
Chapter 2

Nonlinear Equations

”Roots! Bloody Roots!”

— Sepultura, Roots bloody roots

Solving equations is a very common operation. Most of the time, the equation one
has to solve has both a left and a right-hand side. It is however customary to move
everything to the left-hand side, so that one is left with the following

f(x) = 0. (2.1)

An x fulfilling the equation is commonly also called a root of the function f . If the
function f depends only on one variable, the problem is one-dimensional. Note that
we also assume the function is nonlinear, since otherwise the solution should be quite
obvious.

Often one faces the problem to solve multiple equations with multiple unknowns

f1(x1, x2, ..., xn) = 0

f2(x1, x2, ..., xn) = 0

...
fm(x1, x2, ..., xn) = 0

(2.2)

If the number of equations equals the number of unknowns, i.e. m = n one has at least
the hope to satisfy all the equation simultaneously. Note that the emphasis is on hope,
because in general there is no certainty. We write (2.2) usually in vector notation

f(x) = 0, (2.3)

where f = [f1, f2, ..., fn]
T is a n-dimensional real vector-valued function from some do-

main D to Rn and x = [x1, x2, ..., xn]
T is a n-dimensional real vector. Or in "math"

notation: f : D → Rn and x ∈ D ⊂ Rn.
Before we begin, we have to state a little downer: there is in general neither uniqueness

nor existence of a solution. This can be best understood by the graphs in figure 2.1. The
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Figure 2.1: Left: Non-continuous function. Right: Multiple solutions.

left panel illustrates the case of a non-continuous function which does not pass through
zero, i.e. there is no solution. The right panel illustrates the case of multiple solutions.
In the latter case, it is your duty to make sure to choose the adequate solution (which
indeed depends on your application).

Finding solutions to general nonlinear equations is an inherently iterative process. It
is crucial to give a root-finding algorithm a good starting value or initial guess. The algo-
rithm then improves on the initial guess by iteration. If the iterative process converges,
it has to be stopped as soon as you have reached the desired precision or tolerance. How
to choose this precision/tolerance usually depends on your application.

Further information can be found in [1, 2] and references therein.

2.1 Single nonlinear equations

So in this section we consider the following problem: find a zero (a.k.a. root) x∗ for the
(real) scalar function f , that is

f(x∗) = 0. (2.4)

In the following we assume that the function is at least continuous.
To solve the problem, we will make use of iterative methods. We start from some

initial value or initial guess x(0) and construct a sequence

x(0) −→ x(1) −→ x(2) −→ ... −→ x(k) −→ x(k+1) −→ ...
k→∞−−−→ x∗ (2.5)

that hopefully converges to a solution x∗ of the problem.
We index the sequence by superscripts in parenthesis, which should not to be confused

with exponentiation. This notation is commonly used to have the subscript free for
labeling components in the multi-dimensional case.

2.1.1 Fixed-point iteration & a few generalities

The first idea is to rewrite the equation into a so-called fixed-point iteration

x(k+1) = ϕ(x(k)) , k = 0, 1, ..., (2.6)
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where one calls the equation
x = ϕ(x) (2.7)

the associated fixed-point equation. One calls a point x∗ fulfilling the fixed-point equation,
i.e. ϕ(x∗) = x∗, a fixed-point of ϕ. A fixed-point iteration is said to be consistent with
the original equation if

f(x∗) = 0 ⇐⇒ x∗ = ϕ(x∗). (2.8)

After having thrown around a few definitions, it is time for an example. Let’s try to
find the root of the following equation

f(x) = xex − 1
!
= 0 (2.9)

for x ∈ [0, 1]. The graph of the function is shown in figure 2.2.
We can come up1 with these three fixed-point equations

x = ϕ1(x) with ϕ1(x) = e−x,

x = ϕ2(x) with ϕ2(x) =
x2ex + 1

ex(1 + x)
,

x = ϕ3(x) with ϕ3(x) = x− xex + 1.

(2.10)

The following table shows the result of the first few iterations:

k ϕ1 ϕ2 ϕ3

0 0.8000000 0.9000000 0.6000000
1 0.4493290 0.6402998 0.5067287
2 0.6380562 0.5713091 0.6656338
3 0.5283184 0.5671575 0.3704946
4 0.5895956 0.5671433 0.8338514
5 0.5545515 0.5671433 -0.0858149
... ... ... ...

We observe that ϕ2 seems to have reached a fixed-point after 4 iterations (up to the
number of digits in the table). ϕ1 seems to slowly tend to the same number. However,
ϕ3 leaves the interval [0, 1], which is an indication for divergence.

