
Chapter 1

Interpolation & Numerical Calculus

Suppose we know some quantity q (e.g. temperature, density, concentration, ...) only at
certain given locations

j 0 1 2 3 4 ... n

xj 0.00 0.51 1.06 1.47 2.01 ... xn
qj 0.00 0.22 0.25 0.28 0.30 ... qn

and that for our application we have to compute an approximation of q between the
tabulated locations. Or we may need an approximation of the derivative q′ or an ap-
proximation to the definite integral

∫ x3

x1
q dx. The data points may originate from some

physical measurements or from sampling a complex function.
Hence, we want to find a "reasonable" function q(x) that "suits" the given data

{(xj , qj)}nj=0. Once we have found this "reasonable" function q(x), we can simply eval-
uate this function, its derivative and definite integrals wherever we need to.

If one knows from the application that q(x) has a certain functional form, then one
can fit q(x) to the data by determining its parameters in the least squares sense, for
example. Then q(xj) ≈ qj as illustrated in the left panel for Figure 1.1. We will treat
curve fitting from a numerical1 perspective in Chapter 4 of the (handwritten) lecture
notes.

A special case of curve fitting asks that the function q(x) passes through the data
exactly, i.e. q(xj) = qj . This case is known as interpolation and one says that q(x)
interpolates the data. This case is illustrated in the right panel of Figure 1.1. If one
evaluates q(x) outside of the range of given locations, one speaks of extrapolation.

In the present chapter we deal with interpolation and its applications to numerical
calculus. We will base our interpolating function q(x) on the following linear combination

q(x) =

n∑
j=0

cjϕj(x) = c0ϕ0(x) + · · ·+ cnϕn(x), (1.1)

where the cj ’s are unknown2 coefficients or parameters and the ϕj ’s are predetermined
basis functions. We assume that the basis functions are linearly independent, which

1The statistical perspective will be treated in the second part of the course
2We have to determine them!

1

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 2

x

q

x

q

Figure 1.1: Left panel : curve fitting for given data q(xi) ≈ qi. Right panel: interpolation
for given data q(xi) = qi.

means that q(x) = 0 for all x is only possible when all coefficients vanish, i.e. cj = 0 for
j = 0, ..., n. Note that although q(x) is a linear combination of the basis functions ϕj(x),
this does not imply that ϕj(x), and thereby also q(x), have to be linear functions of x.

In order to determine the coefficients cj , we ask them to satisfy n + 1 interpolation
conditions

q(xj) = qj for j = 0, ..., n. (1.2)

This results in a linear system of n+ 1 in equations in n+ 1 unknowns, the cj ’s, and it
can be written in the following compact matrix form

ϕ0(x0) ϕ1(x0) · · · ϕn(x0)
ϕ0(x1) ϕ1(x1) · · · ϕn(x1)

...
...

. . .
...

ϕ0(xn) ϕ1(xn) · · · ϕn(xn)

c0
c1
...
cn

 =

q0
q1
...
qn

 . (1.3)

Once we have determined the coefficients, we can simply evaluate q(x) at any location
we need to. Moreover, derivatives and integrals can easily be computed by differentiating
and integrating the basis functions:

dq

dx
(x) =

n∑
j=0

cj
dϕj

dx
(x)

∫ b

a
q(x)dx =

n∑
j=0

cj

∫ b

a
ϕj(x)dx.

In this chapter we deal with a particular kind of interpolation known as polynomial in-
terpolation. As the name suggests, in this case the basis functions ϕj(x) are polynomials.
In subsection 1.1.1 and 1.1.2 we will see two particular bases for polynomial interpolation.
In subsection 1.1.3 we will analyse how good polynomials do at approximating functions
by looking at the so-called interpolation error. There we will see that interpolation with
high degree polynomials is in general not a good idea and this will lead us to piecewise

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 3

interpolation in subsection 1.1.4. The rest of the chapter will then apply (piecewise) poly-
nomial interpolation to compute approximation of derivatives (section 1.2) and (definite)
integrals (section 1.3).

Before we proceed, we mention that there are other forms of interpolation. One
important example is trigonometric interpolation where the basis functions are trigono-
metric functions ϕj(x) = cos(jx), or ϕj(x) = sin(jx), or even ϕj(x) = ejix (where i is
the imaginary unit, i.e. i2 = −1). Trigonometric interpolation is extremely useful in
signal processing and the description of wave and other periodic phenomena. However,
this type of interpolation is beyond the scope of this course and we refer to e.g. [1, Chap.
13] for a good introduction.

Note that the present chapter may not seem to be the most exciting and enlight-
ening one. However, interpolation is used as a building block in many complex
numerical algorithms for differentiation, integration and the solution of differential
equations.

1.1 Polynomial interpolation

In this section we consider polynomial interpolation where the basis functions ϕj(x) are
polynomials. We will see two kinds of basis function: the simple monomial basis and the
Lagrange polynomials basis.

1.1.1 Monomial interpolation

Given a set of n + 1 distinct nodes, x0 < x1 < ... < xn, and corresponding data points,
y0, y1, ..., yn, we want to find the polynomial of n-th degree

pn(x) = c0 + c1x+ c2x
2 + ...+ cnx

n (1.4)

satisfying the n+ 1 interpolation conditions

pn(xi) = yi , i = 0, 1, ..., n. (1.5)

Note that the above suits the framework Eq. (1.1) with as basis functions the so-called
monomials ϕj(x) = xj .

The set of nodes x0 < x1 < ... < xn is sometimes referred to as a grid or mesh and
by distinct nodes we mean that they are all different, i.e. xi ̸= xj for i ̸= j.

The interpolation problem gives rise to a linear system of n+1 equations in the n+1
unknown coefficients c0, c1, ..., cn. The interpolation conditions Eq. (1.5) can be written
in matrix form as follows

Xc = y, (1.6)

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 4

where c = [c0, c1, ..., cn]
T and y = [y0, y1, ..., yn]

T are vectors containing the polynomial’s
coefficients and the data points, respectively, and

X =

1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

. . .
...

