V. Linear \& Nonlinear Least-Squares

V.0.Examples, linear/nonlinear least-squares
V.1.Linear least-squares
V.1.1.Normal equations
V.1.2.The orthogonal transformation method

V .2.Nonlinear least-squares
V.2.1.Newton method
V.2.2.Gauss-Newton method

V.0. Examples, linear/nonlinear least-squares

In practice, one has often to determine unknown parameters of a given function (from natural laws or model assumptions) through a series of measurements.

Usually the number of measurements m is much bigger than the number of parameters n, i.e.
Measurement

Time \longrightarrow| i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| t | 0.10 | 0.23 | 0.36 | 0.49 | 0.61 | 0.74 | 0.87 | 1.00 |
| | 0.84 | 0.30 | 0.69 | 0.45 | 0.31 | 0.09 | -0.17 | 0.12 |$\quad m=8$

Model:
(1) $q(t)=a_{1} t+a_{2}$

Goal: Find a_{1}, a_{2}
(2) $q(t)=a_{2} e^{a_{1} t}$

V.0. Examples, linear/nonlinear least-squares

In practice, one has often to determine unknown parameters of a given function (from natural laws or model assumptions) through a series of measurements.

Usually the number of measurements m is much bigger than the number of parameters n, i.e. $m \gg n$
Measurement

Time \longrightarrow| i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| t | 0.10 | 0.23 | 0.36 | 0.49 | 0.61 | 0.74 | 0.87 | 1.00 |
| | $m=8$ | | | | | | | |
| | 0.84 | 0.30 | 0.69 | 0.45 | 0.31 | 0.09 | -0.17 | 0.12 |$\quad=8$

Model: ${ }^{1} \quad q(t)=a_{1} t+a_{2} \quad$ Goal: Find $a_{1}, a_{2} \quad n=2$
(2) $q(t)=a_{2} e^{a_{1} t}$

V.O. Examples, linear/nonlinear least-squares

$$
\begin{array}{lr|rrrrrrrr}
& i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \text { Data: } & t & 0.10 & 0.23 & 0.36 & 0.49 & 0.61 & 0.74 & 0.87 & 1.00 \\
\cline { 2 - 8 }
\end{array}
$$

Model: $1 q(t)=a_{1} t+a_{2} \quad$ Goal: Find $\quad a_{1}, a_{2}$

$$
\left.\begin{array}{l}
q_{1}=a_{1} t_{1}+a_{2} \\
q_{2}=a_{1} t_{2}+a_{2} \\
q_{3}=a_{1} t_{3}+a_{2} \\
q_{4}=a_{1} t_{4}+a_{2} \\
q_{5}=a_{1} t_{5}+a_{2} \\
q_{6}=a_{1} t_{6}+a_{2} \\
q_{7}=a_{1} t_{7}+a_{2} \\
q_{8}=a_{1} t_{8}+a_{2}
\end{array}\right\} \quad\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
q_{5} \\
q_{6} \\
q_{7} \\
q_{8}
\end{array}\right)=\left(\begin{array}{ll}
t_{1} & 1 \\
t_{2} & 1 \\
t_{3} & 1 \\
t_{4} & 1 \\
t_{5} & 1 \\
t_{6} & 1 \\
t_{7} & 1 \\
t_{8} & 1
\end{array}\right)\binom{a_{1}}{a_{2}}
$$

V.O. Examples, linear/nonlinear least-squares

$$
\begin{array}{lr|rrrrrrrr}
& i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \text { Data: } & t & 0.10 & 0.23 & 0.36 & 0.49 & 0.61 & 0.74 & 0.87 & 1.00 \\
\cline { 2 - 8 }
\end{array}
$$

Model: $1 \quad q(t)=a_{1} t+a_{2} \quad$ Goal: Find $\quad a_{1}, a_{2}$

V.0. Examples, linear/nonlinear least-squares

- Idea: choose the parameters such that the distance between the data and the curve is minimal, i.e. the curve that fits best.

V.0. Examples, linear/nonlinear least-squares

- Idea: choose the parameters such that the distance between the data and the curve is minimal, i.e. the curve that fits best.

V.0. Examples, linear/nonlinear least-squares
- Idea: choose the parameters such that the distance between the data and the curve is minimal, i.e. the curve that fits best.