Fixed-point iterations have a simple graphical interpretation. In figure 2.3 we show
the result for the first few iterations. In each of the graph, the fixed-point is where the
blue curve (ϕi, i = 1, 2, 3) cuts the black "diagonal" curve y = x. From the figure we
see that ϕ1 and ϕ2 converge. However, ϕ2 seems to converge faster. The ϕ3 fixed-point
iteration diverges, that is it spirals away from the fixed-point.

As an exercise, try to show the consistency of the fixed-point iterations and determine
if they converge to a fixed-point with Matlab©.

So far, we note the following then:

(i) The fixed-point equations/iterations are not unique. We will see several ways to
construct them in the next subsections.

1We will see later how one derives these.
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Figure 2.2: Plot of function (2.9).

x(0)x(1) x(2)x(3) x(0)x(1)x(2) x(0)x(1) x(2)x(3) x(4)

Figure 2.3: Fixed-point iterations. The blue curve is the respective fixed-point function
ϕ1 (left), ϕ2 (middle) and ϕ3 (right). The black "diagonal" curve is the equation y = x.

(ii) Fixed-point iterations may not converge.

(iii) If the fixed-point iterations converge, they may do that with different speeds.

There is actually some theory on when or when not a fixed-point iteration converges:
Banach’s fixed-point theorem... However, we shall not discuss the theoretical details in
this course and refer to e.g. [1, Chapter 3] and [3, Chapter 5].

Instead we shall refine the notion of convergence speed. We say that a sequence x(k)

with limit limk→∞ x(k) = x∗ converges with order p ≥ 1 if there exists a constant C > 0
such that ∣∣∣x(k+1) − x∗

∣∣∣ ≤ C
∣∣∣x(k) − x∗

∣∣∣p . (2.11)



CHAPTER 2. NONLINEAR EQUATIONS 5

The constant C is called the rate of convergence. For p = 1 one additionally requires
0 < C < 1 (for obvious reasons!). For p = 1, 2 we say that we have linear/quadratic
convergence, respectively.

Let us try to estimate the convergence rate and order numerically. For that, we define
the error at the k-th step as

ϵ(k) =
∣∣∣x(k) − x∗

∣∣∣ (2.12)

and rewrite eq. (2.11) as
ϵ(k+1) ≤ C

(
ϵ(k)
)p

. (2.13)

Suppose we know the error at the (k + 1),k and (k − 1)-th iterations, so that we have
the following relations among them

ϵ(k+1) = C
(
ϵ(k)

)p
ϵ(k) = C

(
ϵ(k−1)

)p
.

(2.14)

By taking the logarithm of the above equations we arrive at

log
(
ϵ(k+1)

)
= log(C) + p log

(
ϵ(k)

)
log
(
ϵ(k)

)
= log(C) + p log

(
ϵ(k−1)

)
.

(2.15)

The latter equations can easily be solved for p and C:

p =
log
(
ϵ(k+1)

)
− log

(
ϵ(k)

)
log
(
ϵ(k)

)
− log

(
ϵ(k−1)

) (2.16)

C =
ϵ(k+1)(
ϵ(k)
)p =

ϵ(k)(
ϵ(k−1)

)p . (2.17)

As an exercise, try to estimate the convergence rate and order of the fixed-point iterations
(2.10). Obviously only the converging ϕ1 and ϕ2 are interesting. As the exact solution
x∗, take the result from ϕ2 when it has reached machine precision. The following table
shows what your result should look like

ϕ1 ϕ2

k p C p C

1 0.7451165 0.3489721 1.8914068 0.5859477
2 1.1866067 0.8971140 1.9832614 0.7450448
3 0.9091583 0.4305099 1.9994808 0.8143094
4 1.0560201 0.6937276 - -
5 0.9697282 0.4999380 - -
6 1.0176407 0.6165178 - -
7 0.9901489 0.5382915 - -
8 1.0056361 0.5862095 - -
9 0.9968194 0.5556549 - -
... ... ... - -
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We observe that ϕ1 converges linearly and the convergence rate is close to one. The
fixed-point iteration ϕ2 converges quadratically.

