Numerical Methods for Partial Differential Equations

Prof. Ralf Hiptmair, Prof. Christoph Schwab,
Prof. H. Harbrecht, Dr. V. Gradinaru, and Dr. A. Chernov
Draft version May 21, 2010, SVN rev. 26776
(C) Seminar für Angewandte Mathematik, ETH Zürich

URL: http://www.sam.math.ethz.ch/~hiptmair/tmp/NPDE10.pdf

Contents

1 Case Study: A Two-point Boundary Value Problem 19
1.1 Introduction 19
1.2 A model problem 22
1.2.1 Linear elastic string 22
1.2.2 Mass-spring model 28
1.2.3 Continuum limit 33
1.3 Variational approach 41
1.3.1 Virtual work equation 41
1.3.2 Regularity requirements 49
1.3.3 Differential equation 53
1.4 Simplified model 58
1.5 Discretization 65

3.1 Galerkin discretization 262
3.2 Case study: Triangular linear FEM in two dimensions 272
3.2.1 Trianqulations 274
3.2.2 Linear finite element space 276
3.2.3 Nodal basis functions 279
3.2.4 Sparse Galerkin matrix 284
3.2.5 Computation of Galerkin matrix 290
3.2.6 Computation of right hand side vector 300
3.3 Building blocks of general FEM 305
3.3.1 Meshes 306
3.3.2 Polynomials 309
3.3.3 Basis functions 313
3.4 Lagrangian FEM 318
3.4.1 Simplicial Lagrangian FEM 319
3.4.2 Tensor-product Lagrangian FEM 326
3.5 Implementation of FEM 336
3.5.1 Mesh file format 337
3.5.2 Mesh data structures [1 Sect. 1.1] 343
3.5.3 Assembly [1] Sect. 5] 349
3.5.4 Local computations and quadrature 362
3.5.5 Incorporation of essential boundary conditions 376
3.6 Parametric finite elements 384
3.6.1 Affine equivalence 384
3.6.2 Example: Quadrilaterial Lagrangian finite elements. 393
3.6.3 Transformation techniques 401
3.6.4 Boundary approximation 407
3.7 Linearization 409419
4.1 Finite differences 421
4.2 Finite volume methods (FVM) 432
4.2.1 Gist of FVM 432
4.2.2 Dual meshes 435
4.2.3 Relationship of finite elements and finite volume methods 439
5 Convergence and Accuracy 448
5.1 Galerkin error estimates 449
5.2 Empirical Convergence of FEM 459
5.3 Finite element error estimates 475
5.3.1 Estimates for linear interpolation in 1D 477
5.3.2 Error estimates for linear interpolation in 2D 485
5.3.3 The Sobolev scales 500
5.3.4 Anisotropic interpolation error estimates 504
5.3.5 General approximation error estimates 514
5.4 Elliptic regularity theory 527
5.5 Variational crimes 539
5.5.1 Impact of numerical quadrature 540
5.5.2 Approximation of boundary 543
5.6 Duality techniques 547
5.6.1 Linear output functionals 547
5.6.2 Case study: Boundary flux computation 557
5.6.3 L^{2}-estimates 568
5.7 Discrete maximum principle 578
6.1 Parabolic initial-boundary value problems 596
6.1.1 Heat equation 596
6.1.2 Spatial variational formulation 600
6.1.3 Method of lines 608
6.1.4 Timestepping 612
6.1.4.1 Single step methods 613
6.1.4.2 Stability 617
6.1.5 Convergence 640
6.2 Wave equations 650
6.2.1 Vibrating membrane 651
6.2.2 Wave propagation 659
6.2.3 Method of lines 666
6.2.4 Timestepping 669
6.2.5 CFL-condition 681
7 Convection-Diffusion Problems 692
7.1 Heat conduction in a fluid 692
7.1.1 Modelling fluid flow 693
7.1.2 Heat convection and diffusion 697
7.1.3 Incompressible fluids 700
7.1.4 Transient heat conduction 705
7.2 Stationary convection-diffusion problems
7.2.1 Singular perturbation 710
7.2.2 Upwinding 716
7.2.2.1 Upwind quadrature 727
7.2.2.2 Streamline diffusion 735
7.3 Transient convection-diffusion BVP 744
7.3.1 Method of lines 745
7.3.2 Transport equation 751
7.3.3 Lagrangian split-step method 755
7.3.3.1 Split-step timestepping 756
7.3.3.2 Particle method for advection 762
7.3.3.3 Particle mesh method 770
7.3.4 Semi-Lagrangian method 780
8 Numerical Methods for Conservation Laws 787
8.1 Conservation laws: Examples 788
8.1.1 Linear advection 789
8.1.2 Inviscid gas flow 793
8.2 Scalar conservation laws in 1D 799
8.2.1 Integral and differential form 799
8.2.2 Characteristics 805
8.2.3 Weak solutions 811
8.2.4 Jump conditions 815
8.2.5 Riemann problem 818
8.2.6 Entropy condition 827
8.2.7 Properties of entropy solutions 832
8.3 Conservative finite volume discretization 836
8.3.1 Semi-discrete conservation form 839
8.3.2 Discrete conservation property 842
8.3.3 Numerical flux functions 846
8.3.3.1 Central flux 846
8.3.3.2 Lax-Friedrichs flux 851
8.3.3.3 Upwind flux 855
8.3.3.4 Godunov flux 861
8.3.4 Montone schemes 870
8.4 Timestepping 881
8.4.1 CFL-condition 885
8.4.2 Linear stability 891
8.4.3 Convergence 905
8.5 Higher order conservative schemes 914
Index 916
Keywords 916
Examples 927
Definitions 932
MATLAB-CODE 934
Symbols 935
A. 1 Chapter ??: Prologue: A Two-point Boundary Value Problem 941
A. 2 Chapter ??: Second-order scalar elliptic boundary value problems 942
A. 3 Chapter ??: The Finite Element Method (FEM) 943
A. 4 Chapter ??: Special elliptic boundary value problems 946
A. 5 Chapter ??: Solving discrete boundary value problems 947
A. 6 Chapter ??: Parabolic Boundary Value Problems 948
A. 7 Chapter ??: Numerical Methods for Conservation Laws 948
A. 8 Chapter ??: Adaptive Finite Element Schemes 949

Course history

- Summer semester 04, R. Hiptmair (for RW/CSE undergraduates)
- Winter semester 04/05, C. Schwab (for RW/CSE undergraduates)
- Winter semester 05/06, H. Harbrecht (for RW/CSE undergraduates)
- Winter semester 06/07, C. Schwab (for BSc RW/CSE)
- Autumn semester 07, A. Chernov (for BSc RW/CSE)
- Autumn semester 08, C. Schwab (for BSc RW/CSE)
- Autumn semester 09, V. Gradinaru (for BSc RW/CSE, Subversion Revision: 22844)
- Spring semester 10, R. Hiptmair (for BSc Computer Science, Subversion Revision:)
- Autumn semester 10, R. Hiptmair (for BSc RW/CSE)

This lecture is a core course for

- BSc in Computational Science and Engineering (RW/CSE),
- BSC in Computer Science with focus Computational Science.

Main skills to be acquired in this course:

- Ability to implement advanced numerical methods for the solution of partial differential equations in MATLAB efficiently
- Ability to modify and adapt numerical algorithms guided by awareness of their mathematical foundations
- Ability to select and assess numerical methods in light of the predictions of theory
- Ability to identify features of a PDE (= partial differential equation) based model that are relevant for the selection and performance of a numerical algorithm
. Ability to understand research publications on theoretical and practical aspects of numerical methods for partial differential equations.

Numerical analysis of PDE (\rightarrow mathematics curriculum)
(401-3651-00V Numerical methods for elliptic and parabolic partial dif-
This course \neq ferential equations, R. Hiptmair, Tue 15-17 HG E 5, Thu 13-15 HG E 5)

Instruction on how to apply software packages

Reading instructions

This course materials are neither a textbook nor lecture notes.
They are meant to be supplemented by explanations given in class.

Some pieces of advice:

- this document is not meeant for mere reading, but for working with,
. turn pages all the time and follow the numerous cross-references,
- study the relevant section of the course material when doing homework problems.

Practical information

Course: $\quad 401-0674-00 \mathrm{~L}$ Numerical Methods for Partial Differential Equations
Lectures: Wed 8-10 HGE 3
Fri $10-12$ HGE 5
Tutorials: Thu 13-15 HG D 7.2
Fri 15-17 HG E 21
Tue 13-15 HG E 21 (extra slot)

Lecturer: Prof. Ralf Hiptmair, office: HG G 58.2, e-mail: hiptmair@sam.math.ethz.ch

Eivind Fonn, office: HG J 59, e-mail: eivind.fonn@sam.math.ethz.ch (1st year PhD student at Seminar of Applied Mathematics, D-MATH)

Dr. Serban Georgescu, office: CAB F 81, e-mail: serban.georgescu@inf.ethz.ch (Postdoctoral researcher at Chair of Computational Science, D-INFK)

Konstantinos Ritos, office: CAB F 84, e-mail: konstantinos.ritos@inf.ethz.ch (1st year PhD student at Chair of Computational Science, D-INFK)

Rajdeep Deb, e-mail: debr@student.ethz.ch (MSc student RW/CSE)
Roman Fuchs, e-mail: rofuchs@student.ethz.ch (MSc student RW/CSE)

Assignments:

- 12 weekly assignment sheets, handed out on Thursday, discussed in tutorial classes in the following week
- "Testat" requirement: regular attempts to solve homework problems and programming exercises and attendance of at least 9 tutorial classes
- MATLAB programming exercises

Examination: "Sessionsprüfung": computer based examination, programming \& theoretical tasks
Date: Friday, August 13, 2010
Web page: http://www.math.ethz.ch/education/bachelor/lectures/fs2010/other/n_dgl

Lecturer's questions for course evaluation

Course number (LV-ID): 401-0674-00L
Date of evaluation: April 23, 2010

D1: Theoretical and algorithmic aspects are well balanced in the course.
D2: (Numerical) examples in class provide useful insights and motivation.
D3: My prior knowledge in analysis was adequate for the course.
D4: The programming exercises help understand the numerical methods.
D5: The MATLAB finite element library is easy to use.
D6: The model solutions for exercise problems offer sufficient guidance.

Scoring: 6: I agree fully
5: I agree to a large extent
4: I agree partly
3: I do not quite agree
2: I disagree
1: I disagree strongly

Evaluation of assistants:

Assistant	shortcut
Eivind Fonn	EIV
Dr. Serban Georgescu	SER
Konstantinos Ritos (Costas)	COS

Please enter the shortcut code after the LV-ID in the three separate boxes.

Evaluation results: coming soon

Reporting errors

Please report errors in the electronic lecture notes via a wiki page!
http://elbanet.ethz.ch/wikifarm/rhiptmair/index.php?n=Main.NPDECourse
(Password: NPDE, please choose EDIT menu to enter information)

Please supply the following information:

- (sub)section where the error has been found,
- precise location (e.g, after Equation (4), Thm. 2.3.3, etc.). Refrain from giving page numbers,
- brief description of the error.

Online discussion forum

Contribute to the forum

Numerical Methods for Partial Differential Equations

to be found at the URL

This forum has been set up so that you can post questions on the programming exercises that accompany the course. One of the assistants will look at the entries in this forum and

- write an answer in this forum or
- discuss the question in a consulting session and post an answer later.

A second purpose of this forum is that the assistants can collect FAQs and post answers here.

Main topics

- Second order elliptic boundary value problems
- The finite element method (FEM)
- Parabolic boundary value problems
- Special elliptic boundary value problems
- Numerical methods for conservation laws
- Adaptive finite element schemes
- Multilevel iterative solvers

Case Study: A Two-point Boundary
 Value Problem

1.1 Introduction

The term "partial differential equation" (PDE) usually conjures up formulas like

$$
\operatorname{div}\left(\sqrt{1+\|\operatorname{grad} u(\boldsymbol{x})\|^{2}} \operatorname{grad} u(\boldsymbol{x})\right)+\mathbf{v} \cdot \boldsymbol{\operatorname { g r a d }} u=f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}
$$

This chapter aims to rid you from this impulse and instil an appreciation that
a meaningful PDE encodes structural principles
(like equilibrium, conservation, etc.)

The design and selection of numerical methods has to take into account these governing principles.

Remark 1.1.1 (Mathematical modelling).

Prerequisite for numerical simulation: Mathematical modelling

Necessary simplification:
$\left\{\begin{array}{c}\text { system } \\ \text { phenomenon }\end{array}\right\}$ described by a few variables/functions in configuration space
The art of modelling: devise "faithful model"

$$
\text { Essential/relevant traits of }\left\{\begin{array}{c}
\text { system } \\
\text { phenomenon }
\end{array}\right\} \quad \longrightarrow \quad \text { structural properties of model }
$$

Remark 1.1.2 ("PDEs" for univariate functions).

The classical concept of a PDE inherently involves functions of several independent variables. However, when one embraces the concept of a PDE as encoding fundamental structural properties of a model, then simple representatives in a univariate setting can be discussed.
ordinary differential equations (ODEs) offer simple specimens of important classes of PDEs!

Thus, in this chapter we examine ODEs that are related to the important class of elliptic PDEs.
functional analytic framework
1.2 A model problem

1.2.1 Linear elastic string

Static mechanical problem:
Deformation of elastic "1D" string (rubber band) under its own weight Constraint: string pinned at endpoints

Sought: (Approximation of) "shape" of elastic string

Configuration space

Terminology: $\quad[0,1] \hat{=}$ parameter domain, \otimes notation Ω Remark 1.2.2 (Parametrization of a curve). $\quad \rightarrow$ [19, Sect. 7.4]

We consider a curve in $\mathbb{R}^{2} \quad \mathbf{u}:[0,1] \mapsto \mathbb{R}^{2}$
$\mathbf{u} \in\left(C^{0}([0,1])\right)^{2}$
$\mathbb{\Downarrow}$
connected curve

Q notation: $\quad C^{k}([a, b]) \hat{=} k$-times continuously differentiable functions on $[a, b] \subset \mathbb{R}$, see [19, Sect. 5.4]
$\left(C^{k}([a, b])\right)^{2} \hat{=} k$-times continuously differentiable curves $\mathbf{u}:[a, b] \mapsto \mathbb{R}^{2}$, that is, if $\mathbf{u}=\binom{u_{1}}{u_{2}}$, then $u_{1}, u_{2} \in C^{k}([a, b])$.

Geometric intuition: $\mathbf{u}(\xi)$ moves along the curve as ξ increases from 0 to 1.

Interpretation of curve parameter ξ : "virtual time"
$>\left\|\mathbf{u}^{\prime}\right\| \hat{=} \quad$ "speed" with which curve is traversed

$$
>\quad \int_{0}^{1}\left\|\mathbf{u}^{\prime}(\xi)\right\| \mathrm{d} \xi \quad \hat{=} \text { length of curve }
$$

- parametrization is supposed to be locally injective:

$$
\forall \xi \in] 0,1[: \quad \exists \epsilon>0: \quad \forall \eta,|\eta-\xi|<\epsilon: \quad \mathbf{u}(\eta) \neq \mathbf{u}(\xi)
$$

$$
\text { For } \mathbf{u} \in\left(C^{1}([0,1])\right)^{2} \quad \text { we expect } \quad \mathbf{u}^{\prime}(\xi) \neq 0 \text { for all } 0 \leq \xi \leq 1
$$

notation: \quad ' $\hat{=}$ derivative w.r.t. curve parameter, here ξ

Remark 1.2.3 (Material coordinate).

Interpretation of curve parameter ξ :
ξ : unique identifier for each infinitesimal section of the string, a label for each "material point" on the string

D $\xi \hat{=}$ material coordinate, unrelated to "position in space" (= physical coordinate), ξ has no physical dimension > 'does not affect dimension.

Remark 1.2.4 (Non-dimensional equations).

By fixing reference values for the basic physical units occurring in a model ("scaling"), one can switch to a non-dimensional form of the model equations.

In the case of the elastic string model the basic units are

- unit of length 1 m ,
- unit of force 1 N .

Thus, non-dimensional equations arise from fixing a reference length ℓ_{0} and a reference force f_{0}.

Below, physical units will be routinely dropped, which tacitly assumes a prior scaling.

Further problem parameters:

- force field $\mathbf{f}:[0,1] \mapsto \mathbb{R}^{2},[\mathbf{f}]=1 \mathrm{~N}, \mathbf{f}(\xi) \hat{=}$ force acting on material point ξ.

Special case: gravitational force $\mathbf{f}(\xi):=-g \rho(\xi)\binom{0}{1}, 0 \leq \xi \leq 1, g=9.81 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$ with density $\rho:[0,1] \mapsto \mathbb{R}^{+},[\rho]=\mathrm{kg}$,

- local elastic material properties, see Sect. 1.2.3.

1.2.2 Mass-spring model

Idea: model string as a system of many simple components that interact in simple ways

Assumption:

linear springs \leftrightarrow Hooke's law

$$
\begin{equation*}
\text { Force } \quad F(l)=\kappa\left(\frac{l}{l_{0}}-1\right) \quad \text { (relative elongation) } \tag{1.2.5}
\end{equation*}
$$

$\kappa \hat{=}$ spring constant (stiffness), $[\kappa]=1 \mathrm{~N}, \kappa>0$,
$l_{0} \hat{=}$ equilibrium length of (relaxed) spring.
elastic energy stored in linear spring at length $l>0$

$$
\begin{equation*}
E_{\mathrm{el}}=\int_{l_{0}}^{l} F(\tau) \mathrm{d} \tau=\frac{1}{2} \frac{\kappa}{l_{0}}\left(l-l_{0}\right)^{2}, \quad\left[E_{\mathrm{el}}\right]=1 \mathrm{~J} \tag{1.2.6}
\end{equation*}
$$

1.2

Configuration space for mass-spring model:

$$
\begin{aligned}
& \mathbf{u}^{i} \in \mathbb{R}^{2} \hat{=} \text { position of } i \text {-th mass point, } i=1, \ldots, n \\
& >\quad \text { finite-dimensional configuration space }=\left(\mathbb{R}^{2}\right)^{n}
\end{aligned}
$$

Models, for which configurations can be described by means of finitely many real numbers are called discrete. Hence, the mass-spring model is a discrete model, see Sect. [1.5.

Total elastic energy of mass-spring model in configuration $\left(\mathbf{u}^{1}, \ldots, \mathbf{u}^{n}\right) \in\left(\mathbb{R}^{2}\right)^{n}$:

$$
\begin{equation*}
J_{\mathrm{el}}^{(n)}=J_{\mathrm{el}}^{(n)}\left(\mathbf{u}^{1}, \ldots, \mathbf{u}^{n}\right):=\frac{1}{2} \sum_{i=0}^{n} \underbrace{\frac{\kappa_{i}}{l_{i}}\left(\left\|\mathbf{u}^{i+1}-\mathbf{u}^{i}\right\|-l_{i}\right)^{2}}_{\text {elastic energy of } i \text {-th spring }} \tag{1.2.7}
\end{equation*}
$$

where $\quad \mathbf{u}^{0}:=\binom{a}{u_{a}}, \mathbf{u}^{n+1}:=\binom{b}{u_{b}} \quad$ (pinning positions (1.2.1)),
$\kappa_{i} \hat{=}$ spring constant of i-th spring, $i=0, \ldots, n$,
$l_{i}>0 \hat{=}$ equilibrium length of i-th spring.
Total potential energy of mass-spring model in configuration $\left(\mathbf{u}^{1}, \ldots, \mathbf{u}^{n}\right)$ due to external force field:

$$
\begin{equation*}
J_{\mathrm{f}}^{(n)}=J_{\mathrm{f}}^{(n)}\left(\mathbf{u}^{1}, \ldots, \mathbf{u}^{n}\right):=-\sum_{i=1}^{n} \mathbf{f}^{i} \cdot \mathbf{u}^{i}, \tag{1.2.8}
\end{equation*}
$$

where $\quad \mathbf{f}^{i} \hat{=}$ force acting on i-th mass, $i=1, \ldots, n$.
notation: $\mathbf{u} \cdot \mathbf{v}:=\mathbf{u}^{H} \mathbf{v} \hat{=}$ inner product of vectors in \mathbb{C}^{n}.

Known from classical mechanics, static case: equilibrium principle
systems attains configuration(s) of minimal (potential) energy

$$
J^{(n)}:=J_{\mathrm{el}}^{(n)}+J_{\mathrm{f}}^{(n)}
$$

equilibrium configuration $\mathbf{u}_{*}^{1}, \ldots, \mathbf{u}_{*}^{n}$ of mass-spring system solves

$$
\begin{equation*}
\left(\mathbf{u}_{*}^{1}, \ldots, \mathbf{u}_{*}^{n}\right)=\underset{\left(\mathbf{u}^{1}, \ldots, \mathbf{u}^{n}\right) \in \mathbb{R}^{2 n}}{\operatorname{argmin}} J^{(n)}\left(\mathbf{u}^{1}, \ldots, \mathbf{u}^{n}\right) \tag{1.2.9}
\end{equation*}
$$

Plot of $J^{(1)}\left(\mathbf{u}^{1}\right)$

Mass-spring system with only one point mass (non-dimensional $l_{1}=l_{2}=1, \kappa_{1}=\kappa_{2}=1$, $\left.\mathbf{u}^{0}=\binom{0}{0}, \mathbf{u}^{2}=\binom{1}{0.2}, \mathbf{f}^{1}=\binom{0}{-1}\right)$

Note: solutions of (1.2.9) need not be unique!

To see this, consider the case $L:=\sum_{i=0}^{n} l_{i}>\left\|\mathbf{u}^{n+1}-\mathbf{u}^{0}\right\|$ and $\mathbf{f} \equiv 0$ (slack ensemble of springs without external forcing). In this situation many crooked arrangements of the masses will have zero total potential energy.

1.2.3 Continuum limit

Heuristics: elastic string = spring-mass system with "infinitely many infinitesimal masses" and "infinitesimally short" springs.

Policy: - consider sequence $\left(\mathcal{S M} \mathcal{M}_{n}\right)_{n \in \mathbb{N}}$ of spring-mass systems with n masses,

- identify material coordinate (\rightarrow Rem. [1.2.3) of point masses,
- choose system parameters with meaningful limits,
- derive expressions for energies as $n \rightarrow \infty$,
- use them to define the "continuous elastic string model".

Assumption: equal equilibrium lengths of all springs $\quad l_{i}=\frac{L}{n+1}, L>0$, $>L \hat{=}$ equilibrium length of elastic string: $L=\sum_{i} l_{i},[L]=1 \mathrm{~m}$.

Equilibrium configuration of mass-spring system \triangleright
(non-dimensional $l_{i}=\frac{L}{n+1}, \kappa_{i}=1, \mathbf{f}_{i}=\frac{1}{n}\binom{0}{-1}$, $L=1, n$ varying)

masses are uniformly spaced on string $\mathbf{u}:[0,1] \mapsto \mathbb{R}^{2}$
$>\quad$ material coordinate of i-th mass in $\mathcal{S M} \mathcal{M}_{n}=\xi_{i}^{(n)}:=\frac{i}{n+1}: \quad \mathbf{u}^{i}:=\mathbf{u}\left(\xi_{i}^{(n)}\right)$

In the spring-mass model each spring has its onw stiffness κ_{i} and every mass point its own force \mathbf{f}^{i} acting on it. When considering the "limit" of a sequence of spring-mass models, we have to detach stiffness and force from springs and masses and attach them to material points, cf. Rem. [1.2.3. In other words stiffness κ_{i} and force \mathbf{f}^{i} have to be induced by a stiffness function $\kappa(\xi)$ and force function $\mathbf{f}(\xi)$. This linkage has to be done in a way to allow for a meaningful limit $n \rightarrow \infty$ for the potential energy.
"Limit-compatible" system parameters: $\quad\left(\xi_{i+1 / 2}^{(n)}:=\frac{1}{2}\left(\xi_{i+1}^{(n)}+\xi_{i}^{(n)}\right)\right)$

- $\kappa_{i}=\kappa\left(\xi_{i+1 / 2}^{(n)}\right)$ with integrable stiffness function $\kappa:[0,1] \mapsto \mathbb{R}^{+}$,
$\xi_{i+1 / 2}^{(n)}$
- $\mathbf{f}^{i}=\int_{(n)} \mathbf{f}(\xi) \mathrm{d} \xi \quad$ "lumped force", integrable force field $\mathbf{f}:[0,1] \mapsto \mathbb{R}^{2}$ $\xi_{i-1 / 2}^{(n)}$
energies, see (1.2.7), (1.2.8)

$$
\begin{equation*}
J_{\mathrm{el}}^{(n)}(\mathbf{u})=\frac{1}{2} \sum_{i=0}^{n} \frac{n+1}{L} \kappa\left(\xi_{i+1 / 2}^{(n)}\right)\left(\left\|\mathbf{u}\left(\xi_{i+1}^{(n)}\right)-\mathbf{u}\left(\xi_{i}^{(n)}\right)\right\|-\frac{L}{n+1}\right)^{2} \tag{1.2.10}
\end{equation*}
$$

$$
\begin{equation*}
J_{\mathrm{f}}^{(n)}(\mathbf{u})=-\sum_{i=1}^{n} \int_{\xi_{i-1 / 2}^{(n)}}^{\xi_{i+1 / 2}^{(n)}} \mathbf{f}(\xi) \mathrm{d} \xi \cdot \mathbf{u}\left(\xi_{i}^{(n)}\right) \tag{1.2.11}
\end{equation*}
$$

Assumption: $\quad \mathbf{u} \in\left(C^{2}([0,1])\right)^{2} \quad$ (twice continuously differentiable)
(1) Simple limit for potential energy due to external force:

$$
\begin{equation*}
J_{\mathrm{f}}(\mathbf{u})=\lim _{n \rightarrow \infty} J_{\mathrm{f}}^{(n)}(\mathbf{u})=\lim _{n \rightarrow \infty}-\sum_{i=1}^{n} \int_{\xi_{i-1 / 2}^{(n)}}^{\xi_{i+1 / 2}^{(n)}} \mathbf{f}(\xi) \mathrm{d} \xi \cdot \mathbf{u}\left(\xi_{i}^{n}\right)=-\int_{0}^{1} \mathbf{f}(\xi) \cdot \mathbf{u}(\xi) \mathrm{d} \xi \tag{1.2.12}
\end{equation*}
$$

(2) Limit of elastic energy:

Tool: Taylor expansion: for $\mathbf{u}=\binom{u_{1}}{u_{2}} \in C^{2}$ with derivative $\mathbf{u}^{\prime}, 1 \gg \eta \rightarrow 0$

$$
\begin{align*}
\|\mathbf{u}(\xi+\eta)-\mathbf{u}(\xi-\eta)\| & =\sqrt{\left(u_{1}(\xi+\eta)-u_{1}(\xi-\eta)\right)^{2}+\left(u_{2}(\xi+\eta)-u_{2}(\xi-\eta)\right)^{2}} \\
& =\sqrt{\left(2 u_{1}^{\prime}(\xi) \eta+O\left(\eta^{3}\right)\right)^{2}+\left(2 u_{2}^{\prime}(\xi) \eta+O\left(\eta^{3}\right)\right)^{2}} \tag{1.2.13}\\
& =2 \eta\left\|\mathbf{u}(\xi)^{\prime}\right\| \sqrt{1+O\left(\eta^{2}\right)}=2 \eta\left\|\mathbf{u}^{\prime}(\xi)\right\|+O\left(\eta^{2}\right)
\end{align*}
$$

Apply this to (1.2.10) with $\eta=\frac{1}{2} \frac{1}{n+1}$ for $n \rightarrow \infty$

$$
\begin{align*}
J_{\mathrm{el}}^{(n)}(\mathbf{u}) & =\frac{1}{2} \sum_{i=0}^{n} \frac{n+1}{L} \kappa\left(\xi_{i+1 / 2}^{(n)}\right)\left(\frac{1}{n+1}\left\|\mathbf{u}^{\prime}\left(\xi_{i+1 / 2}^{(n)}\right)\right\|+O\left(\frac{1}{(n+1)^{2}}\right)-\frac{L}{n+1}\right)^{2} \tag{1.2.14}\\
& =\frac{1}{2 L} \frac{1}{n+1} \sum_{i=0}^{n} \kappa\left(\xi_{i+1 / 2}^{(n)}\right)\left(\left\|\mathbf{u}^{\prime}\left(\xi_{i+1 / 2}^{(n)}\right)\right\|+O\left(\frac{1}{n+1}\right)-L\right)^{2}
\end{align*}
$$

Consideration: integral as limit of Riemann sums, see [19, Sect. 6.2]:

$$
\begin{equation*}
q \in C^{0}([0,1]): \quad \lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{j=0}^{n} q\left(\frac{j+1 / 2}{n+1}\right)=\int_{0}^{1} q(\xi) \mathrm{d} \xi \tag{1.2.15}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \quad J_{\mathrm{el}}(\mathbf{u})=\lim _{n \rightarrow \infty} J_{\mathrm{el}}^{(n)}(\mathbf{u})=\frac{1}{2 L} \int_{0}^{1} \kappa(\xi)\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right)^{2} \mathrm{~d} \xi \tag{1.2.16}
\end{equation*}
$$

Equilibrium condition for limit model (minimal total potential energy):

Example 1.2.18 (Tense string without external forcing).

Setting

- no external force: $\mathbf{f} \equiv 0$
- homogeneous string: $\kappa=\kappa_{0}=$ const
- tense string: $L<\|\mathbf{u}(0)-\mathbf{u}(1)\|$
($>$ positive elastic energy)

$$
\begin{equation*}
\Delta(1.2 .17) \Leftrightarrow \mathbf{u}_{*}=\underset{\mathbf{u} \in\left(C^{1}([0,1])\right)^{2} \&(1.2 .1)}{\operatorname{argmin}} \frac{\kappa_{0}}{2 L} \int_{0}^{1}\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right)^{2} \mathrm{~d} \xi . \tag{1.2.19}
\end{equation*}
$$

Note: \quad in (1.2.19) u enters J only through \mathbf{u}^{\prime} !

Constraint on u^{\prime} : by triangle inequality for integrals, see [19, Sect. 6.3]

$$
\begin{equation*}
\ell:=\|\mathbf{u}(1)-\mathbf{u}(0)\|=\left\|\int_{0}^{1} \mathbf{u}^{\prime}(\xi) \mathrm{d} \xi\right\| \leq \int_{0}^{1}\left\|\mathbf{u}^{\prime}(\xi)\right\| \mathrm{d} \xi \tag{1.2.20}
\end{equation*}
$$

\Rightarrow Consider related minimization problem

$$
\begin{gather*}
w_{*}=\underset{w}{\operatorname{argmin}}\left\{\frac{\kappa_{0}}{2 L} \int_{0}^{1}(w-L)^{2} \mathrm{~d} \xi: \int_{0}^{w \in\left(C^{0}([0,1])\right)^{2}},\right. \tag{1.2.21}\\
\Rightarrow \quad \text { unique solution } \quad w_{*}(\xi)=\ell \quad \text { (constant solution) }
\end{gather*}
$$

$\left\|\mathbf{u}^{\prime}(\xi)\right\|=\ell$ and the boundary conditions (1.2.1) are satisfied for the straight line solution of (1.2.19)

$$
\mathbf{u}_{*}(\xi)=(1-\xi) \mathbf{u}(0)+\xi \mathbf{u}(1)
$$

It is exactly the "straight string" solution that physical intuition suggests.

1.3 Variational approach

We face the task of minimizing a functional over an ∞-dimensional function space. In this section necessary conditions for the minimizer will formally be derived in the form of variational equations. This idea is one of the cornerstone of a branch of analysis called calculus of variations.

1.3.1 Virtual work equation

notation: $\quad C_{0}^{k}([0,1]):=\left\{v \in C^{k}([0,1]): v(0)=v(1)=0\right\}, k \in \mathbb{N}_{0}$

Main "idea of calculus of variations":
$\mathbf{u}_{*} \quad$ solves $(1.2 .17) \Rightarrow J\left(\mathbf{u}_{*}\right) \leq J\left(\mathbf{u}_{*}+t \mathbf{v}\right) \quad \forall t \in \mathbb{R}, \mathbf{v} \in\left(C_{0}^{2}([0,1])\right)^{2}$.

$$
\begin{equation*}
\varphi(t):=J\left(\mathbf{u}_{*}+t \mathbf{v}\right) \text { has global minimum for } t=0 \tag{1.3.1}
\end{equation*}
$$

If φ differentiable, then $\frac{d \varphi}{d t}(0)=0$

Computation of $\frac{d \varphi}{d t}(0)$ for J from (1.2.17) amounts to computing a "configurational derivative" in direction v .

We pursue a separate treatment of energy contributions:
(1) Potential energy (1.2.12) due to external force:

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{J_{\mathrm{pot}}\left(\mathbf{u}_{*}+t \mathbf{v}\right)-J_{\mathrm{pot}}\left(\mathbf{u}_{*}\right)}{t}=-\lim _{t \rightarrow 0} \frac{1}{t} \int_{0}^{1} \mathbf{f}(\xi) \cdot t \mathbf{v}(\xi) \mathrm{d} \xi=-\int_{0}^{1} \mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi . \tag{1.3.2}
\end{equation*}
$$

(2) Elastic energy (1.2.16): more difficult, tool: Taylor expansion

Analoguous to (1.2.13), $\mathrm{x} \in \mathbb{R}^{2} \backslash\{0\}, \mathrm{h} \in \mathbb{R}^{2}$, for $\mathbb{R} \ni t \rightarrow 0$

$$
\begin{align*}
\|\mathbf{x}+t \mathbf{h}\| & =\sqrt{\left(x_{1}+t h_{1}\right)^{2}+\left(x_{2}+t h_{2}\right)^{2}}=\sqrt{\|\mathbf{x}\|^{2}+2 t \mathbf{x} \cdot \mathbf{h}+t^{2}\|\mathbf{h}\|^{2}} \\
& =\|\mathbf{x}\| \sqrt{1+2 t \frac{\mathbf{x} \cdot \mathbf{h}}{\|\mathbf{x}\|^{2}}+t^{2} \frac{\|\mathbf{h}\|^{2}}{\|\mathbf{x}\|^{2}}}=\|\mathbf{x}\|+t \frac{\mathbf{x} \cdot \mathbf{h}}{\|\mathbf{x}\|}+O\left(t^{2}\right) \tag{1.3.3}
\end{align*}
$$

where we used

$$
\begin{equation*}
\sqrt{1+\delta}=1+\frac{1}{2} \delta+O\left(\delta^{2}\right) \text { for } \delta \rightarrow 0 \tag{1.3.4}
\end{equation*}
$$

Use (1.3.3) in the perturbation analysis for the elastic energy:

$$
\begin{align*}
\Delta\left(\left\|\mathbf{u}^{\prime}(\xi)+t \mathbf{v}^{\prime}(\xi)\right\|-L\right)^{2} & =\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|+t \frac{\mathbf{u}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}+O\left(t^{2}\right)-L\right)^{2} \\
& =\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right)^{2}+2 t\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}+O\left(t^{2}\right) . \\
>J_{\mathrm{el}}(\mathbf{u}+t \mathbf{v})-J_{\mathrm{el}}(\mathbf{u}) & =\frac{t}{L} \int_{0}^{1} \kappa(\xi)\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}+O\left(t^{2}\right) \mathrm{d} \xi \tag{1.3.5}
\end{align*}
$$

$$
\begin{equation*}
>\lim _{t \rightarrow 0} \frac{J_{\mathrm{el}}\left(\mathbf{u}_{*}+t \mathbf{v}\right)-J_{\mathrm{el}}\left(\mathbf{u}_{*}\right)}{t}=\int_{0}^{1} \frac{\kappa(\xi)}{L}\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|} \mathrm{d} \xi \tag{1.3.6}
\end{equation*}
$$

Here we take for granted $\left\|\mathbf{u}^{\prime}(\xi)\right\| \neq 0$, which an essential property of a meaningful parameterization of the elastic string, see Rem. 1.2.2.

Necessary condition for \mathbf{u}_{*} solving (1.2.17)

$$
\begin{equation*}
\int_{0}^{1} \frac{\kappa(\xi)}{L}\left(\left\|\mathbf{u}_{*}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}_{*}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)}{\left\|\mathbf{u}_{*}^{\prime}(\xi)\right\|}-\mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi=0 \quad \forall \mathbf{v} \in\left(C_{0}^{2}([0,1])\right)^{2} \tag{1.3.7}
\end{equation*}
$$

This is a non-linear variational equation on domain $\Omega=[0,1]$

Remark 1.3.8 (Differentiating a functional on a space of curves).

For a C^{2}-function $\quad F: \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}, d \in \mathbb{N}$, consider the functional

$$
J:\left(C_{\mathrm{pw}}^{1}([0,1])\right)^{d} \mapsto \mathbb{R} \quad, \quad J(\mathbf{u}):=\int_{0}^{1} F\left(\mathbf{u}^{\prime}(\xi), \mathbf{u}(\xi)\right) \mathrm{d} \xi
$$

By simple Taylor expansion we find

$$
J(\mathbf{u}+t \mathbf{v})=J(\mathbf{u})+t \underbrace{\int_{0}^{1} D_{1} F\left(\mathbf{u}^{\prime}(\xi), \mathbf{u}(\xi)\right) \mathbf{v}^{\prime}(\xi)+D_{2} F\left(\mathbf{u}^{\prime}(\xi), \mathbf{u}(\xi)\right) \mathbf{v}(\xi) \mathrm{d} \xi}_{\text {"directional derivative" }\left(D_{\mathbf{u}} J\right)(\mathbf{u})(\mathbf{v})}+O\left(t^{2}\right)
$$

Here, $D_{1} F$ and $D_{2} F$ are the partial derivatives of F w.r.t the first and second vector argument, respctively. These are row vectors. The derivatives $\mathbf{u}^{\prime}, \mathbf{v}^{\prime}$ are just regular 1D derivatives w.r.t. the parameter ξ. They yield column vectors.

Remark 1.3.9 (Virtual work principle).
In statics, the derivation of variational equations from energy minimization (equilibrium principle, see (1.2.9)) is known as the method of virtual work: Small admissible changes of the equilibrium configuration of the system invariably entail active work.

Remark 1.3.10 (Non-linear variational equation).

Recall from linear algebra:
Definition 1.3.11. Given an \mathbb{R}-vector space V, a linear form ℓ is a mapping $f: V \mapsto \mathbb{R}$ that satisfies

$$
\ell(\alpha u+\beta v)=\alpha \ell(u)+\beta \ell(v) \quad \forall u, v \in V, \forall \alpha, \beta \in \mathbb{R} .
$$

A bilinear form a on V is a mapping $a: V \times V \mapsto \mathbb{R}$, for which

$$
\begin{aligned}
& \begin{aligned}
a\left(\alpha_{1} v_{1}+\beta_{1} u_{1}, \alpha_{2} v_{2}+\right. & \left.\beta_{2} u_{2}\right)= \\
& =\alpha_{1} \alpha_{2} a\left(v_{1}, v_{2}\right)+\alpha_{1} \beta_{2} a\left(v_{1}, u_{2}\right)+\beta_{1} \alpha_{2} a\left(u_{1}, v_{2}\right)+\beta_{1} \beta_{2} a\left(u_{1}, u_{2}\right)
\end{aligned} \\
& \text { for all } u_{i}, v_{i} \in V, \alpha_{i}, \beta_{i} \in \mathbb{R}, i=1,2
\end{aligned}
$$

$$
\begin{equation*}
u \in V: \quad \mathrm{a}(u ; v)=\ell(v) \quad \forall v \in V_{0} \tag{1.3.12}
\end{equation*}
$$

- $V_{0} \hat{=}$ (real) vector space of functions,
- $V \hat{=}$ affine space of functions: $V=u_{0}+V_{0}$, with offset function $u_{0} \in V$,
- $\ell \hat{=}$ a linear mapping $V_{0} \mapsto \mathbb{R}$, a linear form,
- a $\hat{=}$ a mapping $V \times V_{0} \mapsto \mathbb{R}$, linear in the second argument, that is

$$
\begin{equation*}
\mathrm{a}(u ; \alpha v+\beta w)=\alpha \mathrm{a}(u ; v)+\beta \mathrm{a}(u ; w) \quad \forall u \in V, v, w \in V_{0}, \alpha, \beta \in \mathbb{R} \tag{1.3.13}
\end{equation*}
$$

Terminlogy related to variational problem (1.3.12): $\quad V=$ trial space

Explanation of terminology:

- trial space $\hat{=}$ the function space in which we seek the solution
- test space $\hat{=}$ the space of eligible test functions v in a variational problem like (1.3.12)

The two spaces need not be the same: $V \longleftrightarrow V_{0}$. For many variational problem, which are not examined in this course, they may even comprise functions with different smoothness properties.

Rewriting (1.3.12) using the Offset function $u_{0} \in V$:

$$
\begin{equation*}
\text { (1.3.12) } \Rightarrow w \in V_{0}: \quad \mathrm{a}\left(u_{0}+w ; v\right)=\ell(v) \quad \forall v \in V_{0} \quad \text { and } \quad u=u_{0}+w . \tag{1.3.14}
\end{equation*}
$$

In concrete terms (for elastic string continuum model):

- $V_{0}:=\left(C_{0}^{2}([0,1])\right)^{2}$,
- $V:=\left\{\mathbf{u} \in\left(C^{2}([0,1])\right)^{2}: \mathbf{u}(0)=\binom{a}{u_{a}}, \mathbf{u}(1)=\binom{b}{u_{b}}\right\}$
$=\underbrace{[\xi \mapsto(1-\xi) \mathbf{u}(0)+\xi \mathbf{u}(1)]}_{=: \mathbf{u}_{0}}+V_{0}$,
- $\ell(\mathbf{v}):=\int_{0}^{1} \mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi$,
- $\quad a(\mathbf{u} ; \mathbf{v}):=\int_{0}^{1} \frac{\kappa(\xi)}{L}\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|} \mathrm{d} \xi$.

1.3.2 Regularity requirements

Issue: \quad The derivation of the continuum models $(1.2 .17)(\rightarrow$ Sect. 1.2 .3$)$ and (1.3.7) was based on the assumption $\mathbf{u} \in\left(C^{2}([0,1])\right)^{2}$.

Is $\mathbf{u} \in\left(C^{2}([0,1])\right)^{2}$ required to render the minimization problem (1.2.17)/variational problem 1.2.3) meaningful ?

Obvious (\rightarrow c Rem. 1.2.2):

$$
\mathbf{u} \in\left(C^{0}([0,1])\right)^{2}
$$

(string must not be torn)

Observation:

- $J(\mathbf{u})$ from (1.2.17), a from (1.3.17) well defined for merely continuous, piecewise continuously differentiable functions $\mathbf{u}, \mathbf{v}:[0,1] \mapsto \mathbb{R}^{2}$, $>\mathbf{u}^{\prime}$ will be piecewise continuous and can be integrated.
- mere integrability of κ, \mathbf{f} sufficient.
notation: $\quad C_{\mathrm{pw}}^{k}([a, b]) \hat{=}$ globally C^{k-1} and piecewise k-times continuously differentiable functions on $[a, b] \subset \mathbb{R}$: for each $v \in C_{\mathrm{pw}}^{k}([a, b])$ there is a finite partition $\{a=$ $\left.\tau_{0}<\tau_{1}<\cdots<\tau_{m}=b\right\}$ such that $v_{\left.\|] \tau_{i-1}, \tau_{i}\right]}$ can be extended to a function $\in C^{k}\left(\left[\tau_{i-1}, \tau_{i}\right]\right) . C_{\mathrm{pw}}^{0}([a, b]) \xlongequal[=]{\text { piecewise continuous functions with only a finite }}$ number of discontinuities.

Example 1.3.18 (Non-smooth external forcing).

Setting: $\quad \kappa=$ const (homogeneous string)

$\Rightarrow \mathbf{u}_{*} \notin\left(C^{2}([0,1])\right)^{2}$ physically meaningful:

- $\mathbf{u}_{*} \in\left(C^{1}([0,1])\right)^{2}$ for discontinuous \mathbf{f}
- merely $\mathbf{u}_{*} \in\left(C^{0}([0,1])\right)^{2}$ for point force concentrated in ξ : \quad kink at ξ_{0} !

Consider non-linear variational equation (1.3.7):

$$
\begin{equation*}
\int_{0}^{1} \frac{\kappa(\xi)}{L}\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}-\mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi=0 \quad \forall \mathbf{v} \in\left(C_{0, \mathrm{pw}}^{1}([0,1])\right)^{2} \tag{1.1.7}
\end{equation*}
$$

Assumption:

$$
\begin{equation*}
\mathbf{u} \in\left(C^{2}([0,1])\right)^{2} \boldsymbol{\&} \kappa \in C^{1}([0,1]) \boldsymbol{\&} \mathbf{f} \in\left(C^{0}([0,1])\right)^{2} \tag{1.3.19}
\end{equation*}
$$

Recall: integration by parts formula:

$$
\begin{equation*}
\int_{0}^{1} u(\xi) v^{\prime}(\xi) \mathrm{d} \xi=-\int_{0}^{1} u^{\prime}(\xi) v(\xi)+\underbrace{(u(1) v(1)-u(0) v(0))}_{\text {boundary terms }} \quad \forall u, v \in C_{\mathrm{pw}}^{1}([0,1]) \tag{1.3.20}
\end{equation*}
$$

Apply to elastic energy contribution in (1.3.7):

$$
\int_{0}^{1}\left(\frac{\kappa(\xi)}{L}\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}\right) \cdot \mathbf{v}^{\prime}(\xi)-\mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi
$$

Note:

$$
\begin{gathered}
=\int_{0}^{1}\left\{-\frac{d}{d \xi}\left(\frac{\kappa(\xi)}{L}\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}\right)-\mathbf{f}(\xi)\right\} \cdot \mathbf{v}(\xi) \mathrm{d} \xi \\
\mathbf{v}(0)=\mathbf{v}(1)=0 \Rightarrow \text { boundary terms vanish! } \\
\left(\begin{array}{l}
\text { (1.3.7) } \Rightarrow \int_{0} \underbrace{\left\{-\frac{d}{d \xi}\left(\frac{\kappa(\xi)}{L}\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}\right)-\mathbf{f}(\xi)\right\}}_{\in C_{\mathrm{pw}}^{0}([0,1])} \cdot \mathbf{v}(\xi) \mathrm{d} \xi=0 \\
\forall \mathbf{v} \in\left(C_{0}^{1}([0,1])\right)^{2}
\end{array}\right.
\end{gathered}
$$

Lemma 1.3.21 (fundamental lemma of the calculus of variations).

Let $f \in C_{\mathrm{pw}}^{0}([a, b]),-\infty<a<b<\infty$, satisfy

$$
\int_{a}^{b} f(\xi) v(\xi) \mathrm{d} \xi=0 \quad \forall v \in C^{k}([a, b]), v(a)=v(b)=0
$$

for some $k \in \mathbb{N}_{0}$. This implies $f \equiv 0$.

Ass. (1.3.19) \& (1.3.7) $\stackrel{\text { Lemma } 1.3 .21}{\Longrightarrow}-\frac{d}{d \xi}\left(\frac{\kappa(\xi)}{L}\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}\right)=\mathbf{f}(\xi) \quad 0 \leq \xi \leq 1$.

If $\kappa \in C^{1}, \mathbf{f} \in C^{0}$, then a C^{2}-minimizer of $J /$ a C^{2}-solution of (1.3.7) solve the 2 nd-order ODE

$$
\begin{equation*}
\frac{d}{d \xi}\left(\kappa(\xi)\left(\left\|\mathbf{u}^{\prime}\right\|-L\right) \frac{\mathbf{u}^{\prime}}{\left\|\mathbf{u}^{\prime}\right\|}\right)=\mathbf{f} \quad \text { on }[0 ; 1] \tag{1.3.22}
\end{equation*}
$$

ODE (1.3.22) + boundary conditions (1.2.1) = two-point boundary value problem (on domain $\Omega=[0,1]$)

Minimization problem (1.2.17) $\mathbf{u}_{*}=\underset{\mathbf{v} \in V}{\operatorname{argmin}} J(\mathbf{v})$
Variational problem $(1.3 .7)$ $\mathrm{a}(\mathbf{u} ; \mathbf{v})=f(\mathbf{v}) \forall \mathbf{v}$

(1) equivalence (" \Leftrightarrow ") holds if minimization problem has unique solution
(2) meaningful two-point BVP stipulates extra regularity (smoothness) of \mathbf{u}, see Rem. 1.3.23.

Terminology: $\quad\left\{\begin{array}{c}\text { minimization problem }(11.2 .17) \\ \text { variational problem }(1.3 .7)\end{array}\right\} \quad$ is called the weak form of the string model,
Two-point boundary value problem (1.3.22), (1.2.1) is called the strong form of the string model.

A solution u of (1.3.22), for which all occurring derivatives are continuous is called a classical solution of the two-point BVP.

Remark 1.3.23 (Extra regularity requirements).

Minimization problem (1.2.17):

- κ, \mathbf{f} integrable,
- u piecewise C^{1}

Variational problem (1.3.7):

- κ, \mathbf{f} integrable,
- u piecewise C^{1}

Two-point BVP:

- $\kappa \in C^{1}([0,1])$,
- $\mathbf{f} \in\left(C^{0}([0,1])^{2}\right.$,
- $\mathbf{u} \in\left(C^{2}([0,1])\right)^{2}$.
formulation as a classical two-point BVP imposes (unduly) restrictive smoothness on solution and coefficient functions.

Lemma 1.3.24 (Classical solutions are weak solutions).
For $\widetilde{\kappa} \in C^{1}([0,1])$, any classical solution of (1.3.22) also solves (1.3.7).

Proof. ("Derivation of (1.3.22) reversed")

Multiply (1.3.22) with $v \in C_{0, \mathrm{pw}}^{1}([0,1])$ and integrate over $[0,1]$. The push a derivative onto v by using (1.3.20).

1.4 Simplified model

Setting: taut string

$$
\begin{gather*}
L \ll\|\mathbf{u}(0)-\mathbf{u}(1)\| \tag{1.4.1}\\
\left\|\mathbf{u}_{*}^{\prime}(\xi)\right\| \gg L \text { for all } 0 \leq \xi \leq 1 \text { for solution } \mathbf{u}_{*} \text { of (1.2.17) }
\end{gather*}
$$

expected:
"Intuitive asymptotics": . renormalize stiffness $\kappa \rightarrow \widetilde{\kappa}:=\frac{\kappa}{L},[\widetilde{\kappa}]=\mathrm{Nm}^{-1}$

- supress equilibrium length: $L=0$ in (1.2.17).

Simplified equilibrium model:

$$
\begin{equation*}
\widetilde{\mathbf{u}}_{*}=\underset{\mathbf{u} \in\left(C_{\mathrm{pw}}^{1}([0,1])\right)^{2} \&(1.2 .1)}{\operatorname{argmin}} \underbrace{\int_{0}^{1} \frac{1}{2} \widetilde{\kappa}(\xi)\left\|\mathbf{u}^{\prime}(\xi)\right\|^{2}-\mathbf{f}(\xi) \cdot \mathbf{u}(\xi) \mathrm{d} \xi}_{=: \widetilde{J}(\mathbf{u})} \tag{1.4.2}
\end{equation*}
$$

$=$ a quadratic minimization problem in a function space !

- Corresponding variational problem: use

$$
\|\mathbf{x}+t \mathbf{h}\|^{2}=\|\mathbf{x}\|+2 t \mathbf{x} \cdot \mathbf{h}+t^{2}\|\mathbf{h}\|^{2}=\|\mathbf{x}\|+2 t \mathbf{x} \cdot \mathbf{h}+O\left(t^{2}\right)
$$

$\lim _{t \rightarrow 0} \frac{\widetilde{J}(\mathbf{u}+t \mathbf{v})-\widetilde{J}(\mathbf{u})}{t}=\int_{0}^{1} \widetilde{\kappa}(\xi) \mathbf{u}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)-\mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi=0, \quad \mathbf{v} \in\left(C_{\mathrm{pw}, 0}^{1}([0,1])\right)^{2}$

Variational equation satisfied by solution $\widetilde{\mathbf{u}}_{*}$ of (1.4.2):

$$
\begin{equation*}
\int_{0}^{1} \widetilde{\kappa}(\xi) \mathbf{u}_{*}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)-\mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi=0 \quad \forall \mathbf{v} \in\left(C_{\mathrm{pw}, 0}^{1}([0,1])\right)^{2} \tag{1.4.3}
\end{equation*}
$$

Remark 1.4.4 (Linear variational problems). $\quad \rightarrow$ Rem. 1.3.10
(1.4.3) has the structure (1.3.12)

$$
\begin{equation*}
u \in V: \quad \mathrm{a}(u, v)=f(v) \quad \forall v \in V_{0}, \tag{1.4.5}
\end{equation*}
$$

where now

- a : $V_{0} \times V_{0} \mapsto \mathbb{R}$ is a bilinear form (\rightarrow Def. 1.3.11), that is, linear in both arguments.
- Corresponding two-point boundary value problem: by integration by parts, see (1.3.20),

$$
\begin{aligned}
& \int_{0}^{1} \widetilde{\kappa}(\xi) \mathbf{u}_{*}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)-\mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi=\int_{0}^{1}\left\{-\frac{d}{d \xi}\left(\widetilde{\kappa}(\xi) \frac{d}{d \xi} \mathbf{u}(\xi)\right)-\mathbf{f}(\xi)\right\} \cdot \mathbf{v}(\xi) \mathrm{d} \xi \\
& \forall \mathbf{v} \in\left(C_{\mathrm{pw}, 0}^{1}([0,1])\right)^{2}
\end{aligned}
$$

Then use Lemma 1.3.21.

If $\kappa \in C^{1}, f \in C^{0}$, then a C^{2}-solution of (1.4.3) solves the two-point BVP

$$
\begin{gather*}
-\frac{d}{d \xi}\left(\widetilde{\kappa}(\xi) \frac{d \mathbf{u}}{d \xi}(\xi)\right)=\mathbf{f}(\xi), \quad 0 \leq \xi \leq 1 \\
\mathbf{u}(0)=\binom{a}{u_{a}} \quad, \quad \mathbf{u}(1)=\binom{b}{u_{b}} \tag{1.4.6}
\end{gather*}
$$

Special setting:

$$
\text { "gravitational force" } \mathbf{f}(\xi)=-g(\xi) \mathbf{e}_{2}
$$

(1.4.2) decouples into two minimizatin problems for the components of \mathbf{u} !

$$
\begin{gather*}
\widetilde{u}_{1, *}=\underset{u \in C_{\mathrm{Pw}}^{1}([0,1]), u(0)=a, u(1)=b}{\operatorname{argmin}} \frac{1}{2} \int_{0}^{1} \widetilde{\kappa}(\xi)\left(u^{\prime}(\xi)\right)^{2} \mathrm{~d} \xi, \\
\widetilde{u}_{2, *}=\underset{u \in C_{\mathrm{pw}}^{1}([0,1]), u(0)=u_{a}, u(1)=u_{b}}{\operatorname{argmin}} \int_{0}^{1} \frac{1}{2} \widetilde{\kappa}(\xi)\left(u^{\prime}(\xi)\right)^{2}+g(\xi) u(\xi) \mathrm{d} \xi . \tag{1.4.7}
\end{gather*}
$$

The minimization problem for $\widetilde{u}_{1, *}$ has a closed-form solution:

$$
\begin{equation*}
\widetilde{u}_{1, *}(\xi)=a+\frac{b-a}{\int_{0}^{1} \widetilde{\kappa}^{-1}(\tau) \mathrm{d} \tau} \int_{0}^{\xi} \widetilde{\kappa}^{-1}(\tau) \mathrm{d} \tau, \quad 0 \leq \xi \leq 1 \tag{1.4.8}
\end{equation*}
$$

The minimization problem for $\widetilde{u}_{2, *}$ leads to the linear variational problem, cf. (1.4.3)

$$
\begin{gather*}
\widetilde{u}_{2, *} \in C_{\mathrm{pw}}^{1}([0,1]) \tag{1.4.9}\\
\widetilde{u}_{2, *}(0)=u_{a}, \widetilde{u}_{2, *}(1)=u_{b}
\end{gather*}: \quad \int_{0}^{1} \widetilde{\kappa}(\xi) \widetilde{u}_{2, *}^{\prime}(\xi) v^{\prime}(\xi) \mathrm{d} \xi=-\int_{0}^{1} g(\xi) v(\xi) \mathrm{d} \xi \quad \forall v \in C_{0, \mathrm{pw}}^{1}([0,1]) .
$$

Remark 1.4.10 (Formulation in physical space coordinate).
Focus: situation with vertical gravitational force, see (1.4.8), (1.4.9)

Describe shape of string through graph of displacement function $\widehat{u}_{*}=\widehat{u}_{*}(x), \widehat{u}:[a, b] \mapsto \mathbb{R}$ (physical units $[\widehat{u}]=1 \mathrm{~m}$).
boundary conditions:

$$
\begin{equation*}
u_{*}(a)=u_{a} \quad, \quad u_{*}(b)=u_{b} \tag{1.4.11}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \quad \widehat{u}(x)=\widetilde{u}_{2, *}\left(\Phi^{-1}(x)\right) \quad \text { with } \quad \Phi(\xi):=\widetilde{u}_{1, *}(\xi) \tag{1.4.12}
\end{equation*}
$$

Note: $\quad \xi \mapsto \Phi(\xi)$ is montone, $\Phi^{\prime}(\xi) \neq 0$ for all $0 \leq \xi \leq 1$
By chain rule [19, Thm. 5.1.3]:

$$
\begin{equation*}
v(\xi)=\widehat{v}(\Phi(\xi)) \Rightarrow v^{\prime}(\xi)=\frac{d \widehat{v}}{d x}(x) \Phi^{\prime}(\xi), \quad x:=\Phi(\xi) \tag{1.4.13}
\end{equation*}
$$

Recall: transformation formula for integrals in one dimension (substitution rule, $x:=\Phi(\xi)$, "d $x=$ $\Phi^{\prime}(\xi) \mathrm{d} \xi^{\prime \prime}$):

$$
\begin{equation*}
q \in C_{\mathrm{pw}}^{0}([0,1]): \quad \int_{0}^{1} q(\xi) \mathrm{d} \xi=\int_{0^{b}}^{b=\Phi(1)} \widehat{q}(x)\left|\frac{1}{\Phi^{\prime}\left(\Phi^{-1}(x)\right)}\right| \mathrm{d} x, \quad \widehat{q}(x):=g\left(\Phi^{-1}(x)\right) \tag{1.4.14}
\end{equation*}
$$

$$
\begin{aligned}
\int_{0}^{1} \widetilde{\kappa}(\xi) \widetilde{u}_{2, *}^{\prime}(\xi) v^{\prime}(\xi) \mathrm{d} \xi & =\int_{a}^{b} \widetilde{\kappa}\left(\Phi^{-1}(x)\right) \Phi^{\prime}(\xi) \frac{d \widehat{u}}{d x}(x) \Phi^{\prime}(\xi) \frac{d \widehat{v}}{d x}(x) \frac{1}{\left|\Phi^{\prime}(\xi)\right|} \mathrm{d} x \\
& =\int_{a}^{b} \underbrace{\widetilde{\kappa}\left(\Phi^{-1}(x)\right)\left|\Phi^{\prime}\left(\Phi^{-1}(x)\right)\right|}_{=: \widehat{\sigma}(x)} \frac{d \widehat{u}}{d x}(x) \frac{d \widehat{v}}{d x}(x) \mathrm{d} x \\
-\int_{0}^{1} g(\xi) v(\xi) \mathrm{d} \xi & =-\int_{a}^{\underbrace{\frac{f\left(\Phi^{-1}(x)\right)}{\left|\Phi^{\prime}\left(\Phi^{-1}(x)\right)\right|}}_{=: \widehat{g}(x),[\widehat{g}]=\mathrm{Nm}^{-1}} \widehat{v}(x) \mathrm{d} x}
\end{aligned}
$$

Linear variational problem in physical space coordinate on spatial domain $\Omega=[a, b]$:

$$
\begin{gather*}
\widehat{u}_{*} \in C_{\mathrm{pw}}^{1}([a, b]), \quad: \quad \int_{a}^{b} \widehat{\sigma}(x) \frac{d \widehat{u}_{*}}{d x}(x) \frac{d \widehat{v}}{d x}(x) \mathrm{dx}=-\int_{a}^{b} \widehat{g}(x) \widehat{v}(x) \mathrm{d} x \quad \forall \widehat{v} \in C_{0, \mathrm{pw}}^{1}([a, b]) . \tag{1.4.15}\\
\widehat{u}_{*}(a)=u_{a}, \widehat{u}_{*}(b)=u_{b} .
\end{gather*}
$$

(assuming $\widehat{\sigma} \in C^{1}([a, b])$) Two-point BVP

$$
\text { (1.4.15) } \Rightarrow\left\{\begin{array}{r}
\frac{d}{d x}\left(\widehat{\sigma}(x) \frac{d \widehat{u} *}{d x}(x)\right)=\widehat{g}(x), \quad a \leq x \leq b, \tag{1.4.16}\\
\widehat{u}_{*}(a)=u_{a} \quad, \quad \widehat{u}_{*}(b)=u_{b} .
\end{array}\right.
$$

1.5 Discretization

 a function: infinite amount of information, see [14, Rem. 7.0.3].
! Well, just provide a formula for u (analytic solution):

Only option: \quad Numerical algorithm $\xrightarrow{\text { Computer }}$ approximate solution

Finitely many floating point operations

Numerical algorithms can only operate on discrete models

Remark 1.5.1 ("Physics based" discretization).

