

Bergstrom’s idea can also be applied to Theodorsen’s auxiliary operator (6.1). Then (6.27a) is
to be replaced by

()= arg{expgo[log o(n()+( ) +in Ol } (6.27¢)

Note that both iterations (6.27a, b) and (6.27c, b) may be undefined for functions 7, not close
to 7, since no continuous branch of arg needs to exist. (In contrast, in (6.26), before the
projection, there is no problem with arg.)

Not much seems to be known about the convergence of Bergstrom’s method either. Wohner
[73] gave a formula for a Lipschitz constant L for the iteration operator, but no condition
implying L < 1.

It is not difficult to switch to the exterior problem to which Bergstrdm actually applied this
method originally.

6.4. The identity operator

The identity operator
Hg(w)=g(w) (6.28a)
also satisfies the assumptions of Section 4. To take the normalization (0.1) into account, it should
be restricted to

Dy = {8 C(S); 8=0, & >0}. (6.28b)



M.H. Gutknecht / Mapping methods based on conjugation 57

Clearly, %, =92, so that [Hg]) =0. However, whenever %,, is restricted by the condition
[Hg]) =0, we urge the replacement of H by

Hg(w):= Hg(w)/w, (6.29)
since Hg € A(D)| implies then that this condition is satisfied. In particular, this means that
(6.17) is preferable to the identity operator (6.28).

Many methods that have been described by their authors directly in terms of g make actually
use of the operator (6.17) if interpreted in the framework of our theory, e.g., those in [2,10,69,70].

6.5. Timman’s method

Timman’s method [61] is widely used for airfoil analysis and design, usually after a preliminary
Karman-Trefftz map has been applied to the airfoil profile [1,13,25,36,74]. Its popularity for this
problem seems due partly to historical reasons and partly to the fact that it allows one to handle
airfoils with an open trailing edge.

The airfoil analysis problem is an exterior problem normalized by (0.3), but it is easier to aim
at the solution g, satisfying (0.4) first, and to rotate it afterwards. The second condition in (0.4) is
now written as

g.(1)=v(0), ie. 7(0)=0. (6.30)
We assume m > 1 in the exterior version of (4.4), so that gl € A(D°).
The auxiliary operator used here is
Hg(w):=log g’(w), weS, (6.31a)
2,=1{g€C(S); 0&g(S), #g'(S)=0. g(1) = v(0)}. (6.31b)
In (6.31a) any continuous branch of the logarithm can be chosen. In order to make the operator

H continuous we may consider Hg modulo the constant function 2xi, but we do not write this
explicitly. If r:= Hg, then e’ = g’ is a derivative of g€ C'(S), hence [e"]*, = O:

#,={rec(s); [e']}, =0}, (6.32)
H"lr(w)=/1we’(”ds+y(0), wES, rea,. (6.33)
The mapping function g, has a Laurent series of the form
gw)=cw+ay+aw '+aw 2+ ..., 1<|w|<c0. (6.34)
The series for g/ and log g. are therefore Taylor series in 1 /w with no linear terms:
giw)=c—aw™?=2a,w 33— -, 1<|w|< o0, (6.35)
log gl(w)=log c—(a;/c)w™ 2= -+, 1<|w|< 0. (6.36)

The nonexistence of these linear terms turns out to be crucial for convergence [38]. It can be
expressed as

(g2 =0, [logg]? =0. (6.37)

Note that the first condition is satisfied for every g € 2,,. The second one has not been taken into
account, however.
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Following our construction in Section 4 we get

Gr(t)=log{—ie ""y'(8(¢))0'(1)}, (6.38a)
P;=22={reC(T,R); §>0}. (6.38b)
The condition 8’ > 0 asserts the continuity of the logarithm in (6.38a). Thus ¢°* € C(S), but
ie"e’" =vy'(6(1))0(t)=dy(6(1))/dt (6.39)
is the derivative of a periodic function, i.e. [e¢"]?, = 0, and hence e°" € #,,. In view of
£(t)=Re Gr(t)=1log 6’(¢) +1log |y (6(1))]|, (6.40a)
7(t)=ImGr(t)=arg{y'(6(¢)) e ¥} —im. (6.40b)

Equation (4.15) with the choice (4.19b) finally yields the generalized Timman integro-differential
equation

0'(1) = K [arg(v/(6( ) 7O} ] (1) ~ log 1¥(8(1)) |+, (6.412)

with
£o=[log 0" +log |v" = 61]7. (6.41b)

Note that the constant — 17 in (6.40b) as well as the ambiguity in the definition of arg disappear
when X is applied.

Timman and the other authors mentioned above assumed that I' is parametrized by the
arclength; in our notation this means that |y’(¢)| is a known constant, namely 2 divided by the
length of I', and this obviously simplifies (6.41).

As a corollary to the analog of Theorem 4.1 for the exterior mapping problem we again obtain
a uniqueness result:

Theorem 6.3. The generalized Timman equation (6.41) has exactly one solution 8, namely § =6,
such that 7€ 92 (i.e. 1€ C(T, R), 8’ >0) and 7(0) =

Proof. Let 7 be such a solution. We want to show that the conformai map g given by (4.18) is
unique. By construction, G7 EA(DC) |T, hence €°" € A(D¢)| ;. But g'| ¢ ’, so g’ cannot
have a finite pole; hence the pole of g is at oo. The condition 7(0)=0 hat g{1) = v{0).