1 xn x2n · · · xnn

 (1.7)

is known as a Vandermonde matrix. From introductory linear algebra courses you may
recall that the determinant of a Vandermonde matrix is3

det(X) =

n−1∏
i=0

 n∏
j=i+1

(xj − xi)

 . (1.8)

Also from your linear algebra course, you surely know that a linear system is uniquely
solvable if its determinant is nonzero. Now, Eq. (1.8) is clearly not zero if (as we assumed
from the beginning!) the interpolation nodes are all distinct. Therefore a solution to the
interpolation problem exists and is unique. So much regarding the usual mathematical
concerns on existence and uniqueness.

Actually, existence and uniqueness is just a generalization of facts you already know.
Through two (distinct!) points there is a unique linear polynomial (line). Through three
(distinct!) points there is a unique quadratic polynomial (parabola). And so on...

After so much theory, let’s make a couple of simple examples.

Example 1.1. Let’s find the interpolating polynomial through the two data points
(x0, y0) = (1, 2) and (x1, y1) = (3, 5). In this case n = 1 and we are simply looking for
the linear polynomial p1(x) (straight line!) through both points:

p1(x0) = c0 + c1x0 = c0 + 1c1 = 2

p1(x1) = c0 + c1x1 = c0 + 3c1 = 5.

This linear system of two equations can be rewritten in matrix form as[
1 1
1 3

] [
c0
c1

]
=

[
2
5

]
,

which can be solved (very easily!) to yield c0 = 1/2 and c1 = 3/2. The wanted linear
polynomial interpolating p1(x) is

p1(x) =
1

2
+

3

2
x.

The linear interpolant together with the data points are shown in Figure 1.2. ▲

3Don’t worry if you don’t! Anyway, nobody is going to ask you such a thing at the exam...

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 5

Example 1.2. We add another data point to the previous example: find the interpolating
polynomial through the three data points (x0, y0) = (1, 2), (x1, y1) = (3, 5) and (x2, y2) =
(4, 4). Now n = 2 and we look for the quadratic polynomial p2(x) interpolating the data
points. The interpolation conditions read

p2(x0) = c0 + c1x0 + c2x
2
0 = c0 + 1c1 + 1c2 = 2

p2(x1) = c0 + c1x1 + c2x
2
1 = c0 + 3c1 + 9c2 = 5

p2(x2) = c0 + c1x2 + c2x
2
2 = c0 + 4c1 + 16c2 = 4,

or, equivalently, in matrix form1 1 1
1 3 9
1 4 16

c0c1
c2

 =

25
4

 .

This can (relatively!) easily be solved again to yield c0 = −2, c1 = 29/6 and c2 = −5/6.
The wanted quadratic polynomial interpolating p2(x) is

p2(x) = −2 +
29

6
x− 5

6
x2.

The quadratic interpolant together with the data points are shown in Figure 1.2.
Solving the above 3 by 3 linear system by hand can be tedious. In Matlab©, you

could simply do
x = [1;3;4]; % nodes
y = [2;5;4]; % data
A = [1,x(1)^1,x(1)^2; ...

1,x(2)^1,x(2) ^2; ...
1,x(3)^1,x(3) ^2;]; % system matrix

c = A \ y % solve for the coefficients

yielding the same result as expected (up to rounding errors, of course!). ▲

For convenience, Matlab© provides the function polyfit for (monomial basis)
polynomial interpolation. So you don’t have to set up the linear system and solve it
yourself. The function takes as input the nodes x, data y and the degree of the interpo-
lating polynomial n
p = polyfit(x,y,n)

and returns a vector containing the coefficients of the polynomial pn(x) as

pn(x) = p(1)xn + p(2)xn−1 + · · ·+ p(n)x+ p(n+1).

Note that the returned vector contains the coefficients of the polynomial in descending
powers of x. An interpolation polynomial computed by polyfit can be conveniently
evaluated with the function polyval.

For instance, the following commands reproduce Example 1.2 with polyfit and
polyval:

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 6

0 1 2 3 4 5

x

2

0

2

4

6

8

y

p1(x)

p2(x)

Figure 1.2: Example of linear and quadratic polynomial interpolation.

x = [1;3;4]; % nodes
y = [2;5;4]; % data
p = polyfit(x,y,2); % get quadratic interpolation polynomial

% coefficients
xx = linspace (0. ,5.); % row vector of 100 equally spaced point between 0

% and 5
pxx = polyval(p,xx); % evaluate the quadratic interpolation polynomial

% at xx
plot(xx,pxx) % plot it!

For further information please consult the Matlab© documentation.

1.1.2 Lagrange interpolation

In the monomial basis, the expansion coefficients cj do not relate to the data points yj in
a straightforward manner. Indeed, the cj are the solution of a linear system of equations
(the interpolation conditions), and are therefore only implicitly given. For what follows,
it will be convenient for us to have a basis in which the coefficients can be directly inferred
from the data points, i.e. cj = yj , giving

pn(x) =

n∑
j=0

cjϕj(x) =

n∑
j=0

yjϕj(x).

Such a basis is provided by the so-called Lagrange polynomials Ln
j (x) defined by

Ln
j (x) =

n∏
i=0
i ̸=j

x− xi
xj − xi

for j = 0, 1, ..., n. (1.9)

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 7

Then, the interpolation polynomial is given by

pn(x) =
n∑

j=0

yjL
n
j (x). (1.10)

The Lagrange polynomials Ln
j (x) have all degree n and therefore pn(x) in Eq. (1.10)

is indeed a polynomial of degree n (because it’s a linear combination of polynomials of
degree n). Moreover, the Lagrange polynomials satisfy

Ln
j (xk) = δjk =

{
1, if j = k,

0, if j ̸= k.
(1.11)

Try to convince yourself of that4! With the latter property, it is easy to see that pn(x)
satisfies the interpolation conditions:

pn(xi) =

n∑
j=0

yjL
n
j (xi) = 0 + · · ·+ 0 + yiL

n
i (xi) + 0 + · · ·+ 0 = yi.

Let’s digest Lagrange interpolation with the following quick example.