Mass-spring model $(\rightarrow$ Sect. 1.2.2) $=$ discretization of the minimization problem (1.2.17) describing the elastic string.

This discretization may be called "physics based", because it is inspired by the (physical) context of the model.

Note: Other approaches to discretization discussed below will lead to equations resembling the massspring model, see 1.5.1.2.

This section will present a few strategies on how to derive discrete models for the problem of computing the shape of an elastic string. The different approaches start from different formulations, some target the minization problem (1.2.17), or, equivalently, the variational problem (1.3.7), while others tackle the ODE (1.3.22) together with the boundary conditions (1.2.1).

Remark 1.5.2 (Timestepping for ODEs).

For initial value problems for ODEs, whose solutions are functions, too, we also face the problem of discretization: timestepping methods compute a finite number of approximate values of the solutions at discrete instances in time, see [14, Ch. [1]].

Remark 1.5.3 (Coefficients/data in procedural form).

For the elastic string mode (\rightarrow Sect. 1.2 .3) the stiffness $\kappa(\xi)$, and force field \mathbf{f} may not be available in closed form (as formulas).

Instead they are usually given in procedural form:

```
function k = kappa(xi);,
function f = force(xi);,
```

- as results of another computation,
- by interpolation from a table.
viable discretizations must be able to deal with data in procedural form!

1.5.1 Galerkin discretization

Simple idea of first step of Galerkin discretization
In $\left\{\begin{array}{c}\text { minization problem, e.g., (1.2.17) } \\ \Uparrow \\ \text { variational problem, e.g. (1.3.7) }\end{array}\right.$
replace function space V_{0} with finite dimensional subspace $V_{N, 0}$

Note that a subscript tag N distinguishes "discrete functions/quantities", that is, functions/operators etc. that are associated with a finite dimensional space. In some contexts, N will also be an integer designating the dimension of a finite dimensional space.

Formal presentation: $\quad V, V_{0} \quad$: (affine) function spaces, $\operatorname{dim} V_{0}=\infty$,

$$
V_{N}, V_{N, 0}: \text { subspaces } V_{N} \subset V, V_{N, 0} \subset V_{0}, \quad N:=\operatorname{dim} V_{N, 0}, \operatorname{dim} V_{N}<\infty
$$

Galerkin discretization of minimization problem for functional $J: V \mapsto \mathbb{R}$:

Continuous minimization problem

$$
\begin{equation*}
u=\underset{v \in V}{\operatorname{argmin}} J(v) \tag{1.5.4}
\end{equation*}
$$

Galerkin disc.

Discrete minimization problem

$$
\begin{equation*}
u_{N}=\underset{v_{N} \in V_{N}}{\operatorname{argmin}} J\left(v_{N}\right) . \tag{1.5.5}
\end{equation*}
$$

Galerkin discretization of abstract (non-linear) variational problem (1.3.12), see Rem. 1.3.10

Continuous variational problem $u \in V: \quad \mathrm{a}(u ; v)=f(v) \quad \forall v \in V_{0}$. (1.5.6)

Discrete variational problem

$$
\begin{aligned}
u_{N} \in V_{N}: & \mathrm{a}\left(u_{N} ; v_{N}\right)=f\left(v_{N}\right) \\
& \forall v_{N} \in V_{N, 0} .(1.5 .7)
\end{aligned}
$$

Terminology: $\quad u_{N} \in V_{N}$ satisfying (1.5.5)/(1.5.7) is called a Galerkin solution of (1.5.4)/(1.5.6) V_{N} is called the (Galerkin) trial space, $V_{N, 0}$ is the (Galerkin) test space.

Remark 1.5.8 (Relationship between discrete minimization problem and discrete variational problem).

In Sect. 1.3.1] we discovered the equivalence

Now it seems that we have two different strategies for Galerkin discretization:

1. Galerking discretization via the discrete minimization problem (1.5.5),
2. Galerking discretization based on the discrete variational problem (1.5.7).

However, the above equivalence extends to the discrete problems!

More precisely, we have the commuting relationship:

$$
\text { variational problem } \xrightarrow{\text { Galerkin discretization }} \text { discrete variational problem . }
$$

The commuting diagram means that the same discrete variational problem is obtained no matter whether

1. the minimization problem is first restricted to a finite dimensional subspace and the result is converted into a variational problem according to the recipe of Sect. 1.3.1.
2. or whether the variational problem derived from the minimization problem is restricted to the subspace.

To see this, understand that the manipulations of Sect. 1.3.1 can be carried out for infinite and finite dimensional function spaces alike.

Remark 1.5.10 (Offset functions and Galerkin discretization).

Often: $\quad V=u_{0}+V_{0}, \quad$ with offset function $u_{0} \rightarrow$ Rem. 1.3.10

If u_{0} is sufficiently simple, we may choose a trial space $\quad V_{N}=u_{0}+V_{N, 0}$
$>$ Discrete variational problem analoguous to (1.3.14)

$$
\begin{equation*}
w_{N} \in V_{N, 0}: \quad \mathrm{a}\left(u_{0}+w_{N} ; v_{N}\right)=f\left(v_{N}\right) \quad \forall v_{N} \in V_{N, 0} \quad \Rightarrow \quad u_{N}:=w_{N}+u_{0} \tag{1.5.11}
\end{equation*}
$$

In the case of a linear variational problem $(\rightarrow$ Rem. 1.4 .4$)$, that is, a bilinear form a, we have

$$
\begin{equation*}
\text { (1.5.11) } \Leftrightarrow \mathrm{a}\left(w_{N}, v_{N}\right)=f\left(v_{N}\right)-\mathrm{a}\left(u_{0}, v_{N}\right) \quad \forall v_{N} \in V_{N, 0} \tag{1.5.12}
\end{equation*}
$$

Below we will always make the assumption $\quad V=u_{0}+V_{0}$.

However, a computer is clueless about a concept like "finite dimensional subspace". What it can process are arrays of floating point numbers.

Idea: - choose basis $\mathfrak{B}_{N}=\left\{b_{N}^{1}, \ldots, b_{N}^{N}\right\}$ of $V_{N, 0}: \quad V_{N, 0}=\operatorname{Span}\left\{\mathfrak{B}_{N}\right\}$

- insert basis representation into (1.5.5)/(1.5.7)

$$
\begin{equation*}
v_{N} \in V_{N} \Rightarrow v_{N}=\nu_{1} b_{N}^{1}+\cdots+\nu_{N} b_{N}^{N}, \quad \nu_{i} \in \mathbb{R} \tag{1.5.13}
\end{equation*}
$$

Remark 1.5.14 (Ordered basis of test space).

Once we have choosen a basis \mathfrak{B} and ordered it, as already indicated in the notation above, the test space $V_{N, 0}$ can be identified with \mathbb{R}^{N} : a coefficient vector provides a unique characterization of a function $\in V_{N, 0}$ (basis property).

Discrete minimization problem

$$
u_{N}=\underset{v_{N} \in V}{\operatorname{argmin}} J\left(v_{N}\right) . \quad \text { (1.5.5) } \quad \xrightarrow[\text { representation }]{\text { Basis }}
$$

amenable to classical optimization techniques
notation: $\quad \overrightarrow{\boldsymbol{\nu}}, \overrightarrow{\boldsymbol{\mu}} \hat{=}$ vectors of coefficients $\left(\nu_{i}\right)_{i=1}^{N},\left(\mu_{i}\right)_{i=1}^{N}$, in basis representation of functions $v_{N}, u_{N} \in V_{N}$ according to (1.5.13).

Discrete variational problem
$u_{N} \in V_{N}: \quad \mathrm{a}\left(u_{N} ; v_{N}\right)=f\left(v_{N}\right)$

$$
\forall v_{N} \in V_{N, 0} \cdot
$$

System of equations
$\mathrm{a}\left(u_{0}+\sum_{j=1}^{N} \mu_{j} b_{N}^{j} ; b_{N}^{k}\right)=f\left(b_{N}^{k}\right)$
$\forall k=1, \ldots, N .(1.5 .16)$
use techniques for linear/non-linear systems of equations, see [14, Ch. 2], [14, Ch. 3].

The choice of the basis \mathfrak{B} has no impact on the (set of) Galerkin solutions of (1.5.7)!

Below, we apply Galerkin approaches to

- (1.4.15) as an example for the treatment of a linear variational problem:

$$
\begin{aligned}
u & \in C_{\mathrm{pw}}^{1}([a, b]), \\
u(a) & =u_{a}, u(b)=u_{b}
\end{aligned} \quad \int_{a}^{b} \sigma(x) \frac{d u}{d x}(x) \frac{d v}{d x}(x) \mathrm{dx}=-\int_{a}^{b} g(x) v(x) \mathrm{d} x \quad \forall v \in C_{0, \mathrm{pw}}^{1}([a, b]) .
$$

Here:
spatial domain $\Omega=[a, b]$, linear offset function $u_{0}(x)=\frac{b-x}{b-a} u_{a}+\frac{x-a}{b-a} u_{a}$,
function space $V_{0}=C_{0, \mathrm{pw}}^{1}([a, b])$.

- (1.3.7) to demonstrate its use in the case of a non-linear variational equation:

$$
\begin{array}{r}
\mathbf{u} \in C_{\mathrm{pw}}^{1}([0,1]) \\
(0), \mathbf{u}(1) \text { from (1.2.1) }
\end{array} \int_{0}^{1} \frac{\kappa(\xi)}{L}\left(\left\|\mathbf{u}^{\prime}(\xi)\right\|-L\right) \frac{\mathbf{u}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}-\mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi=0,1 \text { } \begin{aligned}
& \forall \mathbf{v} \in\left(C_{0, \mathrm{pw}}^{1}([0,1])\right)^{2}
\end{aligned}
$$

Here: parameter domain $\Omega=[0,1]$, linear offset function $\mathbf{u}_{0}(\xi)=\xi \mathbf{u}(0)+(1-\xi) \mathbf{u}(1)$, function space $\quad V_{0}=\left(C_{0, \mathrm{pw}}^{1}([a, b])\right)^{2}$.

A simple function space (widely used for interpolation, see [14, Ch. 8], and approximation, see [14, Sec. 8.4]): for interval $\Omega \subset \mathbb{R}$

$$
\begin{align*}
V_{N, 0}= & \mathcal{P}_{p}(\mathbb{R}) \cap C_{0}^{0}(\Omega) \\
& \hat{=} \text { space of univariate polynomials of degree } \leq p \text { vanishing at endpoints of } \Omega \tag{1.5.17}
\end{align*}
$$

$$
N:=\operatorname{dim} V_{N}=p-1 \quad[14, \text { Sect. 8.1] for more information. }
$$

Obvious: \quad choice (1.5.17) guarantees $\quad V_{N} \subset C_{\mathrm{pw}, 0}^{1}(\Omega) \quad$ (even $V_{N, 0} \subset C^{\infty}(\Omega)$)

Please note that $V_{N, 0}$ is a space of global polynomials on Ω.

Example 1.5.18 (Spectral Galerkin discretization of linear variational problem).

- $a=0, b=1>$ domain $\Omega=] 0,1[$,
- constant coefficient function $\sigma \equiv 1$,
- Load $g(x)=-4 \pi\left(\cos \left(2 \pi x^{2}\right)-4 \pi x^{2} \sin \left(2 \pi x^{2}\right)\right), \quad$ because $\frac{d^{2} u}{d x^{2}}(x)=g(x)$.
- boundary values $u_{a}=u_{b}=0$.

Concrete variational problem
$u \in C_{0, \mathrm{pw}}^{1}([0,1]): \quad \int_{0}^{1} \frac{d u}{d x}(x) \frac{d v}{d x}(x) \mathrm{d} x=-\int_{0}^{1} g(x) v(x) \mathrm{d} x \quad \forall v \in C_{0, \mathrm{pw}}^{1}([0,1])$.

Polynomial spectral Galerkin discretization, degree $p \in\{4,5,6\}$.

Plots of approximate/exact solutions

Remark 1.5.20 (Choice of basis for polynomial spectral Galerkin methods).
Sought:

$$
\text { (ordered) basis of } \quad V_{N, 0}:=C_{0}^{1}([-1,1]) \cap \mathcal{P}_{p}(\mathbb{R})
$$

(1) "Tempting": monomial-type basis

$$
\begin{equation*}
V_{N, 0}=\operatorname{Span}\left\{1-x^{2}, x\left(1-x^{2}\right), x^{2}\left(1-x^{2}\right), \ldots, x^{p-2}\left(1-x^{2}\right)\right\} \tag{1.5.21}
\end{equation*}
$$

\triangleleft Monomial basis polynomials
Beware: ill-conditioned!
(2 "Popular": integrated Legendre polynomials

$$
\begin{equation*}
V_{N, 0}=\operatorname{Span}\left\{x \mapsto M_{n}(x):=\int_{-1}^{x} P_{n}(\tau) \mathrm{d} \tau, n=1, \ldots, p-1\right\} \tag{1.5.22}
\end{equation*}
$$

where $P_{n} \hat{=} n$-th Legende polynomial.

Integrated Legendre polynomials

Definition 1.5.23 (Legendre polynomials). \rightarrow [14, Def. 10.4.2]
The n-th Legendre polynomial $P_{n}, n \in \mathbb{N}_{0}$, is defined by (Rodriguez formula)

$$
P_{n}(x):=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right]
$$

Legendre polynomials P_{0}, \ldots, P_{5}

$$
\begin{aligned}
& P_{0}(x)=1, \\
& P_{1}(x)=x, \\
& P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}, \\
& P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x, \\
& P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8} .
\end{aligned}
$$

Legendre polynomials

Some facts about Legendre polynomials:

- Symmetry:

$$
P_{n} \text { is }\left\{\begin{array} { c }
{ \text { even } } \tag{1.5.24}\\
{ \text { odd } }
\end{array} \text { for } \left\{\begin{array}{c}
\text { even } n \\
\text { odd } n
\end{array}, \quad P_{n}(1)=1, \quad P_{n}(-1)=(-1)^{n} .\right.\right.
$$

- Orthogonality

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) \mathrm{d} x= \begin{cases}\frac{2}{2 n+1} & , \text { if } m=n, \tag{1.5.25}\\ 0 & \text { else. }\end{cases}
$$

- 3-term recursion

$$
\begin{equation*}
P_{n+1}(x):=\frac{2 n+1}{n+1} x P_{n}(t)-\frac{n}{n+1} P_{n-1}(x) \quad, \quad P_{0}:=1, \quad P_{1}(x):=x \tag{1.5.26}
\end{equation*}
$$

This formula paves the way for the efficient evaluation of all Legendre polynomials at many (quadrature) points, see [14, Code 10.4.2].

- Representation of derivatives and primitives, cf. Code 1.5.28:

$$
\begin{align*}
P_{n}(x) & =\left(\frac{d}{d x} P_{n+1}(x)-\frac{d}{d x} P_{n-1}(x)\right) /(2 n+1), \quad n \in \mathbb{N} \tag{1.5.27}\\
\quad M_{n}(x) & =\frac{1}{2 n+1}\left(P_{n+1}(x)-P_{n-1}(x)\right) \quad \text { and } \quad \frac{d M_{n}}{d x}=P_{n} \tag{1.5.28}
\end{align*}
$$

Code 1.5.29: Computation of (integrated) Legendre polynomials using (1.5.26) and (1.5.28)

```
function [V,M] = intlegpol(n,x)
% Computes values of the first n+1 Legendre polynomials (returned in matrix V)
% and the first }n-1\mathrm{ integrated Legendre polynomials (returned in matrix M)
% in the points }\mp@subsup{x}{j}{}\mathrm{ passed in the row vector x.

Remark 1.5.33 (Spectral Galerkin discretization with quadrature).

Consider the linear variational problem, cf. (1.4.15),
\[
\begin{equation*}
u \in C_{0, \mathrm{pw}}^{1}([a, b]): \quad \int_{a}^{b} \sigma(x) \frac{d u}{d x}(x) \frac{d v}{d x}(x) \mathrm{dx}=\int_{a}^{b} g(x) v(x) \mathrm{d} x \quad \forall v \in C_{0, \mathrm{pw}}^{1}([a, b]) \tag{1.5.34}
\end{equation*}
\]

Assume: \(\quad \sigma, g\) only given in procedural form, see Rem. 1.5.3.
Analytic evaluation of integrals becomes impossible even if \(u, v\) polynomials !

Only remaning option: Numerical quadrature, see [14, Ch. 10]

Replace integral with \(m\)-point quadrature formula on \([a, b], m \in \mathbb{N} \quad \rightarrow[14\), Sect. 10.1]]:
\[
\begin{equation*}
\int_{a}^{b} f(t) \mathrm{d} t \approx Q_{n}(f):=\sum_{j=1}^{m} \omega_{j}^{m} f\left(\zeta_{j}^{m}\right) \tag{1.5.35}
\end{equation*}
\]
\(\omega_{j}^{n}\) : quadrature weights,\(\quad \zeta_{j}^{n}\) : quadrature nodes \(\in[a, b]\).
(1.5.34) \(>\) discrete variational problem with quadrature:
\[
\begin{equation*}
u_{N} \in V_{N}: \quad \sum_{j=1}^{m} \omega_{j}^{m} \sigma\left(\zeta_{j}^{m}\right) \frac{d u_{N}}{d x}\left(\zeta_{j}^{m}\right) \frac{d v_{N}}{d x}\left(\zeta_{j}^{m}\right)=\sum_{j=1}^{m} \omega_{j}^{m} g\left(\zeta_{j}^{m}\right) v\left(\zeta_{j}^{m}\right) \quad \forall v \in V_{N} \tag{1.5.36}
\end{equation*}
\]

Popular (global) quadrature formulas: Gauss quadrature \(\rightarrow\) [14, Sect. 10.4]

Important: Accuracy of quadrature formula and computational cost (no. \(m\) of quadrature nodes) have to be balanced.

Remark 1.5.37 (Implementation of spectral Galerkin discretization for linear 2nd-order two-point BVP).

Setting:
- linear variational problem (1.5.34) \(>u_{0}=0\),
- coefficients \(\sigma, g\) in procedural form, see Rem. 1.5.3,
- approximation of integrals by p-point Gaussian quadrature formula,
- polynomial spectral Galerkin discretization, degree \(\leq p, p \geq 2\),
- basis \(\mathfrak{B}\) : integrated Legendre polynomials, see (1.5.22):
\[
V_{N, 0}=\operatorname{Span}\left\{M_{n}, n=1, \ldots, p-1\right\}, \quad M_{n} \hat{=} \text { integrated Legendre polynomials }
\]

Trial expression, cf. (1.5.13)
\[
u_{N}=\mu_{1} M_{1}+\mu_{2} M_{2}+\cdots+\mu_{N} M_{N}, \quad \mu_{i} \in \mathbb{R}, \quad N:=p-1
\]

Note: \(\quad\) by definition \(\frac{d}{d x} M_{n}=P_{n}\).
\[
\left.\begin{array}{c}
\sum_{j=1}^{m} \omega_{j}^{m} \sigma\left(\zeta_{j}^{m}\right) \sum_{l=1}^{N} \mu_{l} P_{l}\left(\zeta_{j}^{m}\right) P_{k}\left(\zeta_{j}^{m}\right)=\underbrace{\sum_{j=1}^{m} \omega_{j}^{m} g\left(\zeta_{j}^{m}\right) M_{k}\left(\zeta_{j}^{m}\right)}_{=: \varphi_{k}}, \quad k=1, \ldots, N \\
\sum_{l=1}^{N}\left(\sum_{j=1}^{m} \omega_{j}^{m} \sigma\left(\zeta_{j}^{m}\right) P_{l}\left(\zeta_{j}^{m}\right) P_{k}\left(\zeta_{j}^{m}\right)\right) \mu_{l}=\varphi_{k}, \quad k=1, \ldots, N \\
\Uparrow
\end{array}\right] \begin{gathered}
\mathbf{A} \overrightarrow{\boldsymbol{\mu}=\vec{\varphi}} \text { with } \begin{array}{c}
(\mathbf{A})_{k l}:=\sum_{j=1}^{m} \omega_{j}^{m} \sigma\left(\zeta_{j}^{m}\right) P_{l}\left(\zeta_{j}^{m}\right) P_{k}\left(\zeta_{j}^{m}\right), \quad k, l=1, \ldots, N \\
\overrightarrow{\boldsymbol{\mu}}=\left(\mu_{l}\right)_{l=1}^{N} \in \mathbb{R}^{N} \quad, \quad \overrightarrow{\boldsymbol{\varphi}}=\left(\varphi_{k}\right)_{k=1}^{N} \in \mathbb{R}^{N}
\end{array} .
\end{gathered}
\]

A linear system of equations !

The Galerkin discretization of a linear variational problem leads to a linear system of equations.
Code 1.5.41: Polynomial spectral Galerkin solution of (1.5.34)
```

function u = lin2pbvpspecgal(sigma,g,N,x)
% Polynomial spectral Galerkin discretization of linear 2nd-order two-point BVP

```
```

\circ}-\frac{d}{dx}(\sigma(x)\frac{du}{dx})=g(x),\quadu(0)=u(1)=
% on }\Omega=[0,1]. Trial space of dimension N
% Values of approximate solution in points }\mp@subsup{x}{j}{}\mathrm{ are returned in the row vector u
m = N+1; % Number of quadrature nodes
[zeta,w] = gaussquad(m); % Obtain Gauss quadrature nodes w.r.t [-1,1]
% Compute values of (integrated) Legendre polynomials at Gauss nodes
[V,M] = intlegpol(N+1,zeta');
omega = w'.*sigma((zeta'+1)/2)*2; % Modified quadrature weights
A = V(2:N+1,:) *diag (omega) *V(2:N+1,:)'; % Assemble Galerkin matrix
phi = M*(0.5*\mp@subsup{W}{}{\prime}.*g((zeta'+1)/2))'; % Assemble right hand side
vector
mu = A\phi; % Solve linear system
% Compute values of integrated Legendre polynomials at output points
[V,M] = intlegpol(N+1,2*x-1); u = mu'*M;

```

Code 1.5.42: MATLAB driver script creating plots of Ex. 11.5.18
```

% MATLAB script: Driver routine for polynomial spectral Galerkin

```
    discretization

\section*{clear all;}
\% Coefficient functions (function handles, see MATLAB help)
sigma \(=\) @(x) ones(size (x));
\(g=\quad @(x)-4 * \mathbf{p} \mathbf{i} *\left(\mathbf{c o s}\left(2 * \mathbf{p} \mathbf{i} * x .^{\wedge} 2\right)-4 * \mathbf{p} \mathbf{i} * x .{ }^{\wedge} 2 . * \mathbf{s i n}\left(2 * \mathbf{p} \mathbf{i} * x .{ }^{\wedge} 2\right)\right) ;\)
\(\mathrm{x}=0: 0.01: 1 ;\) Evaluation points
\% Computation with trial space of dimension 4,5,6
\(\mathrm{N}=4 ; \mathrm{U}=\) [lin2pbvpspecgal(sigma, \(\mathrm{g}, \mathrm{N}, \mathrm{x})\);
figure ('name','Polynomial spectral Galerkin');
plot (x, U) ; hold on;

xlabel ('\{ \({ }^{\prime}\) bf x\(\}{ }^{\prime}\) ', fontsize', 14);
ylabel ('\{ \bf u\}','fontsize', 14);
legend ('N=4', 'N=5', 'N=6', 'u(x)' ' 'location' , 'southwest') ;
print -depsc2 '../../../Slides/NPDEPics/specgallinsol.eps';

Example 1.5.43 (Implementation of spectral Galerkin discretization for elastic string problem).

Targetted: non-linear variational equation on domain \(\Omega=[0,1]\)
\[
\begin{equation*}
\int_{0}^{1} \frac{\kappa(\xi)}{L}\left(1-\frac{L}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}\right) \mathbf{u}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)-\mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi=0 \quad \forall \mathbf{v} \in\left(C_{0, \mathrm{pw}}^{1}([0,1])\right)^{2} \tag{1.3.7}
\end{equation*}
\]
- Data \(\kappa\), \(\mathbf{f}\) given in procedural form, see Rem. [1.5.3.
- Spectral Galerkin discretization, basis \(\mathfrak{B}=\left\{M_{n}\right\}_{n=1}^{K}, K \in \mathbb{N}\), consists of integrated Legendre polynomials, see (1.5.22) \(>\) basis representation, cf. (1.5.37)
\[
\begin{equation*}
\mathbf{u}_{N}(\xi)=\underbrace{\mathbf{u}(0)(1-\xi)+\mathbf{u}(1) \xi}_{=: \mathbf{u}_{0}(\xi) \text { (offset function) }}+\binom{\mu_{1}}{\mu_{K+1}} M_{1}(\xi)+\cdots+\binom{\mu_{K}}{\mu_{2 K}} M_{K}(\xi) . \tag{1.5.44}
\end{equation*}
\]
- Approximate evaluation of integrals by \(m\)-point Gaussian quadrature on \([0,1], m:=K+1\) below: nodes \(\zeta_{j}\), weights \(\omega_{j}, j=1, \ldots, m\).

In analogy to (1.5.38) we arrive at the non-linear system of equations: \(\quad\left(M_{k}^{\prime}=P_{k}!\right)\)
\[
\begin{gathered}
\sum_{j=1}^{m} s_{j}\left(b-a+\sum_{l=1}^{K} \mu_{l} P_{l}\left(\zeta_{j}\right)\right) \cdot P_{k}\left(\zeta_{j}\right)=\sum_{j=1}^{m} \omega_{j} f_{1}\left(\zeta_{j}\right) \cdot M_{k}\left(\zeta_{j}\right), \quad k=1, \ldots, K, \\
\sum_{j=1}^{m} s_{j}\left(u_{b}-u_{a}+\sum_{l=1}^{K} \mu_{K+l} P_{l}\left(\zeta_{j}\right)\right) \cdot P_{k}\left(\zeta_{j}\right)=\sum_{j=1}^{m} \omega_{j} f_{2}\left(\zeta_{j}\right) \cdot M_{k}\left(\zeta_{j}\right), \quad k=1, \ldots, K, \\
\text { with } \quad s_{j}:=\omega_{j} \kappa\left(\zeta_{j}\right)\left(\frac{1}{L}-\frac{1}{\left\|\mathbf{u}_{N}^{\prime}\left(\zeta_{j}\right)\right\|}\right) .
\end{gathered}
\]

Code 1.5.47: Polynomial spectral Galerkin discretization of elastic string variational problem
```

function [vu,figsol] = stringspecgal(kappa,f,L,u0,ul,K,xi,tol)
% Solving the non-linear variational problem (1.3.7) for the elastic string by
means of polynomial
% spectral Galerkin discretization based on K integratted Legendre polynomials.
Approximate
% evaluation of integrals by means of Gaussian quadrature.
% kappa, f are handles of type @(xi) providing the coefficient function
% }\kappa\mathrm{ and the force field f. The column vectors u0 and ul pass the
% pinning points. M is the number of mesh cells, tol specifies the tolerance
for the
% fixed point iteration. return value: 2\timeslength(xi)-matrix of node
% positions for curve parameter values passed in the row vector xi.
if (nargin < 8), tol = 1E-2; end

```
\(m=K+1 ; \quad\) Number of quadrature nodes
\([z e t a, w]=\) gaussquad (m); O Obtain Gauss quadrature nodes w.r.t \([-1,1]\)
\% Compute values of (integrated) Legendre polynomials at Gauss nodes and
    evaluation points
\([\mathrm{V}, \mathrm{M}]=\) intlegpol ( \(\mathrm{K}+1\), zeta') ;
[Vx,Mx] = intlegpol(K+1,2*xi-1); Mx = [1-xi; Mx;xi]; \%
\% Compute right hand side based on m-point Gaussian quadrature on \([0,1]\).
force \(=\mathrm{f}((\) zeta' +1\() / 2)\); phi \(=\mathrm{M} *\left(0.5 *\left[\mathrm{w}^{\prime} ; \mathrm{w}^{\prime}\right] . \star \text { force }\right)^{\prime}\);
sv \(=\) kappa ((zeta'+1)/2); \% Values of coefficient function \(\kappa\) at Gauss
    points in \([0,1]\).
mu is an \(2 \times(K+2)\)-matrix, containing the vectorial basis expansion
    coefficients
\% of \(\mathbf{u}_{N}\). The first and last column are contributions of the two functions
```

%}\xi\mapsto(1-\xi)\mathrm{ and }\xi\mapsto\xi, which represent the offset function
% Initial guess for fixed point iteration: straight string
mu = [u0,zeros (2,K),ul];
figsol = figure; hold on;
for k=1:100 % loop for fixed point iteration, maximum 100 iterations
% Plot shape of string
vu = mu*Mx; plot(vu(1,:),vu(2,:),'--g'); drawnow;
title(sprintf ('K = %d, iteration \#% '', K,k));
xlabel(' {\bf x_1}'); ylabel('{\bf x_2}');
% Compute values of derivatives of }\mp@subsup{\mathbf{u}}{N}{}\mathrm{ and |(|uN|}
up = mu(:, 2:K)*V(2:K,:) + repmat(u1-u0,1,m);
lup = sqrt(up (1,:).^2 + up (2,:).^2);
s = 0.5*(w').*sv.*(1/L - 1./lup); % Initialization of sj
% Modification of right hand side due to offset function
phil = phi(:,1) + (2*(ul(1)-u0(1))*V(2:K+1,:)*\mp@subsup{S}{}{\prime});
phi2 = phi(:,2) + (2*(ul(2)-u0(2))*V(2:K+1,:)*\mp@subsup{s}{}{\prime});
\circ}\mathrm{ Assemble }K\timesK\mathrm{ -matrix blocks R of linear system
R = 4*V(2:K+1,:)*diag(s)*V(2:K+1,: ');
mu_new = [u0,[(R\phi1)';(R\phi2)'],u1];
% Check simple termination criterion for fixed point iteration.
if (norm(mu_new - mu,'fro') < tol*norm(mu_new,'fro')/K)
vu = mu*Mx; fig = plot(vu(1,:),vu(2,:),'r--');
legend(fig,'spectral Galerkin
solution','location' ''southeast'); break; end

```
```

mu = mu_new;

```
end

Example 1.5.48 (Spectral Galerkin discretization for elastic string simulation).

Test of polynomial spectral Galerkin method for elastic string problem, algorithm of Ex. 1.5 .43 , Code 1.5 . with
- pinning positions \(\mathbf{u}(0)=\binom{0}{0}, \mathbf{u}(1)=\binom{1}{0.2}\),
- equilibrium length \(L=0.5\),
- constant coefficient function \(\kappa \equiv 1 \mathrm{~N}\),
- gravitational force field \(\mathbf{f}(\xi)=-\binom{0}{2}\).


\subsection*{1.5.1.2 Linear finite elements}

Two ways to approximate functions by polynomials:

The spectral polynomial Galerkin approach presented in Sect. 1.5.1.1 relies on global polynomials. Now let us examine the use of piecewise polynomials.

Preliminaries: piecewise polynomials have to be defined w.r.t. partitioning of the domain \(\Omega \subset \mathbb{R}\)
\(>\Omega=[a, b]\) equipped with nodes \((M \in \mathbb{N})\)
\(\mathcal{X}:=\left\{a=x_{0}<x_{1}<\cdots<x_{M-1}<x_{M}=b\right\}\).

> mesh/grid
\[
\mathcal{M}:=\{ ] x_{j-1}, x_{j}[: 1 \leq j \leq M\} .
\]
\[
\quad\left[x_{j-1}, x_{j}\right], j=1, \ldots, M, \quad \hat{=} \text { cells of } \mathcal{M}
\]

Special case:
equidistant mesh: \(\quad x_{j}:=a+j h, \quad h:=\frac{b-a}{M}\).
\[
\begin{aligned}
& \text { cell size } h_{j}:=\left|x_{j}-x_{j-1}\right|, j=1, \ldots, M \\
& \text { meshwidth } h_{\mathcal{M}}:=\max _{j}\left|x_{j}-x_{j-1}\right|
\end{aligned}
\]

Recall from Sect. 1.3.2: merely continuous, piecewise \(C^{1}\) trial and test functions provide valid trial/test functions!

\(\Uparrow\) function \(\in \mathcal{S}_{1,0}^{0}(\mathcal{M})\)

Simplest choice for test space
\[
\begin{gathered}
V_{N}=\mathcal{S}_{1,0}^{0}(\mathcal{M}) \\
:=\left\{\begin{array}{l}
v \in C^{0}([0,1]): v_{\left[\mid x_{i-1}, x_{i}\right]} \text { linear, } \\
i=1, \ldots, M, v(a)=v(b)=0
\end{array}\right\} \\
>
\end{gathered}
\]

Choice of (ordered) basis \(\mathfrak{B}_{N}\) of \(V_{N}\) ?
1D "tent functions"
\[
\begin{align*}
\mathfrak{B} & =\left\{b_{N}^{1}, \ldots, b_{N}^{M-1}\right\},  \tag{1.5.49}\\
b_{N}^{j}\left(x_{i}\right) & =\delta_{i j}:= \begin{cases}1 & , \text { if } i=j, \\
0 & , \text { if } i \neq j,\end{cases} \tag{1.5.50}
\end{align*}
\]

\[
\frac{d b_{N}^{j}}{d x}(x)= \begin{cases}\frac{1}{h_{j}} & , \text { if } x_{j-1} \leq x \leq x_{j}  \tag{1.5.51}\\ -\frac{1}{h_{j+1}} & , \text { if } x_{j}<x \leq x_{j+1} \\ 0 & \text { elsewhere. } \quad \text { (piecewise derivative!) }\end{cases}
\]

Remark 1.5.52 (Benefit of variational formulation of BVPs).

The possibility of using simple piecewise linear trial and test functions is a clear benefit of the variational formulation that can accommodate merely piecewise continuously differentiable functions, see Sect. 1.3.2.

Below, in Sect. 1.5 .2 we will learn about a method that targets the strong form of the 2-point BVP and, thus, has to impose more regularity on the trial functions.
(1) simplest case: linear variational problem with constant stiffness coefficient
\[
u \in C_{0, \mathrm{pw}}^{1}([a, b]): \quad \int_{a}^{b} \frac{d u}{d x}(x) \frac{d v}{d x}(x) \mathrm{d} x=\int_{a}^{b} g(x) v(x) \mathrm{d} x \quad \forall v \in C_{0, \mathrm{pw}}^{1}([a, b]) .
\]

Discrete variational problem with \(u_{N}=\mu_{1} b_{N}^{1}+\cdots+\mu_{N} b_{N}^{N}\) :
\[
\begin{gathered}
\int_{a}^{b} \sum_{l=1}^{N} \mu_{l} \frac{d b_{N}^{l}}{d x}(x) \frac{d b_{N}^{k}}{d x}(x) \mathrm{d} x=\int_{a}^{b} g(x) b_{N}^{k}(x) \mathrm{d} x \quad k=1, \ldots, N \\
\sum_{l=1}^{N}\left(\int_{a}^{b} \frac{d b_{N}^{l}}{d x}(x) \frac{d b_{N}^{k}}{d x}(x) \mathrm{d} x\right)_{i}^{b} \mu_{l}=\underbrace{\int_{a}^{b} g(x) b_{N}^{k}(x) \mathrm{d} x}_{=: \varphi_{k}}, k=1, \ldots, N \\
\mathbf{A} \overrightarrow{\boldsymbol{\mu}}=\overrightarrow{\boldsymbol{\varphi}} \text { with } \quad(\mathbf{A})_{k l}:=\int_{a}^{b} \frac{d b_{N}^{l}}{d x}(x) \frac{d b_{N}^{k}}{d x}(x) \mathrm{d} x, \quad k, l=1, \ldots, N \\
\overrightarrow{\boldsymbol{\mu}}=\left(\mu_{l}\right)_{l=1}^{N} \in \mathbb{R}^{N}, \overrightarrow{\boldsymbol{\varphi}}=\left(\varphi_{k}\right)_{k=1}^{N} \in \mathbb{R}^{N}
\end{gathered}
\]
\[
\begin{array}{ll}
\triangleright & \text { system matrix } \mathbf{A}=\left(a_{i j}\right) \in \mathbb{R}^{M-1, M-1}, \\
& a_{i j}:=\int_{a}^{b} \frac{d b_{N}^{i}}{d x}(x) \frac{d b_{N}^{j}}{d x}(x) \mathrm{d} x, \quad 1 \leq i, j \leq N \\
& \text { piecewise derivatives } \\
\triangleright & \text { r.h.s. vector } \vec{\varphi} \in \mathbb{R}^{M-1},
\end{array} \quad \varphi_{k}:=\int_{a}^{b} g(x) b_{N}^{k}(x) \mathrm{d} x, \quad k=1, \ldots, N .
\]

The detailed computations start with the evident fact that
\[
|i-j| \geq 2 \quad \Rightarrow \quad \frac{b_{N}^{j}}{d x}(x) \cdot \frac{b_{N}^{i}}{d x}(x)=0 \quad \forall x \in[a, b]
\]
because there is no overlap of the supports of the two basis functions.

Definition 1.5.53 (Support of a function).
The support of a function \(f: \Omega \mapsto \mathbb{R}\) is defined as
\[
\operatorname{supp}(f):=\overline{\{\boldsymbol{x} \in \Omega: f(\boldsymbol{x}) \neq 0\}}
\]
\[
\int_{0}^{1} \frac{d b_{N}^{j}}{d x}(x) \frac{d b_{N}^{i}}{d x}(x) \mathrm{d} x=\left\{\begin{array}{llll}
0 & \text {, if }|i-j| \geq 2 & \rightarrow & \\
-\frac{1}{h_{i+1}} & \text {, if } j=i+1 & \rightarrow & \\
-\frac{1}{h_{i}} & \text {, if } j=i-1 & \rightarrow & \\
\frac{1}{h_{i}}+\frac{1}{h_{i+1}}, & \text { if } 1 \leq i=j \leq M-1 & \rightarrow & b_{0}
\end{array}\right.
\]

A symmetric, positive definite and tridiagonal:
\[
\mathbf{A}=\left(\begin{array}{cccccc}
\frac{1}{h_{1}}+\frac{1}{h_{2}} & -\frac{1}{h_{2}} & 0 & & &  \tag{1.5.54}\\
\left.\begin{array}{ccccc}
-\frac{1}{h_{2}} & \frac{1}{h_{2}}+\frac{1}{h_{3}} & -\frac{1}{h_{3}} & & \\
0 & \ddots & \ddots & \ddots & \\
0 & & & & \\
0 & & & & \ddots \\
0 & \ddots & -\frac{1}{h_{M-1}} \\
0 & & & & 0
\end{array}\right)-\frac{1}{h_{M-1}} & \frac{1}{h_{M-1}}+\frac{1}{h_{M}}
\end{array}\right)
\]
notation: \(\quad h_{j}:=\left|x_{j}-x_{j-1}\right|\) local meshwidth, cell size
e.g, composite trapezoidal rule: \(\quad \varphi_{k}=\int_{0}^{1} g(x) b_{N}^{k}(x) \mathrm{d} x \approx \frac{1}{2}\left(h_{k}+h_{k+1}\right) g\left(x_{k}\right), \quad 1 \leq k \leq N\)

For equidistant mesh with uniform cell size \(h>0\) we arrive at the linear system of equations:
\[
\frac{1}{h}\left(\begin{array}{cccccccc}
2 & -1 & 0 & & & & & 0  \tag{1.5.56}\\
-1 & 2 & -1 & & & & & \\
0 & \ddots & \ddots & \ddots & & & & \\
& & & & \ddots & \ddots & \ddots & 0 \\
& & & & & -1 & 2 & -1 \\
0 & & & & & -1 & 2
\end{array}\right)\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{N}
\end{array}\right)=h\left(\begin{array}{c}
g\left(x_{1}\right) \\
\vdots \\
\\
g\left(x_{N}\right)
\end{array}\right)
\]
(2) case: linear variational problem with variable stiffness, cf. (1.4.15)
\[
u \in C_{0, \mathrm{pw}}^{1}([a, b]): \quad \int_{a}^{b} \sigma(x) \frac{d u}{d x}(x) \frac{d v}{d x}(x) \mathrm{d} x=\int_{a}^{b} g(x) v(x) \mathrm{d} x \quad \forall v \in C_{0, \mathrm{pw}}^{1}([a, b]) .
\]

Discrete variational problem with \(u_{N}=\mu_{1} b_{N}^{1}+\cdots+\mu_{N} b_{N}^{N}\)
\[
\begin{equation*}
\int_{a}^{b} \sigma(x) \sum_{l=1}^{N} \mu_{l} \frac{d b_{N}^{l}}{d x}(x) \frac{d b_{N}^{k}}{d x}(x) \mathrm{d} x=\int_{a}^{b} g(x) b_{N}^{k}(x) \mathrm{d} x \quad k=1, \ldots, N \tag{1.5.57}
\end{equation*}
\]

Here: numerical quadrature required for both integrals

Choice: • composite midpoint rule for left hand side integral \(\rightarrow\) [14, Sect. 10.3]
\[
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{j=1}^{M} h_{j} f\left(m_{j}\right), \quad m_{j}:=\frac{1}{2}\left(x_{j}+x_{j-1}\right) \tag{1.5.58}
\end{equation*}
\]
- composite trapezoidal rule [14, Eq. 10.3.2] for right hand side integral, see (1.5.55).

Assumption: \(\quad \sigma \in C_{\mathrm{pw}}^{0}([a, b])\) with jumps only at grid nodes \(x_{j}\)
\[
\begin{gathered}
\sum_{l=1}^{N} \underbrace{\left(\sum_{j=1}^{M} h_{j} \sigma\left(m_{j}\right) \frac{d b_{N}^{l}}{d x}\left(m_{j}\right) \frac{d b_{N}^{k}}{d x}\left(m_{j}\right)\right)}_{=(\mathbf{A})_{k, l}}
\end{gathered} \mu_{l}=\underbrace{\frac{1}{2}\left(h_{k+1}+h_{k}\right) g\left(x_{k}\right)}_{=: \varphi_{k}}, \quad k=1, \ldots, N,
\]

Resulting linear system of equations equidistant mesh with uniform cell size \(h>0\)
\[
\frac{1}{h}\left(\begin{array}{ccccccc}
\sigma_{1}+\sigma_{2} & -\sigma_{2} & 0 & & & & \\
-\sigma_{2} & \sigma_{2}+\sigma_{3} & -\sigma_{3} & & & & \\
0 & \ddots & \ddots & \ddots & & & \\
\\
& & & & \ddots & \ddots & \\
& & & & & -\sigma_{M-2} & \sigma_{M-2}+\sigma_{M-1} \\
& & & & & 0 & -\sigma_{M-1} \\
0 & & & & & & \sigma_{M-1}+\sigma_{M}
\end{array}\right)
\]
with \(\quad \sigma_{j}=\sigma\left(m_{j}\right), j=1, \ldots, m\)

Remark 1.5.60 (Offset function for finite element Galerkin discretization).

In the case of general boundary conditions
\[
u(a)=u_{a}, \quad u(b)=u_{b}
\]
use piecewise linear Offset function

\[
u_{0}(x)= \begin{cases}u_{a}\left(1-\frac{x-a}{h_{1}}\right) & , \text { if } a \leq x \leq x_{1}  \tag{1.5.61}\\ u_{b}\left(1-\frac{b-x}{h_{M}}\right) & , \text { if } x_{M-1} \leq x \leq b \\ 0 & \text { elsewhere }\end{cases}
\]

Example 1.5.62 (Linear finite element Galerkin discretization for elastic string model).

Targetted: non-linear variational equation on domain \(\Omega=[0,1]\)
\[
\begin{equation*}
\int_{0}^{1} \frac{\kappa(\xi)}{L}\left(1-\frac{L}{\left\|\mathbf{u}^{\prime}(\xi)\right\|}\right) \mathbf{u}^{\prime}(\xi) \cdot \mathbf{v}^{\prime}(\xi)-\mathbf{f}(\xi) \cdot \mathbf{v}(\xi) \mathrm{d} \xi=0 \quad \forall \mathbf{v} \in\left(C_{0, \mathrm{pw}}^{1}([0,1])\right)^{2} \tag{1.3.7}
\end{equation*}
\]
- Data \(\kappa\), f given in procedural form, see Rem. [1.5.3.
- trial space \(V_{N, 0}=\left(\mathcal{S}_{1,0}^{0}(\mathcal{M})\right)^{2}\) on equidistant|mesh. \(\mathcal{M}\), meshwidth \(h:=\frac{1}{M}\).
- Basis: 1D tent functions, lexikographic ordering
\[
\mathfrak{B}=\left\{\binom{b_{N}^{1}}{0},\binom{b_{N}^{2}}{0}, \ldots,\binom{b_{N}^{M-1}}{0},\binom{0}{b_{N}^{1}},\binom{0}{b_{N}^{2}}, \ldots,\binom{0}{b_{N}^{M-1}}\right\} .
\]
- Evaluation of right hand side by composite trapezoidal rule (1.5.55).
- Evaluation left hand side by composite midpoint rule (1.5.58).

Preliminary consideration: the derivative of
\[
\begin{equation*}
\mathbf{u}_{N}:=\mu_{1}\binom{b_{N}^{1}}{0}+\cdots+\mu_{M-1}\binom{b_{N}^{M-1}}{0}+\mu_{M}\binom{0}{b_{N}^{1}}+\cdots+\mu_{2 M-2}\binom{0}{b_{N}^{M-1}} \tag{1.5.63}
\end{equation*}
\]
is piecewise constant on \(\mathcal{M}\) :
\[
\begin{equation*}
\text { in }] x_{j-1}, x_{j}\left[: \quad s_{j}(\overrightarrow{\boldsymbol{\mu}}):=\mathbf{u}_{N}^{\prime}(\xi)=\frac{\mathbf{u}\left(x_{j}\right)-\mathbf{u}\left(x_{j-1}\right)}{h}\right. \tag{1.5.64}
\end{equation*}
\]
\[
=\frac{1}{h} \cdot\left\{\begin{array}{cl}
\binom{\mu_{j}-\mu_{j-1}}{\mu_{j+M-1}-\mu_{j+M-2}} & , \text { if } 2 \leq j \leq M-1, \\
\binom{\mu_{1}}{\mu_{M}}-\mathbf{u}(0) & , \text { if } j=1, \\
\mathbf{u}(1)-\binom{\mu_{M-1}}{\mu_{2 M-2}} & , \text { if } j=M .
\end{array}\right.
\]

Set: \(\quad r_{j}=r_{j}(\overrightarrow{\boldsymbol{\mu}}):=h \frac{\kappa\left(m_{j}\right)}{L}\left(1-\frac{L}{\left\|s_{j}(\overrightarrow{\boldsymbol{\mu}})\right\|}\right)\)

Single row non-linear system of equations arising from Galerkin finite element discretization:
\[
\begin{align*}
\text { row } 1: & \left(r_{1}+r_{2}\right) \mu_{1}-r_{2} \mu_{2}=h f_{1}(h)+r_{1} a  \tag{1.5.65}\\
\text { row } j: & -r_{j} \mu_{j}+\left(r_{j}+r_{j+1}\right) \mu_{j+1}-r_{j+1} \mu_{j+2}=f_{1}(j h), \quad 2 \leq j<M-1  \tag{1.5.66}\\
\text { row } M-1: & -r_{M-1} \mu_{M-2}+\left(r_{M-1}+r_{M}\right) \mu_{M-1}=h f_{1}((M-1) h)+r_{M} b,  \tag{1.5.67}\\
\text { row } M: & \left(r_{1}+r_{2}(\overrightarrow{\boldsymbol{\mu}})\right) \mu_{M}-r_{2} \mu_{M+1}=h f_{2}(h)+r_{1} u_{a},  \tag{1.5.68}\\
\text { row } j: & -r_{j} \mu_{j+M-1}+\left(r_{j}+r_{j+1}\right) \mu_{j+M}-r_{j+1} \mu_{j+M+1}=f_{2}(j h), \quad 2 \leq j<M-1 \tag{1.5.69}
\end{align*}
\]
row \(M-1: \quad-r_{M-1} \mu_{2 M-3}+\left(r_{M-1}+r_{M}\right) \mu_{2 M-2}=h f_{2}((M-1) h)+r_{M} u_{b}\).
Here the dependence \(r_{j}=r_{j}(\overrightarrow{\boldsymbol{\mu}})\) has been suppressed to simplify the notation.
Please study the derivation of (1.5.59) in order to understand how (1.5.65)-(1.5.70) arise.
These equations can be written in a more compact form:
\[
\text { (1.5.65)-(1.5.70) } \Leftrightarrow\left(\begin{array}{cc}
\mathbf{R}(\vec{\mu}) & 0  \tag{1.5.71}\\
0 & \mathbf{R}(\vec{\mu})
\end{array}\right) \vec{\mu}=\binom{\vec{\varphi}_{1}}{\overrightarrow{\boldsymbol{\varphi}}_{2}} .
\]
with
\[
\begin{aligned}
& \mathbf{R}(\overrightarrow{\boldsymbol{\mu}}):=\left(\begin{array}{ccccccc}
r_{1}+r_{2} & -r_{2} & 0 & & & & \\
-r_{2} & r_{2}+r_{3} & -r_{3} & & & & \\
0 & \ddots & \ddots & \ddots & & & \\
\\
& & & & & & \\
\\
& & & & \ddots & \ddots & \\
0 & & & & & -r_{M-2} & r_{M-2}+r_{M-1} \\
0 & & & -r_{M-1} \\
& & & & & & -r_{M-1} \\
& & r_{M-1}+r_{M}
\end{array}\right) \in \mathbb{R}^{M-1, M-1}, \\
& \left(\overrightarrow{\boldsymbol{\varphi}}_{1}\right)_{j}:=h f_{1}(h j) \quad, \quad\left(\overrightarrow{\boldsymbol{\varphi}}_{2}\right)_{j}:=h f_{2}(h j), \quad j=1, \ldots, M-1 .
\end{aligned}
\]

Iterative solution of (1.5.71) by fixed point iteration, see Ex. 1.5 .43
```

Initial guess }\mp@subsup{\vec{\boldsymbol{\mu}}}{}{(0)}\in\mp@subsup{\mathbb{R}}{}{N};\quadk=0

```

\section*{repeat}
\(k \leftarrow k+1 ;\)
Solve the linear system of equations \(\quad\left(\begin{array}{cc}\mathbf{R}\left(\overrightarrow{\boldsymbol{\mu}}^{(k-1)}\right) & 0 \\ 0 & \mathbf{R}\left(\overrightarrow{\boldsymbol{\mu}}^{(k-1)}\right)\end{array}\right) \overrightarrow{\boldsymbol{\mu}}^{(k)}=\binom{\overrightarrow{\boldsymbol{\varphi}}_{1}}{\overrightarrow{\boldsymbol{\varphi}}_{2}}\);
\[
\text { until }\left\|\overrightarrow{\boldsymbol{\mu}}^{(k)}-\overrightarrow{\boldsymbol{\mu}}^{(k-1)}\right\| \leq \mathrm{tol} \cdot \| \overrightarrow{\boldsymbol{\mu}}^{(k)} \mid
\]

Code 1.5.72: Linear finite element discretization of elastic string variational problem
```

function [vu,Jrec,figsol,figerg] =
stringlinfem(kappa,f,L,u0,u1,M,tol)
% Solving the non-linear variational problem (1.3.7) for the elastic string by
means of piecewise
% linear finite elements on an equidistant mesh with M-1 interior nodes.
% kappa, f are handles of type @(xi) providing the coefficient function
% K and the force field f. uO and ul pass the pinning points.
% M is the number of mesh cells, tol specifies the tolerance for the fixed
point
% iteration. return value: 2 2 (M+1)-matrix of node positions
if (nargin < 7), tol = 1E-2; end
h = 1/M;
% meshwidth
phi =h*f(h*(1:M-1)); % Right hand side vector
% Initial guess: straight string, condition L>|u(0)-u(1)|.
if (L >= norm(ul-u0)), error ('String must be tense'); end
vu_new = u0*(1-(0:1/M:1)) +ul*(0:1/M:1);
% Meaning of components of vu: vu(1,2:M) ↔ \mu
\muM
figsol = figure; Jrec = []; hold on;
for k=1:100 % loop for fixed point iteration, maximum 100 iterations
vu = vu_new;
% Plot shape of string

```
plot (vu(1,:), vu(2,:), \(\left.{ }^{\prime}--g^{\prime}\right)\); drawnow;
title (sprintf('M = \%d, iteration \#\% \(\left.d^{\prime}, M, k\right)\) );
xlabel('\{\bf x_1\}'); ylabel('\{\bf x_2\}');
\(\because\) Compute the cell values \(s_{j}, r_{j}, j=1, \ldots, M\), see (1.5.64).
\(\mathrm{d}=(\mathrm{vu}(:, 2:\) end) \(-\mathrm{vu}(:, 1:\) end-1) \() / \mathrm{h}\);
\(\mathrm{s}=\) sqrt(d(1,:).^2 + d(2,:).^2);
r = kappa(h*((1:M)-0.5)).*(1/L - 1./s)/h;
\% Compute total potential energy
Jel \(=h /(2 * L) * k a p p a(h *((1: M)-0.5)) *\left((s-L) .^{\wedge} 2\right)^{\prime} ;\)
Jf = - (phi(1,:) *vu(1,2:M)' +phi(2,:) *vu(2,2:M)');
Jrec = [Jrec; k , Jel, Jf, Jel+Jf];
\% Assemble triadiagonal matrix \(\mathbf{R}=\mathbf{R}(\vec{\mu})\)
\(R=\) gallery ('tridiag', \(-r(2: M-1), r(1: M-1)+r(2: M),-r(2: M-1))\);
\% modify right hand side in order to take into account pinning conditions phil = phi (1,:); phil(1) = phil(1) + r(1)*u0(1); phil(M-1) = phil(M-1) + r(M)*ul(1);
phi2 \(=\) phi (2,:); phi2(1) = phi2(1) \(+r(1) * u 0(2) ;\) phi2 (M-1) = phi2 (M-1) + r(M) *ul(2);
\% Solve linear system and compute new iterate
vu_new = [u0, [(R\phi1')'; (R\phi2')'],u1];
\% Check simple termination criterion for fixed point iteration.
if (norm(vu_new - vu,'fro') < tol*norm (vu_new,'fro')/M) plot(vu(1,:),vu(2,:),'r-*'); break; end
end
```