V.0. Examples, linear/nonlinear least-squares

- Idea: choose the parameters such that the distance between the data and the curve is minimal, i.e. the curve that fits best.
- Least squares solution:

Domain of valid parameters (from application!)

$$
\|\mathbf{c}\|_{2}=\sqrt{\mathbf{c}^{T} \mathbf{c}}=\sqrt{\sum_{i=1}^{n} c_{i}^{2}}
$$

V.0. Examples, linear/nonlinear least-squares

$$
\begin{array}{lr|rrrrrrrr}
& i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \text { Data: } & t & 0.10 & 0.23 & 0.36 & 0.49 & 0.61 & 0.74 & 0.87 & 1.00 \\
\cline { 2 - 8 }
\end{array}
$$

Model: $2 q(t)=a_{2} e^{a_{1} t}$
Goal: Find $\quad a_{1}, a_{2}$

$$
\left.\begin{array}{l}
q_{1}=a_{1} e^{a_{2} t_{1}} \\
q_{2}=a_{1} e^{a_{2} t_{2}} \\
q_{3}=a_{1} e^{a_{2} t_{3}} \\
q_{4}=a_{1} e^{a_{2} t_{4}} \\
q_{5}=a_{1} e^{a_{2} t_{5}} \\
q_{6}=a_{1} e^{a_{2} t_{6}} \\
q_{7}=a_{1} e^{a_{2} t_{7}} \\
q_{8}=a_{1} e^{a_{2} t_{8}}
\end{array}\right\} \begin{aligned}
& \text { Nonlinear in model parameters! } \\
& \begin{array}{l}
\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
q_{5} \\
q_{6} \\
q_{7} \\
q_{8}
\end{array}\right)
\end{array}=\underbrace{\left(\begin{array}{l}
a_{1} e^{a_{2} t_{1}} \\
a_{1} e^{a_{2} t_{2}} \\
a_{1} e^{a_{2} t_{3}} \\
a_{1} e^{a_{2} t_{4}} \\
a_{1} e^{a_{2} t_{5}} \\
a_{1} e^{a_{2} t_{6}} \\
a_{1} e^{a_{2} t_{7}} \\
a_{1} e^{a_{2} t_{8}}
\end{array}\right)}_{\mathbf{b}, \mathbf{y}}
\end{aligned}
$$

V.0. Examples, linear/nonlinear least-squares

- Idea: choose the parameters such that the distance between the data and the curve is minimal, i.e. the curve that fits best.

V.0. Examples, linear/nonlinear least-squares
- Idea: choose the parameters such that the distance between the data and the curve is minimal, i.e. the curve that fits best.

V.O. Examples, linear/nonlinear least-squares

- General problem: m measurements n parameters $m \gg n$ Overdetermined!

- Nonlinear

In parameters!

$$
\begin{aligned}
& \left.\begin{array}{rl}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =b_{1} \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =b_{2} \\
\vdots
\end{array}\right\} \mathbf{f}(\mathbf{x})=\mathbf{b} \\
& f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b_{m} \quad \mathbf{f}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& \text { ^ } f_{1}=f_{2}=\cdots=f_{m} \text { usually... }
\end{aligned}
$$

V.0. Examples, linear/nonlinear least-squares

- Least squares solution:

$$
\begin{array}{ll}
\min _{\mathbf{x} \in D}\|A \mathbf{x}-\mathbf{b}\|_{2} & \text { Linear } \\
\min _{\mathbf{x} \in D}\|\mathbf{f}(\mathbf{x})-\mathbf{b}\|_{2} & \text { Nonlinear }
\end{array}
$$

- Define scalar-valued function $\phi(\mathbf{x})$

$$
\begin{aligned}
\phi(\mathbf{x}) & =\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2} \quad \text { Linear } \\
\phi(\mathbf{x}) & =\frac{1}{2}\|\mathbf{f}(\mathbf{x})-\mathbf{b}\|_{2}^{2} \quad \text { Nonlinear }
\end{aligned}
$$

- Least squares solution: $\min _{\mathbf{x} \in D} \phi(\mathbf{x})$

V.O. Examples, linear/nonlinear least-squares

- Quiz: linear or nonlinear model?