Example 1.3. We want to find the interpolating polynomial through the same data
points as in the previous Example 1.2 but this time with Lagrange’s interpolation formula.
We have (x0, y0) = (1, 2), (x1, y1) = (3, 5) and (x2, y2) = (4, 4). Here n = 2 and we look
for the quadratic polynomial p2(x) that goes through these data points. The Lagrange
polynomials can be computed from formula Eq. (1.9):

L2
0(x) =

(x− x1)

(x0 − x1)

(x− x2)

(x0 − x2)
=

(x− 3)

−2

(x− 4)

−3
=

1

6
(x2 − 7x+ 12)

L2
1(x) =

(x− x0)

(x1 − x0)

(x− x2)

(x1 − x2)
=

(x− 1)

2

(x− 4)

−1
= −1

2
(x2 − 5x+ 4)

L2
2(x) =

(x− x0)

(x2 − x0)

(x− x1)

(x2 − x1)
=

(x− 1)

3

(x− 3)

1
=

1

3
(x2 − 4x+ 3)

Note that here it should be trivial to see that Eq. (1.11) is valid. By plugging this into
Eq. (1.10) we get

p2(x) = y0L
2
0(x) + y1L

2
1(x) + y2L

2
2(x)

= 2
1

6
(x2 − 7x+ 12)− 5

1

2
(x2 − 5x+ 4) + 4

1

3
(x2 − 4x+ 3)

= −2 +
29

6
x− 5

6
x2.

The quadratic interpolating polynomial p2(x) and the data points are shown in the
left panel of Figure 1.3. The right panel of the same figure shows the three Lagrange
polynomials. ▲

4Sometimes certain things are not so obvious for general j, k and n... In Example 1.3 a concrete
example is given for n = 2.

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 8

You probably have noted that the interpolating polynomials in Example 1.2 and
Example 1.3 are the same. In the former example we have used the monomial basis
while in the latter the Lagrange one. Is it surprising that both give the same interpolating
polynomial? Of course not, since through three points there exist a unique quadratic
polynomial.

0 1 2 3 4 5

x

2

1

0

1

2

3

4

5

6

y

p2(x)

0 1 2 3 4 5

x

2

1

0

1

2

3

4

La
g
ra

n
g
e
 p

o
ly

n
o
m

ia
ls

L 2
0 (x)

L 2
1 (x)

L 2
2 (x)

Figure 1.3: Example of Lagrange quadratic polynomial interpolation. The left panel
shows the polynomial together with the underlying data points and the right panel shows
the individual Lagrange polynomials. Moreover, the right panel gives also a visual con-
firmation that Ln

j (xk) = δjk.

1.1.3 The interpolation error

So far we have considered polynomial interpolation at some given nodes xj and data
points yj . We have not stipulated any further how or from where the yj ’s have been
obtained. In the following, we shall assume that they are generated by some function
f(x), i.e. yj = f(xj) for j = 0, 1, ..., n. Moreover, we will assume that this function
possesses a certain number of derivatives.

So let’s assume we are given a function f(x) from some (real) interval [a, b] to R, in
short f : [a, b] → R, and let it be (n + 1)-times differentiable. Let pn(x) be the n-th
degree polynomial that interpolates the function at the n+1 (distinct) nodes xj ∈ [a, b],
i.e. pn(xj) = f(xj) for j = 0, 1, ..., n.

We then define the interpolation error function en(x) of our interpolation polynomial
pn(x) as

en(x) = f(x)− pn(x). (1.12)

So the interpolation error function measures the difference between the function f(x)
and the interpolating polynomial pn(x). In other words, it measures how well pn(x)
approximates f(x). Then one can show5 that for each x ∈ [a, b] there is a point ξ =

5It’s pretty easy: few applications of Rolle’s theorem and you have it... You can find the proof in
any numerical analysis textbooks, e.g. [3, Chapter 3] or [1, Chapter 10].

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 9

ξ(x) ∈ [a, b] such that

en(x) = f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
j=0

(x− xj). (1.13)

Note that ξ depends on x, hence the notation ξ(x). In particular, we have the following
bound on the maximum interpolation error

max
x∈[a,b]

|en(x)| = max
x∈[a,b]

|f(x)− pn(x)| ≤
max
x∈[a,b]

|f (n+1)(x)|

(n+ 1)!
max
x∈[a,b]

∣∣∣∣∣∣
n∏

j=0

(x− xj)

∣∣∣∣∣∣ . (1.14)

Let us rewrite the above in a slightly less cluttered manner as

∥en∥∞ ≤
∥∥f (n+1)

∥∥
∞

(n+ 1)!

∥∥∥∥∥∥
n∏

j=0

(x− xj)

∥∥∥∥∥∥
∞

. (1.15)

In case you are not familiar with the notation, ∥·∥∞ denotes a function norm known as
maximum (or sup or L∞) norm and it is defined by

∥g∥∞ = max
x∈[a,b]

|g(x)| (1.16)

for some function g : [a, b] → R.
From Eq. (1.14), or equivalently Eq. (1.15), we see that the interpolation error de-

pends on two things:

(i) the function itself, or more precisely, on the (n+ 1)-th derivative of the function f

(ii) on the distribution of the nodes xj

It turns out that both can play an important role.
Point (i) above is often referred to as a smoothness requirement on the function

f(x). Generally, a smooth function is a function that has continuous derivatives up to
sufficiently high order over some domain, that is the function is sufficiently many times
continuously differentiable. One says that a function is smooth over some restricted
domain such as an interval, e.g. [a, b]. What exactly "sufficiently many times" means
depends on the context. But in the present context, it means at least n+ 1!

From the above discussion one may get the impression that by cranking up the number
of nodes, and therewith the degree of the interpolating polynomial, one can obtain an
arbitrary good approximation to any function f by interpolation. This is in general not
the case and the following famous example due to Runge6 (1901) demonstrates this.

Example 1.4 (Runge). Let’s try to approximate the function

f(x) =
1

1 + 25x2

6Runge, Carl David Tolmé (1856 - 1927)

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 10

1.0 0.5 0.0 0.5 1.0

x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y

f(x)

p4(x)

p9(x)

1.0 0.5 0.0 0.5 1.0

x

2

0

2

4

6

8

10

y

f(x)

p19(x)

Figure 1.4: Interpolation of Runge function with equidistant nodes. In the left panel
n = 4, 9 and n = 19 in the right.

in the interval I = [−1, 1] by polynomial interpolation of increasingly high degree n.
As probably the most obvious choice, we choose the following set of nodes

xj = −1 +
2

n
j for j = 0, 1, ..., n

equidistantly distributed in the interval [−1, 1] and the corresponding data points yj =
f(xj).