% Plot of total potential energy in the course of the iteration
figerg = figure('name','total potential energy');
title(sprintf ('elastic string, M = %d',M));
plot (Jrec (:, 1), Jrec(:,4),'m-*' , Jrec (:, 1), Jrec (:, 2),'b-+' , Jrec (:, 1),
xlabel('{\bf no. of iteration step}'); ylabel('{\bf energy}');
legend('total potential energy','elastic energy','energy in force
field',' location','east');

```

Example 1.5.73 (Elastic string shape by finite element discretization).
- Linear finite element discretization of (1.3.7), see Ex. 1.5.62, Code 1.5.71.
- \(\kappa \equiv 1, L=0.5, \mathbf{u}(0)=\binom{0}{0}, \mathbf{u}(1)=\binom{1}{0.2}\)
- gravitational force field \(\mathbf{f}(\xi)=-\binom{0}{2}\).

Piecewise linear finite element solution of (1.3.7), equidistant meshes with \(M\) cells, \(M=5,10,20 \triangleright\)



\subsection*{1.5.2 Collocation}

Targetted:
Two-point BVP \(=\operatorname{ODE} \mathcal{L}(u)=f \quad+\quad\) boundary conditions

Note: In contrast to the Galerkin approach, collocation techniques do not tackle the weak form of a boundary value problem, but rather the "classical"/strong form.

Idea: (1) seek solution in finite-dimensional trial space \(V_{N, 0}, N:=\operatorname{dim} V_{N, 0}<\infty\) (2) pick collocation nodes \(\mathcal{N}:=\left\{x_{1}, \ldots, x_{N}\right\} \subset \Omega\) such that x
\[
\text { "point evaluation" }\left\{\begin{align*}
V_{N, 0} & \mapsto \mathbb{R}^{N}  \tag{1.5.74}\\
v & \mapsto\left(v\left(x_{j}\right)\right)_{j=1}^{N}
\end{align*}\right.
\]
is a bijective linear mapping.

Collocation conditions: \(u_{N} \in V_{N}: \mathcal{L}\left(u_{0}+u_{N}\right)\left(x_{j}\right)=f\left(x_{j}\right), \quad j=1, \ldots, N\).

Offset function, cf. Rem. 1.5.10
(3) choose ordered basis \(\mathfrak{B}=\left\{b_{N}^{1}, \ldots, b_{N}^{N}\right\} \quad\) of \(V_{N, 0} \quad\) \& \(\quad\) plug basis representation
\[
u_{N}=u_{0}+\mu_{1} b_{N}^{1}+\cdots+\mu_{N} b_{N}^{N} \quad\left(u_{0} \hat{=} \text { offset function }\right)
\]
into collocation conditions (1.5.75)
\[
\begin{equation*}
\overrightarrow{\boldsymbol{\mu}}=\left(\mu_{l}\right)_{l=1}^{N}: \quad \mathcal{L}\left(u_{0}+\mu_{1} b_{N}^{1}+\cdots+\mu_{N} b_{N}^{N}\right)\left(x_{j}\right)=f\left(x_{j}\right), \quad j=1, \ldots, N . \tag{1.5.76}
\end{equation*}
\]

In general: (1.5.76) is a non-linear system of equation ( \(N\) equations for \(N\) unknowns \(\mu_{1}, \ldots, \mu_{N}\) ).

Note: \(\quad\) bijectivity of point evaluation (1.5.74) \(\Rightarrow \sharp\{\) points \(\}=\operatorname{dim} V_{N, 0}\)

Below: detailed discussion for linear two point boundary value problem
\[
\begin{gather*}
\mathcal{L}(u):=-\frac{d}{d x}\left(\sigma(x) \frac{d u}{d x}(x)\right)=g(x), \quad a \leq x \leq b  \tag{1.5.77}\\
u(a)=u_{a} \quad, \quad u(b)=u_{b} \tag{1.5.78}
\end{gather*}
\]
on domain \(\Omega=[a, b]\), related to variational problem (1.4.15).

Remark 1.5.79 (Smoothness requirements for collocation trial space).

For two-point BVP (1.5.77) consider space \(V_{N, 0}:=\mathcal{S}_{1,0}^{0}(\mathcal{M})\) of \(\mathcal{M}\)-piecewise linear finite element functions. \(\rightarrow\) Sect. [1.5.1.2

Note: \(v_{N} \in \mathcal{S}_{1,0}^{0}(\mathcal{M})\) is not differentiable in nodes \(x_{j}\) of the mesh.

Natural choice collocation points \(=\) nodes of the mesh is not possible! (because for \(v_{N} \in \mathcal{S}_{1,0}^{0}(\mathcal{M})\) the function \(\mathcal{L}\left(v_{N}\right)\) is discontinuous in the nodes of the mesh)

Assuming \(\sigma \in C^{1}([a, b])\) global continuity of \(\mathcal{L}\left(v_{N}\right)\) entails \(V_{N, 0} \subset C^{2}([a, b])\), cf. Sect. 1.5.2.2.

\subsection*{1.5.2.1 Spectral collocation}

Focus: linear two point boundary value problem (1.5.77)
trial space for polynomial spectral collocation:
\[
\begin{equation*}
V_{N, 0}=\mathcal{P}_{p}(\mathbb{R}) \cap C_{0}^{2}([a, b]), \quad p \geq 2 \tag{1.5.80}
\end{equation*}
\]
\(=\) polynomials of degree \(\leq p\), vanishing at endpoints of domain, \(\quad N:=\operatorname{dim} V_{N, 0}=p-1\).
same trial space as for polynomial spectral Galerkin approach, see Sect. [1.5.1.1.

Discussion:
polynomial spectral collocation for two-point BVP (1.5.77)
- Offset function \(u_{0}(x):=\frac{b-x}{b-a} u_{a}+\frac{x-a}{b-a} u_{b}\).
- Basis \(\mathfrak{B}:=\left\{b_{N}^{j}:=M_{j}\right\} \quad\) consisting of integrated Legendre polynomials, see (1.5.22).

Terminology: A differential operator is a mapping on a function space involving only values of the function argument and some of its derivatives in the same point.

A differential operator \(\mathcal{L}\) is linear, if
\[
\begin{equation*}
\mathcal{L}(\alpha u+\beta v)=\alpha \mathcal{L}(u)+\beta \mathcal{L}(v) \quad \forall \alpha, \beta \in \mathbb{R}, \forall \text { functions } u, v \tag{1.5.81}
\end{equation*}
\]
\[
\begin{align*}
& \text { (1.5.76) } \stackrel{(1.5 .81)}{\Longrightarrow} \sum_{l=1}^{N} \mathcal{L}\left(b_{N}^{l}\right)\left(x_{k}\right) \mu_{l}=f\left(x_{k}\right)-\mathcal{L}\left(u_{0}\right)\left(x_{k}\right), \quad k=1, \ldots, N .  \tag{1.5.82}\\
& \mathbf{A} \overrightarrow{\boldsymbol{\mu}}=\overrightarrow{\boldsymbol{\varphi}}, \quad \begin{array}{c}
\Uparrow \\
(\mathbf{A})_{k, l}:=\mathcal{L}\left(b_{N}^{l}\right)\left(x_{k}\right), \quad k, l \in\{1, \ldots, N\}, \\
\varphi_{k}:=f\left(x_{k}\right)-\mathcal{L}\left(u_{0}\right)\left(x_{k}\right), \quad k \in\{1, \ldots, N\} .
\end{array} \tag{1.5.83}
\end{align*}
\]

An \(N \times N\) linear system of equations

For BVPs featuring linear differential operators, collocation invariably leads to a linear system of equations for the unknown coefficients of the basis representation of the collocation solution.

Remark 1.5.84 (Bases for polynomial polynomial spectral collocation).

Same choices as for spectral Galerkin methods, see Rem. 1.5.20.

Remark 1.5.85 (Collocation points for polynomial spectral collocation).

Rule of thumb (without further explanation, see [12]):
choose collocation points \(x_{j}, j=1, \ldots, N\) such that the induced Lagrangian interpolation operator \((\rightarrow\) [14, Thm. 8.2.2]) has a small \(\infty\)-norm, see [14, Lemma 8.2.5].

Popular choice (due to [14, Eq. 8.5.6]): Chebychev nodes
\[
\begin{equation*}
x_{k}:=a+\frac{1}{2}(b-a)\left(\cos \left(\frac{2 k-1}{2 N} \pi\right)+1\right), \quad k=1, \ldots, N . \tag{1.5.86}
\end{equation*}
\]

Code 1.5.87: Computation of derivatives of Legendre polynomials using (1.5.27)
```

function [V,M,D] = dilegpol(n,x)
% Computes values of the first }n+1\mathrm{ Legendre polynomials (returned in matrix V)

```
```

% the first }n-1 integrated Legendre polynomials (returned in matrix M), an
the
% first n+1 first derivatives of Legendre polyomials in the points }\mp@subsup{x}{j}{}\mathrm{ passed
% in the row vector x.
% Uses the recursion formulas (1.5.26) and (1.5.22)
V = ones(size(x)); V = [V; x];
% recursion (1.5.26) for Legendre polynomials
for j=1:n-1, V = [V; ((2*j+1)/(j+1)).*x.*V(end,:) -
j/(j+1)*V(end-1,:)]; end
% Formula (1.5.22) for integrated Legendre polynomials
M = diag(1./ (2*(1:n-1) +1))*(V(3:n+1,:) - V(1:n-1,:));
% Recursion formula (1.5.27) for derivatives of Legendre polynomials
if (nargout < 3)
D = [zeros(size(x)); ones(size(x))];
for j=1:n-1, D = [D; (2*j+1)*V (j+1,:)+D(j,:)]; end
end

```

\section*{Code 1.5.88: Spectral collocation for linear 2nd-order two-point BVP}
```

function u = linspeccol(g,N,x)
Polynomial spectral collocation discretization of linear 2nd-order two-point
BVP
\circ}-\frac{\mp@subsup{d}{}{2}u}{d\mp@subsup{x}{}{2}}=g(x),u(0)=u(1)=
% on \Omega=[0,1]. Trial space of dimension N, collocation in Chebychev nodes.
% Values of approximate solution in points }\mp@subsup{x}{j}{}\mathrm{ are returned in the row vector u
cn = cos((2*(1:N)-1)*\mathbf{i}/(2*N)); % Chebychev nodes, see (1.5.86)

```
```

7 | [V,M, D] = dilegpol (N+1, cn);
derivatives) of }\mp@subsup{M}{m}{
8 mu = (-4*D (2:N+1,:))'\(g(0.5*(cn+1))'); % Solve collocation system
9 ~ \% ~ C o m p u t e ~ v a l u e s ~ o f ~ i n t e g r a t e d ~ L e g e n d r e ~ p o l y n o m i a l s ~ a t ~ o u t p u t ~ p o i n t s
[V,M] = dilegpol(N+1,2*x-1); u = mu'*M;

```

Example 1.5.89 (Polynomial spectral collocation for 2-point BVP).

Setting of Ex. 1.5.18, spectral polynomial collocation, on , \(N=5,7,10\), basis from integrated Legendre polynomials, plot of solution \(u_{N}\).


\subsection*{1.5.2.2 Spline collocation}

Analoguous to Sect. 1.5 .1 .2 : now collocation based on piecewise polynomials

Rem. \(1.5 .79>\) for \(\operatorname{BVP}(1.5 .77)\) smoothness \(V_{N, 0} \subset C^{2}([a, b])\) is required.

Which piecewise polynomial spaces offer this kind of smoothness ?

Recall [14, Def. 9.4.1], cf. [14, Sect. 9.4.1]:

Definition 1.5.90 (Cubic spline).
\(s:] a, b\left[\mapsto \mathbb{R}\right.\) is a cubic spline function w.r.t. the node set \(\mathcal{T}:=\left\{a=x_{0}<x_{1}<x_{2}<\ldots<\right.\) \(\left.x_{M-1}<x_{M}=b\right\}\), if
(i) \(s \in C^{2}([a, b]) \quad\) (twice continuously differentiable),
(ii) \(s_{\mid] x_{j-1}, x_{j}[ } \in \mathcal{P}_{3}(\mathbb{R}) \quad\) (piecewise cubic polynomial)
notation: \(\quad \mathcal{S}_{3, \mathcal{T}} \hat{=}\) vector space of cubic splines on node set \(\mathcal{X}\)

\section*{Known:}
\[
\operatorname{dim} \mathcal{S}_{3, \mathcal{T}}=\sharp \mathcal{T}+2=M+3
\]

Trial space for collocation for 2-point BVP (1.5.77)
natural cubic splines: \(\quad V_{N, 0}:=\left\{\begin{array}{l}s \in \mathcal{S}_{3, \mathcal{T}}: \\ s^{\prime \prime}(a)=s^{\prime \prime}(b)=0, \\ s(a)=s(b)=0\end{array}\right\} \Rightarrow \operatorname{dim} N:=V_{N}=M-1\),
Choice of collocation nodes:
collocation nodes for cubic spline collocation \(=\) spline nodes \(x_{j}: \mathcal{N}=\mathcal{T}\)
Example 1.5.91 (Cubic spline collocation discretization of 2-point BVP).

Cubic spline collocation with equidistant nodes, 3 \(M=5,7,12\)


\subsection*{1.5.3 Finite differences}

Focus: 2nd-order linear two-point BVP
\[
\begin{equation*}
\mathcal{L}(u):=-\frac{d}{d x}\left(\sigma(x) \frac{d u}{d x}(x)\right)=g(x), \quad a \leq x \leq b \tag{1.5.77}
\end{equation*}
\]
\[
u(a)=u_{a} \quad, \quad u(b)=u_{b}
\]

Idea:

\section*{Replace derivatives \(\longrightarrow\) difference quotients}
(in finitely many special points = nodes of a mesh)
E.g. \(\frac{d^{2} u}{d x^{2}}(x) \approx \frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}, \quad h>0\) "small" .

Setting as in Sect. 1.5.1.2:
\(>\Omega=[a, b]\) equipped with nodes \((M \in \mathbb{N})\)
\(\mathcal{X}:=\left\{a=x_{0}<x_{1}<\cdots<x_{M-1}<x_{M}=b\right\}\).

meshgrid
\[
\mathcal{M}:=\{ ] x_{j-1}, x_{j}[: 1 \leq j \leq M\}
\]

Special case:
equidistantmesh: \(\quad x_{j}:=a+j h, \quad h:=\frac{b-a}{M}\).
\(\quad\left[x_{j-1}, x_{j}\right], j=1, \ldots, M, \quad \hat{=}\) cells of \(\mathcal{M}, \quad\) cell size \(\quad h_{j}:=\mid x_{j}-x_{j-1}, j=1, \ldots, M\)
\[
\text { meshwidth } h_{\mathcal{M}}:=\max _{j}\left|x_{j}-x_{j-1}\right|
\]
(1) replacement of outer derivative \(\left(x_{j-1 / 2}=\frac{1}{2}\left(x_{j}+x_{j-1}\right)\right)\) :
\[
\frac{d}{d x}\left(\sigma(x) \frac{d u}{d x}(x)\right)_{\mid x=x_{j}} \approx \frac{2}{h_{j-1}+h_{j}}\left(\sigma\left(x_{j+1 / 2}\right) \frac{d u}{d x}\left(x_{j+1 / 2}\right)-\sigma\left(x_{j-1 / 2}\right) \frac{d u}{d x}\left(x_{j+1 / 2}\right)\right)
\]
(2) replacement of inner derivative, e.g.,
\[
\begin{gather*}
-\frac{\frac{d u}{d x}\left(x_{j+1 / 2}\right) \approx \frac{u\left(x_{j+1}\right)-u\left(x_{j}\right)}{h_{j}} .}{\frac{d}{d x}\left(\sigma(x) \frac{d u}{d x}(x)\right)_{\mid x=x_{j}}=\frac{\sigma\left(x_{j-1 / 2}\right) \frac{u\left(x_{j}\right)-u\left(x_{j-1}\right)}{h_{j-1}}-\sigma\left(x_{j+1 / 2}\right) \frac{u\left(x_{j+1}\right)-u\left(x_{j}\right)}{h_{j}}}{\frac{1}{2}\left(h_{j-1}+h_{j}\right)} .} . . . . ~
\end{gather*}
\]

On equidistant mesh, \(h_{j}=j, j=1, \ldots, M\) :
\[
\begin{align*}
& -\frac{d}{d x}\left(\sigma(x) \frac{d u}{d x}(x)\right)_{\mid x=x_{j}} \\
& \quad=\frac{1}{h^{2}}\left(-\sigma\left(x_{j+1 / 2}\right) u\left(x_{j+1}\right)+\left(\sigma\left(x_{j+1 / 2}\right)+\sigma\left(x_{j-1 / 2}\right)\right) u\left(x_{j}\right)-\sigma\left(x_{j-1 / 2}\right) u\left(x_{j-1}\right)\right) . \tag{1.5.94}
\end{align*}
\]

Unknowns in finite difference method:
\[
\mu_{l}=u\left(x_{l}\right), \quad l=1, \ldots, M-1
\]
\[
\begin{align*}
& -\frac{d}{d x}\left(\sigma(x) \frac{d u}{d x}(x)\right)=g(x), a \leq x \leq b . \\
& \leftarrow \text { restriction to } \mathcal{X} \text {, use (1.5.94) } \\
& \frac{-\sigma\left(x_{j+1 / 2}\right) \mu_{j+1}+\left(\sigma\left(x_{j+1 / 2}\right)+\sigma\left(x_{j-1 / 2}\right)\right) \mu_{j}-\sigma\left(x_{j-1 / 2}\right) \mu_{j-1}}{h^{2}}=g\left(x_{j}\right), \quad j=1, \ldots, M-1 \text {. } \tag{1.5.95}
\end{align*}
\]
\(\Uparrow\)
\[
\begin{align*}
& (\mathbf{A})_{j l}=h^{-2} \cdot \begin{cases}0 & , \text { if }|j-l|>1, \\
-\sigma\left(x_{j+1 / 2}\right) & , \text { if } j=l-1 \\
\sigma\left(x_{j-1 / 2}\right)+\sigma\left(x_{j-1 / 2}\right) & , \text { if } j=l \\
-\sigma\left(x_{l+1 / 2}\right) & , \text { if } l=j-1\end{cases}  \tag{1.5.96}\\
& \varphi_{j}= \begin{cases}g\left(x_{1}\right)+\sigma\left(x_{1 / 2}\right) u_{a} & , \text { if } j=1, \\
g\left(x_{j}\right) & , \text { if } 1<j<M-1, \\
g\left(x_{M-1}\right)+\sigma\left(x_{M-1 / 2}\right) u_{b} & , \text { if } j=M-1 .\end{cases}
\end{align*}
\]

An \((M-1) \times(M-1)\) linear system of equations
(Up to scaling with \(h\) ) the finite difference approach and the linear finite element Galerkin scheme \((\rightarrow\) Sect. (1.5.1.2) yield the same system matrix for the BVP (1.5.77) and its associated variational problem (1.4.15), cc. (1.5.96) and (1.5.59).

\subsection*{1.6 Convergence}

For elastic string model (1.2.17)/(1.3.7), taut string model in physical space (1.4.15) with exact solution \(\mathbf{u}:[0,1] \mapsto \mathbb{R}^{2}\) or \(u:[a, b] \mapsto \mathbb{R}\), respectively:

Discretization schemes
(Galerkin approach, Sect. [1.5.1 \(\longrightarrow\) collocation methods, Sect. [1.5.2)

Approximate solution
\(\mathbf{u}_{N}:[0,1] \mapsto \mathbb{R}^{2} / u_{N}:[a, b] \mapsto \mathbb{R}\) (functions \(\in V_{N}\) )

Desirable: \(\quad\) approximation \(u_{N}\) "close to" exact solution \(u: \quad\) rigorous meaning ?
\(\downarrow\)
How to measure discretization error \(u-u_{N}\) ?

\section*{Remark 1.6.1 (Grid functions).}

Note: \(\quad\) for finite differences \((\rightarrow\) Sect. 1.5 .3 ) we get no solution function, only grid function \(\mathcal{X} \mapsto \mathbb{R}\) ("point values")
reconstruction of a function through postprocessing, e.g., linear interpolation

\section*{Remark 1.6.2.}

We encountered the issues of convergence of approximate solutions before:
- Numerical quadrature [14, Ch. [10]: study of asymptotic behavior of quadrature error
- Numerical integration [14, Ch. [1]]: discretization error of single step methods

Tools for measuring discretization errors:
norms on function spaces/grid function spaces

Reminder \(\rightarrow\) [14, Sect. [2.5.1]
Definition 1.6.3 (Norm).
A norm \(\|\cdot\|_{V}\) on an \(\mathbb{R}\)-vector space \(V\) is a mapping \(\|\cdot\|_{V}: V \mapsto \mathbb{R}_{0}^{+}\), such that
\[
\begin{align*}
\text { (definiteness) } & \|v\|_{V}=0 \Longleftrightarrow \quad v=0 \quad \forall v \in V  \tag{N1}\\
\text { (homogeneity) } & \|\lambda v\|_{V}=|\lambda|\|v\|_{V} \quad \forall \lambda \in \mathbb{R}, \quad \forall v \in V  \tag{N2}\\
\text { (triangle inequality) } & \|w+v\|_{V} \leq\|w\|_{V}+\|v\|_{V} \quad \forall w, v \in V .
\end{align*}
\]

Next: important norms on function spaces, cf. [14, Eq. 8.2.7], [14, Eq. 8.2.8], [14, Eq. 8.2.9]:

Definition 1.6.4 (Supremum norm).
The supremum norm of an (essentially) bounded function \(\mathbf{u}: \Omega \mapsto \mathbb{R}^{n}\) is defined as
\[
\begin{equation*}
\|\mathbf{u}\|_{\infty}\left(\|\mathbf{u}\|_{L^{\infty}(\Omega)}\right):=\sup _{x \in \Omega}\|\mathbf{u}(x)\|, \quad \mathbf{u} \in\left(L^{\infty}(\Omega)\right)^{n} \tag{1.6.5}
\end{equation*}
\]
- \(L^{\infty}(\Omega)\) denotes the vector space of essentially bounded functions. It is the instance for \(p=\infty\) of an \(L^{p}\)-space.
- The notation \(\|\cdot\|_{\infty}\) hints at the relationship between the supremum norm of functions and the maximum norm for vectors in \(\mathbb{R}^{n}\).
- For \(n=1\) the Euclidean vector norm in the definition reduces to the modulus \(|u(x)|\).
- The norm \(\left\|\mathbf{u}-\mathbf{u}_{N}\right\|_{L^{\infty}(\Omega)}\) measures the maximum distance of the function values of \(\mathbf{u}\) and \(\mathbf{u}_{N}\).

Definition 1.6 .6 (Mean square norm \(/ L^{2}\)-norm). \(\rightarrow\) Def. 2.2.5
For a function \(\mathbf{u} \in\left(C_{\mathrm{pw}}^{0}(\Omega)\right)^{n}\) the mean square norm \(/ L^{2}\)-norm is given by
\[
\|\mathbf{u}\|_{0}\left(\|\mathbf{u}\|_{L^{2}(\Omega)}\right):=\left(\int_{\Omega}\|\mathbf{u}(x)\|^{2} \mathrm{~d} x\right)^{1 / 2}, \quad \mathbf{u} \in\left(L^{2}(\Omega)\right)^{n}
\]
- \(L^{2}(\Omega)\) designates the vector space of square integrable functions, another \(L^{p}\)-space (for \(p=2\) ) and a Hillbert space.
- The " 0 " in the notation \(\|\cdot\|_{0}\) refers to the absense of derivatives in the definition of the norm.
- Obviously, the \(L^{2}\)-norm is weaker than the supremum norm:
\[
\|v\|_{L^{2}([a, b])} \leq \sqrt{|b-a|}\|v\|_{L^{\infty}([a, b])} \quad \forall v \in C_{\mathrm{pw}}^{0}([a, b]) .
\]

In particular, the \(L^{2}\)-norm of the discretization error may be small despite large deviations of \(u_{N}\) from \(u\), provided that these deviations are very much localized.

We consider the model for a homogeneous taut string in physical space, see (1.4.15), with associated total potential energy functional
\[
\begin{equation*}
J(u):=\int_{a}^{b} \frac{1}{2}\left|\frac{d u}{d x}(x)\right|^{2}+\widehat{g}(x) u(x) \mathrm{d} x, \quad u \in C_{0, \mathrm{pw}}^{1}([a, b]), \tag{1.6.8}
\end{equation*}
\]
where, for the sake of simplicity, we assume \(u_{a}=u_{b}=0\).

A manifestly relevant error quantity of interest is the deviation of energies
\[
E_{J}:=\left|J(u)-J\left(u_{N}\right)\right| .
\]

We adopt the concise notations introduced for abstract (linear) variational problems in Rems. 1.3.10, 1.4.4:
\[
\begin{aligned}
& \mathrm{a}(u, v):=\int_{a}^{b} \frac{d u}{d x}(x) \frac{d v}{d x}(x) \mathrm{d} x, \\
& \ell(v):=-\int_{a}^{b} \widehat{g}(x) v(x) \mathrm{d} x
\end{aligned}
\]
where a is a bilinear form, see Def. 1.3 .11 .

Assumption: \(\quad u_{N} \in V_{N, 0} \hat{=}\) Galerkin solution based on discrete trial space \(V_{N, 0} \subset V_{0}\).
\[
\begin{align*}
\mathrm{a}(u, v) & =\ell(v) \quad \forall v \in V_{0}:=C_{0, \mathrm{pw}}^{1}([a, b]),  \tag{1.6.9}\\
\mathrm{a}\left(u_{N}, v_{N}\right) & =\ell\left(v_{N}\right) \quad \forall v_{N} \in V_{N, 0} \subset V_{0}
\end{align*}
\]

We can use the defining variational equations for \(u\) and \(u_{N}\) to express
\[
\begin{equation*}
J(u)-J\left(u_{N}\right)=-\frac{1}{2}\left(\mathrm{a}(u, u)-\mathrm{a}\left(u_{N}, u_{N}\right)\right) \stackrel{(*)}{=}-\frac{1}{2} \mathrm{a}\left(u+u_{N}, u-u_{N}\right) . \tag{1.6.10}
\end{equation*}
\]
\((*)\) : a straightforward consequence of the bilinearity of a, see Def.[1.3.11, c.f. \(a^{2}-b^{2}=(a+b)(a-b)\) for \(a, b \in \mathbb{R}\).

Concretely,
\[
\begin{align*}
\left|J(u)-J\left(u_{N}\right)\right| & =\frac{1}{2}\left|\int_{a}^{b} \frac{d}{d x}\left(u+u_{N}\right) \cdot \frac{d}{d x}\left(u-u_{N}\right) \mathrm{d} x\right| \\
& \stackrel{(*)}{2}\left(\int_{a}^{b}\left|\frac{d}{d x}\left(u+u_{N}\right)\right|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{a}^{b}\left|\frac{d}{d x}\left(u-u_{N}\right)\right|^{2} \mathrm{~d} x\right)^{1 / 2} . \tag{1.6.11}
\end{align*}
\]
(*): due to Cauchy-Schwarz inquality (2.2.15)

Definition 1.6.12 ( \(H^{1}\)-seminorm). \(\quad \rightarrow\) Def. 2.2.12
For a function \(u \in C_{\mathrm{pw}}^{1}([a, b])\) the \(H^{1}\)-seminorm reads
\[
\begin{equation*}
|u|_{H^{1}([a, b])}^{2}:=\int_{a}^{b}\left|\frac{d u}{d x}(x)\right|^{2} \mathrm{~d} x . \tag{1.6.13}
\end{equation*}
\]
- \(|\cdot|_{H^{1}([a, b])}\) is merely a semi-norm, because it only satisfies norm axioms (N2) and (N3), but fails to be definite: \(|\cdot|_{H^{1}([a, b])}=0\) for constant functions.
- In the setting of the homogeneous taut string model, we have
\[
|u|_{H^{1}(i a b)}^{2}=\mathrm{a}(u, u)>|\cdot|_{H^{1}([a, b])} \text { is called the energy norm for the model. }
\]

More explanations in Sect. 2.1.3.
- On \(C_{0, \mathrm{pw}}^{1}([a, b])\) the semi-norm \(|\cdot|_{H^{1}(i a b)}\) is a genuine norm \(\rightarrow\) Def. [1.6.3.

\section*{From (1.6.11)}
\[
\begin{equation*}
\left\|u-u_{N}\right\|_{H^{1}(\Omega)} \leq \epsilon \quad\left|J(u)-J\left(u_{N}\right)\right| \leq\left|u+u_{N}\right|_{H^{1}(\Omega)}\left|u-u_{N}\right|_{H^{1}(\Omega)} \tag{1.6.14}
\end{equation*}
\]
\[
\stackrel{(\mathbb{N 3})}{\leq}\left(2|u|_{H^{1}(\Omega)}+\epsilon\right) \epsilon
\]
- estimate of the energy norm of the discretization error paves the way for bounding the energy deviation.

Remark 1.6.15 (Norms on grid function spaces).

To measure the discretization error for finite difference schemes \((\rightarrow\) Sect. 1.5.3) one may resort to mesh dependent norms
\[
\begin{equation*}
\text { (discrete) } l^{2} \text {-norm } \quad: \quad\|\vec{\mu}\|_{l^{2}(\mathcal{X})}^{2}:=\sum_{j=0}^{M} \frac{1}{2}\left(h_{j}+h_{j+1}\right)\left|\mu_{j}\right|^{2}, \tag{1.6.16}
\end{equation*}
\]
\[
\text { (under convention } h_{0}:=0, h_{M+1}:=0 \text { ), }
\]
(discrete) maximum norm
\[
\begin{equation*}
\|\vec{\mu}\|_{l^{\infty}(\mathcal{X})}:=\max _{j=0, \ldots, M}\left|\mu_{j}\right| . \tag{1.6.17}
\end{equation*}
\]

\subsection*{1.6.2 Algebraic and exponential convergence}

Crucial: convergence is an asymptotic notion!
sequence of discrete models \(\Rightarrow\) sequence of approximate solutions \(\left(u_{N}^{(i)}\right)_{i \in \mathbb{N}}\)
\[
\Rightarrow \quad \text { study sequence }\left(\left\|u_{N}^{(i)}-u\right\|\right)_{i \in \mathbb{N}}
\]
created by variation of a discretization parameter:

Discretization parameters:
- meshwidth \(h>0\) for finite differences ( \(\rightarrow\) Sect. 1.5.3), p.w. linear finite elements \((\rightarrow\) Sect. 1.5.1.2), spline collocation \((\rightarrow\) Sect. 1.5.2.2)
- polynomial degree for spectral collocation \((\rightarrow\) Sect. 1.5.2.1), spectral Galerkin discretization \((\rightarrow\) Sect. 1.5.1.1)

Example 1.6.18 (Numerical studies of convergence).
Focus: Linear 2-point boundary value problem \(-\frac{d^{2} u}{d x^{2}}=g(x), u(0)=u(1)=0\) on \(\left.\Omega=\right] 0,1[\), variational form (1.5.19),
exact solution \(u(x)=\sin \left(2 \pi x^{2}\right) \quad(\rightarrow\) setting of Ex. 1.5.18)
(1) finite difference discretization on equidistant mesh, meshwidth \(h>0(\rightarrow\) Sect. 1.5.3)

Monitored: maximum norm (1.6.17), \(l^{2}\)-norm (1.6.16) of pointwise discretization error

(2) Spectral collocation, polynomial degree \(p \in \mathbb{N} \rightarrow\) Sect.|1.5.2.1

Monitored: \(\quad\) supremum norm (1.6.5), \(L^{2}\)-norm (1.6.6) of discretization error \(u-u_{N}\) (approximated by trapezoidal rule on fine grid with \(10^{4}\) points)

(3) Spline collocation on equidistant mesh, meshwidth \(h>0(\rightarrow\) Sect. [1.5.2.2)

Monitored: \(\quad\) supremum norm (1.6.5), \(L^{2}\)-norm (1.6.6) of \(u-u_{N}\) (approximated by sampling on fine grid with \(10^{4}\) points)

(4) Spectral Galerkin based on degree \(p \in \mathbb{N}\) polynomials \(\rightarrow\) Sect. 1.5.1.1

Monitored: supremum norm (1.6.5), \(L^{2}\)-norm (1.6.6) of discretization error \(u-u_{N}\) (approximated by trapezoidal rule on fine grid with \(10^{4}\) points)


Unified view: Study \(\left\|u-u_{N}\right\|\) as function of number \(N\) of unknowns (degrees of freedom)
measure for costs incurred by method

Definition 1.6.19 (Convergence rate). \(\quad \rightarrow\) [14, Sect. [8.4], [14, Eq. [8.4.1]
\[
\begin{array}{ll}
\left\|u-u_{N}\right\|=O\left(N^{-\alpha}\right), \alpha>0 & : \Longleftrightarrow \text { algebraic convergence with rate } \alpha \\
\left\|u-u_{N}\right\|=O\left(\exp \left(-\gamma N^{\delta}\right)\right), \text { with } \gamma, \delta>0 & : \Longleftrightarrow \text { exponential convergence }
\end{array}
\]
recall notation (Landau- \(O\) ):
\[
f(N)=O(g(N)): \Leftrightarrow \quad \begin{gather*}
\exists N_{0}>0, \exists C>0 \text { independent of } N  \tag{1.6.20}\\
\text { such that }|f(N)| \leq C g(N) \text { for } N>N_{0}
\end{gather*}
\]


Linear plot of qualitative convergence behavior: algebraic/exponential convergence rates

Exponential convergence will always win (asymptotically)


Log-linear plot of decrease of discretization error for algebraic/exponential convergence rates


Log-log plot of decrease of discretization error for algebraic/exponential convergence rates

How to determine qualitative asymptotic convergence from raw norms of discretization error?
Given: data tuples \(\left(N_{i}, \epsilon_{i}\right), i=1,2,3, \ldots, \quad N_{i} \hat{=}\) problem sizes, \(\epsilon_{i} \hat{=}\) error norms
1. Conjecture: algebraic convergence: \(\quad \epsilon_{i} \approx C N_{i}^{-\alpha}\)
\[
\log \left(\epsilon_{i}\right) \approx \log (C)-\alpha \log N_{i} \quad \text { (affine linear in log-log scale). }
\]
> linear regression on data \(\left(\log N_{i}, \log \epsilon_{i}\right), i=1,2,3, \ldots\) to determine rate \(\alpha\).
2. Conjecture: exponential convergence: \(\quad \epsilon_{i} \approx C \exp \left(-\gamma N_{i}^{\delta}\right)\)
\[
\log \epsilon_{i} \approx \log (C)-\gamma N_{i}^{\delta}
\]
\(>\) non-linear least squares fit \((\rightarrow\) [14, Sect. ??]) to determine \(\delta\) :
\[
(c, \gamma, \delta)=\operatorname{argmin}\left\{\sum_{i}\left|\log \epsilon_{i}-c+\gamma N_{i}^{\delta}\right|^{2}\right\},
\]
residual \(\leftrightarrow\) validity of conjecture. This can be done by a short MATLAB code ( \(\rightarrow\) exercise)

Example 1.6.22 (Asymptotic nature of convergence).

- 2-point BVP \(-\frac{d^{2} u}{d x^{2}}=g(x), u(0)=u(1)=0\), \(\Omega=] 0,1[\),
\(\triangleleft u(x)=\sin \left(50 \pi x^{2}\right)\)
(1) finite difference discretization on equidistant mesh, meshwidth \(h>0(\rightarrow\) Sect. 1.5.3)
(2) Spectral Galerkin based on degree \(p \in \mathbb{N}\) polynomials \(\rightarrow\) Sect. 1.5.1.1

Evaluations as in Ex. 1.6.18

(1) Finite Difference Method

(2) Spectral Galerkin Method
- \(\Omega=] 0,1[\) (for finite differences), \(\Omega=]-1,1[\) (for spectral Galerkin), exact solution of 2 -point BVP for ODE \(-\frac{d^{2} u}{d x^{2}}=g(x)\),
\[
u(x)=\left\{\begin{array}{ll}
\frac{3}{4}-x^{2} & , \text { if }|x|<\frac{1}{2}, \\
1-|x| & , \text { if }|x| \geq \frac{1}{2} .
\end{array} \leftrightarrow \quad g(x)= \begin{cases}2 & , \text { if }|x|<\frac{1}{2}, \\
0 & \text { elsewhere } .\end{cases}\right.
\]

(1) Finite Difference Method

(2) Spectral Galerkin Method
- no more exponential convergence of spectral Galerkin
- FD: different rate of algebraic convergence for even/odd \(M\) !

\section*{Second-order Scalar Elliptic Boundary Value Problems}

\section*{Preface}

The previous chapter discussed the transformation of a minimization problem on a function space via a variational problem to a differential equation. To begin with, in Sect. 2.1-Sect. 2.4, this chapter revisits this theme for models that naturlly rely on function spaces over domains in two and three spatial dimensions. Thus the transformation leads to genuine partial differential equations.

Sect. 2.2 ventures into the realm of Sobolev spaces, which provide the framework for rigorous mathematical investigation of variational equations. However, we will approach Sobolev spaces as "spaces
of physically meaningful solutions" or "spaces of solutions with finite energy". From this perspective dealing with Sobolev spaces will be reduced to dealing with their norms.

In Sect. 2.5, we change tack and consider a physical phenomenon (heat conduction) where modelling naturally leads to partial differential equations. On this occasion, we embark on a general discussion of boundary conditions in Sect. 2.6.

Then the fundamental class of second-order elliptic boundary value problems is introduced. Appealing to "intuitive knowledge" about the physical systems underlying the models, key properties of their solutions are presented in Sect. 2.7.

In 2.6 Sect.in the context of stationary heat conduction we introduce the whole range of standard boundary conditions for 2nd-order elliptic boundary value problems. Their discussion in variational context will be resumed in Sect. 2.9.

Remark 2.0.1 (Boundary value problems (BVPs)).

The traditional concept of a boundary value problem for a partial differential equation:

\section*{Boundary value problem (BVP)}

Given a partial differential operator \(\mathcal{L}\), a domain \(\Omega \subset \mathbb{R}^{d}\), a boundary differential operator \(\mathcal{B}\), boundary data \(g\), and a source term \(f\), seek a function \(u: \Omega \mapsto \mathbb{R}^{n}\) such that
\[
\begin{gathered}
\mathcal{L}(u)=f \text { in } \Omega, \\
\mathcal{B}(u)=g \text { on part of (or all) boundary } \partial \Omega .
\end{gathered}
\]

Terminology:
boundary value problem is scalar \(: \Leftrightarrow \quad n=1\) (in this case the unknown is a real valued function)

What does elliptic mean?

Mathematical theory of PDEs distinguishes three main classes of boundary value problems (BVPs) for partial differential equations (PDE):
- Elliptic BVPs ( \(>\) "equilibrium problems", as discussed in Sects. 1.2.3, 2.1.1, 2.1.2)
- Parabolic initial boundary value problems (IBVPs) (> evolution towards equilibrium)
- Hyperbolic IBVPs, among them wave propagation problems and conservation laws ( \(>\) transport/propagation)

The rigorous mathematical definition is complicated and often fails to reveal fundamental properties of, e.g., solutions that are intuitively clear against the backdrop of the physics modelled by a certain PDE. Further discussion of classification in [3, § 1] and [11, Ch. 1].
\(>\) In the spirit of Sect. 1.1

Structural properties of a BPV inherited from the modelled system are more important than formal mathematical classification.
2.1 Equilibrium models

We only consider stationary systems. Then, frequently, see Sect. 1.2.2
\[
\text { equilibrium }=\text { minimal energy configuration of a system }
\]

Example: elastic string model of Sect. 1.2 (minimization of energy functional \(J(\mathbf{u})\), see (1.2.17))

Now we study minimization problems for energy functional on spaces of functions \(\Omega \mapsto \mathbb{R}\), where \(\Omega \subset \mathbb{R}^{d}\) is a bounded (spatial) domain and \(d=2,3\).

\subsection*{2.1.1 Taut membrane}

Recall: energy functional for pinned taut string under gravitational load \(\widehat{g}\), see (1.4.7), in terms of displacement, see Fig. 16:
\[
J(u):=\frac{1}{2} \int_{a}^{b} \widehat{\sigma}(x)\left|\frac{d u}{d x}(x)\right|^{2}-\widehat{g}(x) u(x) \mathrm{d} x, \quad \begin{array}{r}
u \in C_{\mathrm{pw}}^{1}([a, b]), \\
u(a)=u_{a}, u(b)=u_{b}
\end{array}
\]
"2D generalization" of an elastic string \(>\) elastic membrane.

Taut drum membranes



Remark 2.1.1 (Spatial domains).

General assumptions on spatial domains \(\Omega \subset \mathbb{R}^{d}\) :
\(d=1,2,3 \hat{=}\) "dimension" of domain
- \(\Omega\) is bounded
\(\operatorname{diam}(\Omega):=\sup \{\|\boldsymbol{x}-\boldsymbol{y}\|: \boldsymbol{x}, \boldsymbol{y} \in \Omega\}<\infty\),
- \(\Omega\) has piecewise smooth boundary \(\partial \Omega\)

Pinning conditions (boundary conditions), cf. (1.2.1), (1.4.11):
\begin{tabular}{lll}
\(u(\boldsymbol{x})\) & \(=g(\boldsymbol{x})\) & \(\boldsymbol{x} \in \partial \Omega\) \\
\(\mathbb{\mathbb { \imath }}\) \\
\(u_{\mid \partial \Omega}\) & \(=g\) & on \(\partial \Omega\).
\end{tabular}\(\quad\) for some \(\quad g \in C^{0}(\partial \Omega)\).
(2.1.2) means that the displacement of the membrane over \(\partial \Omega\) is provided by a prescribed continuous function \(g: \partial \Omega \mapsto \mathbb{R}\) : the membrane is clamped into a rigid frame.

Intuition:
\(g\) has to be continuous, unless the membrane is to be torn! (Further discussion in Rem. 2.9.4)
\[
\text { configuration space } V=\left\{\begin{array}{c}
\text { continuous functions } u \in C^{0}(\Omega) \\
\text { with } u_{\mid \partial \Omega}=g .
\end{array}\right\}
\]

Think of the membrane as a grid of taut strings. Together with Rem. 1.4.10 this justifies the following expression for its total potential energy.

Potential energy of a taut membrane (described by \(u \in C^{0}(\Omega)\) ) under vertical loading:


Note that
\[
\sigma(\boldsymbol{x})\|\operatorname{grad} u\|^{2}=\sigma\left(x_{1}, x_{2}\right)\left|\frac{\partial u}{\partial x_{1}}\left(x_{1}, x_{2}\right)\right|^{2}+\sigma\left(x_{1}, x_{2}\right)\left|\frac{\partial u}{\partial x_{2}}\left(x_{1}, x_{2}\right)\right|^{2}
\]
which justifies calling the taut membrane a "two-dimensional string under tension".
with \(\quad u: \Omega \mapsto \mathbb{R} \hat{=}\) displacement function, see Fig. 45, \([u]=\mathrm{m}\),
- \(f: \Omega \mapsto \mathbb{R} \hat{=}\) force density (pressure), \([f]=\mathrm{Nm}^{-2}\),
- \(\sigma: \Omega \mapsto \mathbb{R}^{+} \hat{=}\) stiffness, \([\sigma]=\mathrm{J}\).

Displacement of taut membrane in equilibrium achieves minimal potential energy, cf. (1.2.17)
\[
\begin{equation*}
u_{*}=\underset{u \in V}{\operatorname{argmin}} J_{M}(u) \tag{2.1.4}
\end{equation*}
\]

\section*{Remark 2.1.5 (Minimal regularity of membrane displacement).}

Smoothness required for \(u, f\) to render \(J_{M}(u)\) from (2.1.3) meaningful, cf. Sect. 1.3.2:
- \(u \in C_{\mathrm{pw}}^{1}(\Omega)\) is sufficient for displacement \(u\),
- \(\sigma, f \in C_{\mathrm{pw}}^{0}(\Omega)\) already allows integration.
2.1.2 Electrostatic fields
- metal body in metal box
- prescribed voltage drop body-box

Sought: \(\quad\) electric field \(\mathbf{E}: \Omega \mapsto \mathbb{R}^{3}\) in \(\Omega \subset \mathbb{R}^{3}\)
\[
\text { ( } \Omega \hat{=} \text { blue region } \quad \triangleright \text { ) }
\]



Recall the definition of the gradient of a function \(F: \Omega \subset \mathbb{R}^{d} \mapsto \mathbb{R}, F(\boldsymbol{x})=F\left(x_{1}, \ldots, x_{d}\right)\), see [19, Kap. 7], [14, Eq. 4.1.3]:
\[
\operatorname{grad} F(\boldsymbol{x}):=\left(\begin{array}{c}
\frac{\partial F}{\partial x_{1}} \\
\vdots \\
\frac{\partial F}{\partial x_{d}}
\end{array}\right) .
\]

Note: the gradient at \(x\) is a column vector of first partial derivatives,

Also in use (but not in this course) is the " \(\nabla\)-notation": \(\quad \nabla F(\boldsymbol{x}):=\operatorname{grad} F(\boldsymbol{x})\).

Electromagnetic field energy: (electrostatic setting)
\[
\begin{equation*}
J_{E}(\mathbf{E})=\frac{1}{2} \int_{\Omega}(\boldsymbol{\epsilon}(\boldsymbol{x}) \mathbf{E}(\boldsymbol{x})) \cdot \mathbf{E}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\frac{1}{2} \int_{\Omega}(\boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \boldsymbol{\operatorname { g r a d }} u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{2.1.7}
\end{equation*}
\]
where
\[
\boldsymbol{\epsilon}: \Omega \mapsto \mathbb{R}^{3,3} \hat{=} \text { dielectric tensor, } \boldsymbol{\epsilon}(\boldsymbol{x}) \text { symmetric, } \quad[\boldsymbol{\epsilon}]=\frac{\mathrm{As}}{V \mathrm{~m}} .
\]
- Symmetry of the dielectic tensor can always be assumed: if \(\boldsymbol{\epsilon}(\boldsymbol{x})\) was not symmetric, then replacing it with \(\frac{1}{2}\left(\boldsymbol{\epsilon}(\boldsymbol{x})^{T}+\boldsymbol{\epsilon}(\boldsymbol{x})\right)\) will yield exactly the same field energy.
- In terms of partial derivatives and tensor components \(\boldsymbol{\epsilon}(\boldsymbol{x})=\left(\epsilon_{i j}\right)_{i, j=1}^{3}\) we have
\[
(\boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \operatorname{grad} u(\boldsymbol{x})=\sum_{i=1}^{3} \sum_{j=1}^{3} \epsilon_{i j}(\boldsymbol{x}) \frac{\partial u}{\partial x_{i}}(\boldsymbol{x}) \frac{\partial u}{\partial x_{j}}(\boldsymbol{x})
\]

Fundamental property of dielectric tensor (for "normal" materials):
\[
\begin{equation*}
\exists 0<\epsilon^{-} \leq \epsilon^{+}<\infty: \quad \epsilon^{-}\|\mathbf{z}\|^{2} \leq(\boldsymbol{\epsilon}(\boldsymbol{x}) \mathbf{z}) \cdot \mathbf{z} \leq \epsilon^{+}\|\mathbf{z}\|^{2} \quad \forall \mathbf{z} \in \mathbb{R}^{3}, \forall \boldsymbol{x} \in \Omega \tag{2.1.8}
\end{equation*}
\]

Terminology: \(\quad(2.1 .8): \Leftrightarrow \epsilon\) is bounded and uniformly positive definite

Definition 2.1.9 (Uniformly positive (definite) tensor field).
An matrix-valued function \(\mathbf{A}: \Omega \mapsto \mathbb{R}^{n, n}, n \in \mathbb{N}\), is called uniformly positive definite, if
\[
\begin{equation*}
\exists \alpha^{-}>0: \quad(\mathbf{A}(\boldsymbol{x}) \mathbf{z}) \cdot \mathbf{z} \geq \alpha^{-}\|\mathbf{z}\|^{2} \quad \forall \mathbf{z} \in \mathbb{R}^{n} \tag{2.1.10}
\end{equation*}
\]
for almost all \(\boldsymbol{x} \in \Omega\), that is, only with the exception of a set of volume zero.

If \(\mathbf{A}(\boldsymbol{x})\) is symmetric, then we have the equivalence, cf. [14, Rem. 4.1.9],
\[
(2.1 .10) \Leftrightarrow \mathbf{A}(\boldsymbol{x}) \text { s.p.d. }\left(\rightarrow[14, \text { Def. 2.7.1] }) \quad \text { and } \quad \lambda_{\min }(\mathbf{A}(\boldsymbol{x})) \geq \alpha^{-} .\right.
\]

What is the set/space \(V\) of admissible electric scalar potentials ?

Recall: in electrostatics surfaces of conducting bodies are equipotential surfaces


In the situation of Fig. 47:
Boundary conditions
\[
\begin{align*}
& u=0 \quad \text { on } \Gamma_{0} \\
& u=U_{0} \quad \text { on } \Gamma_{1} \tag{2.1.11}
\end{align*}
\]
\(V=\left\{u \in C_{\mathrm{pw}}^{1}(\Omega), u\right.\) satisfies (2.1.11) \(\}\).
to render \(J_{E}(u)\) well defined, cf. Sect. [1.3.2.

Below, the notation \(u=U\) will designate the boundary conditions (2.1.11).

Equilibrium condition in electrostatic setting: minimal electromagnetic field energy
\[
\begin{equation*}
u_{*}=\underset{u \in V}{\operatorname{argmin}} J_{E}(u) \tag{2.1.12}
\end{equation*}
\]

\subsection*{2.1.3 Quadratic minimization problems}

Structure of minimization problems (equilibrium problems) encountered above:
\[
\begin{equation*}
\text { Sect. 2.1.1 }>u_{*}=\underset{\substack{u \in C_{\mathrm{pw}}^{1}(\Omega) \\ u=g \text { on } \partial \Omega}}{\operatorname{argmin}} \underbrace{\int_{\Omega}}_{=: J_{M}(u), \text { see }(2.1 .3)} \sigma(\boldsymbol{x})\|\operatorname{grad} u(\boldsymbol{x})\|^{2}-f(\boldsymbol{x}) u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{2.1.13}
\end{equation*}
\]

Sect. 2.1.2 \(>u_{*}=\underset{\substack{u \in C_{\mathrm{pw}}^{1}(\Omega) \\ u=U \text { on } \partial \Omega}}{\operatorname{argmin}} \underbrace{\frac{1}{2} \int}_{=: J_{E}(u), \text { see (2.1.7) }}(\boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \operatorname{grad} u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}\).

Evidently, (2.1.13) and (2.1.14) share a common structure. It is the same structure we have already come across in the minimization problem (1.4.2) for the taut string model in Sect. 1.4 .

Definition 2.1.15 (Quadratic functional).
A quadratic functional on a real vector space \(V_{0}\) is a mapping \(J: V_{0} \mapsto \mathbb{R}\) of the form
\[
\begin{equation*}
J(u):=\frac{1}{2} \mathrm{a}(u, u)+\ell(u)+c, \quad u \in V_{0} \tag{2.1.16}
\end{equation*}
\]
where a : \(V_{0} \times V_{0} \mapsto \mathbb{R}\) is a symmetric bilinear form \(\left(\rightarrow\right.\) Def. 1.3.11), \(\ell: V_{0} \mapsto \mathbb{R}\) allinear form, and \(c \in \mathbb{R}\).

Recall: A bilinear form a : \(V_{0} \times V_{0} \mapsto \mathbb{R}\) is symmetric, if
\[
\begin{equation*}
\mathrm{a}(u, v)=\mathrm{a}(v, u) \quad \forall u, v \in V_{0} \tag{2.1.17}
\end{equation*}
\]

Definition 2.1.18 (Quadratic minimization problem).
A minimization problem
\[
w_{*}=\underset{w \in V_{0}}{\operatorname{argmin}} J(w)
\]
is called a quadratic minimization problem, if \(J\) is a quadratic functional on a real vector space \(V_{0}\).

Hey, both (2.1.13) and (2.1.14) are no genuine quadratic minimization problems, because they are posed over affine spaces (= "vector space + offset function", cf. (1.3.12))!
"Offset function trick", c.f. (1.3.14), resolves the mismatch: for quadratic form \(J\) from (2.1.16)
\[
\begin{aligned}
J\left(u+u_{0}\right) & =\frac{1}{2} \mathrm{a}\left(u+u_{0}, u+u_{0}\right)+\ell\left(u+u_{0}\right)+c \\
& =\frac{1}{2} \mathrm{a}(u, u)+\underbrace{\mathrm{a}\left(u, u_{0}\right)+\ell(u)}_{=: \widetilde{\ell}(u)}+\underbrace{\ell\left(u_{0}\right)+c}_{=: \widetilde{c}}=: \widetilde{J}(u),
\end{aligned}
\]
due to the bilinearity of a and the linearity of \(\ell\).
\[
\begin{equation*}
>\underset{u \in u_{0}+V_{0}}{\operatorname{argmin}} J(u)=u_{0}+\underset{w \in V_{0}}{\operatorname{argmin}} J\left(w+u_{0}\right)=u_{0}+\underset{w \in V_{0}}{\operatorname{argmin}} \widetilde{J}(w) . \tag{2.1.19}
\end{equation*}
\]

Both (2.1.13) and (2.1.14) involve quadratic functionals. To see this apply the "offset function trick" from (2.1.19) in this concrete case: write \(u=u_{0}+w\) with an offset function \(u_{0}\) that satisfies the boundary conditions and \(w \in C_{0, \mathrm{pw}}^{1}(\Omega)\), cf. (1.3.14).
(2.1.13) \(\Leftrightarrow\) quadratic minimization problem \((\rightarrow\) Def. 2.1.18) with, cf. (2.1.16),
\[
\begin{equation*}
\mathrm{a}(w, v)=\int_{\Omega} \sigma(\boldsymbol{x}) \operatorname{grad} w(\boldsymbol{x}) \cdot \boldsymbol{\operatorname { g r a d }} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \ell(v):=\mathrm{a}\left(u_{0}, v\right)-\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} . \tag{2.1.20}
\end{equation*}
\]
(2.1.14) \(\Leftrightarrow\) quadratic minimization problem \((\rightarrow\) Def. 2.1.18) with, cf. (2.1.16),
\[
\begin{equation*}
\mathrm{a}(w, v)=\int_{\Omega} \operatorname{grad} w(\boldsymbol{x})^{T} \boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \ell(v):=\mathrm{a}\left(u_{0}, v\right) . \tag{2.1.21}
\end{equation*}
\]

In both cases: \(\quad V_{0}=C_{0, \mathrm{pw}}^{1}(\Omega)\)

Can we conclude existence and uniqueness of solutions of the minimization problems (2.1.13) and (2.1.14) ?

Let us first tackle the issue of uniqueness:

Definition 2.1.22 (Positive definite bilinear form).
A (symmetric) bilinear form a : \(V_{0} \times V_{0} \mapsto \mathbb{R}\) on a real vector space \(V_{0}\) is positive definite, if
\[
u \in V_{0} \backslash\{0\} \Longleftrightarrow \mathrm{a}(u, u)>0
\]

For the special case \(V_{0}=\mathbb{R}^{n}\) any matrix \(\mathbf{A} \in \mathbb{R}^{n, n}\) induces a bilinear form via
\[
\begin{equation*}
\mathrm{a}(\mathbf{u}, \mathbf{v}):=\mathbf{u}^{T} \mathbf{A} \mathbf{v}=(\mathbf{A} \mathbf{v}) \cdot \mathbf{u}, \quad \mathbf{u}, \mathbf{v} \in \mathbb{R}^{n} \tag{2.1.23}
\end{equation*}
\]

This connects the concept of a symmetric positive definite bilinear form to the more familiar concept of s.p.d. matrices \((\rightarrow\) [14, Def. 2.7.1] \()\)

A s.p.d. \(\Leftrightarrow\) a from (2.1.23) is symmetric, positive definite.

Definition 2.1.24 (Energy norm). cf. [14, Def. [4.1.1]]
A symmetric positive definite bilinear form a : \(V_{0} \times V_{0} \mapsto \mathbb{R}(\rightarrow\) Def. [2.1.22) induces the energy norm
\[
\|u\|_{\mathrm{a}}:=(\mathrm{a}(u, u))^{1 / 2} .
\]

Origin of the term "energy norm" is clear from the connection with potential energy (e.g., in membrane model and in the case of electrostatic fields, see (2.1.20), (2.1.21)), see above.

Next, we have to verify the norm axioms (N1), (N2), and (N3) from Def. 1.6.3:
- (N1) is immediate from Def. 2.1.22,
- (N2) follows from bilinearity of a,
- (N3) is a consequence of the Cauchy-Schwarz inequality: for any symmetric positive definite bilinear form
\[
\begin{equation*}
|\mathrm{a}(u, v)| \leq(\mathrm{a}(u, u))^{1 / 2}(\mathrm{a}(v, v))^{1 / 2} \tag{2.1.25}
\end{equation*}
\]

Example 2.1.26 (Quadratic functionals with positive definite bilinear form in 2D).

Analogy between quadratic functionals with positive definite bilinear form and parabolas:
\[
\begin{array}{cc}
J(v) & =\frac{1}{2} a(v, v)-\ell(v) \\
\uparrow & \uparrow \\
f(x) & =\frac{1}{2} a x^{2}+b x
\end{array}
\]
with \(a>0\) !
graph of quadratic functional \(\mathbb{R}^{2} \mapsto \mathbb{R}\)


Theorem 2.1.27 (Uniqueness of solutions of quadratic minimization problems). If the bilinear form a : \(V_{0} \times V_{0} \mapsto \mathbb{R}\) is positive definite ( \(\rightarrow\) Def. [2.1.22), then any solution of
\[
u_{*}=\underset{u \in V_{0}}{\operatorname{argmin}} J(u) \quad, \quad J(u)=\frac{1}{2} \mathrm{a}(u, u)+\ell(u)+c,
\]
is unique for any linear form \(\ell: V_{0} \mapsto \mathbb{R}\).

Proof. As in the proof of [14, Lemma 4.1.2], straightforward computations show
\[
J(u)-J\left(u_{*}\right)=\frac{1}{2}\left\|u-u_{*}\right\|_{a}^{2} .
\]

The assertion of the theorem follows from norm axiom (N1), wich holds for the energy norm.

Under the assumptions of the theorem, the quadratic functional \(J\) is convex, which is easily seen by considering the second derivative of the function
\[
\varphi(t):=J(u+t v) \Rightarrow \ddot{\varphi}(t)=\mathrm{a}(v, v)>0 \quad \text {, if } v \neq 0 .
\]
\[
? \text { Is a }(u, v):=\int_{\Omega}(\boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \text { positive definite on } V_{0}:=C_{0, \mathrm{pw}}^{1}(\Omega) \text { ? }
\]
(1): Since \(\epsilon\) bounded and uniformly positive definite ( \(\rightarrow\) Def. 2.1.9, (2.1.8))
\[
\begin{equation*}
\epsilon^{-} \int_{\Omega}\|\operatorname{grad} u(\boldsymbol{x})\|^{2} \mathrm{~d} \boldsymbol{x} \leq \mathrm{a}(u, u) \leq \epsilon^{+} \int_{\Omega}\|\boldsymbol{\operatorname { g r a d }} u(\boldsymbol{x})\|^{2} \mathrm{~d} \boldsymbol{x} \quad \forall u . \tag{2.1.28}
\end{equation*}
\]

Hence, it is sufficient to examine the simpler bilinear form
\[
\begin{equation*}
\mathrm{d}(u, v):=\int_{\Omega} \operatorname{grad} u(\boldsymbol{x}) \cdot \boldsymbol{\operatorname { g r a d }} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad u, v \in C_{0, \mathrm{pw}}^{1}(\Omega) . \tag{2.1.29}
\end{equation*}
\]
(2): Obviously

Observe:
\[
\begin{gathered}
\mathrm{d}(u, u)=0 \Rightarrow \operatorname{grad} u=0 \Rightarrow u \equiv \text { const in } \Omega \\
u=0 \text { on } \partial \Omega \quad \Rightarrow \quad u=0
\end{gathered}
\]

Zero boundary conditions are essential; otherwise one could add constants to the arguments of a without changing its value.

\section*{What about existence?}

In a finite dimensional setting this is not a moot point, see Fig. 50 for a "visual proof".

However, infinite dimensional spaces hold a lot of surprises and existence of solutions of quadratic minimization problems becomes a subtle issue, even if the bilinear form is positive definite.

Example 2.1.30 (Non-existence of solutions of positive definite quadratic minimization problem).

We consider the quadratic functional
\[
\begin{gathered}
J(u):=\int_{0}^{1} \frac{1}{2} u^{2}(x)-u(x) \mathrm{d} x=\frac{1}{2} \int_{0}^{1}(u(\xi)-1)^{2}-1 \mathrm{~d} x, \\
V_{0}:=C_{0, \mathrm{pw}}^{0}([0,1])
\end{gathered}
\]
on the space

It fits the abstract form from Def. 2.1.15 with
\[
\mathrm{a}(u, v)=\int_{0}^{1} u(x) v(x) \mathrm{d} x \quad, \quad \ell(v)=\int_{0}^{1} v(x) \mathrm{d} x .
\]

The function \(\varphi(\xi)=\frac{1}{2} \xi^{2}-\xi=\frac{1}{2} \xi(1-2 \xi)=\frac{1}{2}(\xi-1)^{2}-\frac{1}{2}\) has a global minimum at \(\xi=1\) and \(\varphi(\xi)-\varphi(1)=\frac{1}{2}(\xi-1)^{2}\).
\[
|\eta-1|>|\xi-1| \Rightarrow \varphi(\eta)>\varphi(\xi) .
\]

Assume that \(u \in V_{0}\) is a global minimizer of \(J\). Then
\[
\begin{gathered}
w(x):=\min \{1,2 \max \{u(x), 0\}\}, \\
0 \leq x \leq 1
\end{gathered}
\]
is another function \(\in C_{0, \mathrm{pw}}^{0}([0,1])\), which satisfies
\[
\begin{aligned}
u(x) \neq 1 & \Rightarrow|w(x)-1|<|u(x)-1| \\
& \Rightarrow J(w)<J(u)!
\end{aligned}
\]


Hence, whenever we think we have found a minimizer \(\in C_{0, \mathrm{pw}}^{0}([0,1])\), the formula provides another eligible function for which the value of the functional is even smaller!

The problem in this example seems to be that we have chosen "too small" a function space, c.f. Sect. 2.2 below.

\subsection*{2.2 Sobolev spaces}

Mathematical theory is much concerned about proving existence of suitably defined solutions for minimization problems. As demonstrated in Ex. 2.1.30 this can encounter profound problems.

In this section we will learn about a class of abstract function spaces that has been devised to deal with the question of existence of solutions of quadratic minimization problems like (2.1.13) and (2.1.14). We can only catch of glimps of the considerations; thorough investigation is done in the mathemtical field of functional analysis.

Consider a quadratic minimization problem \((\rightarrow\) Def. 2.1.18) for a quadratic functional \((\rightarrow\) Def. 2.1.15)
\[
J: V_{0} \mapsto \mathbb{R} \quad, \quad J(u)=\frac{1}{2} \mathrm{a}(u, u)+\ell(u)+c,
\]
based on a symmetric positive definite (s.p.d.) bilinear form a \(\rightarrow\) Def. 2.1.22.
It is clear that \(J\left(V_{0}\right)\) is bounded from below, if
\[
\begin{equation*}
\exists C>0: \quad|\ell(u)| \leq C\|u\|_{\mathrm{a}} \quad \forall u \in V_{0}, \tag{2.2.1}
\end{equation*}
\]
where \(\|\cdot\|_{a}\) is the energy norm induced by a, see Def. 2.1.24:
\[
J(u)=\frac{1}{2} \mathrm{a}(u, u)-\ell(u) \geq \frac{1}{2}\|u\|_{a}^{2}-C\|u\|_{\mathrm{a}} \geq-\frac{1}{2} C^{2} .
\]

Remark: In mathematical terms (2.2.1) means that \(\ell\) is continuous w.r.t. \(\|\cdot\|_{a}\)

Under these conditions, the quadratic minimization problem for \(J\) should have a (unique, due to Thm. 2.1.27) solution, if it is considered on a space that is "large enough".

Idea: for a quadratic minimization problem \((\rightarrow\) Def. 2.1.18) with
- symmetric positive definite (s.p.d.) bilinear form a,
- a linear form \(\ell\) that is continuous w.r.t. \(\|\cdot\|_{a}\), see (2.2.1), posed over a function space follow the advice: consider it on the largest space of functions for which a still makes sense !
(and which complies with boundary conditions)
\[
\text { Choose } \quad \text { " } V_{0}:=\{\text { functions } v \text { on } \Omega: \mathrm{a}(v, v)<\infty\} \text { " }
\]

Example 2.2.2 (Space of square integrable functions). \(\rightarrow\) Ex. 2.1.30

Quadratic functional (related to \(J\) from Ex. 2.1.30):
\[
\begin{equation*}
J(u):=\int_{\Omega} \frac{1}{2}|u(\boldsymbol{x})|^{2}-u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \cdot \quad\left(u \in C_{\mathrm{pw}}^{0}(\Omega) ?\right) \tag{2.2.3}
\end{equation*}
\]

We follow the above recipe, which suggests to choose
\[
\begin{equation*}
\nabla \quad V_{0}:=\left\{v: \Omega \mapsto \mathbb{R} \text { integrable: } \int_{\Omega}|v(\boldsymbol{x})|^{2} \mathrm{~d} \boldsymbol{x}<\infty\right\} \tag{2.2.4}
\end{equation*}
\]

Definition 2.2.5 (Space \(L^{2}(\Omega)\) ).
The function space defined in (2.2.4) is the space of square-integrable functions on \(\Omega\) and denoted by \(L^{2}(\Omega)\).

It is a normed space with norm
\[
\left(\|v\|_{0}:=\right)\|v\|_{L^{2}(\Omega)}:=\left(\int_{\Omega}|v(\boldsymbol{x})|^{2} \mathrm{~d} \boldsymbol{x}\right)^{1 / 2} .
\]

Notation: \(\int^{2}(\Omega) \leftarrow\) superscript " 2 ", because square in the definition of norm \(\|\cdot\|_{0}\)

Note: obviously \(C_{\mathrm{pw}}^{0}(\Omega) \subset L^{2}(\Omega)\).

Remark 2.2.6 (Boundary conditions and \(L^{2}(\Omega)\) ).
Ex. 2.1.30 vs. Ex. 2.2.2: Crying foul! (boundary conditions \(u(0)=u(1)=0\) in Ex. 2.1.30, but none in Ex. 2.2.2!)

Consider \(u \in C^{0}([0,1])\) and try to impose boundary values \(u_{0}, u_{1} \in \mathbb{R}\) by "altering" \(u\) :
\[
\widetilde{u}(x)= \begin{cases}u(x)+(1-n x)\left(u_{0}-u(0)\right) & , \text { for } 0 \leq x \leq \frac{1}{n} \\ u(x) & , \text { for } \frac{1}{n}<x<1-\frac{1}{n} \\ u(x)-n\left(1-\frac{1}{n}-x\right)\left(u_{1}-u(1)\right) & , \text { for } 1-\frac{1}{n}<x \leq 1\end{cases}
\]
\[
\widetilde{u}(0)=u_{0}, \quad \widetilde{u}(1)=u_{1} \quad, \quad\|\widetilde{u}-u\|_{L^{2}(0,1)}^{2}=\frac{1}{3 n}\left(u_{0}+u_{1}-u(0)-u(1)\right) \rightarrow 0 \quad \text { for } n \rightarrow \infty
\]

Tiny perturbations of a function \(u \in L^{2}(] 0,1[)\) (in terms of changing its \(L^{2}\)-norm) can make it attain any value at \(x=0\) and \(x=1\).

Boundary conditions cannot be imposed in \(L^{2}(\Omega)\) !

Remark 2.2.7 (Quadratic minimization problems on Hilbert spaces).

On the function space \(V_{0}=L^{2}(\Omega)\) the quadratic minimization problem for the quadratic functional from (2.2.3) can be shown to possess a solution. Instrumental in the proof is the fact that \(L^{2}(\Omega)\) is a Hilbert space, that is, a complete normed space.

This theory is beyond the scope of this course. For more explanations see [10, Ch. 5 and Sect. 6.2].

Now consider a quadratic minimization problem for the functional, c.f. (2.1.13),
\[
\begin{equation*}
J(u):=\int_{\Omega} \frac{1}{2}\|\operatorname{grad} u\|^{2}-f(\boldsymbol{x}) u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad\left(u \in C_{0, \mathrm{pw}}^{1}(\Omega) ?\right) \tag{2.2.8}
\end{equation*}
\]

What is the natural function space for this minimization problem? Again, we follow the above recipe, which suggests that we choose
\[
\begin{equation*}
\text { - } \quad V_{0}:=\left\{v: \Omega \mapsto \mathbb{R} \text { integrable: } v=0 \text { on } \partial \Omega, \int_{\Omega}|\operatorname{grad} v(\boldsymbol{x})|^{2} \mathrm{~d} \boldsymbol{x}<\infty\right\} \tag{2.2.9}
\end{equation*}
\]

Definition 2.2.10 (Sobolev space \(H_{0}^{1}(\Omega)\) ).
The space defined in (2.2.9) is the Sobolev space \(H_{0}^{1}(\Omega)\) with norm
\[
|v|_{H^{1}(\Omega)}:=\left(\int_{\Omega}\|\boldsymbol{\operatorname { r a d }} v\|^{2} \mathrm{~d} \boldsymbol{x}\right)^{1 / 2}
\]

Note: \(\quad|\cdot|_{H^{1}(\Omega)}\) is the energy norm ( \(\rightarrow\) Def. 2.1.24) associated with the bilinear form in the quadratic functional \(J\) from (2.2.8), cf. (2.1.16).
- See Rem. 1.6 .7 for a discussion of the relevance of the energy norm.

Remark 2.2.11 (Boundary conditions in \(H_{0}^{1}(\Omega)\) ).
Rem. 2.2.6 explained why imposing boundary conditions on functions in \(L^{2}(\Omega)\) does not make sense.

Yet, in (2.2.9) zero boundary conditions are required for \(v\) !

Discussion parallel to Rem. [2.2.6, but now with the norm \(|\cdot|_{H^{1}(\Omega)}\) in mind: Consider \(u \in C^{1}([0,1])\) and try to impose boundary values \(u_{0}, u_{1} \in \mathbb{R}\) by "altering" \(u\) :
\[
\widetilde{u}(x)= \begin{cases}u(x)+(1-n x)\left(u_{0}-u(0)\right) & , \text { for } 0 \leq x \leq \frac{1}{n} \\ u(x) & , \text { for } \frac{1}{n}<x<1-\frac{1}{n} \\ u(x)-n\left(1-\frac{1}{n}-x\right)\left(u_{1}-u(1)\right) & , \text { for } 1-\frac{1}{n}<x \leq 1\end{cases}
\]
\(\widetilde{u}(0)=u_{0}, \widetilde{u}(1)=u_{1} \quad\), BUT \(\quad|\widetilde{u}-u|_{\left.H^{1}(0,1]\right)}^{2}=n\left(u_{0}+u_{1}-u(0)-u(1)\right) \rightarrow \infty\) for \(n \rightarrow \infty\)
Enforcing boundary values at \(x=0\) and \(x=1\) cannot be done without significantly changing the "energy" of the function.

However, the solutions of the quadratic minimization problems (2.1.13), (2.1.14) are to satisfy nonzero boundary conditions. They are sought in a larger Sobolev space, which arises from \(H_{0}^{1}(\Omega)\) by dispensing with the requirement " \(v=0\) on \(\partial \Omega\) ".

Definition 2.2.12 (Sobolev space \(H^{1}(\Omega)\) ).
The Sobolev space
\[
H^{1}(\Omega):=\left\{v: \Omega \mapsto \mathbb{R} \text { integrable: } \int_{\Omega}|\operatorname{grad} v(\boldsymbol{x})|^{2} \mathrm{~d} \boldsymbol{x}<\infty\right\}
\]
is a normed function space with norm
\[
\|v\|_{H^{1}(\Omega)}^{2}:=\|v\|_{0}^{2}+|v|_{H^{1}(\Omega)}^{2} .
\]
\(H^{1}(\Omega)\) is the "maximal function space" on which both \(J_{M}\) and \(J_{E}\) from (2.1.13), (2.1.14) are defined.
Remark 2.2.13 \(\left(|\cdot|_{H^{1}(\Omega)}\right.\) - seminorm \()\).
Note that \(|\cdot|_{H^{1}(\Omega)}\) alone is no longer a norm on \(H^{1}(\Omega)\), because for \(v \equiv\) const obviously \(|v|_{H^{1}(\Omega)}=\) 0 , which violates (N1).

In the introduction to this section we saw that a quadratic functional with s.p.d. bilinear form a is bounded from below, if its linear form \(\ell\) satisfies the continuity (2.2.1). Now, we discuss this for the quadratic functional \(J\) from (2.2.8) in lieu of \(J_{M}\) and \(J_{E}\).

The quadratic functional \(J\) from (2.2.8) involves the linear form
\[
\begin{equation*}
\ell(u):=\int_{\Omega} f(\boldsymbol{x}) u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} . \tag{2.2.14}
\end{equation*}
\]
\(f \hat{=}\) load function \(\quad>\quad f \in C_{\mathrm{pw}}^{0}(\Omega)\) should be admitted.

Crucial question:
\[
\begin{aligned}
& \text { Is } \ell \text { from (2.2.14) continous on } H_{0}^{1}(\Omega) \\
& \hat{\Downarrow} \quad \text { (c.f. (2.2.1) }) \\
\exists C>0: & |\ell(u)| \leq C|u|_{H^{1}(\Omega)} \quad \forall u \in H_{0}^{1}(\Omega) ?
\end{aligned}
\]

To begin with, we use the Cauchy-Schwarz inequality (2.1.25) for itegrals, which implies
\[
\begin{equation*}
|\ell(u)|=\left|\int_{\Omega} f(\boldsymbol{x}) u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}\right| \leq\left(\int_{\Omega}|f(\boldsymbol{x})|^{2} \mathrm{~d} \boldsymbol{x}\right)^{1 / 2}\left(\int_{\Omega}|u(\boldsymbol{x})|^{2} \mathrm{~d} \boldsymbol{x}\right)^{1 / 2}=\underbrace{\|f\|_{0}}_{<\infty}\|u\|_{0} . \tag{2.2.15}
\end{equation*}
\]

This reduces the problem to bounding \(\|u\|_{0}\) in terms of \(|u|_{H^{1}(\Omega)}\).

Theorem 2.2.16 (First Poincaré-Friedrichs inequality). If \(\Omega \subset \mathbb{R}^{d}, d \in \mathbb{N}\), is bounded, then
\[
\|u\|_{0} \leq \operatorname{diam}(\Omega)\|\operatorname{grad} u\|_{0} \quad \forall u \in H_{0}^{1}(\Omega)
\]

Proof. The proof employs a powerful technique in the theoretical treatment of function spaces: exploit density of smooth functions (which, by itself, is a deep result).

It boils down to the insight:

In order to establish inequalities between continuous functionals on Sobolev spaces of functions on \(\Omega\) it often suffices to show the target inequality for smooth functions in \(C_{0}^{\infty}(\Omega)\) or \(C^{\infty}(\Omega)\), respectively.
notation: \(C_{0}^{\infty}(\Omega) \hat{=}\) smooth functions with (compact) support ( \(\rightarrow\) Def. 1.5.53) inside \(\Omega\)

In the concrete case (note the zero boundary values inherent in the definition of \(H_{0}^{1}(\Omega)\) ) we have to establish the first Poincaré-Friedrichs inequality for functions \(u \in C_{0}^{\infty}(\Omega)\) only.

For the sake of simplicity the proof is elaborated for \(d=1, \Omega=[0,1]\). It merely employs elementary results from calculus throughout, namely the Cauchy-Schwarz inequality (2.2.15) and the fundamental theorem of calculus [19, Satz 6.3.4], see (2.4.1):
\[
\begin{gathered}
\forall u \in C_{0}^{\infty}([0,1]): \quad u(x)=\underbrace{u(0)}_{=0}+\int_{0}^{x} \frac{d u}{d x}(\tau) \mathrm{d} \tau, 0 \leq x \leq 1 . \\
\|u\|_{0}^{2}=\int_{0}^{1}\left|\int_{0}^{x} \frac{d u}{d x}(\tau) \mathrm{d} \tau\right|^{2} \mathrm{~d} x \stackrel{(2.2 .15)}{\leq} \int_{0}^{1}\left(\int_{0}^{x} 1 \mathrm{~d} \tau \cdot \int_{0}^{x}\left|\frac{d u}{d x}(\tau)\right|^{2} \mathrm{~d} \tau\right) \mathrm{d} x \leq\left\|\frac{d u}{d x}\right\|_{0}^{2} .
\end{gathered}
\]

Taking the square root finished the proof in 1D.

If \(f \in L^{2}(\Omega)\), then \(\ell(u)=\int_{\Omega} f u \mathrm{~d} \boldsymbol{x}\) is a continuous linear functional on \(H_{0}^{1}(\Omega)\).

Here "continuity" has to be read as
\[
\begin{equation*}
\exists C>0: \quad|\ell(u)| \leq C|u|_{H^{1}(\Omega)} \quad \forall u \in H_{0}^{1}(\Omega), \tag{2.2.1}
\end{equation*}
\]

Most concrete results about Sobolev spaces boil down to relationships between their norms. The spaces themselves remain intangible, but the norms are very concrete and can be computed and manipulated as demonstrated above.

Do not be afraid of Sobolev spaces!
It is only the norms that matter for us, the 'spaces" are irrelevant!

Sobolev spaces = "concept of convenience": the minimization problem seeks its own function space.


Then, why do you bother me with these uncanny "Sobolev spaces" after all ?
- Anyone involved in CSE must be able to understand mathematical publications on numerical methods for PDEs, Those regularly resort to the concept of Sobolev spaces to express their findings.
- The statement that a function belongs to a certain Sobolev space can be regarded as a concise way of describing quite a few of its essential properties.

Let us elucidate the second point:

Theorem 2.2.17 (Compatibility conditions for piecewise smooth functions in \(\left.H^{1}(\Omega)\right)\).
Let \(\Omega\) be partitioned into sub-domains \(\Omega_{1}\) and \(\Omega_{2}\). A function that is continuously differentiable in both sub-domains and continuous up to their boundary, belongs to \(H^{1}(\Omega)\), if and only if \(u\) is continuous on \(\Omega\).


The proof of this theorem requires the notion of weak derivatives that will not be introduced in this course.

Example 2.2.18 (Piecewise linear functions (not) in \(H_{0}^{1}(] 0,1[)\) ).


\[
u \in H_{0}^{1}(] 0,1[)
\]
\[
u \notin H_{0}^{1}(] 0,1[)
\]

From Thm. 2.2.17 we conclude
\[
C_{\mathrm{pw}}^{1}([a, b]) \subset H^{1}(] a, b[) \text { and } C_{0, \mathrm{pw}}^{1}([a, b]) \subset H_{0}^{1}(] a, b[)
\]

Thm. 2.2.17 provides a simple recipe for computing the norm \(|u|_{H^{1}(\Omega)}\) of a piecewise \(C^{1}\)-function that is continuous in all of \(\Omega\).

Corollary 2.2.19 ( \(H^{1}\)-norm of piecewise smooth functions).
Under the assumptions of Thm. 2.2.17 we have for a continuous, piecewise smooth function \(u \in C^{0}(\Omega)\)
\[
|u|_{H^{1}(\Omega)}^{2}=|u|_{H^{1}\left(\Omega_{1}\right)}^{2}+|u|_{H^{1}\left(\Omega_{2}\right)}^{2}=\int_{\Omega_{1}}|\operatorname{grad} u(\boldsymbol{x})|^{2} \mathrm{~d} \boldsymbol{x}+\int_{\Omega_{2}}|\operatorname{grad} u(\boldsymbol{x})|^{2} \mathrm{~d} \boldsymbol{x} .
\]

Actually, this is not new, see Sect. [1.3.2: earlier we already evaluated the elastic energy functionals (1.2.16), (1.4.2) for functions in \(C_{\mathrm{pw}}^{1}([0,1])\) by "piecewise differentiation" followed by integration of the resulting discontinuous function.

Example 2.2.20 (Non-differentiable function in \(H_{0}^{1}(] 0,1[)\) ).
\[
d=1, \Omega=] 0,1[:
\]
\[
\text { "Tent function' } \quad u(x)= \begin{cases}2 x & \text { for } 0<x<1 / 2 \\ 2(1-x) & \text { for } 1 / 2<x<1\end{cases}
\]


Compute
\[
|u|_{H^{1}(\Omega)}^{2}=\int_{0}^{1}\left|u^{\prime}(x)\right|^{2} \mathrm{~d} x=4<\infty .
\]

Example for a \(u \in H_{0}^{1}(] 0,1[)\), which is not globally differentiable.

If you are still feeling uneasy when dealing with Sobolev spaces, do not hesitate to think of the following replacements
\[
L^{2}(\Omega) \quad \rightarrow \quad C_{\mathrm{pw}}^{0}(\Omega) \quad, \quad H_{0}^{1}(\Omega) \quad \rightarrow \quad C_{0, \mathrm{pw}}^{1}(\Omega)
\]

\subsection*{2.3 Variational formulations}

\subsection*{2.3.1 Linear variational problems}

Recall: derivation of variational formulation (1.4.3) from taut string minimization problem (1.4.2) in Sect. 1.4.

No surprise: \(\quad(2.1 .13) \&(2.1 .14)\) are amenable to the same approach:

Calculus of variations \(\rightarrow\) Sect. 1.3.1: "Directionale derivative" of \(J_{E}\) :
\[
\begin{aligned}
J_{E}(u+t v)-J_{E}(u) & =\frac{1}{2} \int_{\Omega}(\boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{grad}(u+t v)) \cdot \operatorname{grad}(u+t v) \mathrm{d} \boldsymbol{x} \\
& \stackrel{(*)}{=} \frac{1}{2} \int_{\Omega}(\boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{grad} u) \cdot \operatorname{grad} u+2 t(\boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{grad} u) \cdot \operatorname{grad} v+ \\
& \left.=t \int_{\Omega}^{2}(\boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{xrad}) \operatorname{grad} u\right) \cdot \operatorname{grad} v-\left(\boldsymbol{\operatorname { g r a d } ( \boldsymbol { x } ) \operatorname { g r a d } v ) \cdot \operatorname { g r a d } u \mathrm { d } \boldsymbol { x } + O ( t ^ { 2 } ) \quad \text { for } t \rightarrow 0 .}\right.
\end{aligned}
\]
\((*):\) due to the symmetry of \(\boldsymbol{\epsilon}(\boldsymbol{x}):(\epsilon \operatorname{grad} u) \cdot \operatorname{grad} v=(\epsilon \operatorname{grad} v) \cdot \operatorname{grad} u!\)
\[
>\lim _{t \rightarrow 0} \frac{J_{E}(u+t v)-J_{E}(u)}{t}=\int_{\Omega}(\boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \boldsymbol{\operatorname { g r a d }} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x},
\]
for perturbation functions
\[
v \in H_{0}^{1}(\Omega), \quad \text { see Def. 2.2.10 }
\]

The requirement \(v=0\) on \(\partial \Omega\) reflects the fact that we may not perturb \(u\) on the boundary, lest the prescribed boundary values be violated.

As explained in Sect. 1.3.1 ("idea of calculus of variations"), this leads to the following variational problem equivalent to (2.1.14)
\[
\begin{align*}
& u \in H^{1}(\Omega),  \tag{2.3.1}\\
& u=U \text { on } \partial \Omega
\end{align*} \quad \int_{\Omega}(\boldsymbol{\epsilon}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0 \quad \forall v \in H_{0}^{1}(\Omega) .
\]

For the membrane problem (2.1.13) we arrive at
\[
\begin{align*}
& u \in H^{1}(\Omega),  \tag{2.3.2}\\
& u=g \text { on } \partial \Omega
\end{align*} \quad \int_{\Omega} \sigma(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \quad \forall v \in H_{0}^{1}(\Omega)
\]

Both, (2.3.1) and (2.3.2) have a common structure, expressed in the following variational problem:

Variational formulation of 2nd-order elliptic (Dirichlet) minimization problems:
\(u \in H^{1}(\Omega),: \quad \int_{\Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega)\).

Symmetric uniformly positive definite material tensor \(\boldsymbol{\alpha}: \Omega \mapsto \mathbb{R}^{d, d}\)

The attribute "Dirichlet" refers to a setting, in which the function \(u\) is prescribed on the entire boundary.

Some more explanations and terminology:
- \(\Omega \subset \mathbb{R}^{d}, d=2,3 \hat{=}\) (spatial) domain, bounded, piecewise smooth boundary
- \(g \in C^{0}(\partial \Omega) \hat{=}\) boundary values (Dirichlet data)
- \(f \in C_{\mathrm{pw}}^{0}(\Omega) \hat{=}\) loading function, source function
- \(\boldsymbol{\alpha}: \Omega \quad \mapsto \quad \mathbb{R}^{d, d} \hat{=}\) material tensor, stiffness function, diffusion coefficient (uniformly positive definite, bounded \(\rightarrow\) Def. 2.1.9)
\[
\begin{equation*}
\exists 0<\alpha^{-} \leq \alpha^{+}: \quad \alpha^{-}\|\boldsymbol{z}\|^{2} \leq(\boldsymbol{\alpha}(\boldsymbol{x}) \boldsymbol{z}) \cdot \boldsymbol{z} \leq \alpha^{+}\|\boldsymbol{z}\|^{2} \quad \forall \boldsymbol{z} \in \mathbb{R}^{d} \tag{2.3.4}
\end{equation*}
\]
for almost all \(\boldsymbol{x} \in \Omega\).

Rewriting (2.3.3), using offset function \(u_{0}\) with \(u_{0}=g\) on \(\partial \Omega\), cf. (2.1.19),
\[
\begin{align*}
& w \in H_{0}^{1}(\Omega): \quad \int_{\Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} w(\boldsymbol{x})) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \\
&=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x})-\left(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u_{0}(\boldsymbol{x})\right) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega) \tag{2.3.5}
\end{align*}
\]
(2.3.5) is a linear variational problem, see Rem. 1.4.4

We can lift the above discussion to an abstract level:
Variational formulation of a quadratic minimization problem ( \(\rightarrow\) Def. 2.1.18)
\[
J(u):=\frac{1}{2} \mathbf{a}(u, u)+\ell(u)+c \Rightarrow J(u+t v)=J(u)+t(\mathbf{a}(u, v)+\ell(v))+\frac{1}{2} t^{2} \mathbf{a}(v, v),
\]
```