When looking for the solution of a nonlinear equation in practice, one usually wants to
know the solution up to some tolerance/precision τ which is dictated by your application,
that is find the smallest2 k such that

ϵ(k) =
∣∣∣x(k) − x∗

∣∣∣ ≤ τ. (2.18)

However, x∗ is unknown to you. Otherwise you wouldn’t be looking for it by numerical
means! Practically, one estimates the error by computing the difference between two
consecutive iterations. The iteration is stopped, when this difference is below a certain
tolerance τ̃ ∣∣∣x(k) − x(k−1)

∣∣∣ ≤ τ̃ . (2.19)

Is this criterion enough? Let us motivate this stopping criteria for the case of a linearly
convergent fixed-point iteration∣∣∣x(k) − x∗

∣∣∣ ≤ C
∣∣∣x(k−1) − x∗

∣∣∣ .
Assuming we know the convergence rate 0 < C < 1, we can make the following elemen-
tary manipulations∣∣∣x(k) − x∗

∣∣∣ ≤ C
∣∣∣x(k−1) − x(k) + x(k) − x∗

∣∣∣ Adding a zero

≤ C
(∣∣∣x(k−1) − x(k)

∣∣∣+ ∣∣∣x(k) − x∗
∣∣∣) Triangle inequality

(1− C)
∣∣∣x(k) − x∗

∣∣∣ ≤ C
∣∣∣x(k−1) − x(k)

∣∣∣
1− C

C

∣∣∣x(k) − x∗
∣∣∣ ≤ ∣∣∣x(k−1) − x(k)

∣∣∣ .
In words: there is a relationship between the error at the k-th step ϵ(k) and the difference
between two consecutive iterations. This relationship depends on the convergence rate
C and tells you how to choose τ̃ . Hence we conclude, that the stopping criteria (2.19) is
reasonable.

2.1.2 Bisection method

The bisection method is a very simple and reliable root finding algorithm. Suppose you
know an interval [a, b] over which the function changes sign, e.g. f(a) > 0 and f(b) < 0.
Under the assumption that the function is continuous, you then know there must be (at
least!) one root. One says that the root is bracketed. Now bisect the interval into two
subintervals [a, c] and [c, b], where c = (a + b)/2. Choose the subinterval which again
brackets the root. Iterate over this process and you have the bisection method. This is
illustrated in figure 2.4.

A few things to remember for the bisection method:
2Indeed, you don’t want to waste resources.



CHAPTER 2. NONLINEAR EQUATIONS 7

a bc

Figure 2.4: Bisection method.

(i) It’s a very easy and reliable method.

(ii) We can give an a priori error estimate

ϵ(k) =
∣∣∣c(k) − x∗

∣∣∣ ≤ 1

2k+1
|b− a| , k = 0, 1, 2, ..., (2.20)

where c(k) is the result of the bisection of the k-th interval. The bisection method
converges linearly.

(iii) The main disadvantage of the bisection method is its slow convergence speed.

2.1.3 Newton’s method

A very popular method for searching the roots of a nonlinear equation is Newton’s method.
Sometimes it’s also called the Newton-Raphson method. Newton’s method is derived from
the Taylor expansion of the function f(x) at the iteration’s current point x(k)

f(x) = f(x(k)) + f ′(x(k))(x− x(k)) +
f ′′(x(k))

2
(x− x(k))2 + · · · . (2.21)

The expansion is then truncated to keep only the constant and linear terms

f(x) ≈ f̃(x) = f(x(k)) + f ′(x(k))(x− x(k)), (2.22)

i.e. we linearize the function around x(k). The next point in the iteration is then defined
by

f̃(x(k+1)) = f(x(k)) + f ′(x(k))(x(k+1) − x(k))
!
= 0, (2.23)
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x(0)x(1)x(2)

Figure 2.5: Newton finds the next value by going along the tangent of the curve until it
cuts the x-axis.

which can easily be solved to give

x(k+1) = x(k) − f(x(k))

f ′(x(k))
. (2.24)

Newton’s method has an easy graphical interpretation: extend the tangent to the
curve at the current point x(k) and follow it until it cuts the x-axis. The point where the
tangent cuts defines your new value x(k+1). This is illustrated in figure 2.5.

A few remarks concerning Newton’s method:

(i) It needs the function3 and it’s first derivative f ′(x).

(ii) It can be written as a fixed-point iteration

ϕ(x) = x− f(x)

f ′(x)

As an exercise, show the consistency!

(iii) When close enough to the root, it converges quadratically, i.e. p = 2.

(iv) Newton’s method fails when f ′(x(k)) = 0!
3Obviously!
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x(0)x(1)x(2)x(3)

Figure 2.6: Illustration of the secant method.

2.1.4 Secant method

The so-called secant method is popular method when the derivative f ′(x) is unavailable
or when it is to expensive to compute. The idea is to approximate the derivative by
simple finite differences

f ′(x(k)) =
f(x(k))− f(x(k−1))

x(k) − x(k−1)
.