Therefore r=17,. O

asse

Timman’s equation can also be written as

o exp{ K{arg{y'(8( ) eTO}](1) + &}
0 (t) = ; ’
lv'(6(2))]
but before we start to iterate here, we must make sure to define @ in such a way that [§7]5 =
cf. (5.3). Since [ ']} = 0, [#’]) = 1, and hence the zeroth Fourier coefficient of the right-hand s1de
of (6.42) is also 1 if fisa solutxon In general, in view of 7'(z) = 6’(¢) — 1, let &7 + 1 be defined
by this right-hand side devided by its zeroth Fourier coefficient, or, equivalently, let

x(2)=arg{y’(8(r)) e ¥}, (6.43a)

(1) = e ¥ [y (8(2)) 1, (6.43b)
®7(t)=(1) /¢~ 1. (6.43c)

(6.42)
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Then [®7]) = 0, so that iteration (5.5b) can be executed:
r(1)i= [@r,_\(s)ds. (6.44)
0

As we have seen in (6.39), the fact that 8, is the derivative of a periodic function 8, implies
that [e“™]A, =0, and thus g, = H 'I;;Gr, satisfies

[g:]7, = [e"®]%, = [ec]%, =0 (6.45a)

in accordance with the first condition in (6.37). If g, were in A(D°)|, it would follow as in
(6.34)-(6.37) that also

[log g;]", =0, (6.45b)

but this assumption is only true if g, equals the solution g, of our mapping problem. However, it
seems that often the convergence can be improved if @ is further modified so that condition
(6.45b) is imposed approximately ([25] and private communications by N.D. Halsey and A.
Kaiser). By definition

[og g;17, = [Hg,]%, = [G7,]%, = [&, + i, ]2,
= [log 6;( ) +log |v'(6,( )| +iarg{v'(6,( ) e }]7,, (6.46)

[log 0r:]ﬁl = [log(¢7n—1 + 1)11\1 = [log ¢n—1]/—\1

, A
= [KXn—I]ﬁl - [log 17" 2 8,_,1]2,.
Hence, if we modify the iteration by deleting [x,_,]*, and [x,_,]}, the new function 8, satisfies

e 8 11N —n
T Va—-1l]+1 TV

and in a rough sense we have taken care of the requirement that the quantity in (6.46) should
vanish. This modification means that (6.43b) is replaced by

o(1) = exp{ K[x( ) =% =%, e7O](1)}
v'(8(2)) |

The local convergence of iteration (6.44) with @ defined by (6.43a), (6.47), and (6.43c) can be
proved for certain nicely behaving curves I" [38]. Halsey [25,26] and others [1,36] report favorably
about the performance of this method in practice; their implementations require y as a function
of arclength, however.

At first sight, one is tempted to think that the operator (6.31) can be applied to the interior
mapping problem with equal success. However, in repeating our derivation of Timman’s equation
(6.41) it becomes clear that every boundary correspondence function § for a conformai map g of
D onto 4 is a solution of the interior version of Timman’s equation, differing from (6.41) only in
a minus sign in front of K. While the normalization g(1)=y(0), i.e. 7(0)=0, is taken into
account in (6. 33) and (6. 44) there seems to be in general no simple way to impose the condition
afMM — N tha ttacmnés o sremlace ¢hia mma d262 e o Ciememon e bl mn i e ke

S\V) =v lll tne iteration. Dul Ufnicss tnis bUllUl\.lUll lb llllpUbCU lllC llCldllUll cannot LUIIVCIBC lll

general since it does not know to which solution it is supposed to converge. (The exterior map is
different since ¢’ = A{ D) iff olecc) = c0.)

A2LATALY SRV B/ = AA4C g il S\ T Ny

(6.47)



60 M_H. Gutknecht / Mapping methods based on conjugation

However, if I' is rotationally symmetric about 0, it follows again that the interior Timman
equation has a unique symmetric solution and that the iteration converges locally under suitable
assumptions [38]. (In fact, the higher the order of symmetry. the faster the convergence.)

At the end of Section 4 we mentioned that there are two ways to transform a method for the
interior problem into one for the exterior problem. Likewise, there is also a second way to
transform Timman’s method into one for the interior problem. namely by composing g; with two
inversions:

d 1 gi(1/w) =
Hg,(l/w)=log— ——— =log————, weD. 6.48
g:( /”) gdw g,(l/w) nggiz(l/w) i ( )
This suggests the general definition

Hg(w):=log g’(w)—2log&‘:}l, weS. (6.49)

We do not want to go through all the details here, but it is worth mentioning that

1 w ar(s) -1

H 'r(w)= - ds{ . 6.50
(w) [Y(O) fx 52 } (6.50)

The local convergence of the associated successive conjugation method to 7, can be proved again
under certain fairly restrictive assumptions on I" [38].

6.6. Friberg’s method

Friberg’s method [12;13, pp. 113-114; 66, pp. 228-233] for the interior or exterior problem
normalized by (0.2) or (0.4), respectively, is based on the operator

Hg(w):=log g'(w) —logg—(:—)— =log%, weS, (6.51a)
2,={geC(S);0&g(S), #g(5)=1,0€¢g'(S), #g'(5) =0, g(1)=v(0)}.
(6.51b)

Its range and the inverse operator are given by

Zy={rec(s); [elo=1}, (6.52)

w ar(s) _
H"r(w)=y(0)wexp(/ € 1ds), weS, rea,. (6.53)
1
For the latter formula we have made use of
g(w) ,__1_ wg' (W) _ Lo
(log ” ) = w( 2(w) 1| = w(e 1), (6.54)

from which it also follows that the condition [e"]) = 1 must occur in (6.52). To prove (6.52) we
note that whenever r € C(S) satisfies this condition, the integral in (6.53) is a function v € C(S);
then #exp(v)(S)=0, hence #H !r(S)=1. Therefore, log(g(w)/w) is well-defined for g:=
H~'r. Moreover, since wg’(w)/g(w)=e"™’, this function has winding number 0, and its



M.H. Gutknecht / Mapping methods based on conjugation 61

logarithm is also well-defined up to irrelevant multiples of 2wi. Consequently. log g'(w). being
the sum of the two logarithms, is also well defined.

The operator (6'.51) (as well as the operator (6.49)) is a linear combination of the operators in
Theodorsen’s and Timman’s method. By combining (6.5) and (6.38) or by direct derivation we
easily get

G'r(t)=log{—1 ((o(t)) (t)}, (6.55a)
22 = (re C(T.R); 6" >0). (6.55b)

Defining ¥ by (4.16b) or (4.19b) we obtain now the generalized Friberg integro-differential
equation

(1))

, - v’°0} y'(8(2))
log 8'(t)= FK|arg—— [(t) —lo +£,, (6.56a
g 0'(¢) o i Ty )
with
. Y/oa A
£0=[log 6’ + log ]; (6.56b)
yebil

the minus sign belongs to the interior problem, the plus sign to the exterior one.