for all }u,v\in\mp@subsup{V}{0}{

```

For a quadratic functional \(\left(\rightarrow\right.\) Def. 2.1.18) on real vector space \(V_{0}\)
\[
\begin{equation*}
\lim _{t \rightarrow 0} \frac{J(u+t v)-J(u)}{t}=\mathrm{a}(u, v)+\ell(v) . \tag{2.3.6}
\end{equation*}
\]

Linear variational problem \((\rightarrow\) Rem. 1.4.4) arising from quadratic minimization problemfor functional \(J(u):=\frac{1}{2} \mathrm{a}(u, u)+\ell(u)+c\) :
\[
\begin{equation*}
w \in V_{0}: \quad \mathrm{a}(w, v)+\ell(v)=0 \quad \forall v \in V_{0} . \tag{2.3.7}
\end{equation*}
\]

Concretely, for (2.3.5): \(\quad V_{0}=H_{0}^{1}(\Omega)\) and
\[
\begin{gather*}
\mathrm{a}(u, v)=\int_{\Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} w(\boldsymbol{x})) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x},  \tag{2.3.8}\\
\ell(v)=-\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x})+\left(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u_{0}(\boldsymbol{x})\right) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} . \tag{2.3.9}
\end{gather*}
\]

Notion of stability for a (linear) variational problem (2.3.7):
\[
\text { Lipschitz continuity of (linear) mapping data } \ell \quad \mapsto \text { solution } w
\]
\(\longleftrightarrow\) Is there/what is a constant \(C_{\text {stab }}>0\) such that
\[
\begin{equation*}
\|w\|_{X} \leq C_{\text {stab }}\|\ell\|_{Y} \quad, \text { where } w \text { solves (2.3.7), } \tag{2.3.10}
\end{equation*}
\]
with suitable/relevant norms \(\|\cdot\|_{X},\|\cdot\|_{Y}\) ? These norms will be suggested by the modelling background. Their choice will determine existence and value of \(C_{\text {stab }}\).

Remark 2.3.11 (Sensitivity of linear variational problems).

\section*{Recall a notion introduced in [14, Sect. 2.5.5]:}

Sensitivity of a problem (for given data) gauges impact of small perturbations of the data on the result.

Remember: "Problem" = mapping from data space to solution space, see [14, Sect. 2.5.2].

Here, we define the "problem" as the mapping
\[
\left\{\begin{array}{cl}
\left\{\text { linear forms on } V_{0}\right\} & \mapsto V_{0}  \tag{2.3.12}\\
\ell & \mapsto w \in V_{0}: \quad a(w, v)=-\ell(v) \quad \forall v \in V_{0}
\end{array}\right.
\]

Undesirable: "sensitive dependence of solution on data", that is small (in the norm of the data space) perturbations of \(\ell\) translate into huge (in the norm of the solution space) or even "infinite" perturbations of the solution. In this case of an "ill-posed problem" inevitable data errors (e.g., due to non-exact measurements) will thwart any attempt to compute an "accurate" (in the norm of the solution space) solution.

Desirable: Lipschitz continuity of problem map with small Lipschitz constant (well-posed problem).
Note: the problem map (2.3.12) is linear and its Lipschitz constant is given by the smallest value for \(C_{\text {stab }}\) in (2.3.10).

Consider the particular choice (2.3.8).

How to choose the norms \(\|\cdot\|_{X}\) (on solution space) and \(\|\cdot\|_{Y}\) (on data space) ?

Norm on solution space: energy norm: \(\|\cdot\|_{a}\)
Norm on r.h.s: \(\quad\) Mean square norm ( \(L^{2}\)-norm, \(\rightarrow\) Def. 2.2.5) for \(f\), \(H^{1}\)-semi-norm ( \(\rightarrow\) Def. 2.2.12) for \(u_{0}\)

What will be the impact of a perturbation of \(\ell\), if we use these norms?

First use the Cauchy-Schwarz inequality (2.2.15) and the uniform positivity ( \(\rightarrow\) Def. 2.1.9) of \(\alpha\), see (2.3.4):
\(|\ell(v)| \leq\|f\|_{0}\|v\|_{0}+\alpha^{+}\left\|\operatorname{grad} u_{0}\right\|_{0}\|\operatorname{grad} v\|_{0}\)
\[
\begin{equation*}
\leq\left(\|f\|_{0}^{2}+\left(\alpha^{+}\right)^{2}\left\|\operatorname{grad} u_{0}\right\|_{0}^{2}\right)^{1 / 2}\|v\|_{H^{1}(\Omega)} \quad \forall v \in H^{1}(\Omega) \tag{2.3.13}
\end{equation*}
\]

Next, we appeal to the lower estimate in (2.3.4) and the first Poincaré-Friedrichs inequality of Thm. 2.2.16:
\[
\begin{equation*}
\|v\|_{H^{1}(\Omega)} \leq \sqrt{1+\operatorname{diam}^{2}(\Omega)}|v|_{H^{1}(\Omega)} \leq \sqrt{\frac{1+\operatorname{diam}^{2}(\Omega)}{\alpha^{-}}}\|v\|_{a} . \tag{2.3.14}
\end{equation*}
\]

Combine (2.3.13) and (2.3.14),
\[
|\ell(v)| \leq \underbrace{\left(\|f\|_{0}^{2}+\left(\alpha^{+}\right)^{2}\left|u_{0}\right|_{H^{1}(\Omega)}^{2}\right)^{1 / 2} \sqrt{\frac{1+\operatorname{diam}^{2}(\Omega)}{\alpha^{-}}}\|v\|_{a} . . . . . . . . . .}_{=: K\left(f, u_{0}\right)}
\]

This enters the estimate for the perturbation of the solution:
\[
\begin{aligned}
\mathrm{a}(w, v) & =-\ell(v) & & \forall v \in V_{0} \\
\mathrm{a}(w+\delta w, v) & =-(\ell+\delta \ell)(v) & & \forall v \in V_{0} .
\end{aligned}
\]
\(a \xrightarrow{\text { bilinear }}\)
\[
\mathrm{a}(\delta w, v)=-\delta \ell(v) \quad \forall v \in V_{0},
\]
\[
\begin{array}{cc}
\stackrel{(2.3 .10)}{\Longrightarrow} & \|\delta w\|_{\mathrm{a}}=\sqrt{\mathrm{a}(\delta w, \delta w)}=\sqrt{|\delta \ell(\delta w)|} \leq\left(K\left(\delta f, \delta u_{0}\right)\|\delta w\|_{\mathrm{a}}\right)^{1 / 2} \\
\Longrightarrow & \|\delta w\|_{\mathrm{a}} \leq K\left(\delta f, \delta u_{0}\right) .
\end{array}
\]

As in Rem. 1.6 .7 for associated quadratic energy functional \(J\) :
\[
\begin{equation*}
|J(w+\delta w)-J(w)|=\frac{1}{2}|\mathrm{a}(2 w+\delta w, \delta w)| \leq \frac{1}{2}\|2 w+\delta w\|_{\mathrm{a}}\|\delta w\|_{\mathrm{a}} \tag{2.3.15}
\end{equation*}
\]

Perturbation estimates in energy norm directly translate into perturbation estimates for the equilibrium energy!

Remark 2.3.16 (Needle loading).

Now we inspect a stricking manifestation of instability for a 2 nd-order elliptic variational problem caused by a right hand side functional that fails to satisfy (2.2.1).

Consider the taut membrane model, see Sect. 2.1.1] for details, (2.1.13) for the related minimization problem, and (2.3.2) for the associated variational equation.

Let us assume that a needle is poked at the membrane: loading by a force \(f\) "concentrated in a point \(\boldsymbol{y}\) ", often denoted by \(f=\delta_{\boldsymbol{y}}, \boldsymbol{y} \in \Omega\), where \(\delta\) is the so-caled Dirac delta function (delta distribution).

In the variational formulation this can be taken into account as follows ( \(u_{\mid \partial \Omega}=0, \sigma \equiv 1\) is assumed):
\[
\begin{equation*}
u \in H_{0}^{1}(\Omega): \underbrace{\int_{\Omega} \operatorname{grad} u(\boldsymbol{x}) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}}_{=: \mathrm{a}(u, v)}=\underbrace{v(\mathbf{y})}_{=: \ell(v)} \quad \forall v \in H_{0}^{1}(\Omega) . \tag{2.3.17}
\end{equation*}
\]

Recall the discussion of Sect. 2.2: is the linear functional \(\ell\) on the right hand side continuous w.r.t. the \(H_{0}^{1}(\Omega)\)-norm (= energy norm, see Def. 2.1.24) in the sense of (2.2.1)?

Consider the function \(v(\boldsymbol{x})=\log |\log \|\boldsymbol{x}\||, \boldsymbol{x} \neq 0\), on \(\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{2}:\|\boldsymbol{x}\|<\frac{1}{2}\right\}\).

First, we express this function in polar coordinates \((r, \varphi)\)
\(x_{1}=r \cos \varphi \quad, \quad x_{2}=r \sin \varphi \quad \square \quad v(r, \varphi)=\log |\log r|\).

Then we recall the expression for the gradient in polar coordinates
\[
\begin{equation*}
\operatorname{grad} v(r, \varphi)=\frac{\partial v}{\partial r}(r, \varphi) \mathbf{e}_{r}+\frac{1}{r} \frac{\partial v}{\partial \varphi}(r, \varphi) \mathbf{e}_{\varphi} \tag{2.3.19}
\end{equation*}
\]
where \(\mathbf{e}_{r}\) and \(\mathbf{e}_{\varphi}\) are orthogonal unit vectors in the polar coordinate directions.


Also recall integration in polar coordinates, see [19, Bsp. 8.5.3]:
\[
\int_{\Omega} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{0}^{1 / 2} \int_{0}^{2 \pi} v(r, \varphi) r \mathrm{~d} \varphi \mathrm{~d} r
\]

Using these formulas we try to compute \(|v|_{H^{1}(\Omega)}\),
\[
\begin{aligned}
\int_{\Omega}\|\operatorname{grad} v(\boldsymbol{x})\|^{2} \mathrm{~d} \boldsymbol{x} & =\int_{0}^{1 / 2} \int_{0}^{2 \pi}\left\|-\frac{1}{\log r r} \mathbf{e}_{r}\right\|^{2} r \mathrm{~d} \varphi \mathrm{~d} r=2 \pi \int_{0}^{1 / 2} \frac{1}{\log ^{2} r} \cdot \frac{1}{r} \mathrm{~d} r \\
& =[-1 / \log r]_{0}^{1 /[2]}=\frac{1}{\log 2}<\infty
\end{aligned}
\]
because the improper integral exists. This means that \(v\) has "finite elastic energy", that is \(v \in H^{1}(\Omega)\), see Def. 2.2.12.

On the other hand, \(\quad v(0)=\infty!\)
\[
H^{1}(\Omega) \text { contains unbounded functions ! }
\]

Corollary 2.3.20 (Point evaluation on \(H^{1}(\Omega)\) ).
The point evaluation \(v \mapsto v(\boldsymbol{y}), \mathbf{y} \in \Omega\) is not a continuous linear form on \(H^{1}(\Omega)\).

This is the mathematics behind the observation that a needle can easily prick a taut membrane: a point load leads to configurations with "infinite elastic energy".


Another implication of Cor. 2.3.20:
\[
\begin{aligned}
& \text { The quadratic functional } J(u):=\int_{\Omega}\|\operatorname{grad} u\|^{2} \mathrm{~d} \boldsymbol{x}-u(\boldsymbol{y}), \boldsymbol{y} \in \Omega \\
& \text { is not bounded from below on } H_{0}^{1}(\Omega) \text { ! }
\end{aligned}
\]

Thus, it is clear that the attempt to minimize \(J\) will run into difficulties. Yet, this is the quadratic functional underlying the variational problem (2.3.17).

\subsection*{2.4 Equilibrium models: Boundary value problems}

Recall the derivation of an ODE from a variational problem on a 1D domain (interval) in Sect. 1.3.3:
Tool:
Integration by parts (1.3.20)

This section elucidates how to extend this approach to domains \(\Omega \subset \mathbb{R}^{d}, d \geq 1\) (usually \(d=2,3\) ).

Crucial issue: Integration by parts in higher dimensions ?

Remember the origin of integration by parts: fundamental theorem of calculus [19, Satz 6.3.4]: for \(F \in C_{\mathrm{pw}}^{1}([a, b]), a, b \in \mathbb{R}\),
\[
\begin{equation*}
\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a) \tag{2.4.1}
\end{equation*}
\]
where' stands for differentiation w.r.t \(x\). This formula is combined with the product rule [19, Satz 5.2.1 (ii)]
\[
\begin{align*}
& F(x)=f(x) \cdot g(x) \Rightarrow F^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)  \tag{2.4.2}\\
& =\quad \int_{a}^{b} f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \mathrm{d} x=f(b) g(b)-f(a) g(a)
\end{align*}
\]
which amounts to (1.3.20).

Lemma 2.4.3 (General product rule).
For all \(\mathbf{j} \in\left(C^{1}(\Omega)\right)^{d}, v \in C^{1}(\Omega)\) holds
\[
\begin{equation*}
\operatorname{div}(\mathbf{j} v)=v \operatorname{div} \mathbf{j}+\mathbf{j} \cdot \operatorname{grad} v . \tag{2.4.4}
\end{equation*}
\]

An important differential operator, see [19, Def. 8.8.1]:
\[
\begin{aligned}
& \text { divergence of a } C^{1} \text {-vector field } \mathbf{j}=\left(f_{1}, \ldots, f_{d}\right)^{T}: \Omega \mapsto \mathbb{R}^{d} \\
& \qquad \operatorname{div} \mathbf{j}(\boldsymbol{x}):=\frac{\partial f_{1}}{\partial x_{1}}(\boldsymbol{x})+\cdots+\frac{\partial f_{d}}{\partial x_{d}}(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega .
\end{aligned}
\]

A truly fundamental result from differential geometry provides a multidimensional analogue of the fundamental theorem of calculus:

Theorem 2.4.5 (Gauss' theorem). \(\quad \rightarrow\) [19, Sect. 8.8]
With \(\boldsymbol{n}: \partial \Omega \mapsto \mathbb{R}^{d}\) denoting the exterior unit normal vectorfield on \(\partial \Omega\) and \(\mathrm{d} S\) indicating integration over a surface, we have
\[
\begin{equation*}
\int_{\Omega} \operatorname{div} \mathbf{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\partial \Omega} \mathbf{j}(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x}) \quad \forall \mathbf{j} \in\left(C_{\mathrm{pw}}^{1}(\Omega)\right)^{d} \tag{2.4.6}
\end{equation*}
\]

Note: In (2.4.6) integration again allows to relax smoothness requirements, cf. Sect. 1.3.2.

Theorem 2.4.7 (Green's first formula).
For all vector fields \(\mathbf{j} \in\left(C_{\mathrm{pw}}^{1}(\Omega)\right)^{d}\) and functions \(v \in C_{\mathrm{pw}}^{1}(\Omega)\) holds
\[
\begin{equation*}
\int_{\Omega} \mathbf{j} \cdot \boldsymbol{\operatorname { g r a d }} v \mathrm{~d} \boldsymbol{x}=-\int_{\Omega} \operatorname{div} \mathbf{j} v \mathrm{~d} \boldsymbol{x}+\int_{\partial \Omega} \mathbf{j} \cdot \mathbf{n} v \mathrm{~d} S . \tag{2.4.8}
\end{equation*}
\]

Note that the dependence on the integration variable \(\boldsymbol{x}\) is suppressed in the formula (2.4.8) to achieve a more compact notation. The first Green formula could also have been written as
\[
\begin{equation*}
\int_{\Omega} \mathbf{j}(\boldsymbol{x}) \cdot(\operatorname{grad} v)(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=-\int_{\Omega}(\operatorname{div} \mathbf{j})(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}+\int_{\partial \Omega} \mathbf{j}(\boldsymbol{x}) \cdot \mathbf{n}(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x}) . \tag{2.4.8}
\end{equation*}
\]

Proof. (of Thm. 2.4.7) Straightforward from Lemma 2.4.3 and Thm. 2.4.5.

Now we apply Green's first formula to the variational problem (2.3.3), which covers the membrane model and electrostatics:

The role of \(\mathbf{j}\) in (2.4.8) is played by the vector field \(\alpha \operatorname{grad} u: \Omega \mapsto \mathbb{R}^{d}\).
\(\int_{\Omega} \underbrace{\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})}_{=: \mathbf{j}(\boldsymbol{x})} \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}\)
\[
=-\int_{\Omega} \operatorname{div}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}+\int_{\partial \Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \boldsymbol{n}(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x}) .
\]
\[
(2.3 .3)>-\int_{\Omega} \operatorname{div}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
\]
\[
\begin{gather*}
+\int_{\partial \Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \boldsymbol{n}(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x})  \tag{2.4.9}\\
=0, \text { since } v_{\mid \partial \Omega}=0 \\
=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad \forall v \in C_{0, \mathrm{pW}}^{1}(\Omega)
\end{gather*}
\]
where we have to assume that
\[
u, \boldsymbol{\alpha} \text { are sufficiently smooth: } \quad \boldsymbol{\alpha} \operatorname{grad} u \in C_{\mathrm{pw}}^{1}(\Omega)
\]
\[
\int_{\Omega}(\operatorname{div}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}))+f(\boldsymbol{x})) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0 \quad \forall v \in C_{0, \mathrm{pw}}^{1}(\Omega) .
\]

Now we can invoke the multidimensional analogue of the fundamental lemma of the calculus of variations, see Lemm 1.3.21

Lemma 2.4.10 (Fundamental lemma of calculus of variations in higher dimensions). If \(f \in L^{2}(\Omega)\) satisfies
\[
\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0 \quad \forall v \in C_{0}^{\infty}(\Omega),
\]
then \(f \equiv 0\) can be concluded.
(2.3.3)
\[
\begin{align*}
& \text { Partial differential equations (PDE) } \\
& -\operatorname{div}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u)=f \text { in } \Omega . \tag{2.4.11}
\end{align*}
\]

Again, for the sake of brevity, dependence \(\operatorname{grad} u=\operatorname{grad} u(\boldsymbol{x}), f=f(\boldsymbol{x})\) is not made explicit in the PDE in (2.4.11).

Remark 2.4.12 (Laplace operator).

If \(\alpha\) agrees with a positive conatant, by rescaling of (2.5.6) we can achieve
\[
\begin{gather*}
-\Delta u=f \text { in } \Omega  \tag{2.4.13}\\
\Delta=\operatorname{div} \circ \operatorname{grad}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}=\text { Laplace operator }
\end{gather*}
\]
(2.4.13) is called Poisson equation, \(\Delta u=0\) in \(\Omega\) is called Laplace equation
PDE (2.4.11) \(\quad+\quad\) boundary conditions
\[
\begin{equation*}
-\operatorname{div}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u)=f \quad \text { in } \Omega \quad, \quad u \stackrel{\downarrow}{=} g \quad \text { on } \partial \Omega \tag{2.4.14}
\end{equation*}
\]
(2.4.14) \(=\) second-order elliptic BVP with Dirichlet boundary conditions

Short name for BVPs of the type (2.4.14): "Dirichlet problem"

Remark 2.4.15 (Extra smoothness requirement for PDE formulation).

Same situation as in Sect. 1.3.3, cf. Assumption (1.3.19):

Transition from variational equation to PDE requires extra assumptions on smoothness of solution and coefficients.

Remark 2.4.16 (Membrane with free boundary values).
(Graph description of membrane shape by \(u\) \(\Omega \mapsto \mathbb{R}\), see Sect. 2.1.1)

Now: membrane clamped only on a part
\(\Gamma_{0} \subset \partial \Omega\) of its edge.
--- : prescribed bondary values here
: "free boundary"


Configuration space
\[
V:=\left\{u \in H^{1}(\Omega): u_{\mid \Gamma_{0}}=g\right\} \quad \rightarrow \text { Def. 2.2.12 }
\]

Total potential energy as in (2.1.3):
\[
\begin{equation*}
J_{M}(u):=\int_{\Omega} \frac{1}{2} \sigma(\boldsymbol{x})\|\operatorname{grad} u\|^{2}-f(\boldsymbol{x}) u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{2.1.3}
\end{equation*}
\]
\[
V_{0}:=\left\{u \in H^{1}(\Omega): u_{\mid \Gamma_{0}}=0\right\}
\]

Variational formulation, c.f. (2.3.2)
\[
\begin{align*}
& u \in H^{1}(\Omega),  \tag{2.4.17}\\
& u=g \text { on } \Gamma_{0}
\end{align*}: \int_{\Omega} \sigma(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \quad \forall v \in V_{0} .
\]

Application of Green's first formula (2.4.8) to (2.4.17) leads to
\[
\begin{align*}
-\int_{\Omega}(\operatorname{div}(\sigma(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) & +f(\boldsymbol{x})) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \\
& +\int_{\partial \Omega \backslash \Gamma_{0}}((\sigma(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \boldsymbol{n}(\boldsymbol{x})) v(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x}) \quad \forall v \in V_{0} . \tag{2.4.18}
\end{align*}
\]

Note that, unlike above, the boundary integral term cannot be dropped entirely, because \(v \neq 0\) on \(\partial \Omega \backslash \Gamma_{0}\).

How to deal with the boundary term?

Idea: © First restrict test function \(v\) to \(C_{0}^{\infty}(\Omega)\)
\(>\quad\) Boundary term vanishes!
Then, apply Lemma 2.4.10
\[
\begin{equation*}
\boldsymbol{\operatorname { d i v }}(\sigma(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}))+f(\boldsymbol{x})=0 \quad \text { in } \Omega \tag{2.4.19}
\end{equation*}
\]
(2) Then test with generic \(v \in V_{0}\), while making use of (2.4.19):
\[
>\int_{\partial \Omega \backslash \Gamma_{0}}((\sigma(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \boldsymbol{n}(\boldsymbol{x})) v(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x})=0 \quad \forall v \in V_{0} .
\]

Lemma 2.4.10 on \(\partial \Omega \backslash \Gamma_{0}\)
\[
\begin{equation*}
(\sigma(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \boldsymbol{n}(\boldsymbol{x})=0 \quad \text { on } \partial \Omega \backslash \Gamma_{0} . \tag{2.4.20}
\end{equation*}
\]

When removing pinning conditions on \(\partial \Omega \backslash \Gamma_{0}\) the equilibrium conditions imply the (homogeneous) Neumann boundary conditions \((\sigma(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \boldsymbol{n}(\boldsymbol{x})=0\) on \(\partial \Omega \backslash \Gamma_{0}\).

Boundary value problem for membrane clamped at \(\Gamma_{0} \subset \partial \Omega\)
\[
-\operatorname{div}(\sigma(\boldsymbol{x}) \operatorname{grad} u)=f \quad \text { in } \Omega, \quad(\sigma(\boldsymbol{x}) \operatorname{grad} u) \cdot \boldsymbol{n}=0 \quad \text { on } \partial \Omega \backslash \Gamma_{0}
\]
(2.4.21) \(=\) Second-order elliptic BVP with Neumann boundary conditions on \(\partial \Omega \backslash \Gamma_{0}\)

Short name for BVPs of the type (2.4.21): "Mixed Neumann-Dirichlet problem"

\subsection*{2.5 Diffusion models (Stationary heat conduction)}
1. a conservation principle (of mass, energy, etc.),
2. a a potential driven flux of the conserved quantity.

Mathematical modelling for these phenomena naturally involves partial differential equations in the first steps, which are supplemented with boudary conditions. Hence, second-order elliptic boundary value problems arise first, while variational formulations are deduced from them, thus reversing the order of steps followed for equilibrium models in Sects. 2.1-2.4.

In order to keep the presentation concrete, the discussion will target heat conduction, about which everybody should have a sound "intuitive grasp".
* notation:
\(\Omega \subset \mathbb{R}^{3}\) : bounded open region occupied by solid object ( \(\hat{=} \Omega \rightarrow\) computational domain)
\[
\text { heat flux, modelled by vector field } \mathbf{j}: \Omega \mapsto \mathbb{R}^{3}
\]
\[
\text { Heat flux }=\text { power flux: } \quad[\mathbf{j}]=\frac{\mathrm{W}}{\mathrm{~m}^{2}}
\]

Vector field \(\mathbf{j}: \Omega:=] 0,1\left[{ }^{2} \longmapsto \mathbb{R}^{3}\right.\)
D


Total heat flux through oriented surface \(\Sigma \subset \mathbb{R}^{3}\)
\[
\begin{equation*}
\text { Power } \quad P_{\Sigma}=\int_{\Sigma} \mathbf{j} \cdot \boldsymbol{n} \mathrm{d} S \tag{2.5.1}
\end{equation*}
\]

\(P_{\Sigma}\) : directed total power flowing through the oriented surface \(\Sigma\) per unit time. Note that the sign of \(P_{\Sigma}\) will change when flipping the normal of \(\Sigma\) !
\[
\begin{gathered}
\text { Conservation of energy } \\
\int_{\text {power flux through surface of } V} \quad \int_{\partial V} \mathbf{j} \cdot \boldsymbol{n} \mathrm{~d} S=\int_{V} f \mathrm{~d} \boldsymbol{x} \quad \text { for all "control volumes" } V \\
f=\text { heat source } / \operatorname{sink}\left([f]=\frac{\mathrm{W}}{\mathrm{~m}^{3}}\right), \quad f=f(\boldsymbol{x}) \text { and } f \text { can be discontinuous }\left(f \in C_{\mathrm{pw}}^{0}(\Omega)\right)
\end{gathered}
\]

Intuition: - heat flows from hot zones to cold zones
- the larger the temperature differece, the stronger the heat flow

Experimental evidence supports this intuition and, for many materials, yields the following quantitative relationship:

Fourier's law
\[
\begin{equation*}
\mathbf{j}(\boldsymbol{x})=-\kappa(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega \tag{2.5.3}
\end{equation*}
\]

Meaning of quantities:
\[
\begin{array}{ll}
\mathbf{j}=\text { heat flux } & \left([\mathbf{j}]=1 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right) \\
u=\text { temperature } & ([u]=1 \mathrm{~K}) \\
\kappa=\text { heat conductivity } & \left([\kappa]=1 \frac{\mathrm{~W}}{\mathrm{Km}}\right)
\end{array}
\]
(2.5.3) \(\Rightarrow\) Heat flow from hot to cold regions linearly proportional to gradient of temperature

Some facts about the heat conductivity:
\(\kappa\) : - \(\kappa=\kappa(\mathbf{x})\) for non-homogeneous materials (spatially varying heat conductivity)
- \(\kappa\) can even be discontinuous for composite materials
- \(\kappa\) may be \(\mathbb{R}^{3,3}\)-valued (heat conductivity tensor)

The most general form of the heat conductivity (tensor) enjoys the very same properties as the dielectric tensor introduced in Sect. 2.1.2:

From thermodynamic principles, cf. (2.1.8):
\[
\begin{equation*}
\exists \kappa^{-}, \kappa^{+}>0: 0<\kappa^{-} \leq \kappa(\mathbf{x}) \leq \kappa^{+}<\infty \quad \text { for almost all } \mathbf{x} \in \Omega \tag{2.5.4}
\end{equation*}
\]

Terminology: (2.5.4) \(\leftrightarrow \quad \kappa\) is bounded and uniformly positive, see Def. 2.1.9.

From 2.5.2 by Gauss' theorem Thm. 2.4.5
\[
\int_{V} \operatorname{div} \mathbf{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{V} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \text { for all "control volumes" } V \subset \Omega .
\]

Now appeal to another version of the fundamental lemma of the calculus of variations, see Lemma 2.4.10, this time sporting piecewise constant test functions.
\[
\begin{equation*}
\operatorname{div} \mathbf{j}=f \quad \text { in } \Omega \tag{2.5.5}
\end{equation*}
\]

Combine equations (2.5.5) \& (2.5.3)
\[
\mathbf{j}=-\kappa(\mathbf{x}) \operatorname{grad} u
\]
\[
\begin{gather*}
\boldsymbol{\not} \\
-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)=f \text { in } \Omega . \tag{2.5.6}
\end{gather*}
\]
\[
\operatorname{div} \mathbf{j}=f
\]
(2.5.5)

Linear scalar second order elliptic PDE (for unknown temperature \(u\) )

\subsection*{2.6 Boundary conditions}

In the examples from Sects. 2.1.1, 2.1 .2 we fixed the value of the unknown function \(u: \Omega \mapsto \mathbb{R}\) on the boundary \(\partial \Omega\) : Dirichlet boundary conditions in (2.4.14).

Exception: free edge of taut membrane, see Rem. 2.4.16: Neumann boundary conditions in (2.4.21).

In this section we resume the discussion of boundary conditions and examine them for stationary heat conduction, see previous section. This has the advantage that for this everyday physical phenomenon boundary conditions have a very clear intuitive meaning.

Boundary conditions on surface/boundary \(\partial \Omega\) of \(\Omega\) :
(i) Temperature \(u\) is fixed: with \(g: \partial \Omega \mapsto \mathbb{R}\) prescribed
\[
\begin{equation*}
u=g \quad \text { on } \partial \Omega \tag{2.6.1}
\end{equation*}
\]

\section*{Dirichlet boundary conditions}
(ii) Heat flux \(\mathbf{j}\) through \(\partial \Omega\) is fixed: with \(h: \partial \Omega \mapsto \mathbb{R}\) prescribed ( \(\boldsymbol{n}: \partial \Omega \mapsto \mathbb{R}^{3}\) exterior unit normal vectorfield) on \(\partial \Omega\)
\(\mathbf{j} \cdot \boldsymbol{n}=-h \quad\) on \(\quad \partial \Omega\).
(iii) Heat flux through \(\partial \Omega\) depends on (local) temperature: with increasing function \(\Psi: \mathbb{R} \mapsto \mathbb{R}\)
\[
\begin{align*}
& \mathbf{j} \cdot \boldsymbol{n}=\Psi(u) \quad \text { on } \partial \Omega  \tag{2.6.3}\\
& \text { radiation boundary conditions }
\end{align*}
\]

Example 2.6.4 (Convective cooling (simple model)).

Heat is carried away from the surface of the body by a fluid at bulk temperature \(u_{0}\). A crude model assumes that the heat flux depends linearly on the temperature difference between the surface of \(\Omega\) and the bulk temperature of the fluid.
\[
\mathbf{j} \cdot \boldsymbol{n}=q\left(u-u_{0}\right) \quad \text { on } \partial \Omega, \quad \text { where } 0<q^{-} \leq q(\mathbf{x}) \leq q^{+}<\infty \quad \text { for almost all } \mathbf{x} \in \partial \Omega
\]

Example 2.6 .5 (Radiative cooling (simple model)).

A hot body emits electromagnetic radiation (blackbody emission), which drains thermal energy. The radiative energy loss is roughly proportional to the 4th power of the temperatur difference between the surface temperature of the body and the ambient temperature.
\[
\mathbf{j} \cdot \boldsymbol{n}=\alpha\left|u-u_{0}\right|\left(u-u_{0}\right)^{3} \quad \text { on } \partial \Omega, \quad \text { with } \alpha>0
\]

Non-linear boundary condition

Terminology: If \(g=0\) or \(h=0 \rightarrow\) homogeneous Dirichlet or Neumann boundary conditions

Remark 2.6.6 (Mixed boundary conditions).

Different boundary conditions can be prescribed on different parts of \(\partial \Omega\)
( \(\rightarrow\) mixed boundary conditions, cf. Rem. 2.4.16)


Example 2.6.7 ("Wrapped rock on a stove").
- Non-homogeneous Dirichlet boundary conditions on \(\Gamma_{D} \subset \partial \Omega\)
- Homogeneous Neumann boundary condtions on \(\Gamma_{N} \subset \partial \Omega\)
- Convective cooling boundary conditions on \(\Gamma_{R} \subset \partial \Omega\)

Partition: \(\quad \partial \Omega=\bar{\Gamma}_{D} \cup \bar{\Gamma}_{N} \cup \bar{\Gamma}_{R}, \quad \Gamma_{D}, \Gamma_{N}, \Gamma_{R}\) mutually disjoint
\(-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)=f \quad+\) boundary conditions \(\Rightarrow\) elliptic boundary value problem (BVP)
For second order elliptic boundary value problems exactly one boundary condition is needed on any part of \(\partial \Omega\).

Remark 2.6.8 (Linear BVP).
Observe that the solution mapping \(\binom{f}{g} \mapsto u \quad\) for (2.5.6), (2.6.1) is linear.

This means that if \(u_{i}\) solves the Dirichlet problem with source function \(f_{i}\) and Dirichlet data \(g_{i}, i=1,2\), then \(u_{1}+u_{2}\) solves (2.5.6) \& (2.6.1) for source \(f_{1}+f_{2}\) and boundary values \(g_{1}+g_{2}\).

\subsection*{2.7 Characteristics of elliptic boundary value problems}

Qualitative insights gained from heat conduction model:
- continuity: the temperature \(u\) must be continuous (jump in \(u \rightarrow \mathbf{j}=\infty\) ).
- normal component of \(\mathbf{j}\) across surfaces inside \(\Omega\) must be continuous (jump in \(\mathbf{j} \cdot \mathbf{n} \rightarrow\) heat source \(f\) of infinite intensity).
- interior smoothness of \(u: u\) smooth where \(f\) and \(D\) smooth.
- non-locality: local alterations in \(f, g, h\) affect \(u\) everywhere in \(\Omega\).
- quasi-locality: If local changes in \(f, g, h\) confined to \(\Omega^{\prime} \subset \Omega\), their effects decay away from \(\Omega^{\prime}\).
- maximum principle: (in the absence of heat sources extremal temperatures are on the boundary)
\[
\text { if } f \equiv 0 \text {, then } \quad \inf _{\mathbf{y} \in \partial \Omega} u(\mathbf{y}) \leq \mathbf{u}(\mathbf{x}) \leq \sup _{\mathbf{y} \in \partial \Omega} u(\mathbf{y}) \quad \text { for all } \mathbf{x} \in \Omega
\]

Typical features of solutions of elliptic boundary value problems
Example 2.7.1 (Scalar elliptic boundary value problem in one space dimension).
\(\Rightarrow \quad f\) discontinuous, piecewise \(C^{0} \Rightarrow u \in C^{1}\), piecewise \(C^{2}\)
Example 2.7.2 (Smoothness of solution of scalar elliptic boundary value problem).
\[
\begin{gather*}
-\Delta u=f(\mathbf{x}) \quad \text { in } \Omega:=] 0,1\left[^{2} \quad, \quad u=0 \quad \text { on } \partial \Omega,\right.  \tag{2.7.3}\\
f(\mathbf{x}):=\operatorname{sign}\left(\sin \left(2 \pi k_{1} x_{1}\right) \sin \left(2 \pi k_{2} x_{2}\right)\right), \quad \mathbf{x} \in \Omega, \quad k_{1}, k_{2} \in \mathbb{N} .
\end{gather*}
\]

Approximate solution computed by means of linear Lagrangian finite elements + lumping ( \(\rightarrow\) Sect. ??, details in Sect. ??, ??)


Source term \(f(\mathbf{x}), k_{1}=k_{2}=2\)


Solution of (2.7.3)
"Smooth" \(u\) despite "rough" \(f\) !
Example 2.7.4 (Quasi-locality of solution of scalar elliptic boundary value problem).
\[
\begin{align*}
& -\Delta u=f_{\delta}(\mathbf{x})  \tag{2.7.5}\\
& f_{\delta}(\mathbf{x})=\left\{\begin{array}{ll}
\delta^{-2} & , \text { if }\left\|\mathbf{x}-\binom{1 / 2}{1 / 2}\right\|_{2}^{2} \leq \delta, \\
0 & \text { elsewhere. }
\end{array}, \quad \delta>0\right. \tag{2.7.6}
\end{align*}
\]

Solution u for \(\delta=0.010000\)


Cross-section of solution u


\subsection*{2.8 Second-order elliptic variational problems}

In Ch. 1 and Sects. 2.1-2.4 we pursued the derivation:
\(\underset{(\text { e.g., (2.1.4), (2.1.12)) }}{\text { Minimization problem }}>\underset{(\text { e.g., (2.3.1), }(2.3 .2))}{\text { Variational problem }}>\quad \geqslant \quad\) (e.g., (2.4.14), (2.4.21))

Now we are proceeding in the opposite direction:
\[
\underset{\left(\mathrm { e.g. } \left(\begin{array}{l}
\text { P.5.6) })
\end{array}\right.\right.}{\mathrm{PDE}}+\begin{gathered}
\text { boundary conditions } \\
\text { (e.g., (2.6.1) }),(2.6 .2),(2.6 .3))
\end{gathered}>\text { variational problem }
\]
(do not test, where the solution is known, e.g., on the boundary)

STEP 2: integrate over domain

STEP 3: perform integration by parts
(e.g. by using Green's first formula, Thm. 2.4.7)

STEP 4: [optional] incorporate boundary conditions into boundary terms

Example 2.8.1 (Variational formulation for heat conduction with Dirichlet boundary conditions).
\[
\begin{equation*}
\text { BVP: } \quad-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)=f \quad \text { in } \Omega \quad, \quad u=g \quad \text { on } \partial \Omega . \tag{2.8.2}
\end{equation*}
\]

STEP 1 \& 2:
test with \(v \in C_{0}^{\infty}(\Omega)\)
\[
\begin{equation*}
-\quad-\int_{\Omega} \operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u) v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} . \tag{2.8.3}
\end{equation*}
\]

Note: \(v_{\mid \partial \Omega}=0\) for test function, because \(u\) already fixed on \(\partial \Omega\).

STEP 3: use Green's formula from Thm. 2.4.7 on \(\Omega \subset \mathbb{R}^{d}\) (multidimensional integration by parts): Apply (2.4.8) to (2.8.3) with \(\mathbf{j}:=\kappa(\boldsymbol{x}) \operatorname{grad} u\) :
\[
\int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}-\underbrace{\int_{\partial \Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \boldsymbol{n} v \mathrm{~d} S}_{=0, \text { because } v_{\mid \partial \Omega}=0}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \quad \forall v \in C_{0}^{\infty}(\Omega) .
\]

This gives the variational formulation after we switch to "maximal admissible function spaces" (Sobolev spaces, see Sect. [2.2)

Variational form of (2.8.2): seek
\[
\begin{gather*}
u \in H^{1}(\Omega)  \tag{2.8.4}\\
u=g \text { on } \partial \Omega
\end{gather*} \quad \int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega) .
\]

Example 2.8.5 (Variational formulation: heat conduction with general radiation boundary conditions).

BVP: \(\quad-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)=f\) in \(\Omega, \quad-\kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \boldsymbol{n}=\Psi(u) \quad\) on \(\partial \Omega\).
STEP \(1 \& 2: \quad u_{\mid \partial \Omega}\) not fixed \(\Rightarrow\) test with \(v \in C^{\infty}(\bar{\Omega})\)
\[
-\quad-\int_{\Omega} \operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u) v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \quad \forall v \in C^{\infty}(\bar{\Omega}) .
\]

STEP 3 \& 4: apply Green's first formula (2.4.8) and incorporate boundary conditions:
\[
\int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}-\int_{\partial \Omega} \underbrace{-\kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \mathbf{n}}_{=\Psi(u)(\text { STEP 4) }} v \mathrm{~d} S=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \quad \forall v \in C^{\infty}(\bar{\Omega}) .
\]

Variational formulation of (2.8.6): seek
\[
\begin{equation*}
u \in H^{1}(\Omega): \quad \int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}+\int_{\partial \Omega} \Psi(u) v \mathrm{~d} S=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \quad \forall v \in H^{1}(\Omega) \tag{2.8.7}
\end{equation*}
\]

Theorem 2.8.8. If \(\kappa \in C^{1}(\Omega)\), classical solutions \(u \in C^{2}(\Omega)\) of the boundary value problems (2.8.2) and (2.8.6) also solve the associated variational problems.

Proof. Apply Theorem 2.4.7 as in the derivation of the weak formulations.

Example 2.8.9 (Variational formulation for Neumann problem).

2nd-order elliptic (inhomogeneous) Neumann problem
\[
\text { BVP: } \quad \begin{align*}
-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u) & =f \quad \text { in } \Omega,  \tag{2.8.10}\\
\kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \boldsymbol{n} & =h(\boldsymbol{x}) \quad \text { on } \partial \Omega .
\end{align*}
\]

We confront Neumann boundary conditions (2.6.2) (prescribed heat flux) on the whole boundary.

Variational formulation derived as in Ex. 2.8.5, with \(\Psi(u)=-h\).
\[
\begin{equation*}
u \in H^{1}(\Omega): \quad \int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}-\int_{\partial \Omega} h v \mathrm{~d} S=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \quad \forall v \in H^{1}(\Omega) \tag{2.8.11}
\end{equation*}
\]

Observation: when we test (2.8.11) with \(v \equiv 1>-\int_{\partial \Omega} h \mathrm{~d} S=\int_{\Omega} f \mathrm{~d} \boldsymbol{x}\)

This is a compatibility condition for the existence of (variational) solutions of the Neumann problem!

Interpretation of (2.8.12) against the backdrop of the stationary heat conduction model:
conservation of energy \(\rightarrow\) (2.5.2): Heat generated inside \(\Omega(\leftrightarrow f)\) must be offset by heat flux through \(\partial \Omega(\rightarrow h)\).

Remark 2.8.13 (Uniqueness of solutions of Neumann problem).

Observation: if Compatibility condition (2.8.12) holds true, then
\[
v \in H^{1}(\Omega) \text { solves (2.8.11) } \Longleftrightarrow \quad v+\gamma \text { solves (2.8.11) } \forall \gamma \in \mathbb{R},
\]

Complementary observation: \(\mathrm{a}(u, v):=\int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}\) is not s.p.d ( \(\rightarrow\) Def. 2.1.22) on \(H^{1}(\Omega)\).

Idea: Restore uniqueness of solutions by
\[
\text { enforcing average temperature to be zero } \int_{\Omega} u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0
\]

This amounts to posing the variational problem (2.8.11) over the constrained function space
\[
\begin{equation*}
H_{*}^{1}(\Omega):=\left\{v \in H^{1}(\Omega): \int_{\Omega} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0\right\} . \tag{2.8.14}
\end{equation*}
\]

The norm on \(H_{*}^{1}(\Omega)\) is the same as on \(H_{0}^{1}(\Omega)\), see Def. 2.2.12. Obviously (why ?), the norm property (N1) is satisfied. These arguments also show that a is s.p.d \(\left(\rightarrow\right.\) Def. [2.1.22) on \(H_{*}^{1}(\Omega)\).

Variational formulation of Neumann problem:
\[
\begin{equation*}
u \in H_{*}^{1}(\Omega): \quad \int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x}+\int_{\partial \Omega} h v \mathrm{~d} S \quad \forall v \in H_{*}^{1}(\Omega) . \tag{2.8.15}
\end{equation*}
\]

\subsection*{2.9 Essential and natural boundary conditions}

Synopsis:
- 2nd-order elliptic Dirichlet problem:
\[
\begin{equation*}
-\operatorname{div}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u)=f \quad \text { in } \Omega \quad, \quad u=g \quad \text { on } \partial \Omega . \tag{2.4.14}
\end{equation*}
\]
with variational formulation
- 2nd-order elliptic Neumann problem:
\[
\begin{equation*}
-\operatorname{div}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u)=f \quad \text { in } \Omega \quad, \quad(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u) \cdot \boldsymbol{n}=-h \quad \text { on } \partial \Omega . \tag{2.9.1}
\end{equation*}
\]
with variational formulation
\[
\begin{equation*}
u \in H_{*}^{1}(\Omega): \quad \int_{\Omega} \boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x}+\int_{\partial \Omega} h v \mathrm{~d} S \quad \forall v \in H_{*}^{1}(\Omega) \tag{2.8.15}
\end{equation*}
\]
- 2nd-order elliptic mixed Neumann-Dirichlet problem, see Rem. 2.4.16:
\[
-\operatorname{div}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u)=f \text { in } \Omega \quad, \quad \begin{gather*}
u=g \text { on } \Gamma_{0} \subset \partial \Omega  \tag{2.9.2}\\
(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u) \cdot \boldsymbol{n}=-h \quad \text { on } \partial \Omega \backslash \Gamma_{0} .
\end{gather*}
\]
with variational formulation
\[
\begin{align*}
& u \in H^{1}(\Omega),  \tag{2.9.3}\\
& u=g \text { on } \Gamma_{0}
\end{align*}: \quad \int_{\Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \boldsymbol{\operatorname { g r a d }} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}+\int_{\partial \Omega \backslash \Gamma_{0}} h v \mathrm{~d} S
\]
for all \(v \in H^{1}(\Omega)\) with \(v_{\mid \Gamma_{0}}=0\).

In the variational formulations of 2nd-order elliptic BVPs of Sect. 2.8:

Dirichlet boundary conditions are directly imposed on trial space and (in homogeneous form) on test space.

Terminology:

Neumann boundary conditions are enforced only through the variational equation.
Terminology: natural boundary conditions

The attribute "natural" has been coined, because Neumann boundary conditions "naturally" emerge when removing constraints on the boundary, as we have seen for the partially free membrane of Rem. 2.4.16.

Remark 2.9.4 (Admissible Dirichlet data).

Requirement for "Dirichlet data" \(g: \partial \Omega \mapsto \mathbb{R}\) in (2.4.14):
\[
\text { there is } u \in H^{1}(\Omega) \text { such that } \quad u_{\mid \partial \Omega}=g
\]

If \(g: \partial \Omega \mapsto \mathbb{R}\) is piecewise continuously differentiable (and bounded with bounded piecewise derivatives), then it can be extended to an \(u_{0} \in H^{1}(\Omega)\), if and only if it is continuous on \(\partial \Omega\).

Bottom line:
Dirichlet boundary values have to be continuous

This is also stipulated by physical insight, e.g. in the case of the taut membrane model of Sect. 2.1.1: discontinuous displacement on \(\partial \Omega\) would entail ripping apart the membrane.

Remark 2.9.5 (Admissible Neumann data).

In the variational problem (2.8.15) Neumann data \(h: \partial \Omega \mapsto \mathbb{R}\) enter through the linear form on the right hand side
\[
\ell(v):=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}+\int_{\partial \Omega} h(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x}) .
\]

Remember the discussion in the beginning of Sect. 2.2, also Rem. 2.3.16: we have to establish that \(\ell\) is continuous on \(H_{*}^{1}(\Omega)\) defined in (2.8.14). This is sufficient, because the coefficient function \(\kappa\) is uniformly positive and bounded, see (2.5.4). Thus, the enery \(\|\cdot\|_{a}\) associated with the bilinear form
\[
\mathrm{a}(u, v)=\int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}
\]
can be bounded from above and below by \(|\cdot|_{H^{1}(\Omega)}\), cf. the estimate (2.3.14).

Theorem 2.9.6. Second Poincaré-Friedrichs inequality]
If \(\Omega \subset \mathbb{R}^{d}, d \in \mathbb{N}\), is bounded, then
\[
\exists C=C(\Omega)>0: \quad\|u\|_{0} \leq C \operatorname{diam}(\Omega)\|\operatorname{grad} u\|_{0} \quad \forall u \in H_{*}^{1}(\Omega)
\]
\(C=C(\Omega)\) indicates that the constant \(C\) may depend on the shape of the domain \(\Omega\).

Proof. (for \(d=1, \Omega=[0,1]\) only, technically difficult in higher dimensions)
As in the proof of Thm. 2.2.16, we employ a density argument and assume that \(u\) is sufficiently smooth, \(u \in C^{1}([0,1])\).

By the fundamental theorem of calculus (2.4.1)
\[
\begin{aligned}
& u(x)=u(y)+\int_{y}^{x} \frac{d u}{d x}(\tau) \mathrm{d} \tau, \quad 0 \leq x, y \leq 1 . \\
& u(x)=\int_{0}^{1} u(x) \mathrm{d} y=\underbrace{\int_{0}^{1} u(y) \mathrm{d} y}_{=0}+\int_{0}^{1} \int_{y}^{x} \frac{d u}{d x}(\tau) \mathrm{d} \tau \mathrm{~d} y .
\end{aligned}
\]

Then use the Cauchy-Schwarz inequality (2.2.15)
\[
u(x)^{2} \leq \int_{0}^{1} \int_{y}^{x} 1 \mathrm{~d} \tau \mathrm{~d} y \int_{0}^{1} \int_{y}^{x}\left|\frac{d u}{d x}(\tau)\right|^{2} \mathrm{~d} \tau \mathrm{~d} y \leq \int_{0}^{1}\left|\frac{d u}{d x}(\tau)\right|^{2} \mathrm{~d} \tau
\]

Integrate over \(\Omega\) yields the estimate
\[
\begin{equation*}
\|u\|_{0}^{2}=\int_{0}^{1} u^{2}(x) \mathrm{d} x \leq \int_{0}^{1}\left|\frac{d u}{d x}(\tau)\right|^{2} \mathrm{~d} \tau=|u|_{H^{1}(\Omega)}^{2} \tag{ㅁ}
\end{equation*}
\]

By (2.2.15), Thm. 2.9.6 implies the continuity of the first term in \(\ell\).

Continuity of the boundary contribution to \(\ell\) hinges on a trace theorem

Theorem 2.9.7 (Multiplicative trace inequality).
\[
\exists C=C(\Omega)>0: \quad\|u\|_{L^{2}(\partial \Omega)}^{2} \leq C\|u\|_{L^{2}(\Omega)} \cdot\|u\|_{H^{1}(\Omega)} \quad \forall u \in H^{1}(\Omega)
\]

Proof. (for \(d=1, \Omega=[0,1]\) only, technically difficult in higher dimensions)
As in the proof of Thms. 2.2.16, 2.9.6, we employ a density argument and assume that \(u\) is sufficiently smooth, \(u \in C^{1}([0,1])\).

By the fundamental theorem of calculus (2.4.1):
\[
\begin{gathered}
u(1)^{2}=\int_{0}^{1} \frac{d w}{d \xi}(x) \mathrm{d} x, \quad \text { with } \quad w(\xi):=\xi u^{2}(\xi) \\
\\
u(1)^{2}=\int_{0}^{1} u^{2}(x)+2 u(x) \frac{d u}{d x}(x) \mathrm{d} x
\end{gathered}
\]

Then use the Cauchy-Schwarz inequality (2.2.15)
\[
u(1)^{2} \leq \int_{0}^{1} u^{2}(x) \mathrm{d} x+2 \int_{0}^{1}|u(x)|\left|\frac{d u}{d x}(x)\right| \mathrm{d} x \leq\|u\|_{0}^{2}+2\|u\|_{0}\left\|\frac{d u}{d x}\right\|_{0}
\]

A similar estimate holds for \(u(0)^{2}\).

Now we can combine
- the Cauchy-Schwarz inequality (2.2.15) on \(\partial \Omega\),
- the 2nd Poincaré-Friedrichs inequality of Thm. 2.9.6,
- the multiplicative trace inequality of Thm. 2.9.7:
\[
\begin{aligned}
\int_{\partial \Omega} h v \mathrm{~d} S & \stackrel{(2.2 .15)}{\leq}\|h\|_{L^{2}(\partial \Omega)}\|v\|_{L^{2}(\partial \Omega)} \stackrel{\text { Thm. [2.9.7 }}{\leq}\|h\|_{L^{2}(\partial \Omega)}\|v\|_{H^{1}(\Omega)} \\
& \text { Thm.[2.9.6 }
\end{aligned}\|h\|_{L^{2}(\partial \Omega)}|v|_{H^{1}(\Omega)} \quad \forall v \in H_{*}^{1}(\Omega) .
\]
\(h \in L^{2}(\partial \Omega)\) provides valid Neumann data for the 2nd order elliptic BVP (2.9.1).

In, particular Neumann data \(h\) can be discontinuous.

\section*{Finite Element Methods (FEM)}

In this chapter:
Problem : linear scalar second-order elliptic boundary value problem \(\rightarrow\) Ch. 2
Perspective : variational interpretation in Sobolev spaces \(\rightarrow\) Sect. 2.8
Objective : algorithm for the computation of an approximate numerical solution

\section*{Preface}

Sect. 1.5.1 introduced the fundamental ideas of the Galerkin discretization of variational problems, or, equivalently, of minmization problems, posed over function spaces. A key ingredient are suitably
chosen finite-dimensional trial and test spaces, equipped with ordered bases.

In Sect. 1.5.1.2 the abstract approach was discussed for two-point boundary value problems and the concrete case of piecewise linear trial and test spaces, built upon a partition (mesh/grid) of the interval (domain). In this context the locally supported tent functions lent themselves as natural basis functions.

This chapter is devoted to extending the linear finite element method in 1D to
- 2nd-order linear variational problems on bounded spatial domains \(\Omega\) in two and three dimensions,
- piecewise polynomial trial/test functions of higher degree.

The leap from \(d=1\) to \(d=2\) will encounter additional difficulties and many new aspects. This chapter will elaborate on them and present policies how to tackle them.

Throughout, we will restrict ourselves to linear 2nd-order elliptic variational problems on spatial domains \(\Omega \in \mathbb{R}^{d}\), \(d=2,3\), with the properties listed in Rem. 2.1.1.
- 2nd-order elliptic Dirichlet problem:
\(\begin{aligned} & u \in H^{1}(\Omega), \\ & u=g \text { on } \partial \Omega\end{aligned} \quad \int_{\Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \boldsymbol{\operatorname { g r a d }} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega), \quad\) (2.3.3) with continuous ( \(\rightarrow\) Rem. 2.9.4) Dirichlet datal \(g \in C^{0}(\partial \Omega)\).
- 2nd-order elliptic Neumann problems:
\[
\begin{equation*}
u \in H_{*}^{1}(\Omega): \quad \int_{\Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u) \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x}+\int_{\partial \Omega} h v \mathrm{~d} S \quad \forall v \in H_{*}^{1}(\Omega), \tag{2.8.15}
\end{equation*}
\]
with piecewwise continuous ( \(\rightarrow\) Rem. 2.9.5) Neumann data \(h \in C_{\mathrm{pw}}^{0}(\partial \Omega)\) that satisfy the compatibility condition (2.8.12).

A simpler version with homogeneous Neumann data and reaction term:
\[
\begin{equation*}
u \in H^{1}(\Omega): \quad \int_{\Omega} \boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v+c(\boldsymbol{x}) u v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \forall v \in H^{1}(\Omega) \tag{3.0.1}
\end{equation*}
\]
with reaction coefficient \(c: \Omega \mapsto \mathbb{R}^{+}, c \in C_{\mathrm{pw}}^{0}(\Omega)\). Note that no compatibilty conditions is required in this case.

Rem. 1.5.3 still applies: all functions (coefficient \(\boldsymbol{\alpha}\), source function \(f\), Dirichlet data \(g\) ) may be given only in procedural form.

\subsection*{3.1 Galerkin discretization}

Recall the concept of "discretization", see Sect. 1.5:
Not a moot point: any computer can only handle a finite amount of information (reals)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Variational boundary value \\
problem
\end{tabular} & \(\xrightarrow{\text { DISCRETIZATION }}\)
\end{tabular} \begin{tabular}{|c|}
\begin{tabular}{c} 
System of a finite number of \\
equations for (real) unknowns
\end{tabular} \\
\hline
\end{tabular}

Targetted: linear variational problem (1.4.5)
\[
\begin{equation*}
u \in V_{0}: \quad \mathrm{a}(u, v)=\ell(v) \quad \forall v \in V_{0}, \tag{3.1.1}
\end{equation*}
\]
- \(V_{0} \hat{=}\) vector space (Hilbert space) (usually a Sobolev space \(\rightarrow\) Sect. (2.2) with norm \(\|\cdot\|_{V}\),
- a \((\cdot, \cdot) \hat{=}\) bilinear form, continuous in \(V_{0}\),
- \(\ell \hat{=}\) continuous linear form in the sense of, cf. (2.2.1),
\[
\begin{equation*}
\exists C>0: \quad|\ell(v)| \leq C\|v\|_{V} \quad \forall v \in V_{0} . \tag{3.1.2}
\end{equation*}
\]

If a is symmetric and positive definite ( \(\rightarrow\) Def. 2.1.22), we may choose \(\|\cdot\|_{V}:=\|\cdot\|_{a}\), "energy norm", see Def. 2.1.24.

\section*{Recall from Sect. 1.5.1:}

\section*{Idea of Galerkin discretization}

Replace \(V_{0}\) in (3.1.1) with a finite dimensional subspace. ( \(V_{0, N}\) called Galerkin (or discrete) trial space/test space)

Twofold nature of symbol " \(N\) ":
- \(N=\) formal index, tagging "discrete entities" ( \(\rightarrow\) "finite amount of information")
- \(N=\operatorname{dim} V_{N, 0} \hat{=}\) dimension of Galerkin trial/test space

Discrete variational problem, cf. (1.5.7),
\[
\begin{equation*}
u_{N} \in \underbrace{\in V_{0, N}}: \quad \mathrm{a}\left(u_{N}, v_{N}\right)=\ell\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N} . \tag{3.1.3}
\end{equation*}
\]

Galerkin solution

Theorem 3.1.4 (Existence and uniqueness of solutions of discrete variational problems). If the bilinear form a : \(V_{0} \times V_{0} \mapsto \mathbb{R}\) is symmetric and positive definite ( \(\rightarrow\) Def. [2.1.22) and the linear form \(\ell: V_{0} \mapsto \mathbb{R}\) is continuous in the sense of
\[
\begin{equation*}
\exists C_{\ell}>0: \quad|\ell(u)| \leq C_{\ell}\|u\|_{\mathrm{a}} \quad \forall u \in V_{0}, \tag{2.2.1}
\end{equation*}
\]
then the discrete variational problem has a unique Galerkin solution \(u_{N} \in V_{0, N}\) that satisfies the stability estimate ( \(\rightarrow\) Sect. (2.3.2)
\[
\begin{equation*}
\left\|u_{N}\right\|_{a} \leq C_{\ell} . \tag{3.1.5}
\end{equation*}
\]

Proof. Uniqueness of \(u_{N}\) is clear:
\[
\begin{gathered}
\mathrm{a}\left(u_{N}, v_{N}\right)=\ell\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N} \quad \Rightarrow \mathrm{a}\left(u_{N}-w_{N}, v_{N}\right)=0 \quad \forall v_{N} \in V_{N, 0} \\
\mathrm{a}\left(w_{N}, v_{N}\right)=\ell\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N} \\
v_{N}:=u_{N}-w_{N} \in V_{0, N} \quad\left\|u_{N}-w_{N}\right\|_{a}=0 \stackrel{\text { as.p.d. }}{\Longrightarrow} u_{N}-w_{N}=0 .
\end{gathered}
\]

The discrete linear variational problem (3.1.3) is set in the finite-dimensional space \(V_{0, N}\). Thus, uniqueness of solutions is equivalent to existence of solutions ( \(\rightarrow\) linear algebra).

If you do not like this abstract argument, wait and see the equivalence of (3.1.3) with a linear system
of equations. It will turn out that under the assumptions of the theorem, the resulting system matrix will be symmetric and positive definite in the sense of [14, Def. 2.7.1].

The estimate (3.1.5) is immediate from setting \(v_{N}:=u_{N}\) in (3.1.3)
\[
\left|\mathrm{a}\left(u_{N}, u_{N}\right)\right|=\left|\ell\left(u_{N}\right)\right| \leq C_{\ell}\left(\mathrm{a}\left(u_{N}, u_{N}\right)\right)^{1 / 2} .
\]

\section*{Recall from Sect. 1.5.1:}

2nd step of Galerkin discretization:
\[
\text { Introduce (ordered) basis } \mathfrak{B}_{N} \text { of } V_{0, N} \text { : }
\]
\[
\mathfrak{B}_{N}:=\left\{b_{N}^{1}, \ldots, b_{N}^{N}\right\} \subset V_{N} \quad, \quad V_{N}=\operatorname{Span}\left\{\mathfrak{B}_{N}\right\} \quad, \quad N:=\operatorname{dim}\left(V_{N}\right)
\]

Unique basis representations:
\[
\begin{array}{ll}
u_{N}=\mu_{1} b_{N}^{1}+\cdots+\mu_{N} b_{N}^{N}, \quad \mu_{i} \in \mathbb{R} \\
v_{N}=\nu_{1} b_{N}^{1}+\cdots+\nu_{N} b_{N}^{N}, \quad \nu_{i} \in \mathbb{R}
\end{array}
\]

Of course, there are infinitely many ways to choose the basis \(\mathfrak{B}_{N}\). Below we will study the impact of different choices.

What follows repeats the derivation of (1.5.16) and, in particular, (1.5.40).
\[
\begin{aligned}
& \left.u_{N} \in V_{0, N}: \quad \begin{array}{l}
\mathrm{a}\left(u_{N}, v_{N}\right)=\ell\left(v_{N}\right) \\
\sum_{k=1} v_{j=1} \mu_{N} \in V_{0, N} . \\
u_{N}=\mu_{1} b_{N}^{1}+\cdots+\mu_{N} b_{N}^{N}, \mu_{i} \in \mathbb{R} \\
v_{N}=\nu_{1} b_{N}^{1}+\cdots+\nu_{N} b_{N}^{N}, \nu_{i} \in \mathbb{R}
\end{array}\right] \\
& \left.\sum_{N=1}^{N} b_{N}^{N}, b_{N}^{j}\right)=\sum_{j=1}^{N} \nu_{j} \ell\left(b_{N}^{j}\right) \quad \\
& \forall \nu_{1}, \ldots, \nu_{N} \in \mathbb{R},
\end{aligned}
\]
\[
\begin{aligned}
& \sum_{j=1}^{N} \nu_{j}\left(\sum_{k=1}^{N} \mu_{k} \mathrm{a}\left(b_{N}^{k}, b_{N}^{j}\right)-\ell\left(b_{N}^{j}\right)\right)=0 \quad \forall \nu_{1}, \ldots, \nu_{N} \in \mathbb{R}, \\
& \sum_{k=1}^{N} \mu_{k} \mathrm{a}\left(b_{N}^{k}, b_{N}^{j}\right)=\ell\left(b_{N}^{j}\right) \text { for } j=1, \ldots, N . \\
& \left.\begin{array}{l}
\mathbf{A} \overrightarrow{\boldsymbol{\mu}}=\overrightarrow{\boldsymbol{\varphi}} \\
\text { A linear system of equations }
\end{array} \text {, with } \quad \mathbf{A}=\left(\mu_{1}, \ldots, \mu_{N}\right)^{\top} \in \mathbb{R}^{N}\right] \\
& \overrightarrow{\boldsymbol{\varphi}}=\left(\ell\left(b_{N}^{k}, b_{N}^{j}\right)\right)_{j, k=1}^{N} \in \mathbb{R}^{N, N},
\end{aligned}
\]

Linear Discrete variational problem
\[
\text { Galerkin matrix: } \quad \mathbf{A}=\left(\mathrm{a}\left(b_{N}^{k}, b_{N}^{j}\right)\right)_{j, k=1}^{N} \in \mathbb{R}^{N, N}
\]

Right hand side vector: \(\quad \overrightarrow{\boldsymbol{\varphi}}=\left(\ell\left(b_{N}^{j}\right)\right)_{j=1}^{N} \in \mathbb{R}^{N}\),
Coefficient vector: \(\overrightarrow{\boldsymbol{\mu}}=\left(\mu_{1}, \ldots, \mu_{N}\right)^{\top} \in \mathbb{R}^{N}\),
Recovery of solution: \(\quad u_{N}=\sum_{k=1}^{N} \mu_{k} b_{N}^{k}\).
(Legacy) terminology for FEM: Galerkin matrix Right hand side vector Galerkin matrix for \((u, v) \mapsto \int_{\Omega} u v \mathrm{~d} \boldsymbol{x}=\) mass matrix

Remark 3.1.7 (Impact of choice of basis).

Choice of \(\mathfrak{B}_{N}\) in theory does not affect \(u_{N} \quad \Rightarrow\) No impact on discretization error !

But: Key properties (e.g., conditioning) of matrix A crucially depend on basis \(\mathfrak{B}_{N}\) !

Lemma 3.1.8. Consider (3.1.3) and two bases of \(V_{0, N}\),
\[
\mathfrak{B}_{N}:=\left\{b_{N}^{1}, \ldots, b_{N}^{N}\right\} \quad, \quad \underline{\mathfrak{B}}_{N}:=\left\{\underline{b}_{N}^{1}, \ldots, \underline{b}_{N}^{N}\right\},
\]
related by
\[
\underline{b}_{N}^{j}=\sum_{k=1}^{N} s_{j k} b_{N}^{k} \quad \text { with } \quad \mathbf{S}=\left(s_{j k}\right)_{j, k=1}^{N} \in \mathbb{K}^{N, N} \text { regular. }
\]

Galerkin matrices \(\mathbf{A}, \underline{\mathbf{A}} \in \mathbb{K}^{N, N}\), right hand side vectors \(\overrightarrow{\boldsymbol{\varphi}}, \underline{\vec{\varphi}} \in \mathbb{K}^{N}\), and coefficient vectors \(\overrightarrow{\boldsymbol{\mu}}, \underline{\vec{\mu}} \in \mathbb{R}^{N}\), respectively, satisfy
\[
\begin{equation*}
\underline{\mathbf{A}}=\mathbf{S A S}^{T} \quad, \quad \underline{\vec{\varphi}}=\mathbf{S} \overrightarrow{\boldsymbol{\varphi}} \quad, \quad \underline{\vec{\mu}}=\mathbf{S}^{-T} \overrightarrow{\boldsymbol{\mu}} . \tag{3.1.9}
\end{equation*}
\]

Proof.
\[
\underline{\mathbf{A}}_{l m}=\mathrm{a}\left(\underline{b}_{N}^{m}, \underline{b}_{N}^{l}\right)=\sum_{k=1}^{N} \sum_{j=1}^{N} s_{m k} \mathrm{a}\left(b_{N}^{k}, b_{N}^{j}\right) s_{l j}=\sum_{k=1}^{N}(\underbrace{\sum_{j=1}^{N} s_{l j} \mathbf{A}_{j k}}_{(\mathbf{S A})_{l k}}) s_{m k}=\left(\mathbf{S A S}^{T}\right)_{l m}
\]

Reminder of linear algebra:
Definition 3.1.10 (Congruent matrices).
Two matrices \(\mathbf{A} \in \mathbb{K}^{N, N}, \mathbf{B} \in \mathbb{K}^{N, N}, N \in \mathbb{N}\), are called congruent, if there is a regular matrix \(\mathbf{S} \in \mathbb{K}^{N, N}\) such that \(\mathbf{B}=\mathbf{S A S}{ }^{H}\).

Equivalence relation on square matrices
Lemma3.1.11. \begin{tabular}{c} 
Matrix property invariant under \\
congruence
\end{tabular}\(\Leftrightarrow\)\begin{tabular}{c} 
Property of Galerkin matrix invariant \\
under change of basis \(\mathfrak{B}_{N}\)
\end{tabular}
- regularity \(\rightarrow\) [14, Def. 2.0.1]

Matrix properties invariant under congruence:
- symmetry
- positive definiteness \(\rightarrow\) [14, Def. 2.7.1]

\subsection*{3.2 Case study: Triangular linear FEM in two dimensions}

This section elaborates how to extend the linear finite element Galerkin discretization of Sect. 1.5.1.2 to two dimensions. Familiarity with the 1D setting is essential for understanding the current section.

Example: Neuman problem with homogeneous Neumann data and reaction term
\[
\left.\begin{array}{rl}
u \in H^{1}(\Omega): \quad \int_{\Omega} \boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v+c(\boldsymbol{x}) u v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \forall v \in H^{1}(\Omega),  \tag{3.0.1}\\
\hat{\sharp} \leftarrow \quad \text { see Sect. 2.4 }
\end{array}\right] \begin{aligned}
& \\
& \text { BVP: } \quad-\operatorname{div}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u)+c(\boldsymbol{x}) u=f \text { in } \Omega, \\
& \operatorname{grad} u \cdot \boldsymbol{n}=0 \text { on } \partial \Omega .
\end{aligned}
\]

Assumptions on domain \(\Omega \subset \mathbb{R}^{2}\), see Rem. 2.1.1:
\(\Omega\) is a polygon
polygon with 10 corners

By default, the domain \(\Omega\) is assumed to be an open set, that is, \(\boldsymbol{x} \in \Omega\) implies \(\boldsymbol{x} \notin \partial \Omega\) !


\subsection*{3.2.1 Triangulations}

What is the 2D counterpart of mesh/grid \(\mathcal{M}\) from Sect. (1.5.1.2) ?


Triangulation \(\mathcal{M}\) of \(\Omega\) :
(i) \(\mathcal{M}=\left\{K_{i}\right\}_{i=1}^{M}, M \in \mathbb{N}, K_{i} \hat{=}\) open triangle
(ii) disjoint interiors: \(i \neq j \Rightarrow K_{i} \cap K_{i}=\emptyset\)
(iii) tiling property: \(\bigcup_{i=1} \bar{K}_{i}=\bar{\Omega}\)
(iv) intersection \(\bar{K}_{i} \cap \bar{K}_{j}, i \neq j\),
is - either \(\emptyset\)
- or an edge of both triangles
- or a vertex of both triangles

Q notation: - \(\hat{=}\) a subset of \(\mathbb{R}^{d}\) together with its boundary ("closure")

A mesh that does not comply with the property (iv) from above.


\subsection*{3.2.2 Linear finite element space}

Next goal: generalize the spline space \(\mathcal{S}_{1}^{0}(\mathcal{M}) \subset H^{1}([a, b])\) of piecewise linear functions on a 1D grid \(\mathcal{M}\), see Fig. 23, that was used as Galerkin trial/test space in 1D:
\[
V_{0, N}=\mathcal{S}_{1,0}^{0}(\mathcal{M}):=\left\{v \in C^{0}([0,1]): v_{\mid\left[x_{i-1}, x_{i}\right]} \text { linear, } i=1, \ldots, M, v(a)=v(b)=0\right\} .
\]
\[
d=1 \quad d=2
\]

Grid/mesh cells: intervals \(] x_{i-1}, x_{i}\left[, i=1, \ldots, M \quad\right.\) triangles \(K_{i}, i=1, \ldots, M\)
Linear functions: \(\quad x \in \mathbb{R} \mapsto \alpha+\beta \cdot x, \alpha, \beta \in \mathbb{R} \quad \boldsymbol{x} \in \mathbb{R}^{2} \mapsto \alpha+\boldsymbol{\beta} \cdot \boldsymbol{x}, \alpha \in \mathbb{R}, \boldsymbol{\beta} \in \mathbb{R}^{2}\)
\[
V_{0, N}=\mathcal{S}_{1}^{0}(\mathcal{M}):=\left\{v \in C^{0}(\bar{\Omega}): \forall K \in \mathcal{M}: \begin{array}{l}
v_{\mid K}(\boldsymbol{x})=\alpha_{K}+\boldsymbol{\beta}_{K} \cdot \boldsymbol{x}, \\
\alpha_{K} \in \mathbb{R}, \boldsymbol{\beta}_{K} \in \mathbb{R}^{2}, \boldsymbol{x} \in K
\end{array}\right\} \subset H^{1}(\Omega)
\]

Functions of the form \(\boldsymbol{x} \mapsto \alpha_{K}+\boldsymbol{\beta}_{K} \cdot \boldsymbol{x}, \alpha_{K} \in \mathbb{R}, \boldsymbol{\beta}_{K} \in \mathbb{R}^{2}\) are called (affine) linear.
notation:

scalar functions

\(\triangleleft\) continuous piecewise affine linear function \(\in\) \(\mathcal{S}_{1}^{0}(\mathcal{M})\) on a triangular mesh \(\mathcal{M}\)
3.2.3 Nodal basis functions

Next goal: generalization of "tent functions", see (1.5.49).

Recall condition (1.5.50), which defines a tent function in the space \(\mathcal{S}_{1}^{0}(\mathcal{M})\). This approach carries over to 2D.


Reasoning: there is exactly one plane through three non-collinear points in \(\mathbb{R}^{3}\). The graph of a linear function \(\mathbb{R}^{2} \mapsto \mathbb{R}\) is a plane.
\(>\) On a triangle \(K\) with vertices \(\boldsymbol{a}^{1}, \boldsymbol{a}^{2}, \boldsymbol{a}^{3}\) : (affine) linear \(q: K \mapsto \mathbb{R}\) uniquely determined by values \(q\left(\boldsymbol{a}^{i}\right)\).
\[
v_{N} \in \mathcal{S}_{1}^{0}(\mathcal{M}) \text { uniquely determined by }\left\{v_{N}(\boldsymbol{x}), \boldsymbol{x} \text { node of } \mathcal{M}\right\}!
\]
\[
\operatorname{dim} \mathcal{S}_{1}^{0}(\mathcal{M})=\sharp \mathcal{V}(\mathcal{M})
\]

Writing \(\mathcal{V}(\mathcal{M})=\left\{\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{N}\right\}\), the nodal basis \(\mathfrak{B}_{N}:=\left\{b_{N}^{1}, \ldots, b_{N}^{N}\right\}\) of \(\mathcal{S}_{1}^{0}(\mathcal{M})\) is defined by the conditions
\[
b_{N}^{i}\left(\boldsymbol{x}^{j}\right)=\left\{\begin{array}{ll}
1 & , \text { if } i=j, \\
0 & \text { else },
\end{array} \quad i, j \in\{1, \ldots, N\}\right.
\]

Piecewise linear nodal basis function ("hat function")
\[
u_{N}=\sum_{i=1}^{N} \mu_{i} b_{N}^{i} \in \mathcal{S}_{1}^{0}(\mathcal{M})
\]
coefficient \(\mu_{j}=\) "nodal value" of \(u_{N}\) at \(j\)-th node of \(\mathcal{M}\)
\[
u_{N}\left(\boldsymbol{x}^{j}\right)=\mu_{j}
\]


Remark 3.2.3 (Linear finite element space for homogeneous Dirichlet problem).

Recall that the Dirichlet problem with homogeneous boundary conditions \(u_{\mid \partial \Omega}=0\) is posed on the Sobolev space \(H_{0}^{1}(\Omega)(\rightarrow\) Def. 2.2.10), see (2.3.3), Ex. 2.8.1.
\[
\text { Galerkin space for homogeneous Dirichlet b.c.: } \quad V_{0, N}=\mathcal{S}_{1,0}^{0}(\mathcal{M}):=\mathcal{S}_{1}^{0}(\mathcal{M}) \cap H_{0}^{1}(\Omega)
\]
\[
\mathcal{S}_{1,0}^{0}(\mathcal{M})=\operatorname{Span}\left\{b_{N}^{j}: x^{j} \in \Omega \text { (interior node !) }\right\}
\]
- \(\quad \operatorname{dim} \mathcal{S}_{1,0}^{0}(\mathcal{M})=\sharp\{\boldsymbol{x} \in \mathcal{V}(\mathcal{M}): \boldsymbol{x} \notin \partial \Omega\}\)

\(\triangleleft\) "Location" of nodal basis functions: (mesh \(\mathcal{M} \rightarrow\) Fig. 146)
\(\bullet, \bullet \rightarrow\) nodal basis functions of \(\mathcal{S}_{1}^{0}(\mathcal{M})\)
- \(\rightarrow\) nodal basis functions of \(\mathcal{S}_{1,0}^{0}(\mathcal{M})\)

Bottom line: the Galerkin trial/test space contained in \(H_{0}^{1}(\Omega)\) is obtained by dropping all "tent functions" that do not vanish on \(\partial \Omega\) from the basis.

\subsection*{3.2.4 Sparse Galerkin matrix}

Now: a \(\hat{=}\) any (symmetric) bilinear form occurring in a linear 2nd-order variational problem, most general form
\[
\begin{equation*}
\mathrm{a}(u, v):=\int_{\Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u) \cdot \boldsymbol{\operatorname { g r a d }} v+c(\boldsymbol{x}) u v \mathrm{~d} \boldsymbol{x}+\int_{\partial \Omega} h v \mathrm{~d} S, \quad u, v \in H^{1}(\Omega) . \tag{3.2.4}
\end{equation*}
\]
\(b_{N}^{j} \hat{=}\) nodal basis function assciated with vertex \(\boldsymbol{x}^{j}\) of triangulation \(\mathcal{M}\) of \(\Omega\), see Sect. 3.2.3.

Now we study the sparsity \((\rightarrow\) [14, Sect. [2.6] \()\) of the Galerkin matrix \(\quad \mathbf{A}:=\left(\mathrm{a}\left(b_{N}^{j}, b_{N}^{i}\right)\right)_{i, j=1}^{N} \in\) \(\mathbb{R}^{N, N}, N:=\operatorname{dim} \mathcal{S}_{1}^{0}(\mathcal{M})=\sharp \mathcal{V}(\mathcal{M})\), see Sect. 3.1.

The consideration are fairly parallel to those that made us understand that the Galerkin matrix for the 1D case was tridiagonal, see (1.5.54).


Nodes \(\boldsymbol{x}^{i}, \boldsymbol{x}^{j} \in \mathcal{V}(\mathcal{M})\) not connected by an edge
\(\Leftrightarrow \quad \operatorname{Vol}\left(\operatorname{supp}\left(b_{N}^{i}\right) \cap \operatorname{supp}\left(b_{N}^{j}\right)\right)=0 \quad \Rightarrow \quad(\mathbf{A})_{i j}=0\).

Lemma 3.2.5 (Sparsity of Galerkin matrix).
\[
\exists C=C(\text { topology of } \Omega): \quad \sharp\left\{(i, j) \in\{1, \ldots, N\}^{2}:(\mathbf{A})_{i j} \neq 0\right\} \leq 7 \cdot N+C .
\]

Proof. Euler's formula (http://en.wikipedia.org/wiki/Euler_characteristic)
\[
\sharp \mathcal{M}-\sharp \mathcal{E}(\mathcal{M})+\sharp \mathcal{V}(\mathcal{M})=\chi_{\Omega}, \quad \chi_{\Omega}=\text { Euler characteristic of } \Omega
\]

Note that \(\chi_{\Omega}\) is a topological invariant (alternating sum of Betti numbers).

By combinatorial considerations (traverse edges and count triangles):
\[
2 \cdot \sharp \mathcal{E}_{I}(\mathcal{M})+\sharp \mathcal{E}_{B}(\mathcal{M})=3 \cdot \sharp \mathcal{M}
\]
where \(\mathcal{E}_{I}(\mathcal{M}), \mathcal{E}_{B}(\mathcal{M})\) stand for the sets of interior and boundary edges of \(\mathcal{M}\), respectively.
\[
\Sigma \quad \sharp \mathcal{E}_{I}(\mathcal{M})+2 \sharp \mathcal{E}_{B}(\mathcal{M})=3\left(\sharp \mathcal{V}(\mathcal{M})-\chi_{\Omega}\right)
\]

Then use
\[
N=\sharp \mathcal{V}(\mathcal{M}) \quad, \quad \operatorname{nnz}(\mathbf{A}) \leq N+2 \cdot \sharp \mathcal{E}(\mathcal{M}) \leq 7 \cdot \sharp \mathcal{V}(\mathcal{M})-6 \chi_{\Omega}
\]

\section*{Recall from [14, Def. 2.6.1]:}

Notion 3.2.6 (Sparse matrix). \(\mathbf{A} \in \mathbb{K}^{m, n}, m, n \in \mathbb{N}\), is sparse, if
\[
\operatorname{nnz}(\mathbf{A}):=\#\left\{(i, j) \in\{1, \ldots, m\} \times\{1, \ldots, n\}: a_{i j} \neq 0\right\} \ll m n
\]

Sloppy parlance: matrix sparse \(: \Leftrightarrow\) "almost all" entries \(=0 /\) "only a few percent of" entries \(\neq 0\)

Galerkin discretization of a \(2 n d\)-order linear variational problems utilizing the nodal basis of \(\mathcal{S}_{1}^{0}(\mathcal{M}) / \mathcal{S}_{1,0}^{0}(\mathcal{M})\) leads to sparse linear systems of equations.

Example 3.2.7 (Sparse Galerkin matrices).
\(\mathcal{M}=\) triangular mesh, \(V_{0, N}=\mathcal{S}_{1,0}^{0}(\mathcal{M})\), homogeneous Dirichlet boundary conditions, linear 2ndorder scalar elliptic differential operator.



Resulting sparsity pattern of Galerkin matrix

\section*{Recall: visualization of sparsity pattern by means of MATLAB spy-command.}

\subsection*{3.2.5 Computation of Galerkin matrix}

For sake of simplicity consider
\[
\mathrm{a}(u, v):=\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}, \quad u, v \in H_{0}^{1}(\Omega)
\]
and Galerkin discretization based on
- triangular mesh, see Sect. 3.2.1,
- discrete trial/test space \(\quad \mathcal{S}_{1,0}^{0}(\mathcal{M}) \subset H_{0}^{1}(\Omega)\),
- nodal basis \(\mathfrak{B}_{N}=\left\{b_{N}^{j}\right\}\) according to (3.2.1).
\[
\mathbf{( A})_{i, j}=\mathrm{a}\left(b_{N}^{j}, b_{N}^{i}\right)=\int_{\Omega} \operatorname{grad} b_{N}^{j} \cdot \operatorname{grad} b_{N}^{i} \mathrm{~d} \boldsymbol{x}
\]

Sect. 3.2.4: we need only study the cases, where \(\boldsymbol{x}^{i}, \boldsymbol{x}^{j} \in \mathcal{V}(\mathcal{M})\)
1. are connected by an edge of the triangulation,
2. coincide.

Idea:
"Assembly"
(add up cell contributions)
(20merner


Zero in on single triangle \(K \in \mathcal{M}\) :
\[
\begin{equation*}
\mathrm{a}_{K}\left(b_{N}^{j}, b_{N}^{i}\right):=\int_{K} \operatorname{grad} b_{N \mid K}^{j} \cdot \operatorname{grad} b_{N \mid K}^{i} \mathrm{~d} \boldsymbol{x} \quad, \quad \boldsymbol{x}^{i}, \boldsymbol{x}^{j} \text { vertices of } K \tag{3.2.8}
\end{equation*}
\]

Use analytic representation for \(b_{N \mid K}^{i}\) :
if \(\boldsymbol{a}^{1}, \boldsymbol{a}^{2}, \boldsymbol{a}^{3}\) vertices of \(K, \lambda_{i}:=b_{N \mid K}^{j}, \boldsymbol{a}^{i}=\boldsymbol{x}^{j}\) ( \(i \leftrightarrow\) local vertex number, \(j \leftrightarrow\) global node number)


Restrictions \(\lambda_{1}, \lambda_{2}, \lambda_{3}\) of p.w. linear nodal basis functions of \(\mathcal{S}_{1}^{0}(\mathcal{M})\) to triangle \(K\)

The functions \(\lambda_{1}, \lambda_{2}, \lambda_{3}\) on the triangle \(K\) are also known as barycentric coordinate functions.
\(\lambda_{1}(\mathbf{x})=\frac{1}{2|K|}\left(\mathbf{x}-\boldsymbol{a}^{2}\right) \cdot\binom{a_{2}^{2}-a_{2}^{3}}{a_{1}^{3}-a_{1}^{2}}=-\frac{\left|e_{1}\right|}{2|K|}\left(\boldsymbol{x}-\boldsymbol{a}^{2}\right) \cdot \boldsymbol{n}^{1}\),
\(\lambda_{2}(\mathbf{x})=\frac{1}{2|K|}\left(\mathbf{x}-\boldsymbol{a}^{3}\right) \cdot\binom{a_{2}^{3}-a_{2}^{1}}{a_{1}^{1}-a_{1}^{3}}=-\frac{\left|e_{2}\right|}{2|K|}\left(\boldsymbol{x}-\boldsymbol{a}^{3}\right) \cdot \boldsymbol{n}^{2}\),
\(\lambda_{3}(\mathbf{x})=\frac{1}{2|K|}\left(\mathbf{x}-\boldsymbol{a}^{1}\right) \cdot\binom{a_{2}^{1}-a_{2}^{2}}{a_{1}^{2}-a_{1}^{1}}=-\frac{\left|e_{3}\right|}{2|K|}\left(\boldsymbol{x}-\boldsymbol{a}^{1}\right) \cdot \boldsymbol{n}^{3}\)
\(\left(e_{i}=\right.\) edge opposite vertex \(\boldsymbol{a}^{i}\), see Figure for numbering
scheme \(\quad D)\)

From the distance formula for a point w..r.t to a line given in Hesse normal form:
\(\left(\boldsymbol{a}^{i}-\boldsymbol{a}^{j}\right) \cdot \boldsymbol{n}_{i}=\operatorname{dist}\left(\boldsymbol{a}^{i} ; e_{i}\right)=h_{i}\left(h_{i} \hat{=}\right.\) height \()\) and \(2|K|=\left|e_{i}\right| h_{i} \quad \Rightarrow \quad \lambda_{i}\left(\boldsymbol{a}^{i}\right)=1\).

This shows that the \(\lambda_{i}\) really provide the restrictions of p.w. linear nodal basis functions of \(\mathcal{S}_{1}^{0}(\mathcal{M})\) to triangle \(K\), because they are clearly (affine) linear as comply with (3.2.1).
\[
\operatorname{grad} \lambda_{1}=\frac{1}{2|K|}\binom{a_{2}^{2}-a_{2}^{3}}{a_{1}^{2}-a_{1}^{3}}, \operatorname{grad} \lambda_{2}=\frac{1}{2|K|}\binom{a_{2}^{3}-a_{2}^{1}}{a_{1}^{3}-a_{1}^{1}}, \operatorname{grad} \lambda_{3}=\frac{1}{2|K|}\binom{a_{2}^{1}-a_{2}^{2}}{a_{1}^{1}-a_{1}^{2}} .
\]
\[
\begin{align*}
\left(\int_{K} \operatorname{grad} \lambda_{i} \cdot \operatorname{grad} \lambda_{j} \mathrm{~d} \boldsymbol{x}\right)_{i, j=1}^{3} & =\quad \text { element }(s t i f f n e s s) \text { matrix } \mathbf{A}_{K} \\
& =\frac{1}{2}\left(\begin{array}{ccc}
\cot \omega_{3}+\cot \omega_{2} & -\cot \omega_{3} & -\cot \omega_{2} \\
-\cot \omega_{3} & \cot \omega_{3}+\cot \omega_{1} & -\cot \omega_{1} \\
-\cot \omega_{2} & -\cot \omega_{1} & \cot \omega_{2}+\cot \omega_{1}
\end{array}\right) \tag{3.2.9}
\end{align*}
\]

The local numbering and naming conventions are displayed in Fig. 108.

Derivation of (3.2.9), see also [15, Lemma 3.47]: obviously, because the gradients grad \(\lambda_{i}\) are constant on \(K\),
\[
\mathrm{a}\left(\lambda_{i}, \lambda_{j}\right)=\int_{K} \operatorname{grad} \lambda_{i} \cdot \operatorname{grad} \lambda_{j} \mathrm{~d} \boldsymbol{x}=\frac{1}{4|K|}\left|e_{i}\right|\left|e_{j}\right| \boldsymbol{n}_{i} \cdot \boldsymbol{n}_{j} .
\]

Then use: • \(\boldsymbol{n}_{i} \cdot \boldsymbol{n}_{j}=\cos \left(\pi-\omega_{k}\right)=-\cos \omega_{k}, \quad(i \neq j)\)
- \(|K|=\frac{1}{2}\left|e_{i}\right|\left|e_{j}\right| \sin \omega_{k}, \quad(i \neq j)\).

Case \(i=j\) employs a trick: \(\sum_{i=1}^{3} \lambda_{i}=1 \Rightarrow \sum_{i=1}^{3} \mathrm{a}\left(\lambda_{i}, \lambda_{j}\right)=0\)

Remark 3.2.10 (Scaling of entries of element matrix for \(-\Delta\) ).
(3.2.9):
\(\mathbf{A}_{K}\) does not depend on the "size" of triangle \(K\) ! (more precisely, element matrices are equal for similar triangles)

This can be seen by the following reasoning:
- Obviously translation and rotation of \(K\) does not change. \(\mathbf{A}_{K}\)
- Scaling of \(K\) by a factor \(\rho>0\) has the following effect that
- the area \(|K|\) is scaled by \(\rho^{2}\),
- the gradients grad \(\lambda_{i}\) are scaled by \(\rho^{-1}\) (the barycentric coordinate functions \(\lambda_{i}\) become steeper when the triangle shrinks in size.).

Both effects just offset in a \({ }_{K}\) from (3.2.8) such that \(\mathbf{A}_{K}\) remains invariant under scaling.
"Assembly" of \((\mathbf{A})_{i j}\) starts from the sum
\[
(\mathbf{A})_{i j}=\int_{K_{1}} \operatorname{grad} b_{N \mid K_{1}}^{j} \cdot \operatorname{grad} b_{N \mid K_{1}}^{i} \mathrm{~d} \boldsymbol{x}+\int_{K_{2}} \operatorname{grad} b_{N \mid K_{2}}^{j} \cdot \operatorname{grad} b_{N \mid K_{2}}^{i} \mathrm{~d} \boldsymbol{x} .
\]
\(>\quad(\mathbf{A})_{i j}\) can be obtained by summing respective \({ }^{(*)}\) entries of the elements matrices of the elements adjacent to the edge connecting \(x^{i}\) and \(\boldsymbol{x}^{j}\)
\((*)\) : watch correspondence of local and global vertex numbers !

"Assembly" of diagonal entry \((\mathbf{A})_{i i}\) : summing corresponding diagonal entries of element matrices belonging to triangles adjacent to node \(\boldsymbol{x}^{i}\).

\((\mathbf{A})_{i i}\) by summing diagonal entries of element matrices of adjacent triangles
3.2.6 Computation of right hand side vector

We consider the linear form (right hand side of linear variational problem), see (2.3.3), (3.0.1):
\[
\ell(v):=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad v \in H^{1}(\Omega), \quad f \in L^{2}(\Omega)
\]

Recall formula for right hand side vector
\[
\begin{equation*}
(\overrightarrow{\boldsymbol{\varphi}})_{j}=\ell\left(b_{N}^{j}\right)=\int_{\Omega} f(\boldsymbol{x}) b_{N}^{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad j=1, \ldots, N \tag{3.2.11}
\end{equation*}
\]

Idea: "Assembly"


Zero in on single triangle \(K \in \mathcal{M}\) :
\[
\begin{equation*}
\ell_{K}\left(b_{N}^{j}\right):=\int_{K} f(\boldsymbol{x}) b_{N \mid K}^{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \mathbf{x}^{j} \text { vertex of } K \tag{3.2.12}
\end{equation*}
\]

Rem. 1.5.3: \(\quad f: \Omega \mapsto \mathbb{R}\) given in procedural form
\[
\text { function } y=f(x)
\]

Mandatory: use of numerical quadrature for approximate evaluation of \(\ell_{K}\left(b_{N}^{j}\right)\), cf. (1.5.55).

1D setting of Sect. 1.5.1.2: use of composite quadrature rules based on low Gauss/Newton-Cotes quadrature formulas on the cells \(\left[x_{j-1}, x_{j}\right]\) of the grid, e.g. composite trapezoidal rule (1.5.55).

What is the 2D counterpart of the composite trapezoidal rule?

\section*{Recall:}
trapezoidal rule [14, Eq. 11.4.2] integrates linear interpolant of integrand based on endpoint values

for triangle \(K\) with vertices \(\boldsymbol{a}^{1}, \boldsymbol{a}^{2}, \boldsymbol{a}^{3}\)
\[
\begin{equation*}
\int_{K} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \approx \frac{|K|}{3}\left(f\left(\boldsymbol{a}^{1}\right)+f\left(\boldsymbol{a}^{2}\right)+f\left(\boldsymbol{a}^{3}\right)\right) . \tag{3.2.13}
\end{equation*}
\]
\(\hat{=}\) integration of linear interpolant \(\sum_{i=1}^{3} f\left(\boldsymbol{a}^{i}\right) \lambda_{i}\) of \(f\).
element (load) vector: \(\quad \overrightarrow{\boldsymbol{\varphi}}_{K}:=\left(\ell_{K}\left(b_{N}^{j(i)}\right)\right)_{i=1}^{3}=\frac{|K|}{3}\left(\begin{array}{l}f\left(\boldsymbol{a}^{1}\right) \\ f\left(\boldsymbol{a}^{2}\right) \\ f\left(\boldsymbol{a}^{3}\right)\end{array}\right)\), where \(\boldsymbol{x}^{j(i)}=\boldsymbol{a}^{i}, i=1,2,3 \quad\) (global node number \(\leftrightarrow\) local vertex number).

As above in Fig. 73: "Assembly" of \((\vec{\varphi})_{j}\) by summing up contributions from element vectors of triangles adjacent to \(\boldsymbol{x}^{j}\).
\[
\begin{equation*}
(\overrightarrow{\boldsymbol{\varphi}})_{j}=\sum_{l=1}^{N_{j}} \ell_{K_{l}}\left(b_{N \mid K_{l}}^{j}\right)=\sum_{l=1}^{N_{j}}\left(\vec{\varphi}_{K}\right)_{i(l, j)}=f\left(\boldsymbol{x}^{j}\right) \cdot \frac{1}{3} \sum_{l=1}^{N_{j}}\left|K_{l}\right| \tag{3.2.14}
\end{equation*}
\]
where \(i(l, j)\) is the local vertex index of the node \(\boldsymbol{x}^{j}\) (global index \(j\) ) in the triangle \(K_{l}\).


\subsection*{3.3 Building blocks of general FEM}

The previous section explored the details of a simple finite element discretization of 2nd-order elliptic variational problems. Yet, it already introduced key features and components that distinguish the finite element approach to the discretization of linear boundary value problems for partial differential equations:
- a focus on the variational formulation of a boundary value problem \(\rightarrow\) Sect. 2.8,
- a partitioning of the computational domain \(\Omega\) by means of a mesh \(\mathcal{M}(\rightarrow\) Sect. 3.2.1)
- the use of Galerin trial and test spaces based on piecewise polynomials w.r.t. \(\mathcal{M}(\rightarrow\) Sect. 3.2.2),
- the use of locally supported basis functions for the assembly of the resulting linear system of equations ( \(\rightarrow\) Sect. 3.2.3).

In this section a more abstract point of view is adopted and the components of a finite element method for scalar 2nd-order elliptic boundary value problems will be discussed in greater generality. However, prior perusal of Sect. 3.2 is strongly recommended.

First main ingredient of FEM: \(\quad\) triangulation/mesh of \(\Omega \rightarrow\) Sect. 3.2.1]

Definition 3.3.1. \(\boldsymbol{A}\) mesh (or triangulation) of \(\Omega \subset \mathbb{R}^{d}\) is a finite collection \(\left\{K_{i}\right\}_{i=1}^{M}, M \in \mathbb{N}\), of open non-degenerate (curvilinear) polygons \((d=2) /\) polyhedra \((d=3)\) such that
(A) \(\bar{\Omega}=\bigcup\left\{\bar{K}_{i}, i=1, \ldots, M\right\}\),
(B) \(K_{i} \cap K_{j}=\emptyset \quad \Leftrightarrow \quad i \neq j\),
(C) for all \(i, j \in\{1, \ldots, M\}, i \neq j\), the intersection \(\bar{K}_{i} \cap \bar{K}_{j}\) is either empty or a vertex, edge, or face of both \(K_{i}\) and \(K_{j}\).
"vertex", "edge", "face" of polygon/polyhedron: \(\rightarrow\) geometric intuition
Terminology: \(\quad\) Given mesh \(\mathcal{M}:=\left\{K_{i}\right\}_{i=1}^{M}: \quad K_{i}\) called cell or element. Vertices of a mesh \(\rightarrow\) nodes \(\quad(\) set \(\mathcal{V}(\mathcal{M}))\)

Types of meshes:


Triangular mesh in 2D


Quadrilateral mesh in 2D
\(\triangleleft\) 2D hybrid mesh comprising
- triangles
- quadrilaterals
- curvilinear cells (at \(\partial \Omega\) )

Tetrahedral meshes in 3D (created with NETGEN):


Tensor product mesh = grid
in 2D:
\[
\begin{aligned}
& a=x_{0}<x_{1}<\ldots<x_{n}=b, \\
& c=y_{0}<y_{1}<\ldots<y_{m}=d .
\end{aligned}
\]
\(\perp \mathcal{M}=\{ ] x_{i-1}, x_{i}[\times] y_{j-1}, y_{j}[:\) \(1 \leq i \leq n, 1 \leq j \leq m\}\).

Restricted to tensor product domains


Triangular non-conforming mesh (with hanging nodes)
\(\bar{K}_{i} \cap \bar{K}_{j}\) is only part of an edge/face for at most one of the adjacent cells.
(However, conforming if degenerate quadrilaterals admitted)


Simplicial mesh \(=\begin{aligned} & \text { triangular mesh in 2D } \\ & \text { tetrahedral mesh in 3D }\end{aligned}\)

\subsection*{3.3.2 Polynomials}

Second main ingredient of FEM:
In FEM:
Galerkin trial|test space comprise locally polynomial functions on \(\Omega\)

Clear: polynomials of degree \(\leq p, p \in \mathbb{N}_{0}\), in 1D (univariate polyomials), see (1.5.17)
\[
\mathcal{P}_{p}(\mathbb{R}):=\left\{x \mapsto c_{0}+c_{1} x+c_{2} x^{2}+\ldots c_{p} x^{p}\right\} .
\]

In higher dimensions this concept allows various generalizations, one given in the following definition, one given in Def. 3.3.7.

Definition 3.3.3 (Multivariate polynomials).
Space of multivariate (d-variate) polynomials of (total) degree \(p \in \mathbb{N}_{0}\) :
\[
\mathcal{P}_{p}\left(\mathbb{R}^{d}\right):=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mapsto \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d},|\boldsymbol{\alpha}| \leq p} c_{\boldsymbol{\alpha}} \boldsymbol{x}^{\boldsymbol{\alpha}}, c_{\boldsymbol{\alpha}} \in \mathbb{R}\right\}
\]

Def. 3.3.3 relies on multi-index notation:
\[
\begin{align*}
\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right): & \boldsymbol{x}^{\boldsymbol{\alpha}}:=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}  \tag{3.3.4}\\
& |\boldsymbol{\alpha}|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{d} \tag{3.3.5}
\end{align*}
\]

Special case:

Example:
\[
\begin{gathered}
d=2: \quad \mathcal{P}_{p}\left(\mathbb{R}^{2}\right)=\left\{\sum_{\substack{\alpha_{1}, \alpha_{2} \geq 0 \\
\alpha_{1}+\alpha_{2} \leq p}} c_{\alpha_{1}, \alpha_{2}} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}, c_{\alpha_{1}, \alpha_{2}} \in \mathbb{R}\right\} \\
\mathcal{P}_{2}\left(\mathbb{R}^{2}\right)=\operatorname{Span}\left\{1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right\}
\end{gathered}
\]

Lemma 3.3.6 (Dimension of spaces of polynomials).
\[
\operatorname{dim} \mathcal{P}_{p}\left(\mathbb{R}^{d}\right)=\binom{d+p}{p} \quad \text { for all } p \in \mathbb{N}_{0}, d \in \mathbb{N}
\]

Proof. Distribute \(p\) "powers" to the \(d\) independent variables or discard them \(\triangleright d+1\) bins.

Combinatorial model: number of different linear arrangements of \(p\) identical items and \(d\) separators \(=\binom{d+p}{p}\).

Leading order
\[
\operatorname{dim} \mathcal{P}_{p}\left(\mathbb{R}^{d}\right)=O\left(p^{d}\right)
\]

Definition 3.3.7 (Tensor product polynomials).
Space of tensor product polynomials of degree \(p \in \mathbb{N}\) in each coordinate direction
\[
\mathcal{Q}_{p}\left(\mathbb{R}^{d}\right):=\left\{\mathbf{x} \mapsto p_{1}\left(x_{1}\right) \cdots p_{d}\left(x_{d}\right), p_{i} \in \mathcal{P}_{p}(\mathbb{R}), i=1, \ldots, d\right\}
\]

Example:
\[
\mathcal{Q}_{2}\left(\mathbb{R}^{2}\right)=\operatorname{Span}\left\{1, x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{1}^{2} x_{2}, x_{1}^{2} x_{2}^{2}, x_{1} x_{2}^{2}, x_{2}^{2}\right\}
\]

Lemma 3.3.8 (Dimension of spaces of tensor product polynomials). \(\operatorname{dim} \mathcal{Q}_{p}\left(\mathbb{R}^{d}\right)=(p+1)^{d} \quad\) for all \(\quad p \in \mathbb{N}_{0}, d \in \mathbb{N}\)

Terminology: \(\quad \mathcal{P}_{p}\left(\mathbb{R}^{d}\right) / \mathcal{Q}_{p}\left(\mathbb{R}^{d}\right)=\) complete spaces of polynomials/tensor product polynomials

\subsection*{3.3.3 Basis functions}

Third main ingredient of FEM:
locally supported basis functions
(see Sect. 3.1 for role of bases in Galerkin discretization)

Basis functions \(b_{N}^{1}, \ldots, b_{N}^{N}\) for a finite element trial/test space \(V_{0, N}\) built on a mesh \(\mathcal{M}\) satisfy:
(a) \(\mathfrak{B}_{N}:=\left\{b_{N}^{1}, \ldots, b_{N}^{N}\right\}\) is basis of \(V_{0, N}>N=\operatorname{dim} V_{0, N}\),
(b) each \(b_{N}^{i}\) is associated with a single cell/edge/face/vertex of \(\mathcal{M}\),
(c) \(\operatorname{supp}\left(b_{N}^{i}\right)=\bigcup\{\bar{K}: K \in \mathcal{M}, \boldsymbol{p} \subset \bar{K}\}\), if \(b_{N}^{i}\) associated with cell/edge/face/vertex \(\boldsymbol{p}\).

Finite element terminology: \(\quad b_{N}^{i}=\) global shape functions/global basis functions

Mesh \(\mathcal{M}+\) global shape functions \(\Rightarrow\) complete description of finite element space

Example 3.3.9 (Supports of global shape functions in 1D). \(\rightarrow\) Sect. 1.5.1.2
- \(\Omega=] a, b[\hat{=}\) interval
- Equidistant mesh
\[
\begin{gathered}
\mathcal{M}:=\{ ] x_{j-1}, x_{j}[, j=1, \ldots, M\}, \\
x_{j}:=a+h j, h:=(b-a) / M, M \in \mathbb{N} .
\end{gathered}
\]

Support ( \(\rightarrow\) Def. [1.5.53) of global shape function associated with \(x_{7}\)


Example 3.3.10 (Supports of global shape functions on triangular mesh).


Support of node-associated basis function


Support of edge-associated basis function


Support of cell-associated basis function

Requirement (c) implies that
global finite element basis functions are locally supported.

What is the rationale for this requirement?

Consider a generic bilinear form a arising from a linear scalar 2nd-order elliptic BVP, see (3.2.4): it involves integration over \(\Omega / \partial \Omega\) of products of (derivatives of) basis functions. Thus the integrand for a \(\left(b_{N}^{j}, b_{N}^{i}\right)\) vanishes outside the overlap of the supports of \(b_{N}^{j}\) and \(b_{N}^{i}\).

Galerkin matrix \(\mathbf{A} \in \mathbb{R}^{N, N}\) with \(\quad(\mathbf{A})_{i j}:=\mathrm{a}\left(b_{N}^{j}, b_{N}^{i}\right), \quad i, j=1, \ldots, N\) satisfies
\(b_{N}^{i}\) and \(b_{N}^{j}\) associated with
\(a_{i j} \neq 0 \quad\) only if \(\quad\) vertices/faces/edges(cells) adjacent to common
cell

Finite element stiffness matrices are sparse \(\quad(\rightarrow\) Notion 3.2.6)

Definition 3.3.12 (Local shape functions).
Given finite element function space on mesh \(\mathcal{M}\) with global shape functions \(b_{N}^{i}, i=1, \ldots, N\) :
\[
\left\{b_{N \mid K}^{j}, K \subset \operatorname{supp}\left(b_{N}^{j}\right)\right\}=\text { set of local shape functions on } K \in \mathcal{M}
\]

Local shape functions \(b_{K}^{1}, \ldots, b_{K}^{Q}, Q=Q(K) \in \mathbb{N}\) also associated with vertices/edges/faces/interior of \(K\)

Example 3.3.13 (Local shape functions for \(\mathcal{S}_{1}^{0}(\mathcal{M})\) in 2D). \(\quad \rightarrow\) Sect. 3.2.3
Global basis function for \(\mathcal{S}_{1}^{0}(\mathcal{M})\)
On "unit triangle" \(K\) with vertices
\[
\begin{array}{r}
\mathbf{a}^{1}=\binom{0}{0}, \mathbf{a}^{2}=\binom{1}{0}, \mathbf{a}^{3}=\binom{0}{1} \\
b_{K}^{1}(\mathbf{x})=1-x_{1}-x_{2}
\end{array}
\]

Local shape functions: \(\quad b_{K}^{2}(\mathbf{x})=x_{1}\),
\[
b_{K}^{3}(\mathbf{x})=x_{2} .
\]


These are the barycentric coordinate functions \(\lambda_{1}, \lambda_{2}, \lambda_{3}\) introduced in Sect. 3.2.5

\subsection*{3.4 Lagrangian FEM}

Taken for granted: finite element mesh \(\mathcal{M}\) according to Def. 3.3.1.

Goal: consatruction of finite element spaces and global shape functions of higher polynomials degrees.

Lagrangian finite element spaces provide spaces \(V_{0, N}\) of \(\mathcal{M}\)-piecewise polynomials that fulfill
\[
V_{N, 0} \subset C^{0}(\Omega) \stackrel{\text { Thm. .2.2.17 }}{\Longrightarrow} V_{N, 0} \subset H^{1}(\Omega) \text {. }
\]

Notation:
(Lagrangian FE spaces)


\subsection*{3.4.1 Simplicial Lagrangian FEM}
\(\mathcal{M}:\) Simplicial mesh, consisting of triangles in 2D, tetrahedra in 3D.

Now we generalize \(\mathcal{S}_{1}^{0}(\mathcal{M}) / \mathcal{S}_{1,0}^{0}(\mathcal{M})\) from Sect. 3.2 to higher polynomial degree \(p \in \mathbb{N}_{0}\).

Definition 3.4.1 (Simplicial Lagrangian finite element spaces). Space of \(p\)-th degree Lagrangian finite element functions on simplicial mesh \(\mathcal{M}\)
\[
\mathcal{S}_{p}^{0}(\mathcal{M}):=\left\{v \in C^{0}(\bar{\Omega}): v_{\mid K} \in \mathcal{P}_{p}(K) \quad \forall K \in \mathcal{M}\right\}
\]

Def. 3.4.1 merely describes the space of trial/test functions used in a Lagrangian finite element method on a Simplicial mesh. A crucial ingredient is still missing ( \(\rightarrow\) Sect. 3.3.3): the global shape functions still need to be specified. This is done by generalizing (3.2.1) based on sets of special interpolation nodes.

Example 3.4.2 (Triangular quadratic Lagrangian finite elements).
\[
\begin{aligned}
& \mathcal{N}:=\mathcal{V}(\mathcal{M}) \cup\{\text { midpoints of edges }\} \\
& \mathcal{N}=\left\{\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{N}\right\}
\end{aligned}
\]

Nodal basis functions \(b_{N}^{j}, j=1, \ldots, N\) defined by, cf. (3.2.1)
\[
b_{N}^{j}\left(\boldsymbol{p}_{i}\right)= \begin{cases}1 & , \text { if } i=j  \tag{3.4.3}\\ 0 & \text { else }\end{cases}
\]


A "definition" like (3.4.3) is cheap, but it may be pointless, in case no such functions \(b_{N}^{j}\) exist. To establish their existence, we first study the case of a single triangle \(K\).

We have to show that there is a basis of \(\mathcal{P}_{2}\left(\mathbb{R}^{2}\right)\) that satisfies (3.4.3) in the case of a mesh consisting of a single triangle \(\mathcal{M}=\{K\}\).

A first simple consistency check: does the number of interpolation nodes \(\sharp \mathcal{N}\) for \(\mathcal{M}=\{K\}\) agree with \(\operatorname{dim} \mathcal{P}_{2}\left(\mathbb{R}^{2}\right)=6\) ? Yes, it does!

Local shape functions barycentric coordinate representation)
\[
\begin{align*}
b_{K}^{1} & =\left(2 \lambda_{1}-1\right) \lambda_{1} \\
b_{K}^{2} & =\left(2 \lambda_{2}-1\right) \lambda_{2} \\
b_{K}^{3} & =\left(2 \lambda_{3}-1\right) \lambda_{3} \\
b_{K}^{4} & =4 \lambda_{1} \lambda_{2}  \tag{3.4.4}\\
b_{K}^{5} & =4 \lambda_{2} \lambda_{3} \\
b_{K}^{6} & =4 \lambda_{1} \lambda_{3}
\end{align*}
\]


To see the validity of the formulas (3.4.4), note that
- \(\lambda_{i}\left(\boldsymbol{a}^{i}\right)=1\) and \(\lambda_{i}\left(\boldsymbol{a}^{j}\right)=0\), if \(i \neq j\), where \(\boldsymbol{a}^{1}, \boldsymbol{a}^{2}, \boldsymbol{a}^{3}\) are the vertices of the triangle \(K\),
- \(\lambda_{1}\left(\mathbf{m}^{12}\right)=\lambda_{1}\left(\mathbf{m}^{13}\right)=\frac{1}{2}\), where \(\mathbf{m}^{i j}=\frac{1}{2}\left(\mathbf{a}^{i}+\mathbf{a}^{j}\right)\) denotes the midpoint of the edge connecting \(\mathbf{a}^{i}\) and \(\mathbf{a}^{j}\),
- each barycentric coordinate function \(\lambda_{i}\) is affine linear such that \(\lambda_{i} \lambda_{j} \in \mathcal{P}_{2}\left(\mathbb{R}^{2}\right)\).

Selected local shape functions:


So far we have seen that local shape functions can be found that satisfy (3.4.3).
Issue: can the local shape functions from (3.4.4) be "stiched together" across interelement edges such that they yield a continuous gobal basis function? (Remember that Thm. 2.2.17 demands global continuity in order to obtain a subspace of \(H^{1}(\Omega)\).)


The restriction of a quadratic polynomial to an edge is an univariate quadratic polynomial.

Fixing its value in three points, the midpoint of the edge and the endpoints, uniquely fixes this polynomial.

The local shape functions associated with the same interpolation node "from left and right" agree on the edge.
\(>\) continuity!


\(\triangleleft \quad\) Global basis function for \(\mathcal{S}_{2}^{0}(\mathcal{M})\) associated with a vertex
(3.4.3): this function attaints value \(=1\) at a vertex \((\bullet)\) and vanishes at the midpoints ( \(\bullet\) ) of the edges of adjacent triangles, as well as at any other vertex.

Example 3.4.5 (Interpolation nodes for cubic and quartic Lagrangian FE in 2D).


\subsection*{3.4.2 Tensor-product Lagrangian FEM}

Now we consider tensor product meshes (grids), see (3.3.2), Fig. 80, for a 2D example.
Example 3.4.6 (Bilinear Lagrangian finite elements).

Sought: generalization of 1D piecewise linear finite element functions from Sect. 1.5.1.2, see Fig. 23, to 2 D tensor product grid \(\mathcal{M}\).

Tensor product structure of \(\mathcal{M}>\) tensor product construction of FE space

This is best elucidated by a tensor product construction of basis functions:
\[
\begin{aligned}
b_{N, x}^{j}(x): \text { 1D tent function on } \mathcal{M}_{x} & =\left\{\left[x_{j-1}, x_{j}\right], j=1, \ldots, n\right\} \\
b_{N, y}^{l}(y): \text { 1D tent function on } \mathcal{M}_{y} & =\left\{\left[y_{j-1}, y_{j}\right], j=1, \ldots, n\right\}
\end{aligned}
\]

2D tensor product "tent function" associated with node \(\boldsymbol{p}\) :
\[
\begin{equation*}
b_{N}^{\boldsymbol{p}}(\boldsymbol{x})=b_{N, x}^{j}\left(x_{1}\right) \cdot b_{N, y}^{l}\left(x_{2}\right), \quad \text { where } \quad \boldsymbol{p}=\left(x_{j}, y_{l}\right)^{T} . \tag{3.4.7}
\end{equation*}
\]


\(\triangleleft 2 \mathrm{D}\) tensor product tent function
No pyramid!
Basis functions associated ( \(\rightarrow\) Sect. 3.3.3, condition (C)) with nodes of \(\mathcal{M}\),

Tensor product construction \(>\) bilinear local shape functions, e.g. on \(K=] 0,1\left[{ }^{2}\right.\)



Bilinear local shape functions on unit square \(K\)
\[
\Sigma \quad \operatorname{Span}\left\{b_{K}^{1}, b_{K}^{2}, b_{K}^{3}, b_{K}^{4}\right\}=\mathcal{Q}_{1}\left(\mathbb{R}^{2}\right)
\]


Bilinear Lagrangian finite element space on 2D tensor product mesh \(\mathcal{M}\) :
\[
\begin{equation*}
\mathcal{S}_{1}^{0}(\mathcal{M}):=\left\{v \in C^{0}(\Omega): v_{\mid K} \in \mathcal{Q}_{1}\left(\mathbb{R}^{2}\right) \forall K \in \mathcal{M}\right\} \tag{3.4.9}
\end{equation*}
\]

The following is a natural generalization of (3.4.9) to higher degree local tensor product polynomials, see Def. 3.3.7:

Definition 3.4.10 (Tensor product Langrangian finite element spaces). Space of p-th degree Lagrangian finite element functions on tensor product mesh \(\mathcal{M}\)
\[
\mathcal{S}_{p}^{0}(\mathcal{M}):=\left\{v \in C^{0}(\bar{\Omega}): v_{\mid K} \in \mathcal{Q}_{p}(K) \forall K \in \mathcal{M}\right\}
\]

Terminology: \(\quad \mathcal{S}_{1}^{0}(\mathcal{M})=\) multilinear finite elements \((p=1, d=2=\) bilinear finite elements)

Remaining issue: definition of global basis functions (global shape functions)

Policy: use of interpolation nodes as in Sect. 3.4.1, see Ex. 3.4.2.
Example 3.4.11 (Quadratic tensor product Lagrangian finite elements).

Consider case \(p=2, d=2\) of Def. 3.4.10:

Interpolation nodes for \(\mathcal{S}_{2}^{0}(\mathcal{M})\)
\[
\mathcal{N}=\mathcal{V}(\mathcal{M}) \cup\{\text { midpoints of edges }\}
\]

Note: number of interpolation nodes belonging to one cell is
\[
9=\operatorname{dim} \mathcal{Q}_{2}\left(\mathbb{R}^{3}\right) .
\]


Global basis functions defined analoguously to (3.4.3).


Remark 3.4.12 (Imposing homogeneous Dirichlet boundary conditions).

What is a global basis for \(\mathcal{S}_{p}^{0}(\mathcal{M}) \cap H_{0}^{1}(\Omega)\), where \(\mathcal{M}\) is either a simplicial mesh or a tensor product mesh?

We proceed analoguous to Rem. 3.2.3: recall that global basis functions are defined via interpolation nodes \(p^{j}, j=1, \ldots, N\), see (3.4.3).
\[
\begin{equation*}
\mathcal{S}_{p, 0}^{0}(\mathcal{M}):=\mathcal{S}_{p}^{0}(\mathcal{M}) \cap H_{0}^{1}(\Omega)=\operatorname{Span}\left\{b_{N}^{j}: \boldsymbol{p}^{j} \in \Omega \text { (interior node) }\right\} . \tag{3.4.13}
\end{equation*}
\]

Remark 3.4.14 ((Bi)-linear Lagrangian finite elements on hybrid meshes).
\(\mathcal{M}: 2 \mathrm{D}\) hybrid mesh comprising triangles \& rectangles

Idea: use
- linear functions ( \(\rightarrow\) Def. 3.3.3, \(p=1\) ) on triangular cells,
- bi-linear functions

\[
\mathcal{S}_{1}^{0}(\mathcal{M})=\left\{v \in H^{1}(\Omega): v_{\mid K} \in\left\{\begin{array}{ll}
\mathcal{P}_{1}\left(\mathbb{R}^{2}\right) & , \text { if } K \in \mathcal{M} \text { is triangle, }  \tag{3.4.15}\\
\mathcal{Q}_{1}\left(\mathbb{R}^{2}\right) & , \text { if } K \in \mathcal{M} \text { is rectangle }
\end{array}\right\} .\right.
\]

Two issues arise:
1. Does the prescription (3.4.15) yield a large enough space? (Note that \(v \in H^{1}(\Omega) \Rightarrow \mathcal{S}_{1}^{0}(\mathcal{M}) \subset\) \(C^{0}(\Omega)\), but continuity might enforce too many constraints.)
2. Does the space from (3.4.15) allow for locally supported basis functions associated with nodes of the mesh?

We wil give a positive answer to both question by constructing the basis functions:
\[
\text { Define global shape functions } b_{N}^{j} \text { according to (3.2.2) }
\]

This makes sense, because
- linear/bi-linear functions on \(K\) are uniquely determined by their values in the vertices,
- the restrictions to an edge of \(K\) of the local linear and bi-linear shape functions are both linear univariate functions, see Figs. 70, 99.

Fixing vertex values for \(v_{N} \in \mathcal{S}_{1}^{0}(\mathcal{M})\) uniquely determines \(v\) on all edges of \(\mathcal{M}\) already, thus, ensuring global continuity, which is necessary due to Thm. 2.2.17.

Remark 3.4.16 (Lagrangian finite elements on hybrid meshes).
\(\mathcal{M}: 2 \mathrm{D}\) hybrid mesh comprising triangles \& rectangles
Matching interpolation nodes on edges of triangles and rectangles
Glueing of local shape functions on triangles and rectangles possible
gobal interpolation nodes for \(p=2 \triangleright\)


\subsection*{3.5 Implementation of FEM}

This section discusses algorithmic details of Galerkin finite element discretization of 2nd-order elliptic variational problems for spatial dimension \(d=2,3\) on bounded polygonal/polyhedral domains \(\Omega \subset\) \(\mathbb{R}^{d}\).

The presentation matches the LehrFEM finite element MATLAB library, parts of which will be made available for participants of the course. A detailed documentation is available from [1].

The guiding principle behind the implementation of finite element codes is
to rely on local computations as much as possible!

This is made possible by the local supports of the global basis functions, see Sect. 3.3.3, Ex. 3.3.10.

\subsection*{3.5.1 Mesh file format}

Data flow in (most) finite element software packages:


Here " \(\triangle\) " designates passing of information, which is usually done by writing and reading files to and from hard disk. This requires particular file formats.

Example 3.5.1 (Triangular mesh: file format).

File format for storing triangular mesh (of polygonal domain):

\(X_{i}, i=1, \ldots, M \rightarrow\) extra information (e.g. material properties in triangle \(\# i\) ).

Optional: additional information about edges (on \(\partial \Omega\) ):
\[
\begin{array}{lll}
K \in \mathbb{N} & \text { \# Number of edges on } \partial \Omega \\
n_{1}^{1} n_{2}^{1} & Y_{1} & \text { \# Indices of endpoints of first edge } \\
n_{1}^{2} n_{2}^{2} & Y_{2} & \text { \# Indices of endpoints of second edge }  \tag{3.5.3}\\
\vdots & & \\
n_{1}^{K} n_{2}^{K} & Y_{K} \text { \# Indices of endpoints of } K \text {-th edge }
\end{array}
\]
\(Y_{k}, k=1, \ldots, K \rightarrow\) extra information

Example 3.5.4 (Mesh file format for MATLAB code "LehrFEM").

Vertex coordinate file:
\% List of vertices
\(1+0.000000 \mathrm{e}+00-1.000000 \mathrm{e}+00\)
\(2+1.000000 \mathrm{e}+00+0.000000 \mathrm{e}+00\)
\(3+0.000000 \mathrm{e}+00+1.000000 \mathrm{e}+00\)
\(4-1.000000 \mathrm{e}+00+0.000000 \mathrm{e}+00\)
\(5+0.000000 \mathrm{e}+00+0.000000 \mathrm{e}+00\)

Cell information file:
\(\begin{array}{cccc}\% & \text { List of } & \text { elements } & \\ 1 & 1 & 2 & 5 \\ 2 & 2 & 3 & 5 \\ 3 & 3 & 4 & 5 \\ 4 & 4 & 1 & 5\end{array}\)
```