Then the iteration is given by

x(k+1) = x(k) − f(x(k))
x(k) − x(k−1)

f(x(k))− f(x(k−1))
. (2.25)

The secant method has a straightforward graphical interpretation: The line through
two successive iteration values x(k−1) and x(k) is extrapolated until it cuts the x-axis,
which then defines the new value x(k+1). The method is illustrated in figure 2.6.

A few remarks concerning the secant method:

(i) It is a two-stage fixed-point iteration:

x(k+1) = ϕ(x(k−1), x(k)) = x(k) − f(x(k))
x(k) − x(k−1)

f(x(k))− f(x(k−1))

Therefore it needs two starting values!

(ii) One can show that if it converges, then the secant method converges with order
p = (1 +

√
5)/2 ≈ 1.618, i.e. the so-called golden ratio. No need to know the exact

number, just keep in mind that it’s faster than linear but slower than quadratic
(when near the root, of course)!
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(iii) It fails when f(x(k−1)) = f(x(k))!

Methods such as the secant method that approximate the derivative in Newton’s
method are also referred to as quasi-Newton methods.

2.2 Systems of nonlinear equations

In this section we consider the problem to solve nonlinear systems of equations:

f(x) = 0, (2.26)

where f = [f1, f2, ..., fn]
T is a n-dimensional real vector-valued continuous function and

x = [x1, x2, ..., xn]
T is a n-dimensional real vector.

Let’s make a simple two dimensional example: solve

f1(x1, x2) = x21 + x2 − 2 = 0

f2(x1, x2) = x2e
x1 − 2 = 0

(2.27)

in the domain D = [0, 2]2. In figure 2.7 we plot the contours of f1 (blue lines) and f2
(red lines). The sought solution is where the zero contour lines of both functions meet.
You can see that this happens twice: at x = [x1, x2]

2 = [0, 2]T and x ≈ [1.2, 0.6]T .
In the two-dimensional case, one can use the contour plots to get an idea of where

the solutions are. Unfortunately, in more than two-dimensions this is not so easy to
visualize. Hence, finding roots becomes increasingly difficult. Actually, it seems virtually
impossible without any good insight where to look for the root(s). This insight has to
come from your application.

Below, we will look only at the "simplest" method for nonlinear systems of equations,
namely Newton’s method. Although one can also apply the fixed-point iteration idea
here, we shall not further discuss that possibility.

2.2.1 Newton’s method

As in the scalar case, the idea of Newton’s method for systems is to express the function
f(x) by a Taylor expansion at some point x(k)

f(x) = f(x(k)) + Df(x(k))
(
x− x(k)

)
+ ..., (2.28)

where

Df =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 (2.29)

is the Jacobian matrix. The function is then approximated by keeping only the constant
and linear term in the expansion

f(x) ≈ f̃(x) = f(x(k)) + Df(x(k))
(
x− x(k)

)
, (2.30)
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Figure 2.7: Contour lines of f1 (blue lines) and f2 (red lines) in (2.27).

i.e. we linearize the function f(x) at x(k). We obtain the iteration by the solution of the
linear system of equations

f̃(x(k+1)) = f(x(k)) + Df(x(k))
(
x(k+1) − x(k)

)
= 0, (2.31)

which gives Newton’s method

x(k+1) = x(k) −Df(x(k))−1f(x(k)). (2.32)

Note that Df(x(k))−1 is the inverse of the Jacobian matrix.
Let’s apply Newton’s method to the system of two nonlinear equations (2.27). The

Jacobian matrix is given by

Df(x) =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
=

(
2x1 1
x2e

x1 ex1

)
(2.33)

and it’s inverse can easily be computed from the formula

A =

(
a b
c d

)
, A−1 =

1

ad− cb

(
d −b
−c a

)
to give

Df−1(x) =
1

(2x1 − x2)ex1

(
ex1 −1

−x2e
x1 2x2

)
. (2.34)

Implementing this into Matlab© and using the starting value x(0) = [1.9, 1.5]T one
gets the following sequence
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Figure 2.8: First few iterations of Newton’s method applied to (2.27). Left panel: good
starting value. Right panel: bad starting value.

k x
(k)
1 x

(k)
2 ∥x(k) − x(k−1)∥2

0 1.9000000 1.5000000 -
1 1.0699403 1.5442267 8.3123707e-01
2 1.3539471 0.2474872 1.3274763e+00
3 1.2118524 0.5516047 3.3567596e-01
4 1.1777319 0.6141119 7.1213459e-02
5 1.1760060 0.6170128 3.3755079e-03
6 1.1760019 0.6170194 7.7670622e-06
7 1.1760019 0.6170194 4.1848107e-11
8 1.1760019 0.6170194 1.1102230e-16

We observe that the Newton method rapidly converges to x∗ ≈ [1.176, 0.617]T . This is
also illustrated graphically in the left panel of figure 2.8.