The result of the interpolation is shown in Figure 1.4 for 5, 10 and 20 nodes. As you
can see, the interpolation with 20 nodes has large errors at the interval ends. As a matter
of fact, the interpolation error grows with the degree of the interpolating polynomial n.

However, choosing a different set of nodes can improve the situation. The so-called
Chebyshev7 nodes are given by

xj = cos

(
2j + 1

2(n+ 1)
π

)
for j = 0, 1, ..., n.

Note that these points are not distributed equidistantly. They tend to concentrate more
near the interval ends.

The result of the interpolation with the Chebyshev nodes is shown in Figure 1.5. As
you can see, the result is much better. The reason behind this remarkable improvement
is due to the special node distribution. Actually, one can show that the Chebyshev nodes
minimize the error contribution due to the node distribution, i.e. the part involving the
product in Eq. (1.13). ▲

Let us make the results from the previous Example 1.4 more quantitative. Instead of
measuring the error in the so-called "eyeball" norm8, we measure the interpolation error

7Chebyshev, Pafnuty Lvovich Chebyshev (1821 - 1894). A variety of transliterations of his name
are used in the literature: Chebychev, Chebysheff, Chebyshov (English); or Tchebychev, Tchebycheff
(French); or Tschebyschev, Tschebyschef, Tschebyscheff (German).

8To be taken literally!

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 11

1.0 0.5 0.0 0.5 1.0

x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

f(x)

p4(x)

p9(x)

1.0 0.5 0.0 0.5 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

f(x)

p19(x)

Figure 1.5: Interpolation of Runge function with Chebyshev nodes. In the left panel
n = 4, 9 and n = 19 in the right.

∥en∥∞. Practically, one estimates the latter by sampling the error function en(x) at a
sufficiently large number of points ξk, say N , and simply pick out the maximum

∥en∥∞ ≈ max
k=1,...,N

|en(ξk)| = max
k=1,...,N

|f(ξk)− pn(ξk)|. (1.17)

For the sampling points ξk, we choose N evenly spaced points given by

ξk = a+ k
b− a

N + 1
for k = 1, ..., N.

Be careful to distinguish between lower case n (the degree of the interpolating polynomial
pn(x)) and upper case N (the number of sampling points to compute ∥en∥∞)!

In Figure 1.6 is shown the maximum interpolation error ∥en∥∞ for polynomial in-
terpolation as a function of the polynomial degree n. In the left panel of the figure is
shown the case with equidistant nodes while in the right panel the one with Chebyshev
nodes. As you observe, the left panel confirms quantitatively what we have already ob-
served in Figure 1.4: the error grows with increasing polynomial degree n. Likewise, the
right panel confirms our observations from Figure 1.5 that the error gets smaller with
increasing polynomial order.

What does "a sufficiently large number of points" mentioned above mean? Well this
is difficult to answer in general, but often one chooses N to be two or three orders of
magnitude larger than the number of interpolation nodes.

The message to take home from Example 1.4, is that the numerical approximation
of functions by polynomial interpolation with equidistant nodes is generally only recom-
mendable for small polynomial degrees n, i.e. up to n = 4, 5 maybe. The reason for
this is that at high degrees strong oscillations can appear and the interpolation becomes
useless.

Before we end this section, let us derive another estimate for Eq. (1.13). By realizing
that (x−xj) ≤ (b− a) for all nodes xj (j = 0, ..., n) and all x ∈ [a, b], we obtain a (very)
crude upper bound for the interpolation error as

∥en∥∞ ≤ (b− a)n+1

∥∥f (n+1)
∥∥
∞

(n+ 1)!
. (1.18)

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 12

0 5 10 15 20 25

n

10-1

100

101

102

103

104

‖e
n
‖ ∞

0 5 10 15 20 25

n

10-3

10-2

10-1

100

‖e
n
‖ ∞

Figure 1.6: Maximum interpolation error ∥en∥∞ for Runge’s example as a function of
the polynomial degree n: left panel for equidistant nodes and right panel for Chebyshev
nodes.

1.1.4 Piecewise polynomial interpolation

As we have just seen in Example 1.4, interpolation with high degree polynomials, that
is many nodes and data points, is in general not recommendable. To circumvent these
problems, one resorts to so-called piecewise polynomial interpolation. As the name sug-
gests, the idea is to divide an interval of interest I = [a, b] into a number, say M , of
smaller subintervals. This is achieved by partitioning I as

a = τ0 < τ1 < ... < τM−1 < τM = b, (1.19)

where the τ0, ..., τM are referred to as the partition’s break points. On each subinterval
Ij = [τj−1, τj], j = 1, ...,M , one builds a relatively9 low order interpolation polynomial
sj(x). These polynomial pieces sj(x) are then patched together to form an interpolating
curve v(x) over the whole interval I as

v(x) = sj(x) for x ∈ Ij and j = 1, ...,M. (1.20)

Piecewise polynomial interpolation is very general as we could play on

(i) the degree n of the polynomial pieces sj(x) on each subinterval,

(ii) the number of subintervals M and their sizes (which need not to be uniform),

(iii) the way we patch together the polynomial pieces to form v(x).

Concerning (iii), one could for example impose the condition that v(x) is continuous over
the interval I, i.e. this imposes that neighboring polynomial pieces match at touching
break points. Or one could require that v(x) is once (or twice, ...) times continuously
differentiable over I. Otherwise, one could also ask that v(x) is discontinuous (at the
break points) but that it features some non-oscillatory properties.

9Relatively low with respect to M . Why? Well because the most extreme choice M = 1 and n ≫ M
would lead to the situation we try to circumvent here!

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 13

x

v

x

v

Figure 1.7: Piecewise linear (left panel) and quadratic (right panel) of some data.

However, in the following we will only discuss the cases where v(x) is continuous. The
other cases lead to Hermite, spline and piecewise discontinuous interpolation which are
beyond the scope of this introductory course. We refer to [1, 2] for further information
and references.