1) $q(t)=a_{0}+a_{1} t+a_{2} t^{2}$

Model parameters: a_{0}, a_{1}, a_{2}
2) $q(t)=A \sin (\beta t+\varphi)$

Model parameters: A, β, φ

V.0. Examples, linear/nonlinear least-squares

- Quiz: linear or nonlinear model?

1) $q(t)=a_{0}+a_{1} t+a_{2} t^{2} \quad$ Model parameters: a_{0}, a_{1}, a_{2}

$$
A=\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
1 & t_{i} & t_{i}^{2} \\
\vdots & \vdots & \vdots
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
\vdots \\
q_{i} \\
\vdots
\end{array}\right) \quad \mathbf{x}=\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)
$$

2) $q(t)=A \sin (\beta t+\varphi)$

Model parameters: A, β, φ

$$
\mathbf{f}(\mathbf{x})=\left(\begin{array}{c}
\vdots \\
A \sin \left(\beta t_{i}+\varphi\right) \\
\vdots
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
\vdots \\
q_{i} \\
\vdots
\end{array}\right) \quad \mathbf{x}=\left(\begin{array}{c}
A \\
\beta \\
\phi
\end{array}\right)
$$

V.1. Linear least-squares

- General problem: m measurements n parameters $m \gg n$ Overdetermined!

$$
\left.\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\\
{ }_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right\} \begin{array}{rr}
A \mathbf{x}=\mathbf{b} & A \in \mathbb{R}^{m \times n} \\
\mathbf{x} \in \mathbb{R}^{n} & \mathbf{b} \in \mathbb{R}^{m}
\end{array}
$$

Assumption: A has full column rank (linearly indep.)

$$
\phi(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}
$$

Least squares solution: $\min _{\mathbf{x} \in D} \phi(\mathbf{x})$

V.1.1. Normal equations

- Least squares solution:

$$
\min _{\mathbf{x} \in D} \phi(\mathbf{x}) \quad \phi(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}
$$

- Rewrite: $\quad \phi(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}$

$$
=\frac{1}{2}(A \mathbf{x}-\mathbf{b})^{T}(A \mathbf{x}-\mathbf{b})
$$

$$
=\frac{1}{2}\left((A \mathbf{x})^{T} A \mathbf{x}-(A \mathbf{x})^{T} \mathbf{b}-\mathbf{b}^{T} A \mathbf{x}+\mathbf{b}^{T} \mathbf{b}\right)
$$

$$
=\frac{1}{2}(\mathbf{x}^{T} A^{T} A \mathbf{x}-\underbrace{\mathbf{x}^{T} A^{T} \mathbf{b}-\mathbf{b}^{T} A \mathbf{x}}_{\not \backslash \text { scalar! }}+\mathbf{b}^{T} \mathbf{b})
$$

$$
=\frac{1}{2}\left(\mathbf{x}^{T} A^{T} A \mathbf{x}-2 \mathbf{x}^{T} A^{T} \mathbf{b}+\mathbf{b}^{T} \mathbf{b}\right)
$$

V.1.1. Normal equations

- Gradient of $\phi(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}^{T} A^{T} A \mathbf{x}-2 \mathbf{x}^{T} A^{T} \mathbf{b}+\mathbf{b}^{T} \mathbf{b}\right)$ must vanish at extremum (min/max):

Gradient

$$
\nabla \phi(\mathbf{x})=\left(\begin{array}{c}
\frac{\partial \phi}{\partial x_{1}} \\
\frac{\partial \phi}{\partial x_{2}} \\
\vdots \\
\frac{\partial \phi}{\partial x_{n}}
\end{array}\right)=\cdots=\underbrace{A^{T} A \mathbf{x}-A^{T} \mathbf{b}=0}_{\text {(Gauss') Normal equations }}
$$

Nothing difficult...

$$
\sim \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{2}(a x-b)^{2}\right)=a a x-a b
$$

V.1.1. Normal equations

- Necessary condition: $A^{T} A \mathbf{x}-A^{T} \mathbf{b}=0$

Not sufficient!