In the right panel we show the result of using x(0) = [0.51, 1.]T as starting value. With
this starting value, the Newton method rapidly wanders out of the domain D = [0, 2]2

where we are looking for a solution! What happens there? Well, the Jacobian matrix is
nearly singular, i.e. not invertible, at this starting value.

A few remarks concerning Newton’s method for nonlinear systems:

(i) It needs the function and it’s Jacobian matrix Df . In each Newton iteration one
has to solve a system of linear equations (2.31).

(ii) When close enough to the root, it converges quadratically, i.e. p = 2.

(iii) Newton’s method fails when when the Jacobian matrix is (nearly) singular. This
is analogous to the scalar case when f ′(x) ≈ 0.

(iv) When implementing the Newton method, never compute the inverse of the Jacobian
matrix! Rather solve the linear system

Df(x(k))
(
x(k+1) − x(k)

)
= Df(x(k))∆x(k) = −f(x(k))
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INLET

OUTLET

Figure 2.9: CSTR with two chemical reactions.

and iterate by x(k+1) = x(k) + ∆x(k). The reason for this, is that computing the
inverse of matrix is n times (n is the size of the matrix ) more expensive than to
solve the linear system.

As a last example/exercise let’s consider a Continuous Stirred-Tank Reactor (CSTR)
(see figure 2.9). The reactor is operated isothermally with negligible volume change due
to reactions, in inflow mode with a constant fluid volume V and with two elementary
chemical reactions

A+B → C rR1 = k1cAcB

C +B → D rR1 = k2cCcB,
(2.35)

where the cj , j = A,B,C,D, are the respective chemical species concentrations and k1
and k2 the respective rate constants. Under the assumption that the reactor is perfectly
mixed, the concentration of each species within the reactor is spatially homogeneous.

The concentration of each species is then dictated by the following set of mass balances

d

dt
(V cA) = v (cA,in − cA) + V (−k1cAcB)

d

dt
(V cB) = v (cB,in − cB) + V (−k1cAcB − k2cCcB)

d

dt
(V cC) = v (cC,in − cC) + V (+k1cAcB − k2cCcB)

d

dt
(V cD) = v (cD,in − cD) + V (+k2cCcB) ,

(2.36)

where v is the volumetric flow rate of the inlet and outlet, V is the reactor volume and
the cj,in, j = A,B,C,D, are the respective concentration of species at the inlet.

The goal is now to compute the steady-state concentrations. This means that the time
derivatives on the left-hand side vanish and we get a system of four nonlinear equations.
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Let’s rewrite the resulting system as follows

v (cA,in − x1) + V (−k1x1x2) = 0

v (cB,in − x2) + V (−k1x1x2 − k2x3x2) = 0

v (cC,in − x3) + V (+k1x1x2 − k2x3x2) = 0

v (cD,in − x4) + V (+k2x3x2) = 0,

(2.37)

where we replaced cA = x1, cB = x2, cC = x3 and cD = x4. The vector function f is
then simply

f(x) =


v (cA,in − x1) + V (−k1x1x2)

v (cB,in − x2) + V (−k1x1x2 − k2x3x2)
v (cC,in − x3) + V (+k1x1x2 − k2x3x2)

v (cD,in − x4) + V (+k2x3x2)

 , (2.38)

where x = [x1, x2, x3, x4]
T . The Jacobian matrix is simply

Df(x) =


−v − V k1x2 −V k1x1 0 0
−V k1x2 −v − V k1x1 − V k2x3 −V k2x2 0
V k1x2 V k1x1 − V k2x3 −v − V k2x2 0

0 V k2x3 V k2x2 −v

 . (2.39)

We have now (nearly) everything at hand to apply Newton’s method: see algorithm 1.

Given an initial guess x(0), tolerance τ and maximum number of iterations Nmax

for k = 0 to Nmax do
% solve linear system for ∆x(k)

Df(x(k))∆x(k) = −f(x(k))
% Newton step
x(k+1) = x(k) +∆x(k)

% Check stopping criteria
if ∥∆x(k)∥ ≤ τ then

Return x(k+1)

end
end

Algorithm 1: Newton’s method.

The only missing thing is a good initial guess... Use your practical insight!

2.3 Review questions

Here a few review questions4 for the present chapter:

(a) Why does one need iterative methods?
4FAQs at exams...
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(b) What can be said about existence and uniqueness for solutions of nonlinear equa-
tions?

(c) What methods have we seen for single nonlinear equations? Explain them and state
their strengths and their requirements.

(d) What method have we seen for systems of equations? Explain it.
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