The simplest possible continuous piecewise interpolation is constructed by patching
together piecewise linear polynomials. It simply consists of connecting data points by
straight lines and it is illustrated in the left panel of Figure 1.7. Due to its appearance,
piecewise linear interpolation is also known as broken line interpolation.

The next possible choice would be continuous piecewise quadratic interpolation. This
is illustrated in the right panel of Figure 1.7.

Please note that without any further information on what the data represents and
on how it has been obtained, it is absolutely not clear which choice of interpolation is
better in Figure 1.7. So if you lack this crucial information, the safest possible choice is
probably the simplest: broken line interpolation.

Next we have a look at the piecewise interpolation error. For this to make sense,
we assume that we approximate a function f(x) by interpolation on a certain interval
I = [a, b]. Moreover, we also assume that f(x) is sufficiently smooth, that is the function
is sufficiently many times continuously differentiable over I. We define the piecewise
interpolation error as

epw(x) = f(x)− v(x). (1.21)

Then by applying Eq. (1.18) on each subinterval, one easily gets the following estimate
for the piecewise interpolation error

|epw(x)| = |f(x)− v(x)| ≤ hn+1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥
∞

for x ∈ I, (1.22)

where
h = max

1≤j≤M
(τi − τi−1) (1.23)

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 14

is the maximum subinterval length. Because |epw(x)| is bound from above by ∥epw∥∞,
we can also simply write

∥epw∥∞ ≤ hn+1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥
∞
. (1.24)

Estimates of the sort Eq. (1.22) and (1.24) arise very frequently in numerical analysis.
Actually so often, that one introduces a convenient notation known as big-O or big-oh
notation. For some error function e(h) depending on some discretization step size or
length h one writes

e = O(hr) (1.25)

if there are two positive constants r and C, independent of h, such that

|e| ≤ Chr (1.26)

for all h > 0 small enough. Moreover, the exponent r is known as the order of accuracy.
Such expressions tell you how uch the error decreases if you decrease h.

Using the just introduced notation, we have for the piecewise polynomial interpolation
error

|epw(x)| = O(hn+1) for x ∈ I (1.27)

and likewise
∥epw(x)∥∞ = O(hn+1). (1.28)

Here, the constant C in Eq. (1.26) is simply C =
∥∥f (n+1)

∥∥
∞ /(n + 1)! and the order of

accuracy of piecewise polynomial interpolation is r = n+1, which are both independent
of h. Hence, C depends on the function one wants to approximate and r on the degree
of the polynomial pieces patched together.

After so many definitions, let’s make an example.

Example 1.5. Let’s try again to approximate the function

f(x) =
1

1 + 25x2

in the interval I = [−1, 1], but this time by piecewise polynomial interpolation.
The first thing to do then is to partition the interval of interest I. We shall use an

equidistant placement of the break points as

τj = −1 + jh for j = 0, ...,M,

where h = 2/M . Therefore all subintervals Ij = [τi, τj+1] have the same size h.
First, we choose the degree n of the polynomial pieces we wish to use on each subin-

terval Ij . First we use n = 1, that is piecewise linear polynomials on each subinterval.
The construction of the piecewise linear polynomials is simply achieved by connecting
by straight lines the data at the break points. This is illustrated in the left panel of
Figure 1.8 for M = 5, 11 subintervals.

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 15

Second, let’s use piecewise quadratic polynomials to approximate Runge’s function.
In order to define a quadratic polynomial on each subinterval Ij , we need one more node
and data point on Ij and we choose simply the point in the middle of the break points
(τi−1 + τi)/2. So we can patch together piecewise quadratic polynomials and this is
illustrated in the right panel of Figure 1.8 for for M = 5, 11 subintervals.

Next let’s have a look at the piecewise interpolation error as the number of subinter-
vals M increases, that is we want to investigate how well we are approximating Runge’s
function with piecewise polynomial interpolation and how this error depends on the num-
ber of subintervals. In Figure 1.9 is shown in a log− log scale the maximum error as
function of the number of subintervals M . The blue and red solid lines correspond to
the error for picewise linear and quadratic polynomial interpolation, respectively. Firs
we observe that the error get’s small as the number of subintervals increases, which was
already visible in the "eye-ball" norm from Figure 1.8.

However, we observe that the error decreases faster for the piecewise quadratic in-
terpolation than for the piecewise linear one. From Eq. (1.28) we know that the error
scales with the suninterval size/length as O(h2) for piecewise linear and O(h3) for piece-
wise qadratic interpolation. The number of subintervals M determines the size of the
subintervals h = 2/M . Hence, we can express how the interpolation error in terms of
the number of subintervals M as O(M−2) for piecewise linear and O(M−3) for piecewise
quadratic polynomials.

In a log− log we can thus directly read of the order of accuracy10 and we indeed
confirm from Figure 1.9 that piecewise linear and quadratic polynomial interpolation
have order of accuracy two and three, respectively. Can you guess what is the polynomial
degree underlying the piecewise interpolation for which the error is the green solid line
in Figure 1.9?11

As a final comment, note that M has to be bigger that roughly 10 in order to observe
the from theory predicted orders of accuracy. Indeed, the error estimates are only valid
in an asymptotic sense and this is what is meant by "for h small enough", or equivalently,
"for M large enough". ▲

1.2 Numerical differentiation

The interpolation polynomials to discretely ("in table form") given functions is the foun-
dation to compute their derivatives approximately:

f ′(x) ≈ p′n(x)

f ′′(x) ≈ p′′n(x)

...

10Recall that O(hr) stands for e ≤ Chr. Then by taking the log on each side gives: log(e) =
r log(h) + log(C). Therefore the order of accuracy r is the slope of the error in a log− log plot.

11The green line has a slope of −6 and hence the degree of the polynomial pieces is n = 5. (The slope
is negative because the error is plotted as a function of M = 2/h.)

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 16

1.0 0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

f(x)

v(x) with M= 4

v(x) with M= 10

1.0 0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

f(x)

v(x) with M= 4

v(x) with M= 10

Figure 1.8: Example of Runge with piecewise linear (left panel) and quadratic (right
panel) interpolation.