Note that (6.56) is just the sum of the generalized Timman equation (6.41) and an equation
derived from the function G7 of Theodorsen’s method by applying the second version (4.16b) of
¥ (instead of the first, as for Theodorsen’s equation).

Friberg [12,13,67] derived (6.56) for the interior problem and polar coordinates.

If r=1I,Gre A(D), it is clear from (6.53) that the normalization (0.2) holds with z5=1v(0)
for g:== H'r. If r=13;G1 € A(D°®), then the integrand (e”*>~ 1) /s in (6.53) lies in A(D*) also
and vanishes at oo; hence, the integral is in 4( D) too, and g:= H™'r has a simple pole at =, as
required in (0.4). Application of our Theorem 4.1 and its exterior version therefore yield

Theorem 6.4. Friberg’s equation (6.56) has exactly one solution 8 such that 1€ 22 (i.e.
€ CYT, R) and 8’ > 0) and 7(0) = 0. This solution is equal to 8, in the case of a minus sign in
(6.56a) and equal to 8, in the case of a plus sign.

The iterative solution of Friberg’s method by successive conjugation parallels that of Timman’s
equation: (6.44) is now applied with

x(1)= argy((e(( )))) (6.57a)
¢(1)= ((0((?))) e T Kx(0 (6.57b)
Dr(t)=¢(1)/dy— 1. (6.57¢)

Friberg missed the last step, which makes his convergence result somewhat suspect [13, p. 113].
For the exterior problem a modification similar to (6.47), proposed by Kaiser [38], leads to an
iteration whose convergence can be proved for well behaved curves I'; it consists in replacing
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(6.57b) by

v(8(1))
y'(8(1))

with w(z):=log |y(8(1))].

While for Timman’s method and for its equivalent interior method based on (6.49) the linear
term in the power series expansion of Hg vanishes if g€ A(D) |5 or g€ A(D) | g, respectively,
Friberg’s choice (6.51) of the auxiliary operator yields a vanishing constant coefficient in this
power series. Kaiser’s detailed analysis [38] shows that if I' is in a certain sense close to a circle,
then the Lipschitz constant in (5.6) is close to O for Friberg’s method, while it is close to 0.5 for
Timman’s method. This result suggests that at least for such curves Friberg’s method is definitely
superior.

o(1):= exp{K[x( )= e —k_, e )](t)—‘:"l el —a_, e—“}’ (6.58)

7. Newton methods: Vertgeim—Hiibner and Wegmann type methods

Instead of trying to solve our basic equation (4.15), ¥r = 0, by direct iteration, we may attack
it by Newton’s method. We discuss the case / = 0 only. (Otherwise one has to solve a differential
equation in each step.) As usual for Newton’s method one has to assume that the function is
differentiable, but, on the other hand, one can expect quadratic convergence for sufficiently
smooth boundaries I'.

To fix our minds we assume y € W**(T)= C%!(T) in this and the next section. In contrast to
statement (4.4a) we will allow iterates 7, € W'?(T, R) and associated functions g, € W'?(S),
however, where p € (1, o) is arbitrary. As mentioned in Section 4, by a result of Kellog and
Warschawski [18,63,64,67], yE€ C*(T)c C*¥T) (Va€(0,1)) can be seen to imply 7€
C>(T, R)yc W*?(T, R) (Vp > 1). (The last inclusion is of course very crude.) Hence, if the
iterates will converge, the limit function will be smoother than the iterates. To simplify notation
we set

W= Wwh?(S), W= W'?(T, R). (7.1a)
In accordance with (1.10) we choose in W5 and W, the norm
A1 = max{ || fllos N1/, } (7.1b)
which is easily seen to satisfy
gl <201 Ngll (7.2)
We further assume that the operator H, which now has the simple form
Hg(w)=h{g(w); w), weS, (7.3)

has in addition to the properties (i)—(vi) postulated in Section 4 the following two:

(vii) The domain of H can be extended from 2f, to an open set 2;; 2 Df; of Wy in such a
way that %}; := H(2},) C W still holds and the function A(u; v) has continuous partial
derivatives up to 9k /(3u*dv) on

U {(s; 0)e€? Ju—g(v)| <e(g), ve S},

g€,
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where e 27, -~ R™ is a certain continuous function. (In particular, the function A,
defined by

hy(w) = o2 (g(w): w)

belongs to CY(S) C W;.)
(viii) h,(S) has winding number #h (S)= —1, and Hg satisfies

Im[Hg|, =0 if g€ 2}, (7.4)

The case described in (viii) is not the only one that can be handled, but we want to avoid treating
various cases in parallel in this section. For example, we could equally well require Re[ Hg]) =0
in (7.4) or assume #h (S) =0, Im[ Hg))=0if g € 2§. The latter case can be reduced to the one
in (viii) by redefining H according to (6.29). Therefore, our examples with /= 0 in Section 6 are
all covered.

The operators G and ¥ can now be defined on

¢ = {7 € Wry; (4.8) holds for some g € 2}, }, (7.5a)
and it is advantageous to redefine 22 here by
2= {r€ Wy; (4.8) holds for some g€ 94}, (7.5b)

so that 22 C 9¢. In view of (7.4) it is natural to use definition (4.16a) of ¥, since for 7 € 22 we
have

o =Im[Gr]) =Im[Hg]) =0; thus,
Yri=9—K§, wheref{+in=GCr. (7.6)

From now on we use this definition also on 2¢, though the term %, does not in general vanish if
€ DE\ 2. This has the effect that although we are solving ¥r =0 for r € &, every solution
will satisfy (7.4).