m = load_Mesh('Coord_Circ.dat',...
'Elem_Circ.dat');

```
plot_Mesh(m,'apts');
Option flags:
' \(a^{\prime}\) : with axes
' p ': vertex labels on
't': cell labels on
's': caption/title on

For details see [1, Sect. 1.3.1], [1, Sect. 1.3.2].


\section*{How to create a mesh?}

Mesh generation (beyond scope of this course)
\(\rightarrow\) http://www.andrew.cmu.edu/user/sowen/mesh.html
Free software: • DistMesh (MATLAB, used in "LehrFEM", see [1, Sect. [1.2])
- NETGEN (industrial strength open source mesh generator)
- Triangle (easy to use 2D mesh generator)
- TETGEN (Tetrahedral mesh generation)

Example 3.5.5 (Mesh generation in LehrFEM).

Algorithm \& details \(\rightarrow\) [17], mopre explanations in [1, Sect. [1.2].


\subsection*{3.5.2 Mesh data structures [1, Sect. 1.1]}
mesh data structure must provide:
1. offer unique identification of cells/(faces)/(edges)/vertices
2. represent mesh topology (= incidence relationships of cells/faces/edges/vertices)
3. describe mesh geometry (= location/shape of cells/faces/edges/vertices)
4. allow sequential access to edges/faces of a cell
( \(\rightarrow\) traversal of local shape functions degrees of freedom)
5. make possible traversal of cells of the mesh ( \(\rightarrow\) global numbering)

Focus: array oriented data layout \((\rightarrow\) MATLAB, FORTRAN \()\)

Notation:
\(\mathcal{M}=\) mesh (set of elements), \(\mathcal{V}(\mathcal{M})=\) set of nodes (vertices) in \(\mathcal{M}, \mathcal{E}(\mathcal{M})=\) set of edges in \(\mathcal{M}\)

Case: \(\quad d\)-dimensional simplicial triangulation \(\mathcal{M}, \quad\) minimal data structure (cf. Sect. 3.5.1)
\(\rightarrow\) Coordinates of vertices \(\mathcal{V}(\mathcal{M}): \sharp \mathcal{V}(\mathcal{M}) \times d\)-array Coordinates of reals
```