100 101 102 103 104

M

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

‖f
(x

)
−
v(
x
)‖
∞

Piecewise linear
Piecewise quadratic
Piecewise "can you guess"?

Figure 1.9: Piecewise interpolation error for Runge’s example as a function of the num-
ber of equally sized subintervals M . The blue/red solid line represent the piecewise
linear/quadratic interpolation errors, that is n = 1/n = 2. Can you guess the degree of
the polynomial pieces n for the green curve?

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 17

This procedure can be used to derive the numerical differentiation a.k.a. finite difference
formulas below. Indeed, these formulas can also be used to approximately compute
derivatives of analytically computable functions.

We now consider a continuously differentiable (up to adequate order) function f :
I = [a, b] 7→ R and want to compute approximate derivatives numerically. Let pn(x) be
the polynomial interpolating the function at the n + 1 nodes x0 < x1 < ... < xn. Then
we can write a possible approximation of the k-th derivative f (k)(x) simply as

dkf(x)

dxk
(x) ≈ dkpn(x)

dxk
=

n∑
j=0

dkLn
j (x)

dxk
f(xj). (1.29)

Note that to compute reasonably the k-th derivative, your interpolation polynomial has
to be based at least on k+1 nodes. Otherwise, your approximation will give zero all the
time!

Usually, these approximations are used for equidistantly spaced nodes

xj = x0 + jh , j ∈ Z, (1.30)

where h is the constant spacing between the nodes. To approximate the first derivative
of the function f(x) let’s take 2 nodes. The interpolating polynomial using one node to
the right of x0, i.e. x1, is then simply

p1(x) =
x− x1
x0 − x1

f(x0) +
x− x0
x1 − x0

f(x1) (1.31)

Analogously, the interpolating polynomial using one node to the left of x0, i.e. x−1, is

p1(x) =
x− x−1

x0 − x−1
f(x0) +

x− x0
x−1 − x0

f(x−1) (1.32)

By differentiating these expressions we obtain the following approximations

f ′(x) ≈ f(x1)− f(x0)

x1 − x0
=

f(x0 + h)− f(x0)

h
, x ∈ [x0, x1]

f ′(x) ≈ f(x0)− f(x−1)

x0 − x−1
=

f(x0)− f(x0 − h)

h
, x ∈ [x−1, x0]

(1.33)

The first/second equation is called forward/backward finite difference for obvious reasons.
To approximate the second derivative we take the 3 nodes x−1, x0 and x1. Then we

have
p2(x) =

x− x0
x−1 − x0

x− x1
x−1 − x1

f(x−1)

+
x− x−1

x0 − x−1

x− x1
x0 − x1

f(x0)

+
x− x−1

x1 − x−1

x− x0
x1 − x0

f(x1)

(1.34)

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 18

and obtain (more or less12) immediately

f ′′(x) ≈ p′′2(x) =
f(x1)− 2f(x0) + f(x−1)

(x0 − x−1)(x1− x0)

=
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
, x ∈ [x−1, x1].

(1.35)

This expression is known as second-order central/centered finite difference.
We can also use Eq. (1.34) to obtain an approximation for the first derivative

f ′(x) ≈ p′2(x) =

(
1

x−1 − x1

x− x0
x−1 − x0

+
1

x−1 − x0

x− x1
x−1 − x1

)
f(x−1)

+

(
1

x0 − x1

x− x−1

x0 − x−1
+

1

x0 − x−1

x− x1
x0 − x1

)
f(x0)

+

(
1

x1 − x0

x− x−1

x1 − x−1
+

1

x1 − x−1

x− x0
x1 − x0

)
f(x1) , x ∈ [x−1, x1]

(1.36)

Note that the approximation of f ′(x) now explicitly depends on x! In practice, the latter
expression is almost exclusively evaluated at x0

f ′(x0) ≈ p′2(x0) =
f(x0 + h)− f(x0 − h)

2h
, (1.37)

which is called the first-order central/centered finite difference.
Time for an example.

Example 1.6. Let us try out the expressions for the first derivative at a concrete example
with f(x) = sin(x) at x = 1.2. Obviously the exact answer is f ′(x = 1.2) = cos(1.2). In
figure 1.10 we show in a loglog plot the absolute (computational) error of the forward and
centered finite difference formulas for various sizes of h. We first observe that the error
does get smaller with decreasing h, i.e. the formulas converge. However, the convergence
"speed" seems to be different for the two formulas: the error for the forward difference
formula has a slope of one, while the centered difference has a slope of two. Moreover,
we observe that the error starts to grow after a certain value for h has been reached: this
is the manifestation of the fact that computers have a finite precision! ▲

How can we explain the difference between these two formulas for the first derivative?
For this, we go back to the good old Taylor expansion formula:

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 + ...+

f (k)(x)

k!
hk +

f (k+1)(ξ)

(k + 1)!
hk+1 (1.38)

for some ξ ∈]x, x+ h[.
Let’s plug that into the forward finite difference formula

f(x+ h)− f(x)

h
=

f(x) + f ′(x)h+ f ′′(ξ)
2 h2 − f(x)

h
= f ′(x) +

h

2
f ′′(ξ) = f ′(x) +O(h).

12Don’t worry, nobody is going to ask you to do this!

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 19

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

h

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
rr
or

First derivative approximation
Forward difference
Centered difference

Figure 1.10: Finite difference (forward and centered) approximation of the first derivative
of f(x) = sin(x) at x = 1.2. Note the slopes: they indicate that the forward and centered
difference have order of convergence p = 1 and p = 2, respectively. Also note that these
formulas become inaccurate for too small h because of the finite precision of computers!

This shows that the error of the forward difference formula is proportional to h: if we
make h ten times smaller, the error becomes ten times smaller. That’s exactly what we
observe from figure 1.10. Note that we silently assumed, that the function f(x) is at
least twice continuously differentiable.

In exactly the same manner, one can show that the central differences,

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2)

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2),

are second-order accurate approximation to the first and second derivatives, respectively.
Note that showing the latter are popular exam questions.

We will come across these finite difference formulas several times during the course
of the lecture...

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 20

a b
x

y

I[f] =

∫ b

a

f(x)dx

a b
x

y

I[f]≈
n∑
j=0

wjf(xj)

Figure 1.11: Approximation of the integral.