Lemma 7.1. The operators defined by (7.3), (4.11), and (7.6), restricted in domain according to

H: 9}, Ws> R}, c W, (7.7a)
G: 9 C Wy R, c WhP(T), (7.7b)
V: D CWr—> Ry C Wy, (7.7¢)

are Fréchet differentiable (with respect to the norm (7.1b) in domain and range), and their
F-derivatives are locally uniformly bounded and satisfy locally a Lipschitz condition. If we simply
write h, , 4 instead of h; . .4, and if we define

§(t)=h,.4(e")y'(6(2)), (7.8)
the following formulas hold for the F-derivatives:

H;d(w)=hg(w)d(w), de W;, wes, (7.9)

G8(t)=¢(1)8(e), se w,, teT, (7.10)

V'8(t)=8(t)Im¢{(t)—K[8Re t](z), deW,, teT. (7.11)
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Proof. By straightforward but lengthy calculations involving the Taylor formula with remainder
one can verify that indeed for H; defined in (7.9)

| H(g+d)~Hg— H.d||=0(||d|?) as|d]—0 (7.12)
uniformly on any sufficiently small neighborhood U, of g and that there is a Liptschitz constant
L such that for g, g & Ug

I Hyd— Hd|l <Llig—glllld]. (7.13)
We omit the details. By (7.2), || Hgll < 2]l h,|l-

Next we observe that according to the rules (1.12), 8, 7€ W, implies y o (8+6), y° 4,
(v’ ° )8 € W'»(T). Moreover, one can verify that as a consequence of y € W3=(T),

lye(8+8)—yeo8—(y°8)5=0(]8%), (7.14a)
ly o (8+8)~vy 8] =0(||8ll) as|é|—0. (7.14b)

Applying (7.12) to g(e'’) = y(8(t)), d(e')=y(8(t) +8(¢)) — v(8(¢)) then yields in view of (7.2),
(7.9), (7.10) and (7.14a)

NG(r+8)—Gr— G| <||H(g+d)~Hg~ Hd| +||G/8 — I,sH;d |
<O(Id12)+ Ol Ay . 4l i (¥ © )8 = Irsd]|)
<O(|1811%). (7.15)
Similarly, using (7.2), (7.9), (7.10), (7.13), and (7.14b) we get
1Gi8— G81| <2|Hy(y o 6)—Hy(v" = 8) |18
<[2LIg-glllY 8l +4lh iy o 6—v 8]18]
<L F=r|l I8} (7.16)

for some L’ > 0 depending on the neighborhood U, of g.

Finally, since ||K|| < oo (see 2.8c)), and since the operators associating to a function in
W-P(T) its real part, its imaginary part, and its zeroth Fourier coefficient (i.e. its mean value),
respectively, all clearly have norm 1; (7.15) and (7.16) are easily seen to imply the corresponding
inequalities for the operator ¥:

| ¥(7+8)—¥r— ¥8| =O(|18]%), (7.17)
| W8 — 8| <L"|7—7||I6)l. O (7.18)

Assuming that the F-derivative ¥, is invertible we can now define the Newton method for
(4.15), ¥7 =0, as usual: In the nth step ¥ is linearized at the nth iterate 7, € 9¢:

(7, +8,)= ¥1,+ ¥5,;

(7.19)

then the linearized function is equated to zero, and the resulting equation is solved for the
correction §,:

\p;”sn + ¥71,=0; (7.20)
finally, one lets
T, +1 = Tn+8n’ (7.21)

n
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The important point, which in special situations was observed by Vertgeim [62] and Hubner
[34], is that (7.20) can be solved explicitly by reducing it to a Riemann-Hilbert problem and the
solution is unique (even when ¥, is replaced by any ¢ € W), so that ¥/ is indeed invertible.
We basically follow Hubner’s treatment [34].

Inserting (7.11) into (7.21) (with the index n deleted for simplicity), we get

0=¥'8+¥r=58Im¢{—K(8Rel)+ ¥r.

(8+ivr=8Re{+i(8Im{+ ¥r)eA(D)|,,

{41 M)\
Im(¢8 +i9r]A = [ Im ¢ + ¥r]A =0 v
and that the function f defined on S by
fle):=¢(t)8(t)+ivr(t) (7.23)
satisfies
feA(D), Im f(0)=0, (7.24)
when extended analytically to D. Consequently f is a solution of the Riemann-Hilbert problem
0=Refi|$(r)|%8(1)} = Re{m[if(e“) + ‘I/'r(t)] } (7.29)

whose index is 0 since #{(T)= #h_,,(S)+1=0, cf. (7.8) and property (viii). The function ¢
of (3.1) becomes ¢(¢):=arg {(t)— im. To formulate our result for (7.20) we of course let
0,(t)=r7,(t)+¢ and

S(t)=h, . q(e")y'(6,(2)). (7.26)

Theorem 7.2. If [arg {,]0 & wZ, the Newton correction 8, satisfying (71.20) can be computed by
solving the Riemann—Hilbert problem

Re(i§,(1)f,(e")} = — ¥7, Re(¢, (1)) (7.27)
(with index 0) for f, € A(D) satisfying Im f,(0) = 0. Its unique solution is given by the Theorems
3.1 and 3.2 and satisfies f, | ¢ € Wy. In terms of f,,

b= B0

(7.28)

Proof. The result is an immediate consequence of the above and the Theorems 3.1-3.3, except
that the assumptions of Theorem 3.3 have to be verified by tedious applications of the rules
(1.12). O

By replacing ¥r, in the above formulas by an arbitrary function ¢ € Wi it can be seen that
the equation

¥o+y¢y=0

(with 7€ 2Z) has a unique solution § € W, whenever y € W,. Hence, the operator ¥.:
W, — Wy is bijective. The closed graph theorem then implies that ¥/ has a bounded inverse (17,
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p. 221}. One can show further that the norm of ¥ ! is uniformly bounded for 7 in a
neighborhood of 7. This aliows us to prove in a standard way

Theorem 7.3. Assume that y € C*Y(T) and
larg ¢(2)]o & mZ ifr=1,. (7.29)

Then the Newton iterates (defined by (7.20) and (7.21)) converge in the norm (7.1b) locelly and
quadratically to 7, the reduced boundary correspondence function of the interior map g, € 9},
normalized by (7.4).

Proof. In view of (7.17), (2.20) and ¥r1, =0,

| - — |l =1l -J-S—n-_
1l il l'n !