(Gauss') Normal equations

- Is it a minimum? We have to make sure that the matrix $A^{T} A$ is positive definite

V.1.1. Normal equations

- Geometric interpretation of the normal equations

- It turns out that they lead to a worser conditioned problem, i.e. difficult to solve the normal equations numerically...
Therefore the next method is preferred

V.1.2. The orthogonal decomposition method

- Definition: An orthogonal matrix Q is a real square matrix whose columns and rows are orthogonal unit vectors

$$
Q^{T} Q=Q Q^{T}=I=\left(\begin{array}{ccc}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right)
$$

This means: $\quad Q^{-1}=Q^{T}$

- Key property: Orthogonal matrices leave the Euclidean length invariant

$$
\|Q \mathbf{x}\|_{2}^{2}=(Q \mathbf{x})^{T} Q \mathbf{x}=\mathbf{x}^{T} \underbrace{Q^{T} Q}_{I} \mathbf{x}=\mathbf{x}^{T} \mathbf{x}=\|\mathbf{x}\|_{2}^{2}
$$

V.1.2. The orthogonal decomposition method

Fact: Every matrix $A \in \mathbb{R}^{m \times n}$ with full column rank (the columns are linearly independent) has a so-called QR-decomposition

$$
A=Q R
$$

where Q is an orthogonal matrix and R an upper triangular matrix

Matlab: $[\mathrm{Q}, \mathrm{R}]=\mathrm{qr}(\mathrm{A})$

V.1.2. The orthogonal decomposition method

Fact: Every matrix $A \in \mathbb{R}^{m \times n}$ with full column rank (the columns are linearly independent) has a so-called QR-decomposition

$$
A=Q R
$$

where Q is an orthogonal matrix and R an upper triangular matrix

Matlab: $[\mathrm{Q}, \mathrm{R}]=\mathrm{qr}(\mathrm{A})$

V.1.2. The orthogonal decomposition method

Minimize residuum: $\min _{\mathbf{x} \in D}\|\underbrace{A \mathbf{x}-\mathbf{b}}_{\mathbf{r}}\|_{2}$

$$
\begin{aligned}
\|A \mathbf{x}-\mathbf{b}\|_{2}^{2} & =\|\mathbf{r}\|_{2}^{2} \\
\left\|Q^{T}(A \mathbf{x}-\mathbf{b})\right\|_{2}^{2} & =\left\|Q^{T} \mathbf{r}\right\|_{2}^{2}=\|\mathbf{r}\|_{2}^{2} \\
\left\|Q^{T}(Q R \mathbf{x}-\mathbf{b})\right\|_{2}^{2} & =\|\mathbf{r}\|_{2}^{2}
\end{aligned}
$$

$$
\left\|R \mathbf{x}-Q^{T} \mathbf{b}\right\|_{2}^{2}=\|\mathbf{r}\|_{2}^{2}
$$ minimization problem!!!

V. Linear \& Nonlinear Least-Squares

V.1. Example: linear least-squares

Data:	i	1	2	3	4	5	6	7	8
	t	0.10	0.23	0.36	0.49	0.61	0.74	0.87	1.00
	q	0.84	0.30	0.69	0.45	0.31	0.09	-0.17	0.12

Model:
$1) q(t)=a_{1}$
$0.10 a_{1}+a_{2}$
Goal: Find $\quad a_{1}, a_{2}$
$0.84=0.10 a_{1}+a_{2} \quad$ Linear in model parameters!
$0.30=0.23 a_{1}+a_{2}$
$0.69=0.36 a_{1}+a_{2}$
$0.45=0.49 a_{1}+a_{2}$
$0.31=0.61 a_{1}+a_{2}$
$0.09=0.74 a_{1}+a_{2}$
$-0.17=0.87 a_{1}+a_{2}$
$0.12=1.00 a_{1}+a_{2}$)

V.1. Example: linear least-squares

$$
\begin{array}{lr|rrrrrrrr}
& i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \text { Data: } & t & 0.10 & 0.23 & 0.36 & 0.49 & 0.61 & 0.74 & 0.87 & 1.00 \\
\cline { 2 - 8 }
\end{array}
$$

Model: 1) $q(t)=a_{1} t+a_{2} \quad$ Goal: Find $\quad a_{1}, a_{2}$
Normal equations: $\quad A^{T} A \mathbf{x}-A^{T} \mathbf{b}=0$

$$
\begin{gathered}
\left(\begin{array}{ll}
3.1 & 4.4 \\
4.4 & 8.0
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{0.844}{2.62} \\
\longrightarrow \mathbf{x}=\binom{a_{1}}{a_{2}}=\binom{-0.86}{0.80}
\end{gathered}
$$

Orthogonal transformation: analogue...