Vertex indices for cells: }\sharp\mathcal{M}\times(d+1)\mathrm{ -array Elements of integers.

```

Already offers complete description of the mesh topology and geometry !

Optional extra information:
\(\rightarrow\) Edge connecting vertices: \(\sharp \mathcal{V}(\mathcal{M}) \times \sharp \mathcal{V}(\mathcal{M})\) symmetric sparse integer matrix \(I_{\mathcal{E}}\)
\[
\left(\mathbf{I}_{\mathcal{E}}\right)_{i j}:= \begin{cases}0 & , \text { if vertex } \sharp i \text { inot linked to } \sharp j \\ e_{i j} & , \text { if edge connecting } \sharp i \text { and } \sharp j\end{cases}
\]
here \(e_{i j}\) is the unique edge number \(\in\{1,2 \ldots \ldots \sharp \mathcal{E}(\mathcal{M})\}\)
\(\rightarrow\) End points of the edges: \(\sharp \mathcal{E}(\mathcal{M}) \times 2\) array of integer (= vertex indices of end points).
\(\rightarrow\) Cell adjacent to edges: \(\sharp \mathcal{E}(\mathcal{M}) \times 2\) array of integers (=cell indices)


Note: Global shape functions associated with edges/faces \(>\) extra information required!
Example 3.5.7 (Extended MATLAB mesh data structure). \(\rightarrow\) [1, Sect. ??]
```

mesh = add_Edge2Elem(add_Edges(init_Mesh(BBOX,H0,DHD,HHANDLE, [],1)))

```
mesh =
vertex coordinates, see Ex. 3.5 .4
\[
\text { vertex indices of triangles, see Ex. } 3.5 .4
\]
Coordinates: [5x2 donor] indices of endpoints in Coordinates array
\[
\text { Elements: [ } 4 \times 3 \text { double] } \sharp \mathcal{V}(\mathcal{M}) \times \sharp \mathcal{V}(\mathcal{M}) \text { sparse integer matrix: }
\]
\[
\text { Edges: }[8 \times 2 \text { double] entry }(i, j)=\text { edge index, if } \neq 0
\]
\[
\text { Vert2Edge: }[5 \times 5 \text { double }] \quad \sharp \mathcal{E}(\mathcal{M}) \times 2 \text { integer array: }
\]
Edge2Elem: [8x2 double] indices of adjacent cells in Elements array
\[
\text { EdgeLoc: }[8 \times 2 \text { double] } \longleftarrow \sharp \mathcal{E}(\mathcal{M}) \times 2 \text { integer array: local indices of edges w.r.t. adjacent cells }
\]
\[
\text { Notation: } \quad \mathcal{E}(\mathcal{M}) \hat{=} \text { edges of 2D mesh }
\]


How to number \(\leftrightarrow\) order


Elements, Edges arrays \(>\) ordering of vertices of cells/endpoints of edges

Arrays (of vertices,cells,edges) \(>\) array indices \(>\) numbering of global shape functions

\section*{Remark 3.5.8. Second option: C++/JAVA-style object oriented data layout}

Nodes, cells of \(\mathcal{M} \longleftrightarrow\) dynamically allocated objects (instances of classes Node, Cell)
```

class Node {
private:
double x,y;
ID id;
public:
Node(double x,double y,ID id=0);
Point getCoords(void) const;
ID getld(void) const;
};

```
class Cell \{
    private:
        const vector \(<\) Node* \(>\) vertices;
        ID id;
    public:
        Cell(const vector \(<\) Node* \(>\) \&vertices, ID id=0);
        int NoNodes(void) const;
        const Node \&getNode(int) const;
        ID getld(void) const;
\};
```

class BdFace {
private:
const vector<Node*> vertices;
BdCond bdcond;
public:
BdFace(const vector<Node*}> \&vertices)
int NoNodes(void) const;
const Node \&getNode(int) const;
BdCond getBdCond(void) const;
};

```
class Mesh \{
    private:
        list<Node> nodes;
        list \(<\) Cell \(>\) cells;
        list<BdFace> bdfaces;
    public:
        Mesh(istream \&file);
        virtual Mesh(void);
        const list<Node> \&Nodes(void) const;
        const list<Cell> \&Cells(void) const;
        const list<BdFace> \&BdFaces(void) const;
\};
```

ID getId() }->\mathrm{ provides unique identifier for each node/cell.
Distinguish: - local objects (}->\mathrm{ classes Node, Cell, BdFace)
- global objects ("mesh management" class Mesh, see below)

```

\subsection*{3.5.3 Assembly [1, Sect. 5]}
"Assembly" = term used for computing entries of Stiffness matrixyright hand side vector (load vector) in a finite element context.

From the dictionary: "Assemble" = to fit together all the separate parts of sth.

Aspects of assembly for linear Lagrangian finite elements \(\left(V_{0, N}=\mathcal{S}_{1,0}^{0}(\mathcal{M})\right.\) ) were discussed in Sects. 3.2.5, 3.2.6. (Refresh yourself on these sections in case you cannot remember the main ideas behind building the Galerkin matrix and right hand side vector.)

We consider a discrete variational problem ( \(V_{0, N}=\mathrm{FE}\) space, \(\operatorname{dim} V_{0, N}=N \in \mathbb{N}\), see (3.1.3))
\[
\begin{equation*}
u_{N} \in V_{0, N}: \quad a\left(u_{N}, v_{N}\right)=\ell\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N} . \tag{3.1.3}
\end{equation*}
\]

To be computed (see also Sect. 3.2.5, Sect. 3.2.6):

Galerkin matrix (stiffness matrix):
r.h.s. vector (load vector):
\[
\begin{aligned}
& \mathbf{A}=\left(\mathrm{a}\left(b_{N}^{j}, b_{N}^{i}\right)\right)_{i, j=1}^{N} \in \mathbb{R}^{N, N} \\
& \overrightarrow{\boldsymbol{\varphi}}:=\left(\ell\left(b_{N}^{i}\right)\right)_{i=1}^{N} \in \mathbb{R}^{N}
\end{aligned}
\]
both can be written in terms of local cell contributions, since usually
\[
\begin{equation*}
\mathrm{a}(u, v)=\sum_{K \in \mathcal{M}} \mathrm{a}_{K}\left(u_{\mid K}, v_{\mid K}\right) \quad, \quad \ell(v)=\sum_{K \in \mathcal{M}} \ell_{K}\left(v_{\mid K}\right) . \tag{3.5.9}
\end{equation*}
\]

Example: bilinear forms/linear forms arising from 2nd-order elliptic BVPs, e.g, (2.9.1), (2.9.2), (2.9.3), can be localized in straightforward fashion by restricting integration to mesh cells:
\[
\begin{align*}
\mathrm{a}(u, v) & :=\int_{\Omega} \boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\sum_{K \in \mathcal{M}} \underbrace{\int_{K} \boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}}_{=: a_{K}\left(u_{\mid K}, v_{\mid K}\right)},  \tag{3.5.10}\\
\ell(v) & :=\int_{\Omega} f v \mathrm{~d} \mathbf{x}=\sum_{K \in \mathcal{M}} \underbrace{\int_{K} f v \mathrm{~d} \boldsymbol{x}}_{=: \ell_{K}\left(v_{\mid K}\right)} . \tag{3.5.11}
\end{align*}
\]

\footnotetext{
Recall (3.3.11): Restrictions of global shape functions to cells \(=\) local shape functions
}

Definition 3.5.12 (Element (stiffness) matrix and element (load) vector).
Given local shape functions \(\left\{b_{K}^{1}, \ldots, b_{K}^{Q}\right\}, Q \in \mathbb{N}\), we call
\[
\begin{aligned}
\text { element (stiffness) matrix } \quad \mathbf{A}_{K} & :=\left(\mathrm{a}_{K}\left(b_{K}^{j}, b_{K}^{i}\right)\right)_{i, j=1}^{Q} \in \mathbb{R}^{Q, Q}, \\
\text { element (load) vector } \overrightarrow{\boldsymbol{\varphi}}_{K} & :=\left(\ell_{K}\left(b_{K}^{i}\right)\right)_{i=1}^{Q} \in \mathbb{R}^{Q} .
\end{aligned}
\]

Note: Here \(Q\), the number of local shape functions on element \(K \in \mathcal{M}\), is independent of \(K\). In general, we could also have \(Q=Q_{K}\) when we blend several element types in one mesh, see Rem. 3.4.14.
\begin{tabular}{lc}
\multicolumn{1}{c}{ Type of FE space } & \(Q\) \\
\hline degree \(p\) Lagrangian FE on triangular mesh & \(\operatorname{dim} \mathcal{P}_{p}\left(\mathbb{R}^{2}\right)=\frac{1}{2}(p+1)(p+2)\) \\
degree \(p\) Lagrangian FE on tetrahedral mesh & \(\operatorname{dim} \mathcal{P}_{p}\left(\mathbb{R}^{3}\right)=\frac{1}{6}(p+1)(p+2)(p+3)\) \\
degree \(p\) Lagrangian FE on tensor product mesh in 2D & \(\operatorname{dim} \mathcal{Q}_{p}\left(\mathbb{R}^{2}\right)=(p+1)^{2}\)
\end{tabular}

Again scrutinize Figs. 72, 73 and the accompanying remarks in Sect. 3.2.5. We learn that in the special setting of this section
- the entries of the finite element Galerkin matrix can be obtained by summing corresponding entries of some element matrices,
- this corresponding entry of an element matrices is determined by the unique association of a local basis function to a global basis function.

These insights are formalized in the next theorem.

Theorem 3.5.13. The stiffness matrix and load vector can be obtained from their cell counterparts by
\[
\begin{equation*}
\mathbf{A}=\sum_{K} \mathbf{T}_{K}^{\top} \mathbf{A}_{K} \mathbf{T}_{K} \quad, \quad \overrightarrow{\boldsymbol{\varphi}}=\sum_{K} \mathbf{T}_{K}^{\top} \overrightarrow{\boldsymbol{\varphi}}_{K}, \tag{3.5.14}
\end{equation*}
\]
with the index mapping matrices ("T-matrices") \(\mathbf{T}_{K} \in \mathbb{R}^{Q, N}\), defined by
\[
\left(\mathbf{T}_{K}\right)_{i j}:= \begin{cases}1 & , \text { if }\left(b_{N}^{j}\right)_{\mid K}=b_{K}^{i},  \tag{3.5.15}\\ 0 & , \text { otherwise. }\end{cases}
\]

Note: Every T-matrix has exactly one non-vanishing entry per row.

Proof. (of Thm. 3.5.13)
\[
(\mathbf{A})_{i j}=\mathrm{a}\left(b_{N}^{j}, b_{N}^{i}\right)=\sum_{K \in \mathcal{M}} \mathrm{a}_{K}\left(b_{N \mid K}^{j}, b_{N \mid K}^{i}\right)=\sum_{\substack{K \in \mathcal{M}, \operatorname{supp}\left(b_{N}^{j}\right) \cap K \neq \emptyset, \operatorname{supp}\left(b_{N}^{i}\right) \cap K \neq \emptyset}} \mathrm{a}_{K}\left(b_{K}^{l(j)}, b_{K}^{l(i)}\right)=\sum_{\substack{K \in \mathcal{M}, \operatorname{supp}\left(b_{N}^{j}\right) \cap K \neq \emptyset, \operatorname{supp}\left(b_{N}^{i}\right) \cap K \neq \emptyset}}\left(\mathbf{A}_{K}\right)_{l(i), l(j)}
\]
\(l(i) \in\{1, \ldots, Q\}, 1 \leq i \leq N \hat{=}\) index of the local shape function corresponding to the global shape function \(b_{N}^{i}\) on \(K\).
\(>\) By (3.5.15), the indices \(l(i)\) encode the T-matrix according to
\[
\left(\mathbf{T}_{K}\right)_{l(i), i}=1, \quad i=1, \ldots, N
\]
where all other entries of \(\mathbf{T}_{K}\) are understood to vanish.
\[
\Rightarrow \quad(\mathbf{A})_{i j}=\sum_{\substack{K \in \mathcal{M}, \operatorname{supp}\left(b_{N}^{j}\right) \cap K \neq \emptyset, \operatorname{supp}\left(b_{N}^{i}\right) \cap K \neq \emptyset}} \sum_{l=1}^{Q} \sum_{n=1}^{Q}\left(\mathbf{T}_{K}\right)_{l i}\left(\mathbf{A}_{K}\right)_{l n}\left(\mathbf{T}_{K}\right)_{n j} .
\]

Example 3.5.16 (Assembly for linear Lagrangian finite elements on triangular mesh).

Using the local/global numbering indicated beside
\[
\rightarrow \mathbf{T}_{K^{*}}=\left(\begin{array}{cccccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
\]


Cell oriented assembly \(\leftrightarrow(3.5 .14) \leftrightarrow \mathbf{A}=\sum_{K} \mathbf{T}_{K}^{\top} \mathbf{A}_{K} \mathbf{T}_{K}\)
\(\Uparrow\)
\(\mathbf{A}=\sum_{K} \mathbf{T}_{K}^{\top} \mathbf{A}_{K} \mathbf{T}_{K}:=\left\{\begin{array}{l}\text { foreach } K \in \mathcal{M} \text { do } \\ \begin{array}{l}\text { local operations on } K \\ \text { enddo }\end{array}\end{array} \rightarrow \mathbf{A}_{K}\right)\) and \(\left.\mathbf{A}=\mathbf{A}+\mathbf{T}_{K}^{\top} \mathbf{A}_{K} \mathbf{T}_{K}\right\}\)

Notion: local operations \(\hat{=}\). required only data from fixed "neighbourhood" of \(K\)
- computational effort " \(O(1)\) ": independent of \(\sharp \mathcal{M}\)

Computational cost(Assembly of Galerkin matrix \(\mathbf{A})=O(\sharp \mathcal{M})\)


For Lagrangian FEM of fixed degree \(p \quad(\rightarrow\) Sect. 3.4):
the total computational effort is of the \(\operatorname{order} O(\sharp \mathcal{M})=O(N), N:=\operatorname{dim} \mathcal{S}_{p}^{0}(\mathcal{M})\).

Example 3.5.17 (Assembly for quadratic Lagrangian FE in MATLAB code).

Setting: FE space \(\mathcal{S}_{2}^{0}(\mathcal{M})\) on triangular mesh \(\mathcal{M}\) of polygon \(\Omega \subset \mathbb{R}^{2}\), see Ex. 3.4.2 Recall: 6 ocal shape functions: 3 vertex-associated, 3 edge-associated \(\rightarrow\) (3.4.4) Convention: vertex-associated global shape functions \(\rightarrow b_{N}^{1}, \ldots, b_{N}^{\sharp \mathcal{V}}(\mathcal{M})\) edge-associated global shape functions \(\rightarrow b_{N}^{\sharp \mathcal{L}}(\mathcal{M})+1^{N}, \ldots, b_{N}^{\sharp \mathcal{V}(\mathcal{M})+\sharp \mathcal{E}(\mathcal{M})}\)

```

function A = assemMat_QFE(Mesh,EHandle,varargin)
nV = size(Mesh.Coordinates,1);
nE = size(Mesh.Elements,1)
I\stackrel{(2)}{=}\operatorname{zeros}(36*nE,1); J=I; a = I; offset = 0;
for k =1:nE
vidx= Mesh.Elements(k,:)
Mesh.Vert2Edge(vidx(1),vidx(2))+nV,...
Mesh.Vert2Edge(vidx(2),vidx(3))+nV, ...
Mesh.Vert2Edge(vidx(3),vidx(1))+nV];
Aloc\stackrel{4. transpose(EHandle(Mesh.Coordinates(vidx,:),...}{=}
Mesh. (1emFlag(k),varargin{:}));
Qsq = prod(size(Aloc)); range = offset + 1:Qsq;
t = idx(ones(length(idx),1),:)'; I(range) = t(:);
t = idx(ones(1,length(idx)),:); J(range) = t(:);
a(range) = Aloc(:);
offset = offset + Qsq;
end
A\stackrel{(6) sparse(I,J,a);}{=}

```
(1): EHandle (function handle) \(\rightarrow\) provides element stiffness matrix \(\mathbf{A}_{K} \in \mathbb{R}^{6,6}\)
(2): I, J, a \(\hat{=}\) linear arrays storing \(\left(i, j,(\mathbf{A})_{i j}\right)\) for stiffness matrix \(\mathbf{A}\).

Initialized with 0 for the sake of efficiency \(\rightarrow\) Ex. 3.5.18
(3): idx \(\hat{=}\) index mapping vector, see 1 above
(4): Aloc \(=\mathbf{A}_{K} \in \mathbb{R}^{6,6}\) (element stiffness matrix \(\rightarrow\) Def. 3.5.12)
(5): Mesh.ElemFlag (k) marks groups of elements (e.g. to select local coefficient function \(\boldsymbol{\alpha}(\boldsymbol{x})\) in (2.8.4))
(6): Build sparse MATLAB-matrix ( \(\rightarrow\) Def. 3.2 .6 ) from index-entry arrays, see manual entry for MATLAB function sparse.
tic-toc-timing (min of 4 v runs), MATLAB V7, Intel Pentium 4 Mobile CPU 1.80 GHz , Linux Computation of element stiffness matrices skipped!
- Sparse assembly: \(A(i d x, i d x)=A(i d x, i d x)+A l o c ;\)
- Array assembly l: "growing arrays"
```