‘n+1 !
< () ol = =13,

with a locally uniform O-term. Hence the assertion follows from the above remarks. O

Computing the Newton corrections according to formula (7.28) was proposed for the first time
by Vertgeim in connection with the generalized Theodorsen equation (6.7) [62]. However, in his
very brief article Vertgeim actually proposed application of the modified Newton iteration,
Torr =T, 7 (¥)” ¥z , with a fixed inverse operator, leading to only linear local convergence,
which he indeed proved Moreover, it is likely that this method has never been seriously tested
and used. Recently, when investigating Newton’s method for the classical Theodorsen equation,
Hiubner [34] has reinvented this elegant and efficient approach and proved the quadratic local
convergence of the Newton iteration. Note that in each step only three conjugations are needed,
i.e., in practice, six real FFTs, plus calculations of the lower complexity O(N). The modified
Newton iteration requires four real FFTs per step, and it is unlikely that this reduction can make
up the loss in convergence speed.

We call a conformal mapping method based on (7.20), (7.21), and Theorem 7.2 a Vertgeim-
Hiibner type method.

Instead of applying Newton’s method to ¥7 = 0 one can apply the idea of linearization to the

conditions Gt € A(D) |, Im[Gr]} = 0 directly: In analogy to (7.19) we write
G(7,+8,)=G1,+G§,, (7.30)

but now we want to determine §, such that

Gt,+ G.8,=Gr,+§,8,€A(D) |, (7.31a)

Im[Gr, + c;sn} =Im[Gr, +¢8,]0=0, (7.31b)
i.e. such that h, defined on S by

h,(e")=2¢,(2)8,(t) + Gr,(¢) (7.32)
satisfies

h,€A(D), Imh,(0)=0. (7.33)

This is again a Riemann-Hilbert probiem:

0=Re{i|¢,(1)1%5,(1)) = Re{if, (1) A, (") - Gr,(1)]}. (7.34)
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Its function a(r)=i{ () is the same as in (7.25), and in particular the index is 0 again,

The fact that (7.31) is equivalent to a Riemann-Hilbert problem we first made use of for
numerical conformal mapping by Wegmann [69,70], who chose Hg:=g, which leads to a
Riemann-Hilbert problem with index 2 normalized as in part (ii) of Theorem 3.2. This problem
can be reduced to one with index 0 normalized as in part (i) of Theorem 3.2 (cf. the proof of that
theorem). In fact, one just has to make the substitution (6.29), cf. the remark following (7.4).
Therefore, we call an iterative method based on solving a sequence of problems (7.31) as
Riemann-Hilbert problems a Wegmann type method.

In analogy to Theorem 7.2 we have

Theorem 7.4. If [arg {,]0 & wZ, the corrections 8, satisfying (1.31) can be computed by solving the
Riemann-Hilbert problem

Re(ig, (1), (e)} = —Im{Z,(1)Gr, (1))} (7.35)
(with index 0) for h, € A(D) satisfying Im h,(0) = 0. Its unique solution is given by the Theorems
3.1 and 3.2 and satisfies h,| s € Ws. In terms of h,,,

b= )= G5l0)

(7.36)

One may wonder whether the Vertgeim-Hiubner type methods and the Wegmann type
methods are more closely related than by the obvious similarity of the formulas. The answer is
affirmative:

Theorem 7.5. The Newton corrections 8, (defined by (7.20) are identical with the corrections 8,
defined by (7.31) and constructed in the Wegmann type method which corresponds to the same
auxiliary operator H and is started with the same initial approximation 7,. The functions f, of
Theorem 1.2 and the functions h, of Theorem 7.4 are related by

h,=f,+L}¢,, (7.37)

where &, := Re Gr,, while L}, is defined by (2.17a).

Proof. * In view of (7.6), adding
¢ +iK,€A(D),  Im[f, +iK¢E,]0=[KE,]15=0 (7.38)

4 When reading this manuscript Wegmann suggested a different exposition of this proof: First, the operator ¢ of (7.6)
is just the composition ¥ = M o G, where M is the operator

M: WY (T)> Wy, ¢ Mép=Im¢—K(Re o),
which, in view of (2.8¢), is prschxtz continuous. According to Theorem 2.1 the kernel of M consists of the functions

¢ € A(D)| r satisfying Im 4>0 =0 (le., ¢(1)= f(e”) where f € A(D), Im f(0) = 0). Hence, with the index n deleted,
(7.31) can be written

M(Gr+G)8)=0, (*)
Now, since M¢ is real-valued, M(iM¢)= M¢ (i.e. iM is a projector). Therefore, (*) is equivalent to
M(iMGT+G/8) =0,

which is equivalent to (7.23)-(7.24).
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to (7.23) yields
¢S, +¢, +in,€4(D)r,  Im[Ls,+&, +in,]0=0

which is identical with (7.31) since G, = §, + in,,. Therefore, if 8, is the unique solution of (7.23)
and (7.24), it is also the unique solution of (7.32) and (7.33), and the functions f, and A, satisfy
(7.37). O

Corollary 7.6. Under the assumptions of Theorem 1.3, if 7, is sufficiently close to the solution T, of
Yt =0, the functions f, of Theorem 1.2 converge quadratically to the zero function, and the
functions h, of Theorem 1.4 converge quadratically to Hg, = I;;GT,, where g, € D}, is the interior
map normalized by (7.4).

Proof. From (7.17) (with r=1,, § =1, — 1,) we see that the quadratic convergence of § to 0
(established in Theorem 7.3) implies the quadratic convergence of ¥r, to 0. Solving (7.28) for f,
then leads to the claim concerning { f,}, since the norm of the functions {, is bounded in a
neighborhood of the solution. Similarly, by (7.15), G, — Gr; quadratically, and thus the claim
concerning { 4,} follows from Hg, = I¢;G7 and (7.36) or (7.37). O

Remarks. The equivalence stated in Theorem 7.5 is no longer true for discretized methods. It is
likely that the effect of discretization is not very different for the two methods, but that
Vertgeim’s formula (7.28) is superior with respect to roundoff, since ¥7, and f, are small if 7, is
close to the solution 7, of ¥r =0, while this is not true for G7, and A, so that cancellation is
inherent in (7.36). On the other hand, the evaluation of Wegmann’s formula (7.36) requires only
two applications of the conjugation operator (G7, does not involve K, in contrast to ¥7,), so that
the costs are reduced by about one third.