V.2. Nonlinear least-squares

- General problem: m measurements n parameters $m \gg n$ Overdetermined!

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b_{1} \\
& f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b_{2} \\
& \mathbf{f}(\mathbf{x})=\mathbf{b} \\
& \mathbf{f}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b_{m} \\
& \uparrow_{f_{1}=f_{2}}=\cdots=f_{m} \text { usually... } \\
& \phi(\mathbf{x})=\frac{1}{2}\|\mathbf{f}(\mathbf{x})-\mathbf{b}\|_{2}^{2}
\end{aligned}
$$

Least squares solution: $\min _{\mathbf{x} \in D} \phi(\mathbf{x})$

V.2.1 Newton method

- Gradient of $\quad \phi(\mathbf{x})=\frac{1}{2}\|\mathbf{f}(\mathbf{x})-\mathbf{b}\|_{2}^{2}$

$$
=\frac{1}{2} \sum_{i=1}^{m}\left(f_{i}\left(x_{1}, \ldots, x_{n}\right)-b_{i}\right)^{2}
$$

must vanish at extremum (min/max):

$$
\overbrace{\nabla \phi(\mathbf{x})}^{\text {Gradient }}=\left(\begin{array}{c}
\frac{\partial \phi}{\partial x_{1}} \\
\frac{\partial \phi}{\partial x_{2}} \\
\vdots \\
\frac{\partial \phi}{\partial x_{n}}
\end{array}\right)=0
$$

n equations
n unknowns

V.2.1 Newton method

Apply Newton's method to solve

$$
\nabla \phi(\mathbf{x})=\mathbf{F}(\mathbf{x})=0
$$

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-D \mathbf{F}^{-1}\left(\mathbf{x}^{(k)}\right) \mathbf{F}\left(\mathbf{x}^{(k)}\right)
$$

Gradient $\underset{\text { NOT } \mathbf{f}(\mathbf{x})}{\mathbf{F}(\mathbf{x})=\nabla \phi(\mathbf{x})=\left(\begin{array}{c}\frac{\partial \phi}{\partial x_{1}} \\ \frac{\partial \phi}{\partial x_{2}} \\ \vdots \\ \frac{\partial \phi}{\partial x_{n}}\end{array}\right)}$
Hessian $\quad D \mathbf{F}(\mathbf{x})=H(\phi(\mathbf{x}))=\left(\begin{array}{cccc}\frac{\partial^{2} \phi}{\partial x^{2}} & \frac{\partial^{2} \phi}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} \phi}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} \phi}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} \phi}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} \phi}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \\ \frac{\partial^{2} \phi}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} \phi}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} \phi}{\partial x_{n}^{2}}\end{array}\right)$

V.2.2 Gauss-Newton method

Linearize the residuum/error equations

$$
\min _{\mathbf{x} \in D} \phi(\mathbf{x})=\min _{\mathbf{x} \in D} \frac{1}{2} \underbrace{\| \mathbf{f}(\mathbf{x})-\mathbf{b}}_{\text {Lineariz }} \|_{2}^{2}
$$

$$
\mathbf{f}(\mathbf{x})-\mathbf{b} \approx \mathbf{f}\left(\mathbf{x}^{(k)}\right)+D \mathbf{f}\left(\mathbf{x}^{(k)}\right)\left(\mathbf{x}-\mathbf{x}^{(k)}\right)-\mathbf{b}
$$

$$
\approx D \mathbf{f}\left(\mathbf{x}^{(k)}\right) \mathbf{x}+\underbrace{\mathbf{f}\left(\mathbf{x}^{(k)}\right)-\mathbf{b}-D \mathbf{f}\left(\mathbf{x}^{(k)}\right) \mathbf{x}^{(k)}}
$$

$$
\approx \underbrace{\overbrace{}^{2}}_{\left(A^{(k)} \mathbf{x}-\boldsymbol{\beta}^{(k)}\right.}
$$