I = []; J = []; a = [];
t = idx(:,ones(length(idx),1))';
I = [I;t(:)];
t = idx(:,ones(1,length(idx)));
J = [J;t(:)];
a = [a; Aloc(:)];

```
- Array assembly III

\(\rightarrow\) see code fragment above
More detailed discussion \(\rightarrow\) [20] and [14, Sect. 2.6.2].

We have seen that the (global) Galerkin matrix and right hand side vector are conveniently generated by "assembling" entries of element (stiffness) matrices and element (load) vectors.

Now we study the computation of these local quantities, see also Sect. 3.2.5, 3.2.6.

First option:
analytic evaluations

We discuss bilinear form related to \(-\Delta\), triangular Lagrangian finite elements of degree \(p\), Sect. 3.4.1, Def. 3.4.1):
\(K\) triangle: \(\quad \mathrm{a}_{K}(u, v):=\int_{K} \operatorname{grad} u \cdot \boldsymbol{\operatorname { g r a d }} v \mathrm{~d} \boldsymbol{x}>\) element stiffness matrix.

Use barycentric coordinate representations of local shape functions, in 2D
\[
\begin{equation*}
b_{K}^{i}=\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{3},|\boldsymbol{\alpha}| \leq p} \kappa_{\boldsymbol{\alpha}} \lambda_{1}^{\alpha_{1}} \lambda_{2}^{\alpha_{2}} \lambda_{3}^{\alpha_{3}}, \quad \kappa_{\boldsymbol{\alpha}} \in \mathbb{R} \tag{3.5.19}
\end{equation*}
\]
where \(\lambda_{i}\) are the affine linear barycentric coordinate functions (linear shape functions), see Fig. 70. For the barycentric coordinate representation of the quadratic local shape functions see (3.4.4), for a justification of (3.5.19) consult Rem. 3.6.9.
\[
\begin{equation*}
\Rightarrow \operatorname{grad} b_{K}^{i}=\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{3},|\boldsymbol{\alpha}| \leq p} \kappa_{\boldsymbol{\alpha}\left(\alpha_{1} \lambda_{1}^{\alpha_{1}-1} \lambda_{2}^{\alpha_{2}} \lambda_{3}^{\alpha_{3}} \operatorname{grad} \lambda_{1}+\alpha_{2} \lambda_{1}^{\alpha_{1}} \lambda_{2}^{\alpha_{2}-1} \lambda_{3}^{\alpha_{3}} \operatorname{grad} \lambda_{2}+\right.}^{\left.\alpha_{3} \lambda_{1}^{\alpha_{1}} \lambda_{2}^{\alpha_{2}} \lambda_{3}^{\alpha_{3}-1} \operatorname{grad} \lambda_{3}\right) .} \tag{3.5.20}
\end{equation*}
\]

To evaluate \(\int_{K} \lambda_{1}^{\beta_{1}} \lambda_{2}^{\beta_{2}} \lambda_{3}^{\beta_{3}} \operatorname{grad} \lambda_{i} \cdot \operatorname{grad} \lambda_{j} \mathrm{~d} \boldsymbol{x}, \quad i, j \in\{1,2,3\}, \beta_{k} \in \mathbb{N}\).

If \(\mathbf{a}^{1}, \mathbf{a}^{2}, \mathbf{a}^{3}\) vertices of \(K\) (counterclockwise ordering):
\[
\begin{aligned}
& \lambda_{1}(\boldsymbol{x})=\frac{1}{2|K|}\left(\boldsymbol{x}-\binom{a_{1}^{2}}{a_{2}^{2}}\right) \cdot\binom{a_{2}^{2}-a_{2}^{3}}{a_{1}^{3}-a_{1}^{2}}, \\
& \lambda_{2}(\boldsymbol{x})=\frac{1}{2|K|}\left(\boldsymbol{x}-\binom{a_{1}^{3}}{a_{2}^{3}}\right) \cdot\binom{a_{2}^{3}-a_{2}^{1}}{a_{1}^{1}-a_{1}^{3}}, \\
& \lambda_{3}(\boldsymbol{x})=\frac{1}{2|K|}\left(\boldsymbol{x}-\binom{a_{1}^{1}}{a_{2}^{1}}\right) \cdot\binom{a_{2}^{1}-a_{2}^{2}}{a_{1}^{2}-a_{1}^{1}} .
\end{aligned}
\]

\(\operatorname{grad} \lambda_{1}=\frac{1}{2|K|}\binom{a_{2}^{2}-a_{2}^{3}}{a_{1}^{3}-a_{1}^{2}}, \operatorname{grad} \lambda_{2}=\frac{1}{2|K|}\binom{a_{2}^{3}-a_{2}^{1}}{a_{1}^{1}-a_{1}^{3}}, \operatorname{grad} \lambda_{3}=\frac{1}{2|K|}\binom{a_{2}^{1}-a_{2}^{2}}{a_{1}^{2}-a_{1}^{1}}\)

Lemma 3.5.23 (Integration of powers of barycentric coordinate functions).
For any non-degenerate \(d\)-simplex \(K\) and \(\alpha_{j} \in \mathbb{N}, j=1, \ldots, d+1\),
\[
\begin{equation*}
\int_{K} \lambda_{1}^{\alpha_{1}} \cdots \cdots \lambda_{d+1}^{\alpha_{d+1}} \mathrm{~d} \boldsymbol{x}=d!|K| \frac{\alpha_{1}!\alpha_{2}!\cdots \alpha_{d+1}!}{\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{d+1}+d\right)!} \quad \forall \boldsymbol{\alpha} \in \mathbb{N}_{0}^{d+1} \tag{3.5.24}
\end{equation*}
\]

Proof for \(d=2\)
Step \#1: transformation \(K \rightarrow\) "unit triangle" \(\widehat{K}:=\operatorname{convex}\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1}\right\}\),
\[
\begin{aligned}
\Rightarrow \int_{K} \lambda_{1}^{\beta_{1}} \lambda_{2}^{\beta_{2}} \lambda_{3}^{\beta_{3}} \mathrm{~d} \boldsymbol{x} & =2|K| \int_{0}^{1} \int_{0}^{1-\xi_{1}} \xi_{1}^{\beta_{1}} \xi_{2}^{\beta_{2}}\left(1-\xi_{1}-\xi_{2}\right)^{\beta_{3}} \mathrm{~d} \xi_{2} \mathrm{~d} \xi_{1} \\
& \stackrel{(*)}{=} 2|K| \int_{0}^{1} \xi_{1}^{\beta_{1}} \int_{0}^{1}\left(1-\xi_{1}\right)^{\beta_{2}+\beta_{3}+1} s^{\beta_{2}}(1-s)^{\beta_{3}} \mathrm{~d} s \mathrm{~d} \xi_{1} \\
& =2|K| \int_{0}^{1} \xi_{1}^{\beta_{1}}\left(1-\xi_{1}\right)^{\beta_{2}+\beta_{3}+1} \mathrm{~d} \xi_{1} \cdot B\left(\beta_{2}+1, \beta_{3}+1\right) \\
& =2|K| B\left(\beta_{1}+1, \beta_{2}+\beta_{3}+2\right) \cdot B\left(\beta_{2}+1, \beta_{3}+1\right)
\end{aligned}
\]
\((*) \hat{=}\) substitution \(s\left(1-\xi_{1}\right)=\xi_{2}, \quad B(\cdot, \cdot) \hat{=}\) Euler's beta function
\[
B(\alpha, \beta):=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \mathrm{~d} t, \quad 0<\alpha, \beta<\infty
\]

Using \(\Gamma(\alpha+\beta) B(\alpha, \beta)=\Gamma(\alpha) \Gamma(\beta), \Gamma \hat{=}\) Gamma function, \(\Gamma(n)=(n-1)\) !,
\[
\Rightarrow \quad \int_{K} \lambda_{1}^{\beta_{1}} \lambda_{2}^{\beta_{2}} \lambda_{3}^{\beta_{3}} \mathrm{~d} \boldsymbol{x}=2|K| \cdot \frac{\Gamma\left(\beta_{1}+1\right) \Gamma\left(\beta_{2}+1\right) \Gamma\left(\beta_{3}+1\right)}{\Gamma\left(\beta_{1}+\beta_{2}+\beta_{3}+3\right)}
\]

Remark. Alternative: symbolic computing (MAPLE, Mathematica) for local computations

\section*{Second option:}

At this point turn the pages back to (1.5.57) and remember the use of numerical quadrature for computing the Galerkin matrix for the linear finite element method in 1D.

Local quadrature formula, cf. (3.2.13)
\[
\begin{equation*}
\int_{\Omega} f(\mathbf{x}) \mathrm{d} \boldsymbol{x} \approx|K| \sum_{K \in \mathcal{M}} \sum_{l=1}^{P} \omega_{l}^{K} f\left(\boldsymbol{\zeta}_{l}^{K}\right), \quad \boldsymbol{\zeta}_{l}^{K} \in K, \omega_{l}^{K} \in \mathbb{R}, \quad P \in \mathbb{N} \tag{3.5.25}
\end{equation*}
\]

Terminology:
\(\omega_{l}^{K} \rightarrow\) weights \(\quad, \quad \zeta_{l}^{K} \rightarrow\) quadrature nodes
(3.5.25) \(=P\)-point local quadrature rule

Mandatory • for computation of load vector ( \(f\) complicated/only available in procedural form, Rem. 1.5.3,)
- for computation of stiffness matrix, if \(\boldsymbol{\alpha}=\boldsymbol{\alpha}(\boldsymbol{x})\) does not permit analytic integration.

Example for local quadrature rule: 2D trapezoidal rule from (3.2.13)

Guideline [14, Sect. 10.2]: only quadrature rules with positive weights are numerically stable.

How to gauge the quality of parametric local quadrature rules ? \(\rightarrow\) [14, Sect. 10.3]

Quality of a parametric local quadrature rule on \(K \quad \sim\) maximal degree of polynomials (multivariate \(\rightarrow\) Def. 3.3 .3 , or tensor product \(\rightarrow\) Def. 3.3.7) on \(K\) integrated exactly by the corresponding quadrature rule on \(K\).
\[
\text { Parlance: } \quad \text { Quadrature rule exact for } \mathcal{P}_{p}\left(\mathbb{R}^{d}\right) \Rightarrow \begin{aligned}
& \text { quadrature rule of order } p+1 \\
& \text { degree of exactness } p
\end{aligned}
\]

How are quadrature rules specified for the many different cells of a finite element mesh?
Remark 3.5.26 (Affine transformation of triangles).

Definition 3.5.27 (Affine (linear) transformation).
Mapping \(\Phi: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}\) is affine (linear), if \(\Phi(\mathbf{x})=\mathbf{F x}+\boldsymbol{\tau}\) with some \(\mathbf{F} \in \mathbb{R}^{d, d}, \boldsymbol{\tau} \in \mathbb{R}^{d}\).
notation: 'unit triangle" \(\widehat{K}:=\operatorname{convex}\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1}\right\}\)

Lemma 3.5.28 (Affine transformation of triangles).
For any non-degenerate triangle \(K \subset \mathbb{R}^{2}(|K|>0)\) there is a unique affine transformation \(\Phi_{K}\), \(\boldsymbol{\Phi}_{K}(\widehat{\boldsymbol{x}})=\mathbf{F}_{K} \widehat{\boldsymbol{x}}+\boldsymbol{\tau}_{K}(\rightarrow\) Def. 3.5 .27\()\), with \(K=\boldsymbol{\Phi}(\widehat{K})\).


\section*{Formula:}
\[
\begin{equation*}
K=\text { convex }\left\{\binom{a_{1}^{1}}{a_{2}^{1}},\binom{a_{1}^{2}}{a_{2}^{2}},\binom{a_{1}^{3}}{a_{2}^{3}}\right\} \Rightarrow \boldsymbol{\Phi}_{K}(\widehat{\boldsymbol{x}})=\binom{a_{1}^{2}-a_{1}^{1} a_{1}^{3}-a_{1}^{1}}{a_{2}^{2}-a_{2}^{1} a_{2}^{3}-a_{2}^{1}} \widehat{\boldsymbol{x}}+\binom{a_{1}^{1}}{a_{2}^{1}} \tag{3.5.29}
\end{equation*}
\]

Note that
\[
|K|=\frac{1}{2}\left|\operatorname{det} \mathbf{F}_{K}\right|
\]

Remark 3.5.30 (Transformation of local quadrature rules on triangles).
\(\Phi_{K}(\widehat{\boldsymbol{x}}):=\mathbf{F}_{K} \widehat{\boldsymbol{x}}+\boldsymbol{\tau}_{K} \hat{=}\) affine transformation ( \(\rightarrow\) Def. 3.5.27) mapping \(\widehat{K}\) to triangle \(K\), see Lemma 3.5.28.

By transformation formula for integrals [19, Satz 8.5.2]
\[
\begin{equation*}
\int_{K} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\widehat{K}} f\left(\boldsymbol{\Phi}_{K}(\widehat{\boldsymbol{x}})\right)\left|\operatorname{det} \mathbf{F}_{K}\right| \mathrm{d} \widehat{\boldsymbol{x}} \tag{3.5.31}
\end{equation*}
\]
\(P\)-point quadrature formula on \(\widehat{K} \searrow P\)-point quadrature formula on \(K\)
\[
\begin{equation*}
\int_{\widehat{K}} f(\widehat{\boldsymbol{x}}) \mathrm{d} \widehat{\boldsymbol{x}} \approx|\widehat{K}| \sum_{l=1}^{P} \widehat{\omega}_{l} f\left(\widehat{\boldsymbol{\zeta}}_{l}\right) \quad \int_{\Omega} f(\mathbf{x}) \mathrm{d} \boldsymbol{x} \approx \sum_{K \in \mathcal{M}}|K| \sum_{l=1}^{P} \omega_{l}^{K} f\left(\boldsymbol{\zeta}_{l}^{K}\right) \tag{3.5.32}
\end{equation*}
\]
\(>\) Only quadrature formula (3.5.25) on unit triangle \(\widehat{K}\) needs to be specified! (The same applies to tetrahedra, where affine mappings for \(d=3\) are used.)

Since the space \(\mathcal{P}_{p}\left(\mathbb{R}^{d}\right)\) is invariant under affine mappings,
\[
\begin{equation*}
q \in \mathcal{P}_{p}\left(\mathbb{R}^{d}\right) \Rightarrow \widehat{\boldsymbol{x}} \mapsto q(\boldsymbol{\Phi}(\widehat{\boldsymbol{x}})) \in \mathcal{P}_{p}\left(\mathbb{R}^{d}\right) \quad \text { for any affine transformation } \boldsymbol{\Phi} \tag{3.5.33}
\end{equation*}
\]
the orders of the quadrature rules on the left and right hand side of (3.5.31) agree.

Example 3.5.34 (Useful quadrature rules on triangles). \(\rightarrow\) [1, Sect. ??]
Specification of quadrature rule for "unit triangle" \(\widehat{K}:=\operatorname{convex}\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1}\right\}\).
Quadrature rules described by pairs \(\left(\widehat{\omega}_{1}, \widehat{\boldsymbol{\zeta}}_{1}\right), \ldots,\left(\widehat{\omega}_{P}, \widehat{\boldsymbol{\zeta}}_{P}\right), P \in \mathbb{N}\).
- Quadrature rule of order 2 (exact for \(\mathcal{P}_{1}(\widehat{K})\) )
\[
\begin{equation*}
\left\{\left(\frac{1}{3},\binom{0}{0}\right),\left(\frac{1}{3},\binom{0}{1}\right),\left(\frac{1}{3},\binom{1}{0}\right)\right\} . \tag{3.5.35}
\end{equation*}
\]
- Quadrature rule of order 3 (exact for \(\mathcal{P}_{2}(\widehat{K})\) )
\[
\begin{equation*}
\left\{\left(\frac{1}{3},\binom{1 / 2}{0}\right),\left(\frac{1}{3},\binom{0}{1 / 2}\right),\left(\frac{1}{3},\binom{1 / 2}{1 / 2}\right)\right\} . \tag{3.5.36}
\end{equation*}
\]
- One-point quadrature rule of order 2 (exact for \(\mathcal{P}_{1}(\widehat{K})\) )
\[
\begin{equation*}
\left\{\left(1,\binom{1 / 3}{1 / 3}\right)\right\} . \tag{3.5.37}
\end{equation*}
\]
- Quadrature rule of order 6 (exact for \(\mathcal{P}_{5}(\widehat{K})\) )
\[
\begin{align*}
&\left\{\left(\frac{9}{40},\binom{1 / 3}{1 / 3}\right),\left(\frac{155+\sqrt{15}}{1200},\binom{6+\sqrt{15} / 21}{6+\sqrt{15} / 21}\right),\left(\frac{155+\sqrt{15}}{1200},\binom{9-2 \sqrt{15} / 21}{6+\sqrt{15} / 21}\right)\right. \\
&\left(\frac{155+\sqrt{15}}{1200},\binom{6+\sqrt{15} / 21}{9-2 \sqrt{15} / 21}\right),\left(\frac{155-\sqrt{15}}{1200},\binom{6-\sqrt{15} / 21}{9+2 \sqrt{15} / 21}\right)  \tag{3.5.38}\\
&\left.\left(\frac{155-\sqrt{15}}{1200},\binom{9+2 \sqrt{15} / 21}{6-\sqrt{15} / 21}\right),\left(\frac{155-\sqrt{15}}{1200},\binom{6-\sqrt{15} / 21}{6-\sqrt{15} / 21}\right)\right\}
\end{align*}
\]

In [9]: quadrature rules up to order \(p=21\) with \(\quad P \leq 1 / 6 p(p+1)+5\)

Remark 3.5.39 (Numerical quadrature in LehrFEM). \(\rightarrow\) [1, Sect. [3]

Routines return \(P\)-point quadrature formulas for
\[
\widehat{K}=\left\{\begin{array}{lc}
\text { unit triangle } & \text { convex }\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1}\right\}
\end{array} \quad \text { for triangular cell, }, ~ \text { unit square } \quad \text { convex }\left\{\binom{0}{0},\binom{1}{0},\binom{1}{1},\binom{0}{1}\right\} \quad \text { for rectangular cell }, ~\right.
\]
in MATLAB structure QuadRule with fields
QuadRule.w: weights \(\widehat{\omega}_{l}\) of quadrature rule on \(\widehat{K}\),
QuadRule.x: coordinates of nodes \(\widehat{\zeta}_{l} \in \widehat{K}\) of quadrature rule on \(\widehat{K}\)

For triangles: QuadRule \(=\operatorname{PnOq}(), \quad \hat{=} \quad n\)-point quadrature of order \(q\)

Location of quadrature nodes \(\widehat{\zeta}_{l}\) in unit triangle \(\widehat{K}\) :

Example 3.5.40 (Local quadrature rules on quadrilaterals).
\[
\text { If } K \text { quadrilateral } \Rightarrow \widehat{K}:=\text { convex }\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\} \text { (unit square). }
\]

If \(\left\{\left(\omega_{1}, \zeta_{1}\right), \ldots,\left(\omega_{P}, \zeta_{P}\right)\right\}, P \in \mathbb{N}\), quadrature rule on the interval \(] 0,1\left[\right.\), exact for \(\left.\mathcal{P}_{p}\right] 0,1[\), then
\[
\begin{gathered}
\left\{\begin{array}{ccc}
\left(\omega_{1}^{2},\binom{\zeta_{1}}{\zeta_{1}}\right. & \cdots & \left(\omega_{1} \omega_{P},\binom{\zeta_{1}}{\zeta_{P}}\right. \\
\vdots & \vdots & \vdots \\
\left(\omega_{1} \omega_{P},\binom{\zeta_{P}}{\zeta_{1}}\right) & \cdots & \left(\omega_{P}^{2},\binom{\zeta_{P}}{\zeta_{P}}\right)
\end{array}\right\}
\end{gathered}
\]
provides a quadrature rule on the unit square \(\widehat{K}\), exact for \(\mathcal{Q}_{p}(\widehat{K})\).

Gauss-Legendre nodes in [-1,1]

Quadrature rules on \(] 0,1[(\rightarrow[14\), Ch. [10] \(]):\)
- classical Newton-Cotes formulas (equidistant quadrature nodes).
- Gauss-Legendre quadrature rules, exact for \(\mathcal{P}_{2 P}(] 0,1[)\) using only \(P\) nodes.
- Gauss-Lobatto quadrature rules: \(P\) nodes including \(\{0,1\}\), exact for \(\mathcal{P}_{2 P-1}(] 0,1[)\).


\subsection*{3.5.5 Incorporation of essential boundary conditions}

Recall variational formulation of non-homogeneous Dirichlet boundary value problem from Ex. 2.8.1:
\[
\begin{aligned}
& u \in H^{1}(\Omega) \\
& u=g \text { on } \partial \Omega \quad \int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega) . \\
& \Downarrow \\
&-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)=f \text { in } \Omega \quad, \quad u=g \quad \text { on } \partial \Omega,
\end{aligned}
\]
with (admissible \(\rightarrow\) Rem. 2.9.4) Dirichlet data \(g \in C^{0}(\partial \Omega)\).

Recall from Sect. 2.9:
\[
\text { Dirichlet b.c. }=\frac{\text { essential boundary conditions }}{\text { (built into trial space) }}
\]

Rememberoffset function technique, see (1.3.14) and Sect. 2.1.3:
\[
\begin{align*}
& w \in H_{0}^{1}(\Omega): \quad \int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} w \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}  \tag{3.5.41}\\
&(2.8 .4)
\end{align*} \Leftrightarrow \quad u=u_{0}+w, \quad \int_{\Omega}-\kappa(\boldsymbol{x}) \operatorname{grad} u_{0} \cdot \operatorname{grad} v-f v \mathrm{~d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega), ~ \$
\]
\[
u_{0}=g \text { on } \partial \Omega
\]

Adapt this to finite element Galerkin discretization by generalizing the 1D example Rem. 1.5 .60 to \(d=2,3\) :

Remember: we already know finite element subspaces \(V_{0, N}:=\mathcal{S}_{p, 0}^{0}(\mathcal{M}) \subset H_{0}^{1}(\Omega)\), see Rem. 3.4.12.

Idea from Rem. 1.5 .60 :
\[
\text { use Offset function } u_{0} \in V_{N}:=\mathcal{S}_{p}^{0}(\mathcal{M})
\] locally supported near the boundary:
\[
\begin{equation*}
\operatorname{supp}\left(u_{0}\right) \subset \bigcup\{K \in \mathcal{M}: \bar{K} \cap \partial \Omega \neq \emptyset\} \tag{3.5.42}
\end{equation*}
\]

\(\triangleleft\) Maximal support of \(u_{0}\) on triangular mesh.

Example 3.5.43 (offset functions for linear Lagrangian FE).

For Dirichlet data \(g \in C^{0}(\partial \Omega)\)
\[
\begin{equation*}
u_{0}=\sum_{\boldsymbol{x} \in \mathcal{V}(\mathcal{M}) \cap \partial \Omega} g(\boldsymbol{x}) b_{N}^{\boldsymbol{x}} \tag{3.5.44}
\end{equation*}
\]
\(b_{N}^{x} \hat{=}\) tent function associated with node \(\boldsymbol{x} \in\) \(\mathcal{V}(\mathcal{M})\), cf. Sect. 3.2.3. (3.5.44) generalizes (1.5.61) to 2 D .


Remark 3.5.45 (Approximate Dirichlet boundary conditions).

Be aware that for the choice (3.5.44)
\[
u_{0} \neq g \quad \text { on } \partial \Omega .
\]

Rather, \(u_{0}\) is a piecewise linear interpolant of the Dirichlet data \(g \in C^{0}(\partial \Omega)\). Therefore, another approximation comes into play when enforcing Dirichlet boundary conditions by means of piecewise polynomial offset functions.

Example 3.5.46 (Implementation of non-homogeneous Dirichlet b.c. for linear FE).

Consider (2.8.4) and assume the following ordering of the nodal basis functions, see Fig. 65
\[
\begin{aligned}
\mathfrak{B}_{0}:=\left\{b_{N}^{1}, \ldots, b_{N}^{N}\right\} \quad \hat{=} & \text { nodal basis of } \mathcal{S}_{1,0}^{0}(\mathcal{M}) \\
& \text { (tent functions associated with interior nodes) } \\
\mathfrak{B}:=\mathfrak{B}_{0} \cup\left\{b_{N}^{N+1}, \ldots, b_{N}^{M}\right\} \hat{=} & \text { nodal basis of } \mathcal{S}_{1}^{0}(\mathcal{M})
\end{aligned} \quad \begin{aligned}
& \text { (extra basis functions associated with nodes } \in \partial \Omega \text { ). } .
\end{aligned}
\]

Note: \(\quad M=\sharp \mathcal{V}(\mathcal{M}), N=\sharp\{\boldsymbol{x} \in \mathcal{V}(\mathcal{M}), \boldsymbol{x} \notin \partial \Omega\}\) (no. of interior nodes)
\[
\begin{aligned}
& \mathbf{A}_{0} \in \mathbb{R}^{N, N} \hat{=} \text { Galerkin matrix for discrete trial/test space } \mathcal{S}_{1,0}^{0}(\mathcal{M}), \\
& \mathbf{A} \in \mathbb{R}^{M, M} \hat{=} \text { Galerkin matrix for discrete trial/test space } \mathcal{S}_{1}^{0}(\mathcal{M}) .
\end{aligned}
\]
\(\Delta \quad \mathbf{A}=\left(\begin{array}{cc}\mathbf{A}_{0} & \mathbf{A}_{0 \partial} \\ \mathbf{A}_{0 \partial}^{T} & \mathbf{A}_{\partial \partial}\end{array}\right), \quad \mathbf{A}_{0 \partial} \in \mathbb{R}^{N, M-N}, \quad \mathbf{A}_{\partial \partial} \in \mathbb{R}^{M-N, M-N}\).
If \(u_{0} \in \mathcal{S}_{1}^{0}(\mathcal{M})\) is chosen according to (3.5.44), then
\[
u_{0} \in \operatorname{Span}\left\{b_{N}^{N+1}, \ldots, b_{N}^{M}\right\} \Leftrightarrow u_{0}=\sum_{j=N+1}^{M} \gamma_{j-N} b_{N}^{j}
\]
which means that the coefficient vector \(\overrightarrow{\boldsymbol{\nu}}\) of the finite element approximation \(w_{N} \in \mathcal{S}_{1,0}^{0}(\mathcal{M})\) of \(w \in H_{0}^{1}(\Omega)\) from (3.5.41) solves the linear system of equations
\[
\begin{equation*}
\mathbf{A}_{0} \overrightarrow{\boldsymbol{\nu}}=\vec{\varphi}-\mathbf{A}_{0 \partial} \vec{\gamma} \tag{3.5.48}
\end{equation*}
\]

Non-homogeneous Dirichlet boundary data are taken into account through a modified right hand side vector.
(1) First ignore essential boundary conditions and assemble the linear system of equations arising from the discretization of a on the (larger) FE space \(\mathcal{S}_{1}^{0}(\mathcal{M})\) :
\[
\left(\begin{array}{cc}
\mathbf{A}_{0} & \mathbf{A}_{0 \partial}  \tag{3.5.49}\\
\mathbf{A}_{0 \partial}^{T} & \mathbf{A}_{\partial \partial}
\end{array}\right)\binom{\overrightarrow{\boldsymbol{\mu}}_{0}}{\overrightarrow{\boldsymbol{\mu}}_{\partial}}=\binom{\overrightarrow{\boldsymbol{\varphi}}}{\overrightarrow{\boldsymbol{\varphi}}_{\partial}} .
\]

Here, \(\overrightarrow{\boldsymbol{\mu}}_{0} \hat{=}\) coefficients for interior basis functions \(b_{N}^{1}, \ldots, b_{N}^{N}\)
\(\overrightarrow{\boldsymbol{\mu}}_{\partial} \hat{=}\) coefficient for basis functions \(b_{N}^{N+1}, \ldots, b_{N}^{M}\) for basis functions associated with node; \(\in \partial \Omega\).
(2) We realize that the coefficient vector of (3.5.49) is that of a FE approximation of \(u\)
\(\square \quad \overrightarrow{\boldsymbol{\mu}}_{\partial}\) known = values of \(g\) at boundary nodes: \(\overrightarrow{\boldsymbol{\mu}}_{\partial}=\vec{\gamma}\)
(3) Moving known quantities in (3.5.49) to the right hand side yields (3.5.48).

\subsection*{3.6 Parametric finite elements}


\subsection*{3.6.1 Affine equivalence}

Recall Lemma 3.5.28: affine transformation of triangles (3.5.29)
All cells of a triangular mesh are affine images of "unit triangle" \(\widehat{K}\)
"Unit triangle": \(\widehat{K}=\left\langle\binom{ 0}{0},\binom{1}{0},\binom{0}{1}\right\rangle\)
For \(K=\) convex \(\left\{\mathbf{a}^{1}, \mathbf{a}^{2}, \mathbf{a}^{3}\right\}\) :
\[
\mathbf{F}_{K}=\left(\begin{array}{cc}
a_{1}^{2}-a_{1}^{1} & a_{1}^{3}-a_{1}^{1} \\
a_{2}^{2}-a_{2}^{1} & a_{2}^{3}-a_{2}^{1}
\end{array}\right), \quad \boldsymbol{\tau}_{K}=\mathbf{a}^{1}
\]


Remark 3.6.1 (Pullback of functions).

In a natural way, a transformation of domains induces a transformation of the functions defined on them:

Definition 3.6.2 (Pullback).
Given domains \(\Omega, \widehat{\Omega} \subset \mathbb{R}^{d}\) and a bijective mapping \(\Phi: \widehat{\Omega} \mapsto \Omega\), the pullback \(\Phi^{*} u: \widehat{\Omega} \mapsto \mathbb{R}\) of a function \(u: \Omega \mapsto \mathbb{R}\) is a function on \(\widehat{\Omega}\) defined by
\[
\left(\boldsymbol{\Phi}^{*} u\right)(\widehat{\boldsymbol{x}}):=u(\boldsymbol{\Phi}(\widehat{\boldsymbol{x}})), \quad \widehat{\boldsymbol{x}} \in \widehat{\Omega}
\]
- Implicitly, we used the pullback of integrands when defining quadrature rules through transformation, see (3.5.31).
- Obviously, the pullback \(\Phi^{*}\) induces a linear mapping between spaces of functions on \(\Omega\) and \(\widehat{\Omega}\), respectively.


Lemma 3.6.3 (Preservation of polynomials under affine pullback). If \(\Phi: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}\) is an affine (linear) transformation \((\rightarrow\) Def. 3.5.27), then
\[
\Phi^{*}\left(\mathcal{P}_{p}\left(\mathbb{R}^{d}\right)\right)=\mathcal{P}_{p}\left(\mathbb{R}^{d}\right) \quad \text { and } \quad \Phi^{*}\left(\mathcal{Q}_{p}\left(\mathbb{R}^{d}\right)\right)=\mathcal{Q}_{p}\left(\mathbb{R}^{d}\right)
\]

In fact, Lemma 3.5 .28 reveals another reason for the preference for polynomials in building discrete Galerkin spaces.

\section*{Proof. (of Lemma 3.5.28)}

Since the pullback is linear, we only need to study its action on the (monomial) basis \(x \mapsto x^{\alpha}\), \(\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}\) of \(\mathcal{P}_{p}\left(\mathbb{R}^{d}\right)\), see Def. (3.3.3 and the explanations on multi-index notation (3.3.4).

Then resort to induction w.r.t. degree \(p\).
\[
\boldsymbol{\Phi}_{K}^{*}\left(\boldsymbol{x}^{\boldsymbol{\alpha}}\right)=\boldsymbol{\Phi}_{K}^{*}\left(x_{1}\right) \cdot \boldsymbol{\Phi}_{K}^{*}(\underbrace{\boldsymbol{x}^{\boldsymbol{\alpha}^{\prime}}}_{\in \mathcal{P}_{p-1}\left(\mathbb{R}^{d}\right)})=\underbrace{\left(\sum_{l=1}^{d}(\mathbf{F})_{1 l} \widehat{x}_{l}+\tau_{1}\right)}_{\in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)} \cdot \underbrace{\boldsymbol{\Phi}_{K}^{*}\left(\boldsymbol{x}^{\boldsymbol{\alpha}^{\prime}}\right)}_{\in \mathcal{P}_{p-1}\left(\mathbb{R}^{d}\right)} \in \mathcal{P}_{p}\left(\mathbb{R}^{d}\right),
\]
with \(\boldsymbol{\alpha}^{\prime}:=\left(\alpha_{1}-1, \alpha_{2}, \ldots, \alpha_{d}\right)\), where we assumed \(\alpha_{1}>0\). Here, we have used the induction hypothesis to conclude \(\Phi_{K}^{*}\left(\boldsymbol{x}^{\alpha^{\prime}}\right)\) in \(\mathcal{P}_{p-1}\left(\mathbb{R}^{d}\right)\).

A simple observation:
Consider \(\mathcal{S}_{1}^{0}(\mathcal{M})\), triangle \(K \in \mathcal{M}\), unit triangle \(\widehat{K}\), affine mapping \(\Phi_{K}: \widehat{K} \mapsto K\)
- \(\quad b_{K}^{1}, b_{K}^{2}, b_{K}^{3}\) (standard) local shape functions on \(K\),
- \(\quad \widehat{b}^{1}, \widehat{b}^{2}, \widehat{b}^{3}\) (standard) local shape functions on \(\widehat{K}\),
\[
\begin{equation*}
\widehat{b}^{i}=\boldsymbol{\Phi}_{K}^{*} b_{K}^{i} \Leftrightarrow \widehat{b}^{i}(\widehat{\boldsymbol{x}})=b_{K}^{i}(\boldsymbol{x}), \quad \boldsymbol{x}=\boldsymbol{\Phi}_{K}(\widehat{\boldsymbol{x}}) \tag{3.6.4}
\end{equation*}
\]

Of course, we assume that \(\Phi_{K}\) respects the local numbering of the vertices of \(\widehat{K}\) and \(K\). The proof of (3.6.4) is straightforward: both \(\Phi_{K}^{*} b_{K}^{i}\) (by Lemma 3.6 .3 ) and \(\widehat{b}^{i}\) are (affine) linear functions that attain the same values at the vertices of \(\widehat{K}\). Hence, they have to agree.

Proof. (of (3.6.4)) Recall the definition of global shape functions and also local shape functions for \(\mathcal{S}_{p}^{0}(\mathcal{M}), p \in \mathbb{N}\), by means of the conditions (3.4.3) at \({ }_{\square}\) see Ex. 3.4.2) for \(p=2\).

Note: we already used the definition of basis functions through basis functions on the "reference cell" \([0,1]\) and affine pullback in 1D, see Rem. 1.5.30

Now write \(\quad \boldsymbol{p}_{K}^{i} \hat{=}\) (local) interpolation nodes on triangle \(K\), \(\widehat{\boldsymbol{p}}^{\hat{i}} \hat{=}\) (local) interpolation nodes on unit triangle \(\widehat{K}\).
Observe: Assuming a matching numbering \(\boldsymbol{p}_{K}^{i}=\boldsymbol{\Phi}_{K}\left(\widehat{\boldsymbol{p}}^{i}\right)\). where \(\boldsymbol{\Phi}_{K}: \widehat{K} \mapsto K\) is the unique affine transformation mapping \(\widehat{K}\) onto \(K\), see (3.5.29).

This is clear for \(p=2\), because affine transformations take midpoints of edges to midpoints of edges. The same applies to the interpolation nodes for higher degree Lagrangian finite elements defined in Ex. 3.4.5.


The local shape functions \(b_{K}^{i} \in \mathcal{P}_{p}\left(\mathbb{R}^{d}\right), \widehat{b}^{i} \in \mathcal{P}_{p}\left(\mathbb{R}^{d}\right), i=1, \ldots, Q\), are uniquely defined by the interpolation conditions
\[
\begin{equation*}
b_{K}^{i}\left(\boldsymbol{p}_{K}^{j}\right)=\delta_{i j} \quad, \quad \widehat{b}^{i}\left(\widehat{\boldsymbol{p}}^{j}\right)=\delta_{i j} . \tag{3.6.5}
\end{equation*}
\]

Together with \(\boldsymbol{p}_{K}^{i}=\boldsymbol{\Phi}_{K}\left(\widehat{\boldsymbol{p}}^{i}\right)\) this shows that \(\boldsymbol{\Phi}_{K}^{*} b_{K}^{i}\) satisfies the interpolation conditions (3.6.5) on \(\widehat{K}\) and, thus, has to agree with \(\widehat{b^{i}}\).

Terminology: finite element spaces satisfying (3.6.4) are called affine equivalent Remark 3.6.6 (Evaluation of local shape functions at quadrature points).

We consider Lagrangian finite element spaces on a simplicial mesh \(\mathcal{M}\).

Recall from Sect. 3.5.4: definition (3.5.32) of local quadrature formulas via "unit simplex".

In particular:
quadrature nodes on \(K: \quad \zeta_{l}^{K}=\Phi_{K}\left(\widehat{\boldsymbol{\zeta}}_{l}\right)\)
\[
\begin{gather*}
b_{K}^{i}\left(\boldsymbol{\zeta}_{l}^{K}\right) \stackrel{\text { Def. }}{\underline{(3.6 .2}} \boldsymbol{\Phi}_{K}^{*}\left(b_{K}^{i}\right)\left(\widehat{\boldsymbol{\zeta}}^{l}\right) \stackrel{(3.6 .4)}{=} \widehat{b}^{i}\left(\widehat{\boldsymbol{\zeta}}^{l}\right) \quad \text { independent of } K!  \tag{3.6.7}\\
\int_{K} F\left(b_{K}^{i}, b_{K}^{j}\right) \mathrm{d} \boldsymbol{x} \approx|K| \sum_{l=1}^{P} \omega_{l} F\left(\widehat{b}^{i}\left(\boldsymbol{\zeta}_{l}\right), \widehat{b}^{j}\left(\boldsymbol{\zeta}_{l}\right)\right) \tag{3.6.8}
\end{gather*}
\]
for any function \(F: \mathbb{R}^{2} \mapsto \mathbb{R}\).
Precompute \(\widehat{b}^{i}\left(\zeta_{l}\right), i=1, \ldots, Q, l=1, \ldots, P\) and store the values in a table!

Remark 3.6.9 (Barycentric representation of local shape functions).

We consider Lagrangian finite element spaces on a simplicial mesh \(\mathcal{M}\).
(3.4.4): formulas for local shape functions for \(\mathcal{S}_{2}^{0}(\mathcal{M})(d=2)\) in terms of barycentric coordinate functions \(\lambda_{i}, i=1,2,3\). Is this coincidence? Does (3.5.19) hold for any (simplicial) Lagrangian finite element space?

YES!
\[
\begin{aligned}
b_{K}^{i}(\boldsymbol{x}) & \stackrel{(\sqrt[3.6 .4)]{=}}{=}\left(\boldsymbol{\Phi}_{K}^{-1}\right)^{*}\left(\widehat{\boldsymbol{x}} \mapsto \widehat{b}^{i}\left(\widehat{x}_{1}, \widehat{x}_{2}\right)\right) \\
& =\widehat{b}^{i}\left(\left(\boldsymbol{\Phi}_{K}^{-1}\right)^{*}\left(\widehat{\lambda}_{2}\right)(\boldsymbol{x}),\left(\boldsymbol{\Phi}_{K}^{-1}\right)^{*}\left(\widehat{\lambda}_{3}\right)(\boldsymbol{x})\right)=\widehat{b}^{i}\left(\lambda_{2}(\boldsymbol{x}), \lambda_{3}(\boldsymbol{x})\right)
\end{aligned}
\]
where \(\quad \lambda_{2}(\widehat{\boldsymbol{x}})=\widehat{x}_{1}, \lambda_{3}(\widehat{\boldsymbol{x}})=\widehat{x}_{2}, \lambda_{1}(\widehat{\boldsymbol{x}})=1-\widehat{x}_{1}-\widehat{x}_{2} \hat{=}\) barycentric coordinate functions on \(\widehat{K}\), see Ex. 3.3.13,
\(\lambda_{i}=\) barycentric coordinate functions on triangle \(K\), see Fig. 70,
\(\boldsymbol{\Phi}_{K} \hat{=}\) affine transformation ( \(\rightarrow\) Def. 3.5.27), \(\boldsymbol{\Phi}_{K}(\widehat{K})=K\), see (3.5.29).
\(>\) By the chain rule:
\[
\boldsymbol{\operatorname { g r a d }} b_{K}^{i}(\boldsymbol{x})=\frac{\partial \widehat{b}^{i}}{\partial \widehat{x}_{1}}(\widehat{\boldsymbol{x}}) \operatorname{grad} \lambda_{2}+\frac{\partial \widehat{b}^{i}}{\partial \widehat{x}_{2}}(\widehat{\boldsymbol{x}}) \operatorname{grad} \lambda_{3}, \quad \boldsymbol{x}=\boldsymbol{\Phi}_{K}(\widehat{\boldsymbol{x}}) .
\]

This formula is convenient, because grad \(\lambda_{i} \equiv\) const, see (3.5.22).
This facilitates the computation of element (stiffness) matrices for 2nd-order elliptic problems in variational form: when using a quadrature formula according to (3.5.32)
\[
\begin{aligned}
& \int_{K}\left(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} b_{K}^{i}\right) \cdot \operatorname{grad} b_{K}^{j} \mathrm{~d} \boldsymbol{x} \\
& \quad \approx|K| \sum_{l=1}^{P_{K}} \omega_{l}\left(\binom{\frac{\partial \widehat{b}^{i}}{\partial \widehat{x}_{1}}\left(\widehat{\boldsymbol{\zeta}}_{l}\right)}{\frac{\partial \widehat{b}^{i}}{\partial \widehat{x}_{2}}\left(\widehat{\boldsymbol{\zeta}}_{l}\right)}^{T}\left(\begin{array}{l}
\operatorname{grad} \lambda_{1} \cdot \operatorname{grad} \lambda_{1} \\
\operatorname{grad} \lambda_{1} \cdot \operatorname{grad} \lambda_{2} \\
\operatorname{grad} \lambda_{1} \cdot \operatorname{grad} \lambda_{2} \cdot \operatorname{grad} \lambda_{2}
\end{array}\right)\binom{\frac{\partial \widehat{b}^{j}}{\partial \widehat{x}_{1}}\left(\widehat{\boldsymbol{\zeta}}_{l}\right)}{\frac{\partial \widehat{b}^{j}}{\partial \widehat{x}_{2}}\left(\widehat{\boldsymbol{\zeta}}_{l}\right)}\right)
\end{aligned}
\]

This is very interesting, because
- the values \(\left.\frac{\partial \widehat{b}^{i}}{\partial \widehat{x}_{1}} \widehat{\boldsymbol{\zeta}}_{l}\right)\) can be precomputed,
- simple expressions for \(\operatorname{grad} \lambda_{i} \cdot \operatorname{grad} \lambda_{j}\) are available, see Sect. 3.2.5.

\subsection*{3.6.2 Example: Quadrilaterial Lagrangian finite elements}

So far, see Sect. 3.3.3 and (3.3.11), we have adopted the perspective


Now we reverse this construction


In fact, when building the global basis functions for quadratic Lagrangian finite elements we already proceeded this way, see Ex. 3.4.2. Fig. 92 lucidly conveys what is meant by "glueing".

Be aware that the possibility to achieve a continuous global basis function by glueing together local shape function on adjacent cells, entails a judicious choice of the local shape functions.

This section will demonstrate how the policy (3.6.10) together with the formula (3.6.4) will enable us to extend Lagrangian finite element beyond the meshes discussed in Sect. 3.4.

\(\triangleleft\) quadrilateral mesh \(\mathcal{M}\) in 2D
\[
\text { What is " } \mathcal{S}_{1}^{0}(\mathcal{M}) \text { "? }
\]

Clear: If \(K\) is a rectangle, \(\widehat{K}\) the unit square, then there is a unique affine transformation \(\Phi_{K}(\rightarrow\) Def. 3.5.27) with \(K=\boldsymbol{\Phi}_{K}(\widehat{K})\).

In this case (3.6.4) holds for the local shape functions of bilinear Lagrangian finite elements from Ex. 3.4.6 (and all tensor product Lagrangian finite elements introduced in Sect. 3.4.2)

Idea: - local shape functions \(\xrightarrow{\text { "glueing" }}\) global shape functions
- Build local shape functions by "inverse pullback"
\[
\begin{equation*}
b_{K}^{i}=\left(\boldsymbol{\Phi}_{K}^{-1}\right)^{*} \widehat{b}^{i} \tag{3.6.11}
\end{equation*}
\]
where \(\left\{\widehat{b}^{i}\right\}_{i=1}^{Q} \hat{=}\) set of shape functions on reference element \(\widehat{K}\).
\(>\quad\) What is \(\Phi_{K}\) for a general quadrilateral ?


Affine transformations fail to produce general quadrilaterals from a square. They only give parallelograms.

It takes bilinear transformations to obtain a generic quadrilateral from the unit square.

Bilinear transformation of unit square to quadrilateral with vertices \(\mathbf{a}^{i}, i=1,2,3,4\) :
\[
\begin{gather*}
\boldsymbol{\Phi}_{K}(\widehat{\boldsymbol{x}})=\left(1-\widehat{x}_{1}\right)\left(1-\widehat{x}_{2}\right) \mathbf{a}^{1}+\widehat{x}_{1}\left(1-\widehat{x}_{2}\right) \mathbf{a}^{2}+\widehat{x}_{1} \widehat{x}_{2} \mathbf{a}^{3}+\left(1-\widehat{x}_{1}\right) \widehat{x}_{2} \mathbf{a}^{4} .  \tag{3.6.12}\\
\Downarrow \\
\boldsymbol{\Phi}_{K}(\widehat{\boldsymbol{x}})=\binom{\alpha_{1}+\beta_{1} \widehat{x}_{1}+\gamma_{1} \widehat{x}_{2}+\delta_{1} \widehat{x}_{1} \widehat{x}_{2}}{\alpha_{2}+\beta_{2} \widehat{x}_{1}+\gamma_{2} \widehat{x}_{2}+\delta_{2} \widehat{x}_{1} \widehat{x}_{2}}, \quad \alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in \mathbb{R}
\end{gather*}
\]

The mapping property \(\boldsymbol{\Phi}_{K}\left(\widehat{\mathbf{a}}^{i}\right)=\mathbf{a}^{i}\) is evident. In order to see \(\Phi_{K}(\widehat{K})=K\) ( \(\widehat{K} \hat{=}\) unit square) for (3.6.12), verify that \(\Phi_{K}\) maps all parallels to the coordinate axes to straight lines.

Moreover, a simple computation establishes:

If \(\widehat{K}\) is the unit square, \(\boldsymbol{\Phi}_{K}: \widehat{K} \mapsto K\) a bilinear transformation, and \(\widehat{b^{i}}\) the bilinear local shape functions (3.4.8) on \(\widehat{K}\),
then \(\left(\boldsymbol{\Phi}_{K}^{-1}\right)^{*} \hat{b^{i}}\) are linear on the edges of \(K\).

RA
"Glueing" of local shape functions possible

Explanation:

(1) Pick a vertex \(\boldsymbol{x} \in \mathcal{V}(\mathcal{M})\) and consider an adjacent quadrilateral \(K\), on which there is a local shape function \(b_{K}^{i}\) such that \(b_{K}^{i}(\boldsymbol{x})=1\) and \(b_{K}^{i}\) vanishes on all other vertices of \(K\). This local shape function is obtained by inverse pullback of the \(\widehat{b}^{i}\) associated with \(\boldsymbol{\Phi}_{K}^{-1}(\boldsymbol{x})\).
(2) The same construction can be carried out for another quadrilateral \(\widetilde{K}\) that shares the vertex \(x\) and an edge \(e\) with \(K\). On that quadrilateral we find the local shape function \(b_{\widetilde{K}}^{j}\)
(3) Both \(b_{K \mid e}^{i}\) and \(b_{\widetilde{K} \mid e}^{j}\) are linear and attain the same values, that is 0 and 1 at the endpoints \(\mathbf{x}\) and y of \(e\), respectively.
\[
b_{K \mid e}^{i}=b_{\widetilde{K} \mid e}^{j}
\]

Continuity of global shape function (defined by interpolation conditions at nodes)

Remark 3.6.13 (Non-polynomial "bilinear" local shape functions).

Note that the components of \(\Phi_{K}^{-1}\) are not polynomial even if \(\Phi_{K}\) is a bilinear transformation (3.6.12).

The local shape functions \(b_{K}^{i}\) defined by (3.6.11), where \(\boldsymbol{\Phi}_{K}\) is a bilinear transformation and \(\widehat{b^{i}}\) are the bilinear local shape functions on the unit square, are not polynomial in general.

Visualization of local shape functions on trapezoidal cell \(K:=\) convex \(\left\{\binom{0}{0},\binom{3}{0},\binom{2}{1},\binom{1}{1}\right\}\) :


\subsection*{3.6.3 Transformation techniques}
"Bilinear" Lagrangian finite elements \(=\) a specimen of parametric finite elements

Definition 3.6.14 (Parametric finite elements).
A finite element space on a mesh \(\underline{\mathcal{M}}\) is called parametric, if there exists a reference element \(\widehat{K}, Q \in \mathbb{N}\), and functions \(\widehat{b}^{i} \in C^{0}(\widehat{\widehat{K}}), i=1, \ldots, Q\), such that
\[
\forall K \in \mathcal{M}: \quad \exists \text { bijection } \boldsymbol{\Phi}_{K}: \widehat{K} \mapsto K: \quad \widehat{b}^{i}=\boldsymbol{\Phi}_{K}^{*} b_{K}^{i}, \quad i=1, \ldots, Q
\]
where \(\left\{b_{K}^{1}, \ldots, b_{K}^{Q}\right\}=\) set of local shape functions on \(K\).

This definition takes the possibility of "glueing" for granted: the concept of a local shape function, see (3.3.11), implies the existence of a global shape function with the right continuity properties.

How to implement parametric finite elements?

We consider a generic elliptic 2 nd-order variational Dirichlet problem
\[
\begin{align*}
& u \in H^{1}(\Omega), \\
& u=g \text { on } \partial \Omega \tag{2.3.3}
\end{align*} \quad \int_{0}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{0} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega) \text {. (2.3.3) }
\]

Issue: computation of element (stiffness) matrices and element (load) vectors \((\rightarrow\) Def. 3.5.12).
Challenge: local shape functions \(b_{K}^{1}, \ldots, b_{K}^{Q}, K \in \mathcal{M}\), only known implicitly
\[
b_{K}^{i}=\left(\mathbf{\Phi}_{K}^{-1}\right)^{*} \widehat{b}^{i}
\]
> Known: transformation \(\boldsymbol{\Phi}: \widehat{K} \mapsto K, \widehat{K}\) reference element, functions \(\widehat{b}^{1}, \ldots, \widehat{b}^{Q}\)
\[
\widehat{b}^{i}=\Phi^{*} b_{K}^{i}, \quad i=1, \ldots, Q \quad(\rightarrow \text { pullback, Def. 3.6.2) }
\]

Use transformation to \(\widehat{K}\) to compute element stiffness matrix \(\mathbf{A}_{K}\), element load vector \(\vec{\varphi}_{K}\) :
\[
\begin{aligned}
\left(\mathbf{A}_{K}\right)_{i j} & =\int_{K} \boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} b_{K}^{j}(\boldsymbol{x}) \cdot \operatorname{grad} b_{K}^{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \\
& =\int_{\widehat{K}}\left(\boldsymbol{\Phi}^{*} \boldsymbol{\alpha}\right)(\widehat{\boldsymbol{x}})(\underbrace{\boldsymbol{\Phi}^{*}\left(\operatorname{grad} b_{K}^{j}\right)}_{=?})(\widehat{\boldsymbol{x}}) \cdot(\underbrace{\boldsymbol{\Phi}^{*}\left(\operatorname{grad} b_{K}^{i}\right)}_{=?})(\widehat{\boldsymbol{x}})|\operatorname{det} D \boldsymbol{\Phi}(\widehat{\boldsymbol{x}})| \mathrm{d} \widehat{\boldsymbol{x}}, \\
\left(\vec{\varphi}_{K}\right)_{i} & =\int_{K} f(\boldsymbol{x}) b_{K}^{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\widehat{K}}\left(\boldsymbol{\Phi}_{K}^{*} f\right)(\widehat{\boldsymbol{x}}) \widehat{b}^{i}(\widehat{\boldsymbol{x}})|\operatorname{det} D \boldsymbol{\Phi}(\widehat{\boldsymbol{x}})| \mathrm{d} \widehat{\boldsymbol{x}},
\end{aligned}
\]
by transformation formula (for multidimensional integrals, see also (3.5.31)):
\[
\begin{equation*}
\int_{K} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\widehat{K}} f(\widehat{\boldsymbol{x}})|\operatorname{det} D \boldsymbol{\Phi}(\widehat{\boldsymbol{x}})| \mathrm{d} \widehat{\boldsymbol{x}} \quad \text { for } f: K \mapsto \mathbb{R} \tag{3.6.15}
\end{equation*}
\]

All integrals have been transformed to the reference element \(\widehat{K}\), where we apply a quadrature formula (3.5.32).

Needed: values of determinant of Jacobi matrix \(D \Phi\) at quadrature nodes \(\widehat{\zeta}_{l}\).
Also needed: gradients \(\boldsymbol{\Phi}^{*}\left(\operatorname{grad} b_{K}^{i}\right)\) at quadrature nodes \(\widehat{\boldsymbol{\zeta}}_{l}\) !?
(Seems to be a problem as \(b_{K}^{i}\) may be elusive, cf. Rem. 3.6.13!!)

Lemma 3.6.16 (Transformation formula for gradients).
For differentiable \(u: K \mapsto \mathbb{R}\) and any diffeomorphism \(\Phi: \widehat{K} \mapsto K\) we have
\[
\begin{equation*}
\left(\operatorname{grad}_{\widehat{\boldsymbol{x}}}\left(\boldsymbol{\Phi}^{*} u\right)\right)(\widehat{\boldsymbol{x}})=(D \boldsymbol{\Phi}(\widehat{\boldsymbol{x}}))^{T} \underbrace{\left(\operatorname{grad}_{\boldsymbol{x}} u\right)(\boldsymbol{\Phi}(\widehat{\boldsymbol{x}}))}_{=\boldsymbol{\Phi}^{*}(\operatorname{grad} u)(\boldsymbol{x})} \quad \forall \widehat{\boldsymbol{x}} \in \widehat{K} . \tag{3.6.17}
\end{equation*}
\]

Proof: use chain rule for components of the gradient
\[
\begin{gathered}
\frac{\partial \Phi^{*} u}{\partial \widehat{x}_{i}}(\widehat{\boldsymbol{x}})=\frac{\partial}{\partial \widehat{x}_{i}} u(\boldsymbol{\Phi}(\widehat{\boldsymbol{x}}))=\sum_{j=1}^{d} \frac{\partial u}{\partial x_{j}} \frac{\partial \boldsymbol{\Phi}_{j}}{\partial \widehat{x}_{i}}(\widehat{\boldsymbol{x}}) . \\
\\
\left(\begin{array}{c}
\frac{\partial \boldsymbol{\Phi}^{*} u}{\partial \widehat{x}_{1}}(\widehat{\boldsymbol{x}}) \\
\vdots \\
\frac{\partial \boldsymbol{\Phi}^{*} u}{\partial \widehat{x}_{d}}(\widehat{\boldsymbol{x}})
\end{array}\right)=\left(\operatorname{grad}_{\widehat{\boldsymbol{x}}} \boldsymbol{\Phi}^{*} u\right)(\widehat{\boldsymbol{x}})=D \boldsymbol{\Phi}(\widehat{\boldsymbol{x}})^{T}\left(\begin{array}{c}
\frac{\partial \boldsymbol{\Phi}_{j}}{\partial \widehat{x}_{1}}(\widehat{\boldsymbol{x}}) \\
\vdots \\
\frac{\partial \boldsymbol{\Phi}_{j}}{\partial \widehat{x}_{d}}(\widehat{\boldsymbol{x}})
\end{array}\right)=\left(\operatorname{grad}_{\boldsymbol{x}} u\right)(\boldsymbol{\Phi}(\widehat{\boldsymbol{x}})) .
\end{gathered}
\]

Here, \(D \boldsymbol{\Phi}(\widehat{\boldsymbol{x}}) \in \mathbb{R}^{d, d}\) is the Jacobian of \(\Phi\) at \(\widehat{\boldsymbol{x}} \in \widehat{K}\), see [19, Bem. 7.6.1].

Using Lemma 3 3.6.16 we arrive at:
\[
\begin{equation*}
\left(\mathbf{A}_{K}\right)_{i j}=\int_{\widehat{K}}\left(\boldsymbol{\alpha}(\boldsymbol{\Phi}(\widehat{\boldsymbol{x}}))(D \boldsymbol{\Phi})^{-T} \operatorname{grad} \widehat{b}^{i}\right) \cdot\left((D \boldsymbol{\Phi})^{-T} \boldsymbol{\operatorname { g r a d }} \widehat{b}^{j}\right)|\operatorname{det} D \boldsymbol{\Phi}| \mathrm{d} \widehat{\boldsymbol{x}} . \tag{3.6.18}
\end{equation*}
\]

Note that the argument \(\widehat{x}\) is suppressed for some terms in the integrand.
\[
\text { notation: } \quad \mathbf{M}^{-T}:=\left(\mathbf{M}^{-1}\right)^{T}=\left(\mathbf{M}^{T}\right)^{-1}
\]

Example 3.6.19 (Transformation techniques for bilinear transformations).
\[
\begin{aligned}
& \boldsymbol{\Phi}(\widehat{\boldsymbol{x}})=\binom{\alpha_{1}+\beta_{1} \widehat{x}_{1}+\gamma_{1} \widehat{x}_{2}+\delta_{1} \widehat{x}_{1} \widehat{x}_{2}}{\alpha_{2}+\beta_{2} \widehat{x}_{1}+\gamma_{2} \widehat{x}_{2}+\delta_{2} \widehat{x}_{1} \widehat{x}_{2}}, \quad \alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in \mathbb{R} \\
& \Rightarrow \quad D \boldsymbol{\Phi}(\widehat{\boldsymbol{x}})=\left(\begin{array}{l}
\beta_{1}+\delta_{1} \widehat{x}_{2} \\
\beta_{2}+\delta_{1}+\delta_{1} \widehat{x}_{2} \widehat{x}_{1} \\
\gamma_{2}+\delta_{2} \widehat{x}_{1}
\end{array}\right), \\
& \Rightarrow \quad \operatorname{det}(D \boldsymbol{\Phi}(\widehat{\boldsymbol{x}}))=\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}+\left(\beta_{1} \delta_{2}-\beta_{2} \delta_{1}\right) \widehat{x}_{1}+\left(\delta_{1} \gamma_{2}-\delta_{2} \gamma_{1}\right) \widehat{x}_{2} .
\end{aligned}
\]

Both \(D \boldsymbol{\Phi}(\widehat{\boldsymbol{x}})\) and \(\operatorname{det}(D \boldsymbol{\Phi}(\widehat{\boldsymbol{x}}))\) are (componentwise) linear in \(\boldsymbol{x}\).

If \(\boldsymbol{\Phi}=\boldsymbol{\Phi}_{K}\) for a generic quadrilateral \(K\) as in (3.6.12), then the coefficients \(\alpha_{i}, \beta_{i}, \gamma_{1}, \delta_{i}\) depend on the shape of \(K\) in a straightforward fashion:
\[
\binom{\alpha_{1}}{\alpha_{2}}=\mathbf{a}^{1}, \quad\binom{\beta_{1}}{\beta_{2}}=\mathbf{a}^{2}-\mathbf{a}^{1}, \quad\binom{\gamma_{1}}{\gamma_{2}}=\mathbf{a}^{4}-\mathbf{a}^{1}, \quad\binom{\delta_{1}}{\delta_{2}}=\mathbf{a}^{3}-\mathbf{a}^{2}-\mathbf{a}^{4}+\mathbf{a}^{1}
\]

Intuition: Approximating a (smooth) curved boundary \(\partial \Omega\) by a polygon/polyhedron will introduce a (sort of) discretization error.

Parametric finite elment constructions provide a tool for avoiding polygonal/polyhedral approximation of boundaries.

Here we discuss this for a very simple case of triangular meshes in 2D (more details \(\rightarrow\) [4, Sect, 10.2]).

Idea: Piecewise polynomial approximation of boundary (boundary fitting)
( \(\partial \Omega\) locally considered as function over straight edge of an element)

Example: Piecewise quadratic boundary approximation (Part of \(\partial \Omega\) between \(\mathbf{a}^{1}\) and \(\mathbf{a}^{2}\) approximated by parabola)


Mapping \(\widetilde{K} \rightarrow\) "curved element" \(K\) :
\[
\begin{equation*}
\widetilde{\boldsymbol{\Phi}}_{K}(\widetilde{\mathbf{x}}):=\widetilde{\mathbf{x}}+4 \delta \lambda_{1}(\widetilde{\mathbf{x}}) \lambda_{2}(\widetilde{\mathbf{x}}) \boldsymbol{n} . \tag{3.6.20}
\end{equation*}
\]
( \(\lambda_{i}\) barycentric coordinate functions on \(\widetilde{K}, \boldsymbol{n}\) normal to \(E_{\Gamma}\), see Fig. 120)
Note: \(\quad\) Essential: \(\delta\) sufficiently small \(\Longrightarrow \Phi\) bijective
The complete transformation \(\Phi_{K}: \widehat{K} \mapsto K\) is obtained by joining an affine transformation \((\rightarrow\)

Def. (3.5.27) \(\boldsymbol{\Phi}_{K}^{a}: \widehat{K} \mapsto \widetilde{K}, \boldsymbol{\Phi}_{K}^{a}(\widehat{\boldsymbol{x}}):=\mathbf{F}_{K} \widehat{\boldsymbol{x}}+\boldsymbol{\tau}_{K}\), and \(\widetilde{\boldsymbol{\Phi}}_{K}\) :
\[
\boldsymbol{\Phi}_{K}=\widetilde{\boldsymbol{\Phi}}_{K} \circ \boldsymbol{\Phi}_{K}^{a} .
\]

For parabolic boundary fitting:
\[
D \widetilde{\Phi}_{K}=\mathbf{I}+4 \delta \boldsymbol{n} \cdot \operatorname{grad}\left(\lambda_{1} \lambda_{2}\right)^{\top} \in \mathbb{R}^{2,2} \quad, \quad \operatorname{det}\left(D \widetilde{\boldsymbol{\Phi}}_{K}\right)=1+4 \delta \boldsymbol{n} \cdot \operatorname{grad}\left(\lambda_{1} \lambda_{2}\right)
\]

\subsection*{3.7 Linearization}

So far we have discussed the finite elements for linear second-order variational boundary value problems only.

However, as we have learned in Ex. 1.5.62, in 1D the Galerkin approach based on linear finite elements was perfectly capable of dealing with on-linear two-point boundary value problems. Indeed the abstract discussion of the Galerkin approach in Sect. 1.5 .1 was aimed at general and possibly non-linear variational problems, see (1.5.7), (1.5.16).

It goes without saying that the abstract (and formal) discussion of Sect. 1.5.1 remains true for nonlinear second-order boundary value problems in variational form.

Difficult: Characterization of "spaces of functions with finite energy" ( \(\rightarrow\) Sobolev spaces, Sect. 2.2) for non-linear variational problems. In this course we do not worry that much about function spaces.

Recall \((\rightarrow\) Rem. 1.3.10): Non-linear variational problem
\[
\begin{equation*}
u \in V: \quad \mathrm{a}(u ; v)=\ell(v) \quad \forall v \in V_{0} \tag{1.3.12}
\end{equation*}
\]
- \(V_{0} \hat{=}\) test space, (real) vector space (usually a function space, "Sobolev-type" space \(\rightarrow\) Sect. 2.2)
- \(V \hat{=}\) trial space, affine space: usually \(V=u_{0}+V_{0}\), with offset function \(u_{0} \in V\),
- \(f \hat{=}\) a linear mapping \(V_{0} \mapsto \mathbb{R}\), a linear form,
- a \(\hat{=}\) a mapping \(V \times V_{0} \mapsto \mathbb{R}\), linear in the second argument, that is
\[
\begin{equation*}
\mathrm{a}(u ; \alpha v+\beta w)=\alpha \mathbf{a}(u ; v)+\beta \mathrm{a}(u ; w) \quad \forall u \in V, v, w \in V_{0}, \alpha, \beta \in \mathbb{R} \tag{3.7.1}
\end{equation*}
\]

Example 3.7.2 (Heat conduction with radiation boundary conditons).
\(\geqslant\) 2nd-order elliptic boundary value problem, cf. (2.5.6) \& (2.6.3)
\[
\begin{aligned}
-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)=f & \text { in } \Omega \\
\kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \boldsymbol{n}(\boldsymbol{x})+\Psi(u)=0 & \text { on } \partial \Omega .
\end{aligned}
\]

Variational formulation from Ex. 2.8.5
\[
\begin{equation*}
u \in H^{1}(\Omega): \quad \int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}+\int_{\partial \Omega} \Psi(u) v \mathrm{~d} S=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \quad \forall v \in H^{1}(\Omega) . \tag{2.8.11}
\end{equation*}
\]

If \(\Psi: \mathbb{R} \mapsto \mathbb{R}\) is not an affine linear function, then (2.8.11) represents a non-linear variational problem (1.3.12) with
- trial/test space \(V=V_{0}=H^{1}(\Omega)(\rightarrow\) Def. 2.2.12) \()\),
- right hand side linear form \(\ell(v):=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x}\),