In view of Theorem 3.4 both methods are easily adapted to the exterior mapping problem.

For the Riemann-Hilbert problems (7.27) and (7.35), the function 8/« needed in (3. 4) can be
expressed in an elegant way in terms of ¢ defined by (3.1) or in terms of (1) =¢(1)+ 1m: We
have

a(t)=18,(2)1, (7.39)
¢(t)=arg§, (1) — im, d(1)=arg{, (1), (7.40)
(;) ¥r, sin ¢(1) = — ¥r, cos ¢ (¢) for (7.27), (7.41)

a(t) Re{Gr,e "} = —Im{Gr, e ¥} for (7.35).

Concerning the evaluation of g; at interior points, most of what we said at the end of Section 5
still remains valid. In Vertgeim—Hibner type methods, where according to (7.37) and Corollary
7.6

Hg,=lim h,=lim L3¢, =Ly lim £, (7.42)

the Taylor coefficients of Hg, are still a by-product of the iteration, since the Fourier coefficients
of £, are needed to compute ¥7,, cf. (7.6). In each step of a2 Wegmann type method solving the
Riemann-Hilbert problem (7. 35) yxelds an approximation A, of Hgl, and this 4, is repesented
by a power series times the exponential of another power series, cf. (3.3). (In practice, if
conjugation is performed via trigonometric interpolation, these power series are just polynomials.)
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Independently of the work of Vertgeim and Wegmann, Fornberg [10] also proposed a method
based on computing corrections §, such that (7.31a) holds. However, he made use of this
condition by transforming it into the space of Fourier coefficients:

[Gr,+¢8,]2=0, k<O. (7.43)

Actually, Fornberg was working with Hg = g, allowing k& <0 in (7.43). which is equivalent to
working with Hg(w) = g(w)/w and (7.43). He derived an ingenious and efficient method for
solving finite systems (with — N < k <0) of type (7.43). (From this system a positive definite
system is derived, to which the conjugate gradient method is applied.) According to [10] about 30
complex FFTs with {N points are typically needed to solve the system, i.e. to determine a
discrete version of 8,. This makes the method asymptotically about 7.5 times slower than
Wegmann'’s, but, on the other hand, Wegmann [70] reports favorably on the numerical stability
of Fornberg’s method.

Fornberg’s description of his method deviates from ours in that he does not update 7
according to 7,,, =7, + §,. In fact he does not work with 7 or 8 at all. The boundary may be
given either by y or in the implicit form F(z)= 0. Fornberg then considers N points on I', and
in each step these points are first moved along the tangent (as suggested by (7.30) with
G, = Ig,) and then projecied back on the curve I' (e.g., by soiving F(z) =0 approximately
w1th Newton’s method) This procedure is appropriate if I' is given implicitly, but not if I is
paramelenzeu, as it is in most appucations

An explanation of the efficiency of Fomberg’s method was first given by O. Widlund at the
\AJ Okahuy Ull. CUllll)UlallUllal PlUb}ClllD l.ll CUIIIPIDA Allal)’blb a.l. Slallf\}ld UlllVCl bll_y, JCPlblllel
1981 (unpublished). After the completion of our present paper, Wegmann [72] has presented a

mare detailed analvcic 5 The nan-diccratizad varcian of Farnhera’s mathad which i¢ inctrimeantal
more detalled QRIGLYOSLS .« AU HUSUISVIT UZLU YOiouVil Ul 1 ULIUGL g 5 Thvuill, wiliCil 1S InNsirumenia:

for this analysis, is derived along the following lines: As for Wegmann type methods we start
from (7.31), but drop the index »n for simplicity and replace ¢ and 8 hv 2‘ 1= (“/I("I and §:=81¢1

22012382 Ve L0 A0 8L AV SIILPAINIL) KRS AN IR S QKiate YIS0

If P, and P_ denote the orthogonal projections of LZ(T) onto ITS(HZ) and I((H?) 1),

respectively, then (7.31a) is clearly equivalent to P_(Gr + 2‘8\ = 0, which implies

2diw7 vl P

‘

Re{§(r $)P_(Gr+88) (1)) =0. (7.44)
Here, P_(Gr+ {8) can be thought of as a (H?*)* solution of a homogeneous exterior
Riemann-Hilbert problem. By a variation of Theorem 3.4 the solution in (H?)* is unique
(m=0,but f,=0is equxred). Hence, (7.44) is equivalent to P_(G7 + {§) =0, and thus also to
(7.31a).
 Now, let ¢ :=arg {, and define the linear operator R: W, — W, by
Rf (1) = Re(e™ E(1)([¢' 8717 ~ ik [¢O87] (1))} (7.45)

R has norm 1, and it is compact if ¢ € Lip® for some « > 1. In addition, it can be seen that R
has a simple eigenvalue at —1, while the other eigenvalues have smaller modulus and lie
symmetrically about 0. On the other hand,

5 This paragrap
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so that (7.44) is equivalent to

(I+R)§=x=—(I+R)({Gr). (7.47)
By various applications of Theorems 3.1 and 3.4 Wegmann shows further that (/ — R) is an
automorphlsm of L*(T) and that under the assumption [e “X®x]} = 0, which is satisfied for the
above k, the equauon (1’ =+ P\)S = i and hence also the equaucn

(I-R¥)8=k=(I-R)x=—(I-R»)({Gr) (7.48)

has a one-dimensional manifold of solutions, from which a unique solution can be chosen by
p S(ﬂ\ =, mehnn (7.48) defines a non-discretized version of Fnrnhpro s method, which

423933108, Wil

up to the dlfference in the normahzatlon of the corrections (8(0) = 0 in contrast to (7.31b)) is
again mather matically emnvalent to the Wegmann type method nemo the same operator H. In [72]

Wegmann also dlscusses in detail the effects of dlscreuzatlon and suggests new variants of the

8. Examples of Vertgeim-Hiibner and Wegmann type methods

In this section we briefly discuss the methods resulting from applying the ideas of the previous
section to the auxiliary operators (6.1) and (6.17).