1.3 Numerical integration

Numerical integration, also commonly called quadrature, has as goal to compute approx-
imations Ĩ of definite integrals

I[f] =

∫ b

a
f(x)dx (1.39)

To achieve this, one divides the interval [a, b] in a number of subintervals and approxi-
mates the definite integral on them. This is illustrated in figure 1.11.

A finite calculation rule to compute Ĩ is called quadrature rule

Ĩ[f] =
n∑

j=0

wjf(xj), (1.40)

where the xj , j = 0, 1, ..., n, are called the quadrature nodes and the wj the quadrature
weights.

The idea is then to approximate the function f(x) with polynomial interpolation
f(x) ≈ pn(x). Quadratures rules Qn[f] based on this Ansatz are called Newton-Cotes
quadratures. The interpolating polynomial can then easily be integrated analytically

I[f] =

∫ b

a
f(x)dx ≈

∫ b

a
pn(x)dx =

∫ b

a

n∑
j=0

Ln
j (x)f(xj)dx

=

n∑
j=0

∫ b

a
Ln
j (x)dxf(xj)

= (b− a)
n∑

j=0

wjf(xj) = Qn[f], (1.41)

where we defined the quadrature weights as

wj =
1

b− a

∫ b

a
Ln
j (x)dx , j = 0, 1, ..., n. (1.42)

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 21

The quadrature weights can easily calculated once one settles for a certain nodes distri-
bution. A popular choice is again the equidistant distribution

xj = x0 + j
b− a

n
, j = 0, 1, ..., n. (1.43)

Furthermore, it is advantageous to apply the following variable substitution

x = a+ (b− a)t −→ dx = (b− a)dt. (1.44)

Then x = a, b for t = 0, 1, respectively. Plugging this into (1.42), we obtain

wj =
1

b− a

∫ b

a
Ln
j (x)dx =

1

b− a

∫ 1

0
Ln
j (t)(b−a)dt =

∫ 1

0
Ln
j (t)dt , j = 0, 1, ..., n. (1.45)

Since the wj are independent of f(x) and the integration interval [a, b], they can easily
be computed once and tabulated for posterity.

For interpolating polynomials with degree n = 0, 1, 2 one obtains the following
quadrature nodes and weights

Degree n Nodes xj Weights wj

0 x0 =
a+b
2 w0 = 1

1 x0 = a w0 =
1
2

x1 = b w1 =
1
2

2 x0 = a w0 =
1
6

x1 =
a+b
2 w1 =

2
3

x2 = b w2 =
1
6

Don’t worry, you will never be asked to know them by heart. However, you should know
how to derive/"draw" them (midpoint and trapezoidal rule are obtained by elementary
area considerations!). Directly plugged into the quadrature rule:

Q0[f] = (b− a)f

(
a+ b

2

)
(1.46)

Q1[f] = (b− a)

(
1

2
f(a) +

1

2
f(b)

)
(1.47)

Q2[f] = (b− a)

(
1

6
f(a) +

2

3
f

(
a+ b

2

)
+

1

6
f(b)

)
(1.48)

These quadrature rules are visualized in figure 1.12. Q0 and Q1 get their names from
their appearance: Q0 midpoint rule and Q1 trapezoidal rule. Q2 is called Simpson rule
after Thomas Simpson13.

As a measure of quality of a quadrature, one introduces the notion of degree of
exactness. The degree of exactness q is defined as the maximum polynomial degree a
quadrature rule can integrate exactly.

13Simpson, Thomas (1710 - 1761)

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 22
y

x0 =a+b
2

y

a=x0 x1 =b

y

a=x0 x1 x2 =b

Figure 1.12: Midpoint (left), trapezoidal (middle) and Simpson (right) quadrature rule.

It is rather obvious, that the degree of exactness is at least equal to the degree of the
interpolating polynomial which the quadrature rule is based on. So for the midpoint,
trapezoidal and Simpson rule this would be q = 0, 1, 2, respectively. However, it turns out
that quadrature rules based on even degree14 interpolating polynomials have one degree
of exactness more than one would expect. For instance, the midpoint rule has degree of
exactness q = 1 rather than 0. Likewise, the Simpson rule has q = 3 instead of 2. To see
that, consider the integration interval I = [−1, 1] and an even degree quadrature rule,
i.e. Q2r for r = 0, 1, Such a quadrature rule is based on 2r + 1 nodes, symmetrically
distributed in the integration interval I. Moreover, the weights are also symmetric. Then
one sees by symmetry that

Q2r[x
2r+1] = 0 = I[x2r+1] = 0.

Therefore, the quadrature rule has degree of exactness q = 2r + 1 instead of 2r. Try it
out for the midpoint and the Simpson rule. The midpoint rule integrates linear function
exactly. The Simpson rule integrates cubic polynomials exactly.

What can one say for the approximation error of quadrature? Well, one can use some
polynomial interpolation error formula from subsection 1.1.3 and try to derive some error
estimates, but that would be very tedious. So we just state the following: One says, that
a quadrature rule is s-th order accurate if

|Qn[f]− I[f]| = O((b− a)s) (1.49)

for sufficiently smooth functions f and it is possible to show that s = q + 1, that is the
order of acccuracy of a quadrature is it’s degree of exactness plus one.

As we have seen for interpolation, by increasing the degree n of polynomial interpo-
lation one might probably get into troubles. Likewise, it makes no real sense to build
and use Newton-Cotes quadrature rules with too big n. Instead, one resorts to applying
the quadrature to N equally sized subintervals Ij = [xj−1, xj] (for j = 1, ..., N), where
xj = a+hj (for j = 0, ..., N) and h = (b−a)/N . This gives rise to the so-called composite
Newton-Cotes quadrature rules. This is illustrated in figure 1.13.

14Hence, odd number of nodes.

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 23
y

a=x0 x1 x2 x3 x4 x5 x6 x7 =b

y

a=x0 x1 x2 x3 x4 x5 x6 x7 =b

y

a=x0 x1 x2 x3 x4 x5 x6 x7 =b

Figure 1.13: Composite midpoint (left), trapezoidal (middle) and Simpson (right)
quadrature rule.