V.2.2 Gauss-Newton method

Problem: $\quad \min _{\mathbf{x} \in D} \phi(\mathbf{x})=\min _{\mathbf{x} \in D} \frac{1}{2}\|\mathbf{f}(\mathbf{x})-\mathbf{b}\|_{2}^{2}$
Given an initial guess: $\quad \mathbf{x}^{(0)}$
Solve a sequence of linear least squares problems

$$
\begin{aligned}
& \min _{\mathbf{x} \in D} \frac{1}{2}\left\|A^{(0)} \mathbf{x}-\boldsymbol{\beta}^{(0)}\right\|_{2}^{2} \longrightarrow \mathbf{x}^{(1)} \\
& \min _{\mathbf{x} \in D} \frac{1}{2}\left\|A^{(1)} \mathbf{x}-\boldsymbol{\beta}^{(1)}\right\|_{2}^{2} \longrightarrow \mathbf{x}^{(2)} \\
& \min _{\mathbf{x} \in D} \frac{1}{2}\left\|A^{(k)} \mathbf{x}-\boldsymbol{\beta}^{(k)}\right\|_{2}^{2} \vdots \\
& \mathbf{x}^{(k+1)} \text { Until convergence } \\
&\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\right\| \text { Small enough }
\end{aligned}
$$

V.2. Example: nonlinear least-squares

$$
\begin{array}{lr|rrrrrrrr}
& i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \text { Data: } & t & 0.10 & 0.23 & 0.36 & 0.49 & 0.61 & 0.74 & 0.87 & 1.00 \\
\cline { 2 - 8 }
\end{array}
$$

Model: $2 q(t)=a_{2} e^{a_{1} t}$
Goal: Find $\quad a_{1}, a_{2}$

$$
\left.\begin{array}{l}
q_{1}=a_{1} e^{a_{2} t_{1}} \\
q_{2}=a_{1} e^{a_{2} t_{2}} \\
q_{3}=a_{1} e^{a_{2} t_{3}} \\
q_{4}=a_{1} e^{a_{2} t_{4}} \\
q_{5}=a_{1} e^{a_{2} t_{5}} \\
q_{6}=a_{1} e^{a_{2} t_{6}} \\
q_{7}=a_{1} e^{a_{2} t_{7}} \\
q_{8}=a_{1} e^{a_{2} t_{8}}
\end{array}\right\} \quad \underbrace{\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
q_{8}
\end{array}\right)}_{\mathbf{b}}=\underbrace{q_{6}}_{\mathbf{f}} \begin{aligned}
& \text { Nonlinear in model parameters! } \\
& \underbrace{a_{1} e^{a_{2} t_{2}}}_{a_{1} e^{a_{2} t_{1}}} \begin{array}{l}
a_{1} e^{a_{2} t_{3}} \\
a_{1} e^{a_{2} t_{4}} \\
a_{1} e^{a_{2} t_{5}} \\
a_{1} e^{a_{2} t_{6}} \\
a_{1} e^{a_{2} t_{7}} \\
a_{1} e_{2} t_{8}
\end{array})
\end{aligned}
$$

V.2. Example: nonlinear least-squares

$$
\begin{array}{lr|rrrrrrrr}
& i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \text { Data: } & t & 0.10 & 0.23 & 0.36 & 0.49 & 0.61 & 0.74 & 0.87 & 1.00 \\
\cline { 2 - 8 }
\end{array}
$$

Model: $2 q(t)=a_{2} e^{a_{1} t}$
Newton method: $\min _{\mathbf{x} \in D} \phi(\mathbf{x})$

$$
\begin{aligned}
\phi(\mathbf{x}) & =\frac{1}{2}\|\mathbf{f}(\mathbf{x})-\mathbf{b}\|_{2}^{2} \\
\mathbf{x}=\binom{a_{1}}{a_{2}} & =\frac{1}{2} \sum_{i=1}^{m}\left(f_{i}\left(x_{1}, \ldots, x_{n}\right)-b_{i}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{8}\left(a_{2} e^{a_{1} t_{i}}-q_{i}\right)^{2}
\end{aligned}
$$

V.2. Example: nonlinear least-squares

$$
\begin{array}{lr|rrrrrrrr}
& i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \text { Data: } & t & 0.10 & 0.23 & 0.36 & 0.49 & 0.61 & 0.74 & 0.87 & 1.00 \\
\cline { 2 - 8 }
\end{array}
$$