8.1. Application to the auxiliary function Hg(w) = log( g(w)/w)

For Theodorsen’s auxiliary function (6.1), Hg(w) = h(g(w); w) = log(g(w)/w), we let
9}, = {ge C(S);0&g(s), #g(S)=1, || <m}, (8.1)

so that 2, = (g€ Z;;; ), =0). If g(w) is substituted for v, the derivatives required in property
(vii), Section 7, are

1 -1 2
h(w)=—— h = h, (w)=
g( ) g(W) ? gg( ) 2{\4)\ ggg( ) g3(‘4)) ’
3%h 3%k 3%k (8-2)
dh -1
—(g(w); w)= , — = = =0,
v w oudv  Ju%3v  Judv
Property (viii) is clearly satisfied. The function { defined in (7.8), which plays a prominent role in
the formulas of the Theorems 7.2 and 7.4, is
s f o\ {0l A\ 7.0 of )\ {0 2\
S\ )=7\Ww ‘U/Y\”\‘U \6.2)
In the case of polar coordinates (6.8) it becomes
§(e)=p'(6(2))/p(6(1)) +i. (8.4)
Trgarting Ar {Q AV inta tha Diamann U:lka—t nrahlam 79N qnluving tha lattar an~rarding ta
111o¢1 lllls \0 J} v 0. ‘7) LIV lll(- L\.lblll AL R 111UNILL PlUUlblll \ I.Ll), DUlVlllé 1V 1alivl a\.«\.«ux\uué W
Theorems 3.1 and 3.2, and inserting the solution f, into (7.28) yi y lds the methods of Vertgeim [62]
and Hibner 134, Theorem 21 excent that {(as mentioned in Sect1 \ Vertoeim actuallv nronosed
and Hitbner [34, Theorem 2] except that (as mentioned in Sect Vertgeim actually proposed
4

a modified Newton iteration. The idea of applying instead the nstructlon of Theorem 7.4 to
this aux lha function mav be new in the case of an arbitrary pa:amctnza 1, but the formulas

auxaliary nc 21 2e) 2RIGR2 L Lo, t
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resulting in the case of polar coordinates appear in Hubner [34, Theorem 4] as a second version
of his method.

Relation (8 4) clearly implies that arg {(¢) € (0, m) (mod 27); thus ¢(¢) € (— 37, in)(mod 27)
and [arg $15 = ¢0 sm &€ nZ, as noticed by Hubner [34]. However, using polar coordinates is not
essential for this property. Whenever I is starlike (and positively oriented, as we always assume),

arg {(1) = arg v'(6(r)) —arg y(8(¢)) € (0, =) (mod 2).

PR Vaal &0 N P Py P . | A A
Theorem 8.1. If Hg(w)=log(g(w)/w) and I' is starlike with respect io the origin, then the

Riemann—Hilbert problems (7.27) and (7.35) always have unique solutions f, and h, normalized by

Im £ =0 and Im k= 0. respectively

1111 j" -—uv 1111 Iln U, lCJ}ICLllUCl}’
TP T i cmndt smanacons:] ctamlil o A ~nem oéill oL elant
1L 1 1> 11Ol lleCbbdlll_y SLALIIART W Cdll SLLL DIIUW Llial

i (8.5)
Theorem 7.3 holds. Therefore, in practice it is unlikely that the

f we are far off the true solution. To prove (8.5) we use (8.3)
v W A A NJAL ViAW WA AW OV ‘v A4 \U JI “ow \V —’}

so that the assumption (7.29)

iteration will break down

AIVVLERLIVIL YV iid Ui wan VAL

and (4.9) to get

= Im{log g’(e“) —log(e~"g(e’))} + 37 (mod 2).
Now, if g=g;, thenlog g’ € A(E) and log[g( )/( )] € A(D), so that by the mean-value theorem

[arg #IA — (1no o’f
Lalg djo = 1W1wWg 5\

8.2. Application to the auxiliary function Hg(w) = g(w)/w

For the auxiliary operator (6.17) of the Melentiev—Kulisch method, Hg(w) = g(w)/w, we let
97, == C(S), so that

={g€D}; >0} ={8€9}; £,20, 1,=0}.

-
-t
~

we get
Loy L (Y=t (wl=0
Ilg\Wl w, Ilgg\W} ’lggg\W}—U,
2 3 " (8.6)
O gwy; wy=—E) B 2L BR O,
o B w? 0 dude SV w2’ dutdv  uPdv
Again, the properties (vii) and (viii) are obviously satisfied. For { we obtain
"(8(z
$(r) = —Y—(—(i (8.7)

~
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and in the case of polar coordinates,

§(e)=[o(6(1)) +ip(8(1))] ™. (

Theorem 7.4 ylmua now W egmaiin ’s method 107, i1uj, while the Vert Lgcuu Hiubner type metho
Theorem 7.2 corresponding to this auxiliary function has not yet been proposed, at least to

l’ﬂ f\“l‘a(‘ oo
KIIOWICUGEC.

There is again the question of whether the condition [arg {]) € nZ is always satisfied.

Thearetically thic ic not trine hut ac chawn hvy Weaomann [701 (8 S} halde acain <o that tha cama
a ll\lvlvllv“ll] LELRD AU 11IVL LIUNy VUL A0 OLIU YL UJ LA vblllullll llv] \U J} ALIVINAD ub“lll OV LildAlL Vilw Odlllw

remark as above can be made. To prove (8.5) now, we again make use of (4.9) and get
arg $(1) = arg{e~*y'(8(1))) = arg(ig/(e")/0°(1))
=arg g'(e’)+ lm=Imlog g’(e') + im (mod 27).

oo
o0
—_

O [aN
(o]

L 2R AT o A ¢ V)

Ciierirane 2 gat ne a ~snarallary
Duilulialiadig, wi gil as a Loioudly ©

The result then follows as above.