The popular composite midpoint, trapezoidal and Simpson rule are given by

QN
0 [f] = h

N∑
k=1

f

(
xk−1 + xk

2

)
(1.50)

QN
1 [f] = h

(
1

2
f(a) +

N−1∑
k=1

f(xk) +
1

2
f(b)

)
(1.51)

QN
2 [f] =

h

6

(
f(a) + 2

N−1∑
k=1

f(xk) + 4

N∑
k=1

f

(
xk−1 + xk

2

)
+ f(b)

)
, (1.52)

where
xk = a+ hk , k = 0, 1, ..., N and h =

b− a

N
. (1.53)

One can show, that these composite quadrature rules are of the following orders of
accuracy ∣∣QN

0 [f]− I[f]
∣∣ = O(h2) (1.54)∣∣QN

1 [f]− I[f]
∣∣ = O(h2) (1.55)∣∣QN

2 [f]− I[f]
∣∣ = O(h4). (1.56)

So far, we have constructed quadrature rules by finding an interpolation polynomial
through n+1 equidistantly spaced nodes and then computed the quadrature weights by
exactly integrating this polynomial. This gives obviously a degree of exactness of at least
q = n. However, one can show that n + 1 quadrature nodes and weights can be chosen
in such a manner that the degree of exactness is maximized to q = 2n+1. This leads to
so-called Gaussian quadrature:

Gn[f] =

n∑
j=1

wjf(xj) ≈
∫ 1

−1
f(x)dx. (1.57)

The values for the nodes and weights can be found in tables. Here we list just the first
few

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 24

n Nodes xj Weights wj q = 2n− 1

1 x1 = 0 w1 = 2 1

2 x1 = −
√
1/3 w1 = 1 3

x2 = +
√
1/3 w2 = 1

3 x1 = −
√
3/5 w1 =

5
9 5

x2 = 0 w2 =
8
9

x3 = +
√
3/5 w3 =

5
9

The first difference to the quadrature formulas we have seen so far is that the Gaussian
quadrature nodes and weights are usually given for a specific integration interval, namely
I = [−1, 1]. A second minor difference: the sum starts at j = 1 and not at 0.

In order to use Gauss quadratures on general intervals I = [a, b], one has to make a
small variable substitution

t =
b− a

2
x+

a+ b

2
−→ dt =

b− a

2
dx (1.58)

giving

I[f] =

∫ b

a
f(t)dt =

b− a

2

∫ 1

−1
f

(
b− a

2
x+

a+ b

2

)
dx. (1.59)

Then we can apply Gauss quadrature as

Gn[f] =
b− a

2

n∑
j=1

wjf

(
b− a

2
xj +

a+ b

2

)
. (1.60)

Again, while nobody will ask you to know by heart the nodes and weights of Gaussian
quadrature, a popular exam question is to apply it to a general interval I = [a, b].

Gauss quadrature rules are derived through so-called orthogonal polynomials. Or-
thogonality for polynoms is defined like for usual "vectors" with the innver product (a.k.a.
scalar product) replaced accordingly

⟨f, g⟩ =
∫ b

a
f(x)g(x)dx,

where f and g are two real functions (e.g. polynomials). Anyway, we don’t need to know
that for the exam...

Let us make an example.

Example 1.7. We compute ∫ 1

0

1

1 + x
dx = log(2)

with the composite trapezoidal QN
1 , Simpson QN

2 and n = 3 Gauss quadrature GN
3 . In

figure 1.14 is shown the error as a function of the number of subintervals N . We see
that the composite trapezoidal and Simpson rule have the expected orders of accuracy.
Moreover, we see that the Gaussian quadrature GN

3 has order of accuracy 6. Also note
that the error does not go below ∼ 10−16, which is again a consequence of te finite
precision of computers. The figure was produced with the Matlab© scripts func.m,
trapez.m, simpson.m, gauss3.m and error.m. ▲

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 25

10
0

10
1

10
2

10
3

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N

E
rr

o
r

Trapezoidal

Simpson

Gauss n = 3

Figure 1.14: Error for composite trapezoidal, Simpson and Gauss n = 3.

1.4 Review questions

Here a few review questions15 for the present chapter:

(a) What’s interpolation good for?

(b) Why do the interpolation nodes have to be different?

(c) What’s the difference between the monomial and Lagrange basis for polynomial
interpolation?

(d) Does an interpolating polynomial depend on the choice of the basis?

(e) On what does the error depend when approximating a function by polynomial inter-
polation?

(f) What is meant by a "(sufficiently) smooth function"?

(g) What is piecewise polynomial interpolation?
15FAQs at exams...

CHAPTER 1. INTERPOLATION & NUMERICAL CALCULUS 26

(h) What shortcomings of polynomial interpolation are improved upon by piecewise poly-
nomial interpolation?

(i) Define the big-O notation.

(j) Define order of accuracy.

(k) What is the difference between manual or symbolic differentiation and numerical
differentiation?

(l) Why is numerical differentiation useful?

(m) What is a finite difference approximation?

(n) How are formulas for numerical differentiation derived?

(o) How to determine the order of accuracy of a finite difference formula?

(p) What problems can appear with numerical differentiation? (Remember that com-
puters have a finite precision...)

(q) What is a quadrature rule?

(r) How did we derive quadrature rules?

(s) What is the degree of exactness of a quadrature rule?

(t) What is the order of accuracy of a quadrature rule?

1.5 Bibliography

[1] Uri M. Ascher and Chen Greif. A First Course in Numerical Methods. Society for
Industrial & Applied Mathematics (SIAM), jun 2011. doi: 10.1137/9780898719987.
URL http://dx.doi.org/10.1137/9780898719987.

[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
recipes in FORTRAN. The art of scientific computing. 1992.

[3] Hans Rudolf Schwarz and Norbert Köckler. Numerische mathematik. 2011. doi: 10.
1007/978-3-8348-8166-3. URL http://dx.doi.org/10.1007/978-3-8348-8166-3.

http://dx.doi.org/10.1137/9780898719987
http://dx.doi.org/10.1007/978-3-8348-8166-3

	Interpolation & Numerical Calculus
	Polynomial interpolation
	Numerical differentiation
	Numerical integration
	Review questions
	Bibliography