Model: $2 q(t)=a_{2} e^{a_{1} t}$
Newton method: $\min _{\mathbf{x} \in D} \phi(\mathbf{x})$

$$
\phi(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{8}\left(a_{2} e^{a_{1} t_{i}}-q_{i}\right)^{2}
$$

Gradient
$\mathbf{F}(\mathbf{x})=\nabla \phi(\mathbf{x})=\binom{\frac{\partial \phi}{\partial x_{1}}}{\frac{\partial \phi}{\partial x_{2}}}=\binom{\sum_{i=1}^{8}\left(a_{2} e^{a_{1} t_{i}}-q_{i}\right)\left(a_{2} e^{a_{1} t_{i}} t_{i}\right)}{\sum_{i=1}^{8}\left(a_{2} e^{a_{1} t_{i}}-q_{i}\right)\left(e^{a_{1} t_{i}}\right)}$
$\mathbf{F}(\mathbf{x})=\nabla \phi(\mathbf{x})=0 \quad$ Two equations in two unknowns!

V.2. Example: nonlinear least-squares

$$
\begin{array}{lr|rrrrrrrr}
& i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \text { Data: } & t & 0.10 & 0.23 & 0.36 & 0.49 & 0.61 & 0.74 & 0.87 & 1.00 \\
\cline { 2 - 8 }
\end{array}
$$

Model: $2 q(t)=a_{2} e^{a_{1} t}$
Newton method: $\min _{\mathbf{x} \in D} \phi(\mathbf{x})$

$$
\phi(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{8}\left(a_{2} e^{a_{1} t_{i}}-q_{i}\right)^{2}
$$

Hessian

$$
D \mathbf{F}(\mathbf{x})=H(\phi(\mathbf{x}))=\left(\begin{array}{cc}
\frac{\partial^{2} \phi}{\partial x_{1}^{2}} & \frac{\partial^{2} \phi}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} \phi}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} \phi}{\partial x_{2}^{2}}
\end{array}\right)=(\ldots)
$$

V.2. Example: nonlinear least-squares

Model: $2 q(t)=a_{2} e^{a_{1} t}$
Newton method: $\min _{\mathbf{x} \in D} \phi(\mathbf{x})$

$$
\phi(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{8}\left(a_{2} e^{a_{1} t_{i}}-q_{i}\right)^{2}
$$

Initial guess: $\mathbf{x}^{(0)}=\binom{-1}{1}$

Iterate!

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-D \mathbf{F}^{-1}\left(\mathbf{x}^{(k)}\right) \mathbf{F}\left(\mathbf{x}^{(k)}\right)
$$

V.2. Example: nonlinear least-squares

Data: | i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | t | 0.10 | 0.23 | 0.36 | 0.49 | 0.61 | 0.74 | 0.87 | 1.00 |
| | | 0.84 | 0.30 | 0.69 | 0.45 | 0.31 | 0.09 | -0.17 | 0.12 |

Model: $2 q(t)=a_{2} e^{a_{1} t} \quad$ Goal: Find $\quad a_{1}, a_{2}$
Gauss-Newton method: $\min _{\mathbf{x} \in D} \phi(\mathbf{x})$

$$
\phi(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{8}\left(a_{2} e^{a_{1} t_{i}}-q_{i}\right)^{2}
$$

Linearize residuum/error equations:

$$
f_{i}\left(x_{1}, x_{2}\right)-b_{i}=x_{2} e^{x_{1} t_{i}}-b_{i}
$$

$$
\approx x_{2}^{(k)} e^{x_{1}^{(k)} t_{i}}-b_{i}+x_{2}^{(k)} e_{\text {Linear in parameters now! }}^{x_{1}^{(k)} t_{i}} i_{i}\left(x_{1}-x_{1}^{(k)}\right)+e^{e_{1}^{(k)} t_{i}}\left(x_{2}-x_{2}^{(k)}\right)
$$

V. Summary

- Linear/Nonlinear in parameters
- Overdetermined system of equations!

Determine parameters in the least-squares sense...

- Linear:
- Normal equations
- Orthogonal transformation method
- Example
- Nonlinear:
- Newton method
- Gauss-Newton method
- Example