Theorem 8.2. Assume v € C2YTY. Then for both the auxiliary operators He(w) = log( g{ w) /3
CUPL R Usdwe LOIUITIC I — \l , 4 TiCcri jU’ UDULIE LItC Ut Aii G vpCruivry 41 \ 'V} I\Js\é\ v }/ 'V}
and Hg(w) = g(w)/w, both the Vertgeim—Hiubner type method of Theorem 7.2 and the Wegmann
tvne method of Theorem 7.4 converge locallv and auadraticallv in W= WYP(T. R\

type method of Theorem 7.4 converge locally and quadratically in W= W"?(T, R)

The respective result for their particr..la methods was established by Hubner [34, Theorem 5] and

urther convergence results under weaker assumptlons and

e in the case p € W2°°i Il o /ol < ‘

<
0]
-
[1]] ""
[
=1
(@]

9. Further related methods
9.1. The Menikoff-Zemach method
The method of Menikoff and Zemach [46] applies to the same situation as the classical

Theodorsen method: Hg(w) = log(g(w)/w), y(t) = p(t) e'’. However, version (4.16b) of ¥ is
used, so that the integral equation (4.15) becomes

s‘-(r\_t —K";(f\ (9;13.)
with
£(r)=1log p(8(2)), n(e)=0(s)—t=1(2). (9-1b)

The basic idea is now to transform first the principal value integral (2.20) for K7 by subtraction
of n and integration by parts into a nonsingular integral involving %’ and then to get rid of this
factor ° by the (unknown) variable substitution ¢ = o(8), which has the effect that the given
integral equation for # becomes an integral equation for the inverse boundary correspondence
function 8- a(8) (which is the inverse function of 8, but also the boundary correspondence
function of an inverse map from A to D). In the first step, using (2.20) and the fact that Kc =0
for the constant ¢ = n(t) (¢t fixed), we have

Kn(1)= 5= [ cof{ 552 )[n(e) =n(0)]do,
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which in view of

g 2-d—l . t—0
cot—— =27—logisin—
and n’(o)do = (0’(0) —1)do = df — do transforms by integration by parts into
—o(6)
n(t)= flog sint —27) 5 dé flog sin 5 ? \do. (9.2)

From the periodicity of the sine function it is clear that the second integral must be a constant
independent of ¢ (its actual value is —2 log 2); therefore we may replace ¢ by 8 there. Then, we
call the integration variable in both integrals 8, replace Kn(t) according to (9.1) and substitute ¢
by o(8) (so that 8(t)=68(o(8)) =8) to obtain

log p(8 / lo s‘"sm = 0()0))

which is an integral equation for o and the unknown constant éo. Basically, Menikoff and
Zemach [46] discretize this integral equation by applying Gauss quadrature to the integral, and
then they solve the resulting nonlinear system of equations by Newton’s method. In each step
O( N?) operations seem to be necessary to solve the linear system for the corrections. Hence, the
method is much slower for fixed N than the methods (using the FFT) considered so far, where
each step requires only O(N log N) operations. On the other hand, as is known from other
methods for computing o, such as methods for solving the Symm-Gaier integral equation, o
often behaves much better than 6. In particular, this is true for flat ellipses and smooth curves of
similar shape, where the Fourier series for o converges very fast, while the series for # converges
slowly. In such cases a very coarse discretization (i.e. small N) may still yield a relative accurate
solution o of (9.3), while a method based on 6 would require a very large N, at least if
conjugation is based on trigonometric interpolation.

dé, (9.3)

9.2. The Chakravarthy—Anderson method

The method of Chakravarthy and Anderson [7] can be understood as a method for solving a
discretized version of | ¥7|? =0 (with Hg = g) by a minimization method, such as the conjugate
gradient or the damped Newton method [50]. However, the computation of the conjugate
function needed for the evaluation of ¥r is done by multiplication with a certain ‘influence’
matrix, constructed in advance by solving N systems of discretized Cauchy—Riemann equations
on a O(N?%)-point grid on D by cyclic reduction. This preliminary work alone requires
O(N* log N) operations. The authors were obviously unaware of the fact that the explicitly
known Wittich matrix [13, pp. 76-80] or, better, the now-standard conjugation process using two
real FFTs [27,28], would have served the same purpose. (Actually, their conjugation procedure
computes the odd-indexed components of K¢ from the even-indexed components of £ only. A
fast algorithm for this task was presented in [20].)

9.3. The Challis—Burley method

The method of Challis and Burley [8] is closely related to Theodorsen’s method (though the
latter is not mentioned in [8]), but the setting is different: A rectangle of unknown side length
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ratio is to be mapped conformally onto a region of the form _
{z=x+iy;0<x<1,0<y<o(x)}, (9.4)

so that the corners of the rectangle are mapped onto those of the region (¢ is a given positive
function). By adding to both regions their mirror images at the imaginary axis and by applying in
both planes an exponential map, the problem can be seen to be equivalent to a special doubly
connected mapping problem, where the outer boundary curve is exactly the unit circle. It turns
out that for such a region Garrick’s method [13, pp. 194-207; 30, 35] can be simplified in such a
way that the iteration becomes formally similar to Theodorsen’s iteration for simply connected
regions. This method is fast in the sense that each iteration requires only 2 real FFTs plus O(N)
operations. If the region (9.4) is replaced by {z=x+1y; 0 <x <1, ¢;(x) <y < ¢,(x)} (asin the
problem of Wanstrath et al. referenced in [60, p. 12]), the equivalence with the standard
doubly-connected problem persists and, e.g., Garrick’s method can be applied.

9.4. Adaptations to the conformal mapping problem for doubly connected regions

Many of the methods we have discussed in previous sections have been or can be adapted to
the conformal mapping problem for doubly connected regions. Best known and widely used is
Garrick’s extension of Theodorson’s method [13, pp. 194-207; 30, 35]. Wegmann’s [71] and
Fornberg’s [11] methods have also been adapted by their authors. Moreover, there is always the
possibility (proposed and justified first by Komatu [13,14]) of solving this mapping problem via
the construction of a sequence of maps for simply connected regions. For example, Halsey [25]
has applied Timman’s method in a similar way very successfully to the flow analysis of
multielement airfoils.

Constructive aspects of the conformal mapping problem for doubly and multiply connected
regions are discussed in detail in [13,14,30]}.
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