- \(\mathrm{a}(u ; v):=\int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \boldsymbol{\operatorname { g r a d }} v \mathrm{~d} \boldsymbol{x}+\int_{\partial \Omega} \Psi(u) v \mathrm{~d} S\).

Note that the non-linearity enters only through the boundary term.

Pursuing the policy of Galerkin discretization (choice of discrete spaces and corresponding bases, \(\rightarrow\) Sect. (1.5.1) we can convert (1.3.12) into a non-linear system of equations
\[
\begin{equation*}
\mathrm{a}\left(u_{0}+\sum_{j=1}^{N} \mu_{j} b_{N}^{j} ; b_{N}^{k}\right)=f\left(b_{N}^{k}\right) \quad \forall k=1, \ldots, N \tag{1.5.16}
\end{equation*}
\]

If the left hand side depends smoothly on the unkowns (the corefficients \(\mu_{j}\) of \(\vec{\mu}\) ), then the classical Newton method ( \(\rightarrow\) [14, Sect. 3.4]) to solve it iteratively.

Here, we focus on a different approach that reverses the order of the steps:
1. Linearization of problem ("Newton in function space"),
2. Galerkin discretization of linearized problems.
"Newton in function space":

Recall idea of Newton's method for the iterative solution of \(F(\mathbf{x})=0, F: D \subset \mathbb{R}^{N} \mapsto \mathbb{R}^{N}\) smooth:

Idea:

\section*{local linearization:}

Given \(\overrightarrow{\boldsymbol{\xi}}^{(k)} \in D \quad>\overrightarrow{\boldsymbol{\xi}}^{(k+1)}\) as zero of affine linear model function
\[
F(\overrightarrow{\boldsymbol{\xi}}) \approx \widetilde{F}(\overrightarrow{\boldsymbol{\xi}}):=F\left(\overrightarrow{\boldsymbol{\xi}}^{(k)}\right)+D F\left(\overrightarrow{\boldsymbol{\xi}}^{(k)}\right)\left(\overrightarrow{\boldsymbol{\xi}}-\overrightarrow{\boldsymbol{\xi}}^{(k)}\right)
\]
- Newton iteration:
\[
\begin{equation*}
\overrightarrow{\boldsymbol{\xi}}^{(k+1)}:=\overrightarrow{\boldsymbol{\xi}}^{(k)}-D F\left(\overrightarrow{\boldsymbol{\xi}}^{(k)}\right)^{-1} F\left(\overrightarrow{\boldsymbol{\xi}}^{(k)}\right) \quad, \quad\left[\text { if } D F\left(\overrightarrow{\boldsymbol{\xi}}^{(k)}\right) \text { regular }\right] \tag{3.7.3}
\end{equation*}
\]
\(\longrightarrow \leftarrow\) apply idea to (1.3.12)
Idea:
local linearization:
Given \(u^{(k)} \in V>u^{(k+1)}\) from
\[
\begin{align*}
w \in V_{0}: & \mathrm{a}\left(u^{(k)} ; v\right)+D_{u} \mathrm{a}\left(u^{(k)} ; v\right) w=\ell(v) \quad \forall v \in V_{0} \\
& u^{(k+1)}:=u^{(k)}+w \tag{3.7.4}
\end{align*}
\]

The meaning of \(D F\left(\overrightarrow{\boldsymbol{\xi}}^{(k)}\right)\) in (3.7.3) is clear: it stands for the Jacobian of \(F\) evaluated at \(\overrightarrow{\boldsymbol{\xi}}^{(k)}\) But what is the meaning of \(D_{u} \mathrm{a}\left(u^{(k)} ; v\right) w\) in (3.7.4)?

Remember the "definition" of the Jacobian (for sufficiently smooth \(F\) )
\[
\begin{equation*}
D F(\overrightarrow{\boldsymbol{\xi}}) \overrightarrow{\boldsymbol{\mu}}=\lim _{t \rightarrow 0} \frac{F(\overrightarrow{\boldsymbol{\xi}}+t \overrightarrow{\boldsymbol{\mu}})-F(\overrightarrow{\boldsymbol{\xi}})}{t}, \quad \overrightarrow{\boldsymbol{\xi}} \in D, \overrightarrow{\boldsymbol{\mu}} \in \mathbb{R}^{N} \tag{3.7.5}
\end{equation*}
\]
\(>\) try the "definition"
\[
\begin{equation*}
\left.D_{u} \mathrm{a}\left(u^{(k)} ; v\right) w=\lim _{t \rightarrow 0} \frac{\mathrm{a}(u+t w ; v)-\mathrm{a}(u ; v)}{t}, \quad u^{(k)} \in V, \quad v, w \in V_{0}\right) \tag{3.7.6}
\end{equation*}
\]

If \((u, v) \mapsto \mathrm{a}(u ; v)\) depends smoothly on \(u\), then
\[
(v, w) \mapsto D_{u} \mathrm{a}\left(u^{(k)} ; v\right) w \quad \text { is a bilinear form } V_{0} \times V_{0} \mapsto \mathbb{R}
\]

Example 3.7.7 (Derivative of non-linear \(u \mapsto \mathrm{a}(u ; \cdot))\).

Apply formula (3.7.6) to the non-linear boundary term in (2.8.11), that is, here
\[
\mathrm{a}(u ; v):=\int_{\partial \Omega} \Psi(u) v \mathrm{~d} S, \quad u, v \in H^{1}(\Omega)
\]
\[
\mathrm{a}(u+t w ; v)-\mathrm{a}(u ; v)=\int_{\partial \Omega}(\Psi(u+t w)-\Psi(u)) v \mathrm{~d} S, \quad u, v \in H^{1}(\Omega) .
\]

Assume \(\Psi: \mathbb{R} \mapsto \mathbb{R}\) is smooth with derivative \(\Psi^{\prime}\) and employ Taylor expansion for fixed \(w \in H^{1}(\Omega)\) and \(t \rightarrow 0\)
\[
\begin{gathered}
\mathrm{a}(u+t w ; v)-\mathrm{a}(u ; v)=\int_{\partial \Omega} t \Psi^{\prime}(u) w v \mathrm{~d} S+O\left(t^{2}\right) . \\
D_{u} \mathrm{a}\left(u^{(k)} ; v\right) w=\lim _{t \rightarrow 0} \frac{\mathrm{a}(u+t w ; v)-\mathrm{a}(u ; v)}{t}=\int_{\partial \Omega} \Psi^{\prime}(u) w v \mathrm{~d} S .
\end{gathered}
\]
\(=\) a bilinear form in \(v, w\) on \(H^{1}(\Omega) \times H^{1}(\Omega)\) !
This example also demonstrates how to actually compute \(D_{u} \mathbf{a}\left(u^{(k)} ; v\right) w\) !

Idea: Galerkin discretization of the linear variational problem from (3.7.4)
\[
\begin{gathered}
w \in V_{0}: \quad \mathrm{c}(w, v)=g(v) \quad \forall v \in V_{0} \\
\mathrm{c}(w, v)=D_{u} \mathrm{a}\left(u^{(k)} ; v\right) w, \quad g(v):=\ell(v)-\mathrm{a}\left(u^{(k)} ; v\right) .
\end{gathered}
\]
\[
\text { Given } u_{N}^{(k)} \in V_{N}^{(k)}>u_{N}^{(k+1)} \in V_{N}^{(k+1)} \text { from }
\]
\[
\begin{array}{cl}
w_{N} \in V_{0, N}^{(k+1)}: & D_{u} \mathrm{a}\left(u_{N}^{(k)} ; v_{N}\right) w_{N}=\ell\left(v_{N}\right)-\mathrm{a}\left(u_{N}^{(k)} ; v_{N}\right) \quad \forall v_{N} \in V_{0, N}^{(k+1)} \\
& u_{N}^{(k+1)}:=\mathrm{P}_{N}^{(k+1)} u_{N}^{(k)}+w
\end{array}
\]

Note: different Galerkin trial/test spaces \(V_{N}^{(k)}, V_{0, N}^{(k)}\) may be used in different steps of the iteration! (It may enhance efficiency to use Galerkin trial/test spaces of a rather small dimension in the beginning and switch to larger when the iteration is about to converge.) Warning! If \(V_{N}^{(k)} \neq V_{N}^{(k+1)}\) you cannot simply add \(u_{N}^{(k)}\) and \(w\)
\(>\) Linear projection operator \(\mathrm{P}_{N}^{(k+1)}: V_{N}^{(k)} \mapsto V_{N}^{(k+1)}\) required in (3.7.8)

Any of the Lagrangian finite element spaces introduced in Sect. 3.4 will supply valid \(V_{N} / V_{0, N}\). Offset functions can be chosen according to the recipes from Sect. 3.5.5.

Important aspect: termination of iteration, see [14, Thm. 3.4.3].

Option: termination based on relative size of Newton update, with \(w, u_{N}^{(k+1)}\) from (3.7.8)
\[
\begin{equation*}
\text { STOP, if } \quad\|w\| \leq\left\|u_{N}^{(k+1)}\right\| \tag{3.7.9}
\end{equation*}
\]
where \(\|\cdot\|\) is a relevant norm (e.g., energy norm) on \(V_{N}^{(k+1)}\).

Finite Differences (FD) and Finite Volume Methods (FV)

Now we examine two approaches to the discretization of scalar linear 2nd-order elliptic BVPs that offer an alternative to finite element Galerkin methods discussed in Ch. 3 .

What these methods have in common with (low degree) Lagrangian finite element methods is
- that they rely on meshes ( \(\rightarrow\) Sect. 3.3.1) tiling the computational domain \(\Omega\),
- they lead to sparse linear systems of equations.

Remark 4.0.1 (Collocation approach on "complicated" domains).

Sect. 1.5.2.2 taught us spline collocation methods. A crucial insight was that collocation methods (see beginning of Sect. 1.5 .2 for a presentation of the idea), which target the boundary value problem in ODE/PDE form, have to employ discrete trial spaces comprised of continuously differentiable functions, see Rem. [1.5.79.

It is very difficult to contruct spaces of piecewise polynomial \(C^{1}\)-functions on non-tensor product domains for \(d=2,3\) and find suitable collocation nodes, cf. (1.5.74).

Therefore we skip the discussion of collocation methods for 2nd-order elliptic BVPs on \(\Omega \subset \mathbb{R}^{d}\), \(d=2,3\).

\subsection*{4.1 Finite differences}

A finite difference scheme for a 2-point boundary value problem was presented in Sect. [1.5.3, which you are advised to browse again. Its gist was
to replace the derivatives in the differential equation with difference quotients connecting approximate values of the solutions at the nodes of a grid/mesh.

Recall: Finite differences target the "ODE/PDE-formulation" of the boundary value problem.

Our goal: extension to higher dimensions

2D model problem:
Homogeneous Dirichlet BVP for Laplacian:
\[
\begin{array}{rlrl}
-\Delta u=-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{2}^{2}} & =f \quad & \text { in } \Omega:=] 0,1\left[{ }^{2},\right. \\
u & =0 \quad \text { on } \partial \Omega .
\end{array}
\]

Discretization based on
\(\mathcal{M}=\) (triangular) tensor-product grid (meshwidth \(\left.h=(1+N)^{-1}, N \in \mathbb{N}\right)\)
lexikographic (line-by-line) ordering of nodes of \(\mathcal{M}\) \(\triangleright\)

(1) finite difference approach to \(-\Delta\) : approximation of derivatives by symmetric difference quotients

This is nothing new: we did this in (1.5.93).
\[
\begin{gathered}
\frac{\partial^{2}}{\partial x_{1}^{2}} u_{\mid \mathbf{x}=(\xi, \eta)} \\
\frac{\partial^{2}}{\partial x_{2}^{2}} u_{\mid \mathbf{x}=(\xi, \eta)}^{h^{2}} \approx \frac{u(\xi-h, \eta)-2 u(\xi, \eta)+u(\xi+h, \eta)}{h^{2}} \\
-\Delta u_{\mid \mathbf{x}=(\xi, \eta)} \approx \frac{u(\xi, \eta-h)-2 u(\xi, \eta)+u(\xi, \eta+h)}{h^{2}}(4 u(\xi, \eta)-u(\xi-h, \eta)-u(\xi+h, \eta)-u(\xi, \eta-h)-u(\xi, \eta+h)) .
\end{gathered}
\]

Use this approximation at grid point \(\boldsymbol{p}=(i h, j h)\). This will connect the five point values \(u(i h, j h)\), \(u((i-1) h, j h), u((i+1) h, j h), u(i h,(j-1) h), u(i h,(j+1) h)\).

Approximations \(\mu_{i, j}\) to the point values \(u(i h, j h)\)
will be the unknowns of the finite difference method.
Centering the above difference quotients at grid points yields linear relationships between the unknowns:
\[
\frac{1}{h^{2}}(4 u(i h, j h)-u(i h-h, j h)-u(i h+h, j h)-u(i h, j h-h)-u(i h, j h+h))=f(i h, j h),
\]
\[
\frac{1}{h^{2}}\left(4 \mu_{i, j}-\mu_{i-1, j}-\mu_{i+1, j}-\mu_{i, j-1}-\mu_{i, j+1}\right)=f(i h, j h) .
\]

Also this is familiar from the discussion in 1D. Yet, in 1D the association of the point values and of components of the vector \(\vec{\mu}\) of unknowns was straightforward and suggested by the linear ordering of the nodes of the grid. In 2D we have much more freedom.

One option on tensor-product grids is the line-by-line ordering (lexikographic ordering) depicted in Fig. 121. This allows a simple indexing scheme:
\[
u(\mathbf{p}) \leftrightarrow \mu_{i, j} \leftrightarrow \mu_{(j-1) N+i}
\]
\[
\begin{equation*}
\frac{-\mu_{(j-2) N+i}-\mu_{(j-1) N+i-1}+4 \mu_{(j-1) N+i}-\mu_{(j-1) N+i+1}-\mu_{j N+i}}{h^{2}}=\underbrace{f(i h, j h)}_{=\varphi(j-1) N+i} \tag{4.1.1}
\end{equation*}
\]
linear system of \(N^{2}\) equations \(\mathbf{A} \overrightarrow{\boldsymbol{\mu}}=\overrightarrow{\boldsymbol{\varphi}}\) with \(N^{2} \times N^{2}\) block-tridiagonal Poisson matrix
\[
\mathbf{A}:=\frac{1}{h^{2}}\left(\begin{array}{cccccc}
\mathbf{T} & -\mathbf{I} & 0 & \cdots & \cdots & 0  \tag{4.1.2}\\
-\mathbf{I} & \mathbf{T} & -\mathbf{I} & & & \vdots \\
0 & -\mathbf{I} & \mathbf{T} & -\mathbf{I} & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & 0 \\
\vdots & & & -\mathbf{I} & \mathbf{T} & -\mathbf{I} \\
0 & \cdots & \cdots & 0 & -\mathbf{I} & \mathbf{T}
\end{array}\right), \mathbf{T}:=\left(\begin{array}{cccccc}
4 & -1 & 0 & & & 0 \\
-1 & 4 & -1 & & & \vdots \\
0 & -1 & 4 & -1 & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \\
\vdots & & & -1 & 4 & -1 \\
0 & \cdots & \cdots & 0 & -1 & 4
\end{array}\right) \in \mathbb{R}^{N, N}
\]

\(\triangleleft\) band structure of Poisson matrix

The MATLAB command
\[
A=\text { gallery ('poisson', } n \text { ) }
\]
creates a sparse \(n^{2} \times n^{2}\) Poisson matrix.

Already in Sect. 1.5 .3 we saw that the linear system of equations popping out of the finite difference discretization of the linear two-point BVP (1.5.77) was the same as that obtained via the linear finite Galerkin approach on the same mesh.

In two dimensions we will also come to this conclusion! So, let us derive the Galerkin matrix and right hand side vector for the 2D model problem on the tensor product mesh depicted in Fig. 121. To begin with we convert it into a triangular mesh \(\mathcal{M}\) by splitting each square into two equal triangles by inserting a diagonal (green lines in Fig. 121). On this mesh we use linear Lagrangian finite elements as in Sect. 3.2.

Then we repeat the considerations of Sect. 3.2.
(2) Linear Lagrangian finite element Galerkin discretization \(\rightarrow\) Sect. 3.2: \(V_{0, N}=\mathcal{S}_{1,0}^{0}(\mathcal{M})\) (global shape functions \(\hat{=}\) "tent functions", \(\rightarrow\) Fig. 85)


Element stiffness matrix from (3.2.9):
\[
\mathbf{A}_{K}=\frac{1}{2}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
\]
( \(\leftarrow\) numbering of local shape functions)

Element load vector: use three-point quadrature formula (3.5.35)
\[
\mathbf{\boldsymbol { \varphi } _ { K }}=\frac{1}{6} h^{2}\left(\begin{array}{l}
f\left(\mathbf{a}^{1}\right) \\
f\left(\mathbf{a}^{2}\right) \\
f\left(\mathbf{a}^{3}\right)
\end{array}\right) .
\]


Local assembly:
\(\leftarrow\) green: local vertex numbers
Contributions to load vector component associated with node p:

From \(K_{1}:\left(\overrightarrow{\boldsymbol{\varphi}}_{K_{1}}\right)_{2}\)
From \(K_{2}:\left(\overrightarrow{\boldsymbol{\varphi}}_{K_{2}}\right)_{3}\)
From \(K_{3}:\left(\overrightarrow{\boldsymbol{\varphi}}_{K_{3}}\right)_{3}\)
From \(K_{4}:\left(\vec{\varphi}_{K_{4}}\right)_{1}\)
From \(K_{5}:\left(\vec{\varphi}_{K_{5}}\right)_{1}\)
From \(K_{6}:\left(\overrightarrow{\boldsymbol{\varphi}}_{K_{6}}\right)_{2}\)
\[
\overrightarrow{\boldsymbol{\varphi}}_{\mathbf{p}}=h^{2} f(\mathbf{p}) .
\]

Assembly of finite element Galerkin matrix from element (stiffness) matrices ( \(\rightarrow\) Sect. 3.5.3):


\[
N^{2} \times N^{2} \text { linear system of equations } h^{2} \mathbf{A} \overrightarrow{\boldsymbol{\mu}}=h^{2} \overrightarrow{\boldsymbol{\varphi}}, \mathbf{A} \hat{=} \text { Poisson matrix (4.1.2) }
\]
finite element Galerkin schemes
(Most) finite difference schemes with numerical quadrature on structured meshes

Discussion:
finite differences vs. finite element Galerkin methods (here focused on 2nd-order linear scalar problems)
- Finite element methods can be used on general triangulations and structured (tensor-product) meshes alike, which delivers superior flexibility in terms of geometry resolution (advantage FEM).
- The correct treatment of all kinds of boundary conditions \((\rightarrow\) Sect. 2.6). naturally emerges from the variational formulations in the finite element method (advantage FEM).
- Finite element methods have built-in "safety rails" because there are clear criteria for choosing viable finite element spaces and once this is done, there is no freedom left to go astray (advantage FEM).
- Finite element methods are harder to understand (advantage FD, but only with students who have not attended this course!)

\subsection*{4.2 Finite volume methods (FVM)}

\subsection*{4.2.1 Gist of FVM}

Focus: linear scalar 2nd-order elliptic boundary value problem in 2D ( \(\rightarrow\) Sect. 2.5), homogeneous Dirichlet boundary conditions \((\rightarrow\) Sect. [2.6), uniformly positive scalar heat conductivity \(\kappa=\) \(\kappa(\boldsymbol{x})\)
\[
-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)=f \quad \text { in } \Omega \quad, \quad u=0 \quad \text { on } \partial \Omega .
\]

Finite volume methods for 2nd-order elliptic BVP are inspired by the conservation principle (2.5.2).
\[
\begin{equation*}
\int_{\partial V} \mathbf{j} \cdot \boldsymbol{n} \mathrm{~d} S=\int_{V} f \mathrm{~d} \boldsymbol{x} \quad \text { for all "control volumes" } V \tag{2.5.2}
\end{equation*}
\]

Physics requires that this holds for all (infinitely many) "control volumes" \(V \subset \Omega\).
Since discretization has to lead to a finite number of equations, the idea is to demand that (2.5.2) holds for only a finite number of special control volumes.

First ingredient: (finitely many) control volumes


The conservation law (2.5.2) had to be linked to the flux law (2.5.3) in order to give rise to a 2 nd-order scalar PDE see (2.5.5) -(2.5.6).

Correspondingly, "heat conservation in control volumes" has to be supplemented by a rule that furnishes the heat flux between two adjacent control volumes.

Second ingredient: local numerical fluxes
For two adjacent cells \(C_{k}, C_{i}\) with common edge \(\Gamma_{i k}:=\bar{C}_{i} \cap \bar{C}_{k}\).
\[
\text { Numerical flux } \quad J_{i k}=\Psi\left(\mu_{i}, \mu_{k}\right) \approx \int_{\Gamma_{i k}} \mathbf{j} \cdot \boldsymbol{n}_{i k} \mathrm{~d} S
\]
( \(\Psi=\) numerical flux function, \(\quad \mathbf{j}=(\) heat \()\) flux, see (2.5.1), \(\boldsymbol{n}_{i k} \hat{=}\) edge normal. \()\)

notation: \(\quad \mathcal{U}_{i}:=\left\{j: C_{i}\right.\) and \(C_{j}\) share edge, \(\left.C_{j} \in \widetilde{\mathcal{M}}\right\}, \boldsymbol{p}_{i}=\) node associated with control volume \(C_{i}\).

System of equations ( \(\widetilde{M}:=\sharp \widetilde{\mathcal{M}}\) equations, unknowns \(\mu_{i}\) ):
\[
\begin{equation*}
\sum_{k \in \mathcal{U}_{i}} \Psi\left(\mu_{i}, \mu_{k}\right)=\int_{C_{i}} f \mathrm{~d} \boldsymbol{x} \quad \forall i=1, \ldots, \widetilde{M} \tag{4.2.1}
\end{equation*}
\]

Further approximation: 1-point quadrature for approximate evaluation of integral over \(C_{i}\),
\[
\begin{equation*}
\sum_{k \in \mathcal{U}_{i}} \Psi\left(\mu_{i}, \mu_{k}\right)=\left|C_{i}\right| f\left(\boldsymbol{p}_{i}\right) \mathrm{d} \boldsymbol{x} \quad \forall i=1, \ldots, \widetilde{M} \tag{4.2.2}
\end{equation*}
\]

Note: homogeneous Dirichlet problem \(>\) only "interior" control volumes in (4.2.2)

\subsection*{4.2.2 Dual meshes}

Dual meshes are a commonly used technique for the construction of control volumes for FVM, based on conventional FE triangulation \(\mathcal{M}\) of \(\Omega(\rightarrow\) Sect. 3.3.1).

Focus: dual mesh for triangular mesh \(\mathcal{M}\) in \(2 \mathrm{D}, \Omega\) polygon

Popular choice: Voronoi dual mesh

\[
\mathcal{V}(\mathcal{M})=\left\{\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{M}\right\}=\text { nodes of } \mathcal{M}
\]

Define Voronoi cells
\[
\begin{equation*}
C_{i}:=\left\{\mathbf{x} \in \Omega:\left|\mathbf{x}-\boldsymbol{p}_{i}\right|<\left|\mathbf{x}-\boldsymbol{p}_{j}\right| \forall j \neq i\right\} . \tag{4.2.3}
\end{equation*}
\]

Voronoi dual mesh \(\widetilde{\mathcal{M}}:=\left\{C_{i}\right\}_{i=1}^{M}\)
straightforward generalization to 3D


Remark 4.2.4 (Geometric obstruction to Voronoi dual meshes).

\(\Leftarrow\) Obtuse angle \(\omega\) :
\(>\) circumcenter \(\notin\) triangle
\(\Rightarrow \bar{C}_{i} \cap \bar{C}_{j} \neq \emptyset \nRightarrow \quad\) nodes \(i, j\) connected by edge
> geometric construction breaks down
\(>\) connectivity of unknowns hard to determine

Angle condition to ensure \(\quad \bar{C}_{i} \cap \bar{C}_{j} \neq \emptyset \Leftrightarrow\) nodes \(i, j\) connected by edge of \(\mathcal{M}\) :
(i) sum of angles facing interior edge \(\leq \pi\),
(ii) angles facing boundary edges \(\leq \pi / 2\) (for non-Dirichlet boundary conditions).
(i), (ii) characterize Delaunay triangulations

4.2.3 Relationship of finite elements and finite volume methods

Hardly surprising, finite volume methods and finite element Galerkin discretizations are closely related. This will be explored in this section for a model problem.

Setting:
- We consider the homogeneous Dirichlet problem for the Laplacian \(\Delta\)
\[
\begin{equation*}
-\Delta u=f \quad \text { in } \Omega \quad, \quad u=0 \quad \text { on } \partial \Omega . \tag{4.2.5}
\end{equation*}
\]
- Discretization by finite volume method based on a triangular mesh \(\mathcal{M}\) and on Voronoi dual cells \(\rightarrow\) Fig. 125:

Assumption: \(\mathcal{M}=\) Delaunay triangulation of \(\Omega \Leftrightarrow\) angle condition
Number of control volumes \(=\) number of interior nodes of \(\mathcal{M}\)

Still missing: specification of numerical flux function \(\Psi: \mathbb{R}^{2} \mapsto \mathbb{R}\) for each dual edge

Idea: obtain numerical flux from
Fourier's law (2.5.3) applied to a (sufficiently smooth) \(u_{N}: \Omega \mapsto \mathbb{R}\) reconstructed from dual cell values \(\mu_{i}\).

Natural approach, since \(\mu_{i}\) is read as approximation of \(u\left(\boldsymbol{p}_{i}\right)\), where the "center" \(\boldsymbol{p}^{i}\) of the dual cell \(C_{i}\) coincides with a node \(\boldsymbol{x}^{i} \in \mathcal{V}(\mathcal{M})\) of the triangular mesh \(\mathcal{M}\) :
\[
\begin{equation*}
u_{N}=\mathbf{I}_{1} \vec{\mu}:=\sum_{i=1}^{N} \mu_{i} b_{N}^{i} \tag{4.2.6}
\end{equation*}
\]
where \(\quad N=\sharp \mathcal{V}(\mathcal{M})=\) number of dual cells, size of vector \(\vec{\mu}\),
\(b_{N}^{i} \hat{=}\) nodal basis function ("tent function") of \(\mathcal{S}_{1,0}^{0}(\mathcal{M})\) belonging to the node inside \(C_{i}\).

Note that \(u_{N}\) is not smooth across inner edges of \(\mathcal{M}\). However, we do not care when computing \(\mathbf{j}:=\kappa(\boldsymbol{x}) \operatorname{grad} u_{N}\), because this flux is only needed at edges of the dual mesh, which lie inside triangles of \(\mathcal{M}\) (with the exception of single points that are irrelevant for the flux integrals).

vertex values \(\mu_{i}\) on \(\mathcal{V}(\mathcal{M})\)


p.w. linear interpolant \(u_{N}:=\mathrm{I}_{1} \vec{\mu} \in \mathcal{S}_{1,0}^{0}(\mathcal{M})\)

Choice of numerical flux:
\[
\begin{equation*}
J_{i k}:=-\int_{\Gamma_{i k}} \operatorname{grad} \mathrm{I}_{1} \vec{\mu} \cdot \mathbf{n}_{i k} \mathrm{~d} S \tag{4.2.7}
\end{equation*}
\]
(4.2.7) \(\Leftrightarrow(4.2 .2) \leftrightarrow\) one row of finite volume discretization matrix from
\[
\begin{gather*}
\sum_{k \in \mathcal{U}_{i}} \int_{\Gamma_{i k}} \operatorname{grad} \mathrm{I}_{1} \vec{\mu} \cdot \mathbf{n}_{i k} \mathrm{~d} S=\sum_{j \in \mathcal{U}_{i}} \mu_{j} \underbrace{\left(\sum_{k \in \mathcal{U}_{i}} \int_{\Gamma_{i k}} \operatorname{grad} b_{N}^{j} \cdot \mathbf{n}_{i k} \mathrm{~d} S\right)}_{=\operatorname{matrix} \operatorname{entry}(\mathbf{A})_{i j}}=\int_{\mathcal{C}_{i}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \\
\Rightarrow \quad(\mathbf{A})_{i j}=\int_{\partial \mathcal{C}_{i}} \operatorname{grad} b_{N}^{j} \cdot \mathbf{n}_{i} \mathrm{~d} S \tag{4.2.8}
\end{gather*}
\]
\(\boldsymbol{n}_{i} \hat{=}\) exterior unit normal vector to \(\partial C_{i}\).


Part of the boundary of the control volume \(C_{i}\) :
\[
\Gamma_{i}^{K}:=\partial \mathcal{C}_{i} \cap K
\]

Now, consider \(i \neq j \leftrightarrow\) off-diagonal entries of \(\mathbf{A}\) :

First, we recall that the intersection of the support) of the "tent function" \(b_{N}^{j}\) with \(\partial C_{i}\) is located inside \(K_{1} \cup K_{2}\), see Fig. 131.
\[
\mathbf{\Delta}(\mathbf{A})_{i j}=\int_{\Gamma_{i}^{K_{1}}} \operatorname{grad} b_{N}^{j} \cdot \mathbf{n}_{i} \mathrm{~d} S+\int_{\Gamma_{i}^{K}} \operatorname{grad} b_{N}^{j} \cdot \mathbf{n}_{i} \mathrm{~d} S
\]

Next observe that grad \(b_{N}^{j}\) is piecewise constant, which implies
\[
\begin{equation*}
\operatorname{div} \operatorname{grad} b_{N}^{j}=0 \quad \text { in } K_{1} \quad, \quad \operatorname{div} \operatorname{grad} b_{N}^{j}=0 \quad \text { in } K_{2} . \tag{4.2.9}
\end{equation*}
\]


Now apply Gauss' theorem Thm. 2.4.5 to the domains \(C_{i} \cap K_{1}\) and \(C_{i} \cap K_{2}\) (shaded in figure).

Also use again that \(\operatorname{grad} b_{N}^{j} \equiv\) const on \(K_{1}\) and \(K_{2}\).
\[
\begin{align*}
& \Delta(\mathbf{A})_{i j}=\frac{1}{2} \int_{e_{1}} \operatorname{grad} b_{N \mid K_{1}}^{j} \cdot \boldsymbol{n}_{e_{1}} \mathrm{~d} S+\frac{1}{2} \int_{e_{i j}} \operatorname{grad} b_{N \mid K_{1}}^{j} \cdot \boldsymbol{n}_{e_{i j}}^{1} \mathrm{~d} S \\
&+\frac{1}{2} \int_{e_{i j}} \operatorname{grad} b_{N \mid K_{2}}^{j} \cdot \boldsymbol{n}_{e_{i j}}^{2} \mathrm{~d} S+\frac{1}{2} \int_{e_{2}} \operatorname{grad} b_{N \mid K_{1}}^{j} \cdot \boldsymbol{n}_{e_{2}} \mathrm{~d} S . \tag{4.2.10}
\end{align*}
\]

On the other hand, an entry of finite element Galerkin matrix \(\widetilde{\mathbf{A}}\) based on linear Lagrangian finite element space \(\mathcal{S}_{1}^{0}(\mathcal{M})\) can be computed as, see Sect. 3.2.5:
\[
(\widetilde{\mathbf{A}})_{i j}=\int_{K_{1}} \operatorname{grad} b_{N}^{j} \cdot \boldsymbol{\operatorname { g r a d }} b_{N}^{i} \mathrm{~d} \boldsymbol{x}+\int_{K_{2}} \operatorname{grad} b_{N}^{j} \cdot \boldsymbol{\operatorname { g r a d }} b_{N}^{i} \mathrm{~d} \boldsymbol{x} .
\]

Conduct local integration by parts using Green's first formula from Thm. 2.4.7 and taking into account (4.2.9) and the linearity of the local shape functions
\[
\begin{gathered}
\Delta(\widetilde{\mathbf{A}})_{i j}= \\
\int_{\partial K_{1}}\left(\operatorname{grad} b_{N \mid K_{1}}^{j} \cdot \boldsymbol{n}_{1}\right) b_{N}^{i} \mathrm{~d} S+\int_{\partial K_{2}}\left(\operatorname{grad} b_{N \mid K_{2}}^{j} \cdot \boldsymbol{n}_{2}\right) b_{N}^{i} \mathrm{~d} S \\
= \\
\frac{1}{2}\left|e_{1}\right| \operatorname{grad} b_{N \mid K_{1}}^{j} \cdot \boldsymbol{n}_{e_{1}}+\frac{1}{2}\left|e_{i j}\right| \operatorname{grad} b_{N \mid K_{1}}^{j} \cdot \boldsymbol{n}_{e_{i j}}^{1}+ \\
\\
\quad \frac{1}{2}\left|e_{2}\right| \operatorname{grad} b_{N \mid K_{2}}^{j} \cdot \boldsymbol{n}_{e_{2}}+\frac{1}{2}\left|e_{i j}\right| \operatorname{grad} b_{N \mid K_{2}}^{j} \cdot \boldsymbol{n}_{e_{i j}}^{2} .
\end{gathered}
\]

This is the same value as for \((\mathbf{A})_{i j}\) from (4.2.10)! Similar considerations apply to the diagonal entries \((\mathbf{A})_{i i}\) and \((\widetilde{\mathbf{A}})_{i i}\).

The finite volume discretization and the finite element Galerkin discretization spawn the same system matrix for the model problem (4.2.5).

\section*{Convergence and Accuracy}

In this chapter we resume the discussion of Sect. 1.6 of accuracy of a Galerkin solution \(u_{N}\) of a variational boundary value problem.

More precisely,
we are going to study convergence, see Rem. 1.6.2
Focus: finite element Galerkin discretization of linear scalar 2nd-order elliptic boundary value problems in 2D, 3D

Prerequisites (what you should know by now):
> Boundary value problems (from equilibrium models, diffusion models): Sects. 2.4, 2.6,
\(>\) Variational formulation: Sect. 2.8, see also (2.3.3), (2.8.15), (3.0.1),
> Some Sobolev spaces and their norms: Sect. 2.2
> Abstract Galerkin discretization: Sect. 3.1,
\(>\) Lagrangian finite elements: Sects. 3.4, 3.2.

Setting: linear variational problem (1.4.5) in the form
\[
\begin{equation*}
u \in V_{0}: \quad \mathrm{a}(u, v)=\ell(v) \quad \forall v \in V_{0} \tag{3.1.1}
\end{equation*}
\]
- \(V_{0} \hat{=}\) (real) vector space, a space of functions \(\Omega \mapsto \mathbb{R}\) for scalar 2nd-order elliptic variational problems,
- a : \(V_{0} \times V_{0} \mapsto \mathbb{R} \hat{=}\) a bilinear form, see Def. 1.3.11,
- \(\ell: V_{0} \mapsto \mathbb{R} \hat{=}\) a linear form, see Def. 1.3.11,

We want (3.1.1) to be related to a quadratic minimization problem ( \(\rightarrow\) Def. 2.1.18) :

Assumption 5.1.1. The bilinear form a : \(V_{0} \times V_{0} \mapsto \mathbb{R}\) in (3.1.1) is symmetric and positive definite ( \(\rightarrow\) Def. 2.1.22).

We want (3.1.1) to be well posed, see Rem. [2.3.11]

Assumption 5.1.2. The right hand side functional \(\ell: V_{0} \mapsto \mathbb{R}\) from (3.1.1) is continous w.r.t. to the energy norm ( \(\rightarrow\) Def. 2.1.24) induced by a:
\[
\begin{equation*}
\exists C>0: \quad|\ell(u)| \leq C\|u\|_{\mathrm{a}} \quad \forall u \in V_{0} . \tag{2.2.1}
\end{equation*}
\]

An assumption to appease fastidious mathematicians:

Assumption 5.1.3. \(V_{0}\) equipped with the energy norm \(\|\cdot\|_{a}\) is a Hilbert space, that is, complete.

Theorem 5.1.4 (Existence and uniqueness of solution of linear variational problem). Under Assumptions 5.1.1-5.1.3 the linear variational problem has a unique solution \(u \in V_{0}\).

This theorem is also known as Riesz representation theorem for continuous linear functionals.

Remark 5.1.5 (Well-posed 2nd-order linear elliptic variational problems).

For instance, Assumption 5.1.1] is satisfied for the bilinear form
\[
\begin{equation*}
\mathrm{a}(u, v):=\int_{\Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u) \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}, \quad u, v \in H_{0}^{1}(\Omega) \tag{5.1.6}
\end{equation*}
\]
and uniformly positive definite ( \(\rightarrow\) Def. [2.1.9) coefficient tensor \(\alpha: \Omega \mapsto \mathbb{R}^{d, d}\), see Sect. 2.1.3.

For the right hand side functional
\[
\ell(v):=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}+\int_{\partial \Omega} h(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} S, \quad v \in H^{1}(\Omega),
\]
we found in Sect. 2.2, see (2.2.15), and Rem. 2.9.5 that \(f \in L^{2}(\Omega)\) and \(h \in L^{2}(\partial \Omega)\) ensures Assumption 5.1.2.

Assumption 5.1 .3 for a from (5.1.6) is a deep result in the theory of Sobolev spaces [10, Sect. 5.2.3, Thm. 2].

Now consider Galerkin discretization of (3.1.1) based on Galerkin trial/test space \(V_{0, N} \subset V_{0}, N:=\) \(\operatorname{dim} V_{0, N}<\infty\) :
\[
\begin{equation*}
u_{N} \in V_{0, N}: \quad \mathrm{a}\left(u_{N}, v_{N}\right)=\ell\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N} . \tag{3.1.3}
\end{equation*}
\]

Thm. 3.1.4: existence and uniqueness of Galerkin solution \(u_{N} \in V_{0, N}\)

Goal:
Here:
bound relevant norm of discretization error \(u-u_{N}\)
\[
\text { relevant norm = energy norm }\|\cdot\|_{a}
\]

Why is the energy norm a "relevant norm" ?
\(>\) Bounds of \(\left\|u-u_{N}\right\|_{a}\) provide bounds for the error in energy, see Rem. 1.6.7, (1.6.10)
\[
\begin{aligned}
& \left|J(u)-J\left(u_{N}\right)\right|=\frac{1}{2}\left|\mathrm{a}(u, u)-\mathrm{a}\left(u_{N}, u_{N}\right)\right|=\left|\frac{1}{2} \mathrm{a}\left(u+u_{N}, u-u_{N}\right)\right| \\
& \stackrel{(2.1 .25)}{\leq}\left\|u-u_{N}\right\|_{a} \cdot\left\|u+u_{N}\right\|_{a} .
\end{aligned}
\]
(No doubt, energy is a key quantity for the solution of an equilibrium problem, which is defined as the minimizer of a potential energy functional.)

Other "relevant norms" were discussed in Sects. 1.6.1, 2.2:
- the mean square norm or \(L^{2}(\Omega)\)-norm, see Def. 2.2.5,
- the supremum norm or \(L^{\infty}(\Omega)\)-norm, see Def. 1.6.4.

The Galerkin approach allows a remarkably simple bound of the energy norm of the discretization error \(u-u_{N}\) :
\[
\begin{array}{clll}
\mathrm{a}(u, v) & =\ell(v) & \forall v \in V_{0}, & V_{0, N} \subset V_{0} \\
\mathrm{a}\left(u_{N}, v_{N}\right) & =\ell(v) & \forall v_{N} \in V_{0, N} & \mathrm{a}\left(u-u_{N}, v_{N}\right)=0 \quad \forall v_{N} \in V_{0, N} .
\end{array}
\]
Galerkin orthogonality
\begin{tabular}{lll|}
\(\mathrm{a}\left(u-u_{N}, v_{N}\right)=0 \quad \forall v_{N} \in V_{0, N}\). & \(V_{0}\) \\
[Geometric meaning for inner product \(a(\cdot, \cdot) \rightarrow]\)
\end{tabular}

Discretization error \(e_{N}:=u-u_{N} " a(\cdot, \cdot)\)-orthogonal" to discrete trialytest space \(V_{N}\)

Remark 5.1.8. If \(a(\cdot, \cdot)\) is inner product on \(V: \quad\) "Phythagoras' theorem" \(\rightarrow\) Fig. 133
\[
\begin{equation*}
\left\|u-u_{N}\right\|_{\mathrm{a}}^{2}=\|u\|_{\mathrm{a}}^{2}-\left\|u_{N}\right\|_{\mathrm{a}}^{2} . \tag{5.1.9}
\end{equation*}
\]
(5.1.9) \(>\) simple formula for computation of energy norm of Galerkin discretization error in numerical experiments with known \(u\).

Theorem 5.1.10 (Cea's lemma).
Under Assumptions 5.1.1-5.1.3 the energy norm of the Galerkin discretization error satisfies
\[
\left\|u-u_{N}\right\|_{\mathrm{a}}=\inf _{v_{N} \in V_{0, N}}\left\|u-v_{N}\right\|_{\mathrm{a}} .
\]

Proof. Use bilinearity of a and Galerkin orthogonality (5.1.7): for any \(v_{N} \in V_{0, N}\)
\[
\left\|u-u_{N}\right\|_{\mathrm{a}}^{2}=\mathrm{a}\left(u-u_{N}, u-u_{N}\right)=\mathrm{a}\left(u-v_{N}, u-u_{N}\right)+\underbrace{\mathrm{a}\left(v_{N}-u_{N}, u-u_{N}\right)}_{=0} .
\]

Next, use the Cauchy-Schwarz inequality for the inner product a:
\[
\begin{aligned}
& \mathrm{a}(u, v) \leq\|u\|_{a}\|v\|_{\mathrm{a}} \quad \forall u, v \in V_{0} . \\
& \quad \\
& \left\|u-u_{N}\right\|_{\mathrm{a}}^{2} \leq\left\|u-v_{N}\right\|_{\mathrm{a}} \cdot\left\|u-u_{N}\right\|_{\mathrm{a}},
\end{aligned}
\]
and cancel one factor \(\left\|u-u_{N}\right\|_{a}\).

Optimality of Galerkin solutions:


To assess accuracy of Galerkin solution: study capability of \(V_{0, N}\) to approximate \(u\) !
"Monotonicity" of best approximation: consider different trial/test spaces
\[
\begin{aligned}
& V_{0, N}, V_{0, N}^{\prime} \subset V_{0}, \\
& V_{0, N} \subset V_{0, N}^{\prime}
\end{aligned} \Rightarrow \inf _{v_{N} \in V_{0, N}^{\prime}}\left\|u-v_{N}\right\|_{\mathrm{a}} \leq \inf _{v_{N} \in V_{0, N}}\left\|u-v_{N}\right\|_{\mathrm{a}}
\]

Enhance accuracy by enlarging ("refining") trial space.

Now return to finite element Galerkin discretization of linear 2nd-order elliptic variational problems.

How to achieve refinement of FE space?
- h-refinement: replace \(\mathcal{M}\) (underlying \(V_{0, N}\) ) \(\rightarrow \mathcal{M}^{\prime}\) (underlying larger discrete trial space
\[
\left.V_{0, N^{\prime}}^{\prime}\right)
\]

Example 5.1.12 (regular refinement of triangular mesh in 2D).



Regular refinement of triangle \(K\) into four congruent triangles \(T_{1}, T_{2}, T_{3}, T_{4}\)
- p-refinement: replace \(V_{0, N}:=\mathcal{S}_{p}^{0}(\mathcal{M}), p \in \mathbb{N}\) with \(V_{0, N}^{\prime}:=\mathcal{S}_{p+1}^{0}(\mathcal{M}) \Rightarrow V_{0, N} \subset V_{0, N}^{\prime}\)

The extreme case of \(p\)-refinement amounts to the use of global polynomials on \(\Omega\) as trial and test functions \(>\) (polynomial) spectral Galerkin method, see Sect. 1.5.1.1.

Crucial: convergence is an asymptotic notion!
sequence of discrete models \(\Rightarrow\) sequence of approximate solutions \(\left(u_{N}^{(i)}\right)_{i \in \mathbb{N}}\)
\[
\Rightarrow \quad \text { study sequence }\left(\left\|u_{N}^{(i)}-u\right\|\right)_{i \in \mathbb{N}}
\]
created by variation of a discretization parameter:

In this section some numerical experiments will demonstrate
- meaningful notions of "discretization parameters",
- qualitative behaviors of the sequence \(\left(\left\|u_{N}^{(i)}-u\right\|\right)_{i \in \mathbb{N}}\) we may expect,
for Lagrangian finite element discretization of linear scalar 2nd-order elliptic variational problems ( \(\rightarrow\) Sect. 2.8).

Sequences of discrete models will be generated by either \(h\)-refinement or \(p\)-refinement.

Model problem: Dirichlet problem for Poisson equation:
\[
\begin{equation*}
-\Delta u=f \in L^{2}(\Omega) \quad \text { in } \Omega, \quad u=g \in C^{0}(\partial \Omega) \quad \text { on } \partial \Omega . \tag{5.2.1}
\end{equation*}
\]

Example 5.2.2 (Convergence of linear and quadratic Lagrangian finite elements in energy norm).
Setting: \(\Omega=] 0,1\left[^{2}, f\left(x_{1}, x_{2}\right)=2 \pi^{2} \sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right), \boldsymbol{x} \in \Omega, g=0\right.\)
Smooth solution \(\quad u(x, y)=\sin (\pi x) \sin (\pi y)\).
- Galerkin finite element discretization based on triangulas meshes and
- linear Lagrangian finite elements, \(V_{0, N}=\mathcal{S}_{1,0}^{0}(\mathcal{M}) \subset H_{0}^{1}(\Omega)(\rightarrow\) Sect. 3.2 \()\),
- quadratic Lagrangian finite elements, \(V_{0, N}=\mathcal{S}_{2,0}^{0}(\mathcal{M}) \subset H_{0}^{1}(\Omega)(\rightarrow\) Ex. 3.4.2),
- quadrature rule (3.5.38) for assembly of local load vectors ( \(\rightarrow\) Sect. 3.5.4),

Monitored: \(H^{1}(\Omega)\)-semi-norm ( \(\rightarrow\) Def. 2.2.10) of the Galerkin discretization error \(u-u_{N}\)

Approximate \((*)\) computation of \(\left|u-u_{N}\right|_{H^{1}(\Omega)}\) on a sequence of meshes (created by sucessive regular refinement ( \(\square\) Ex. 5.1.12) of coarse initial mesh)
\((*)\) : use of local quadrature rule (3.5.38) (on current FE mesh)



Unstructured triangular meshes of \(\Omega=] 0,1\left[^{2}\right.\) (two coarsest specimens)

\section*{Focus on asymptotics entails studying a}
norm of the discretization error as function of a (real, cardinal) discretization parameter.

The discretization parameter must be linked to the resolution ("capability to approximate generic solution") of the Galerkin trial/test space \(V_{0, N}\). Possible choices are
- \(N:=\operatorname{dim} V_{0, N}\) as a measure of the "cost" of a discretization, see Sect. 1.6.2,
- the maximum "size" of mesh cells, expressed by the mesh width \(h_{\mathcal{M}}(\rightarrow\) Def. 5.2.3), see below.

Definition 5.2.3 (Mesh width).
Given a mesh \(\mathcal{M}=\{K\}\), its mesh width \(h_{\mathcal{M}}\) is defined as
\[
h_{\mathcal{M}}:=\max \{\operatorname{diam} K: K \in \mathcal{M}\} \quad, \quad \operatorname{diam} K:=\max \{|\mathbf{p}-\mathbf{q}|: \mathbf{p}, \mathbf{q} \in K\} .
\]

This generalizes the concept of "mesh width" introduced in Sect. 1.5.1.2.

\(H^{1}(\Omega)\)-semi-norm of discretization error on unit square \((-\leftrightarrow p=1,-\leftrightarrow p=2)\)

Recall type of convergence (algebraic convergence vs. exponential convergence) from Def. 1.6.19 and how to detect them in a numerical experiment by inspecting appropriate graphs, see Rem. [1.6.21.

Observations: • Algebraic rates of convergence in terms of \(N\) and \(h\)
- Quadratic Lagrangian FE converge with double the rate of linear Lagrangian FE

Example 5.2.4 (Convergence of linear and quadratic Lagrangian finite elements in \(L^{2}\)-norm).

Setting as above in Ex. 5.2.2, \(\Omega=] 0,1\left[^{2}\right.\).
Monitored: asymptotics of the \(L^{2}(\Omega)\)-semi-norm of the Galerkin discretization error (approximate computation of \(\left\|u-u_{N}\right\|_{L^{2}(\Omega)}\) by means of local quadrature rule (3.5.38) on a sequence of meshes created by sucessive regular refinement ( \(\rightarrow\) Ex. 5.1.12) of coarse initial mesh).


Observations: •Linear Lagrangian FE \((p=1) \leftrightarrow\left\|u-u_{N}\right\|_{0}=O\left(h_{\mathcal{M}}^{2}\right)=O\left(N^{-1}\right)\)
- Quadratic Lagrangian FE \((p=2) \Leftrightarrow\left\|u-u_{N}\right\|_{0}=O\left(h_{\mathcal{M}}^{3}\right)=O\left(N^{-1.5}\right)\)

For the "conversion" of convergence rates with respect to the mesh width \(h_{\mathcal{M}}\) and \(N:=\operatorname{dim} \mathcal{S}_{p}^{0}(\mathcal{M})\), note that in 2D for Lagrangian finite element spaces with fixed polynomial degree ( \(\rightarrow\) Sect. 3.4) and meshes created by global (that is, carried out everywhere) regular refinement
\[
\begin{equation*}
N=O\left(h_{\mathcal{M}}^{-2}\right) \tag{5.2.5}
\end{equation*}
\]

Example 5.2.6 ( \(h\)-convergence of Lagrangian FEM on L-shaped domain).

Setting: Model problem (5.2.1) on \(\Omega=]-1,1[2 \backslash(] 0,1[\times]-1,0[)\), exact solution (in polar coordinates)
\[
u(r, \varphi)=r^{2 / 3} \sin (2 / 3 \varphi) \quad>\quad f=0, g=u_{\mid \partial \Omega} .
\]


Note: \(\operatorname{grad} u\) has a singularity at 0 , that is, " \(\|\operatorname{grad} u(0)\|=\infty\) ".
- Galerkin finite element discretization based on triangulas meshes and
- linear Lagrangian finite elements, \(V_{0, N}=\mathcal{S}_{1,0}^{0}(\mathcal{M}) \subset H_{0}^{1}(\Omega)(\rightarrow\) Sect. 3.2 \()\),
- quadratic Lagrangian finite elements, \(V_{0, N}=\mathcal{S}_{2,0}^{0}(\mathcal{M}) \subset H_{0}^{1}(\Omega)(\rightarrow\) Ex. 3.4.2),
- linear/quadratic interpolation of Dirichlet data to obtain Offset function \(u_{0} \in \mathcal{S}_{p, 0}^{0}(\mathcal{M}), p=1,2\), see Sect. 3.5.5, Ex. 3.5.43.

Sequence of meshes created by sucessive regular refinement ( \(\square\) Ex. 5.1.12) of coarse initial mesh, see Fig. 138 .



Unstructured triangular meshes of \(\Omega=]-1,1[2 \backslash(] 0,1[\times]-1,0[)\) (two coarsest specimens)

Approximate computation of \(\left|u-u_{N}\right|_{H^{1}(\Omega)}\) by using local quadrature formula (3.5.38) on FE meshes.


Observations: • For both \(p=1,2: \quad\left\|u-u_{N}\right\|_{1}=O\left(N^{-1 / 3}\right)\)
- No gain from higher polynomial degree

Conjecture: singularity of grad \(u\) at \(x=0\) seems to foil faster algebraic convergence of quadratice Lagrangian finite element solutions!
- Model BVP as in Ex. 5.2.2 \((\Omega=] 0,1\left[^{2}\right)\) and Ex. 5.2.6
(L-shaped domain \(\Omega=]-1,1\left[^{2} \backslash(] 0,1[\times]-1,0[)\right.\) ).
- Galerkin finite element discretization based on \(\mathcal{S}_{p}^{0}(\mathcal{M}), p=1,2,3,5,6,7,8,9,10\), built on a fixed coarse triangular mesh of \(\Omega\).
\[
p \text {-refinement }
\]

Monitored: \(H^{1}(\Omega)\)-semi-norm (energy norm) and \(L^{2}(\Omega)\)-norm of discretization error as functions of polynomial degree \(p\) and \(N:=\operatorname{dim} \mathcal{S}_{p}^{0}(\mathcal{M})\).
(Computation of norms by means of local quadrature rule of order 19!. This renders the error in norm computations introduced by numerical quadrature negligible.)

Meaningful discretization parameters for asymptotic study of error norms:
- polynomial degree \(p\) for Lagrangian finite element space,
- \(N:=\operatorname{dim} V_{0, N}\) as a measure of the "cost" of a discretization, see Sect. 1.6.2.


\(\Omega=] 0,1\left[^{2}\right.\) : behavior of \(\left|u-u_{N}\right|_{H^{1}(\Omega)}\) for different polynomial degrees.
Lagrangian FEM: \(p\)-convergence for smooth (analytic) solution

Observation: exponential convergence of FE discretization error, cf. the behavior of the discretization error of spectral collocation and polynomial spectral Galerkin methods in 1D, Ex. 1.6.18.


Lagrangian FEM: \(p\)-convergence for solution with singular gradient

Observation: Only algebraic convergence of FE discretization error!
The suspect: "singular behavior" of grad \(u\) at \(\boldsymbol{x}=0\).

\subsection*{5.3 Finite element error estimates}

We are interested in a priori estimates of norms of the discretization error.

A priori estimate: bounds for error norms available before computing approximate solutions.

A posteriori estimate: bounds for error norms based on an approximate solution already computed.

Results of Sect. 5.1 provide handle on a priori estimate for Galerkin discretization error:

Thm.5.1.10>
Estimate energy norm of Galerkin discretization error \(u-u_{N}\) by bounding best approximation error for exact solution \(u\) in finite element space:

(norm of) discretization error best approximation error
\[
\text { How to estimate best approximation error } \inf _{v_{N} \in V_{0, N}}\left\|u-v_{N}\right\|_{V} \boldsymbol{?}
\]
\(>\) Well, given solution \(u\) seek candidate function \(w_{N} \in V_{0, N}\) with
\[
\left\|u-w_{N}\right\|_{V} \approx \inf _{v_{N} \in V_{N}}\left\|u-v_{N}\right\|_{V}
\]

Natural choice:
\(w_{N}\) by interpolation/averaging of (unknown, but existing) \(u\)

\subsection*{5.3.1 Estimates for linear interpolation in 1D}

Computational domain ( \(\rightarrow\) Sect. [1.4): \(\quad\) interval \(\Omega=[a, b]\)
Given: mesh of \(\Omega\left(\rightarrow\right.\) Sect. (1.5.1.2): \(\mathcal{M}:=\{ ] x_{j-1}, x_{j}[: j=1, \ldots, M\}, M \in \mathbb{N}\)


Bound suitable norm ( \(\rightarrow\) Sect. 1.6.1) of interpolation error \(u-I_{1} u\) in terms of geometric quantities \((*)\) characterizing \(\mathcal{M}\).
(*): A typical such quantity is the mesh width \(h_{\mathcal{M}}:=\max _{j}\left|x_{j}-x_{j-1}\right|\)

Now we investigate different norms of the interpolation error.
- \(\left\|u-\mathrm{I}_{1} u\right\|_{L^{\infty}([a, b])}\), see [14, Sect. 9.2.3]: from [14, Thm. 8.4.1] for \(n=1\) : for \(u \in C^{2}([a, b])\)
\[
\begin{equation*}
\left.\max _{x_{j-1} \leq x \leq x_{j}} u(t)-(\mathrm{I} u)(x)=\frac{1}{4} u^{\prime \prime}\left(\xi_{t}\right)\left(x_{j}-x_{j-1}\right)^{2}, \quad \text { for some } \xi_{t} \in\right] x_{j-1}, x_{j}[ \tag{5.3.3}
\end{equation*}
\]
with local linear interpolant \(\quad(\mathrm{l} u)(x)=\frac{x-x_{j-1}}{x_{j}-x_{j-1}} u\left(x_{j}\right)-\frac{x_{j}-x}{x_{j}-x_{j-1}} u\left(x_{j-1}\right)\).
(5.3.3) \(\triangle\) interpolation error estimate in \(L^{\infty}([a, b])\)
\[
\begin{equation*}
\left\|u-I_{1} u\right\|_{L^{\infty}([a, b])} \leq \frac{1}{4} h_{\mathcal{M}}^{2}\left\|u^{\prime \prime}\right\|_{L^{\infty}([a, b])} \text {. } \tag{5.3.5}
\end{equation*}
\]

This is obtained by simply taking the maximum over all local norms of the interpolation error.

Recall: supremum norm (maximum norm) from Def. 1.6 .4

Now, we also want to study other norms of the interpolation error:
- \(\left\|u-\mathrm{I}_{1} u\right\|_{L^{2}([a, b])}\) :

Now all mesh cells contribute to this norm:
\(\left\|u-\mathrm{I}_{1} u\right\|_{L^{2}([a, b])}^{2}=\sum_{j=1}^{M}\left\|u-\mathrm{I}_{1} u\right\|_{L^{2}(] x_{j-1}, x_{j}[)}^{2}=\sum_{j=1}^{M} \int_{x_{j-1}}^{x_{j}}|(u-\mathrm{l} u)(x)|^{2} \mathrm{~d} x, \quad\) lu from (5.3.4)
\(>\) Idea:
localization
(Estimate error on individual mesh cells and sum local bounds)

By integrating by parts (1.3.20) twice, for \(u \in C^{2}\left(\left[x_{j-1}, x_{j}\right]\right), x \in\left[x_{j-1}, x_{j}\right]\),
\[
\begin{align*}
\int_{x_{j-1}}^{x} \frac{\left(x_{j}-x\right)\left(\xi-x_{j-1}\right)}{x_{j}-x_{j-1}} u^{\prime \prime}(\xi) \mathrm{d} \xi+\int_{x}^{x_{j}} & \frac{\left(x-x_{j-1}\right)\left(x_{j}-\xi\right)}{x_{j}-x_{j-1}} u^{\prime \prime}(\xi) \mathrm{d} \xi \\
& =\underbrace{\frac{x_{j}-x}{x_{j}-x_{j-1}} u\left(x_{j-1}\right)+\frac{x-x_{j-1}}{x_{j}-x_{j-1}} u\left(x_{j}\right)-u(x)}_{=\mid u(x)} \tag{5.3.7}
\end{align*}
\]

This is a representation formula for the local interpolation error \(\mathrm{l} u-u\) of the form
\[
\begin{gathered}
(\mathrm{l} u-u)(x)=\int_{x_{j-1}}^{x_{j}} G(x, \xi) u^{\prime \prime}(\xi) \mathrm{d} \xi \\
G(x, \xi)=\left\{\begin{array}{ll}
\frac{\left(x_{j}-x\right)\left(\xi-x_{j-1}\right)}{x_{j}-x_{j-1}} & \text { for } x_{j-1} \leq \xi<x \\
\frac{\left(x-x_{j-1}\right)\left(x_{j}-\xi\right)}{x_{j}-x_{j-1}} & \text { for } x \leq \xi \leq x_{j}
\end{array} \quad\right. \text {,which satisfies } \\
|G(x, \xi)| \leq\left|x_{j}-x_{j-1}\right|
\end{gathered} \frac{\int_{x_{j-1}}^{x_{j}} G(x, \xi)^{2} \mathrm{~d} \xi \leq\left|x_{j}-x_{j-1}\right|^{3}}{} \quad .
\]

Kernel functions \(G\) for 1D linear interpolation for \(x_{j-1}=0, \quad x_{j}=1\)


\(>\left.\int_{x_{j-1}}^{x_{j}}\left|u(x)-|u(x)|^{2} \mathrm{~d} x=\int_{x_{j-1}}^{x_{j}}\right| \int_{x_{j-1}}^{x_{j}} G(x, \xi) u^{\prime \prime}(\xi) \mathrm{d} \xi\right|^{2} \mathrm{~d} x\)
\(\stackrel{(2.2 .15)}{\leq} \int_{x_{j-1}}^{x_{j}}\left\{\int_{x_{j-1}}^{x_{j}} G(x, \xi)^{2} \mathrm{~d} \xi \cdot \int_{x_{j-1}}^{x_{j}}\left|u^{\prime \prime}(\xi)\right|^{2} \mathrm{~d} \xi\right\} \mathrm{d} x\),
\(\stackrel{(5.3 .8)}{\Rightarrow}\|u-\mathrm{i} u\|_{L^{2}(] x_{j-1}, x_{j}[)}^{2}=\left.\int_{x_{j-1}}^{x_{j}}\left|u(x)-|u(x)|^{2} \mathrm{~d} x \leq\left|x_{j}-x_{j-1}\right|^{4} \int_{x_{j-1}}^{x_{j}}\right| u^{\prime \prime}(\xi)\right|^{2} \mathrm{~d} \xi\).

Apply this estimate on \(\left[x_{j-1}, x_{j}\right]\), sum over all cells of the mesh \(\mathcal{M}\) and take square root.
\[
\begin{equation*}
\text { (5.3.9) } \Rightarrow\left\|u-I_{1} u\right\|_{L^{2}([a, b])} \leq h_{\mathcal{M}}^{2}\left\|u^{\prime \prime}\right\|_{L^{2}([a, b])} \tag{5.3.10}
\end{equation*}
\]
- \(\left|u-I_{1} u\right|_{H^{1}([a, b])}\) :

Differentiate representation formula (5.3.7): for \(x_{j-1}<x<x_{j}\)
\[
\frac{d}{d x}(\mid u-u)(x)=\int_{x_{j-1}}^{x_{j}}-\frac{\xi-x_{j-1}}{x_{j}-x_{j-1}} u^{\prime \prime}(\xi) \mathrm{d} \xi+\int_{x_{j-1}}^{x_{j}} \frac{x_{j}-\xi}{x_{j}-x_{j-1}} u^{\prime \prime}(\xi) \mathrm{d} \xi
\]
\(\nabla \int_{x_{j-1}}^{x_{j}}\left|\frac{d}{d x}(\mid u-u)(x)\right|^{2} \mathrm{~d} x=\int_{x_{j-1}}^{x_{j}}\left|\frac{\partial G}{\partial x}(x, \xi) u^{\prime \prime}(\xi) \mathrm{d} \xi\right|^{2} \mathrm{~d} x\)
\[
\begin{gather*}
\leq \int_{x_{j-1}}^{x_{j}}\{\int_{x_{j-1}}^{x_{j}} \underbrace{\left|\frac{\partial G}{\partial x}(x, \xi)\right|^{2}}_{\leq 1} \mathrm{~d} \xi \cdot \int_{x_{j-1}}^{x_{j}}\left|u^{\prime \prime}(\xi)\right|^{2} \mathrm{~d} \xi\} \\
\left|u-I_{1} u\right|_{H^{1}(] x_{j-1}, x_{j}[)}^{2} \leq\left(x_{j}-x_{j-1}\right)^{2} \int_{x_{j-1}}^{x_{j}}\left|f^{\prime \prime}(\xi)\right|^{2} \mathrm{~d} \xi \tag{5.3.11}
\end{gather*}
\]

As above, apply this estimate on \(\left[x_{j-1}, x_{j}\right]\), sum over all cells of the mesh \(\mathcal{M}\) and take square root.
\[
\begin{equation*}
\text { (5.3.11) } \Rightarrow\left|u-I_{1} u\right|_{H^{1}([a, b])} \leq h_{\mathcal{M}}\left\|u^{\prime \prime}\right\|_{L^{2}([a, b])} \tag{5.3.12}
\end{equation*}
\]

What we learn from this example:
1. We have to rely on smoothness of the interpoland \(u\) to obtain bounds for norms of the interpolation error.
2. The bounds involve norms of derivatives of the interpoland.
3. For smooth \(u\) we find algebraic convergence \((\rightarrow\) Def. 1.6.19) of norms of the interpolation error in terms of mesh width \(h_{\mathcal{M}} \rightarrow 0\).

Given: - polygonal domain \(\Omega \subset \mathbb{R}^{2}\)
- triangular mesh \(\mathcal{M}\) of \(\Omega \quad(\rightarrow\) Def. 3.3.1)


Sect 5.3.1 introduced piecewise linear interpolation on a mesh/grid in 1D. The next definition gives the natural 2D counterpart on a triangular mesh, which is closely related to the piecewise linear reconstruction (interpolation) operator from (4.2.6), see Figs. 129, 130.

Definition 5.3.13 (Linear interpolation in 2D).
The linear interpolation operator \(\mathrm{I}_{1}: C^{0}(\bar{\Omega}) \mapsto \mathcal{S}_{1}^{0}(\mathcal{M})\) is defined by
\[
\mathrm{I}_{1} u \in \mathcal{S}_{1}^{0}(\mathcal{M}) \quad, \quad \mathrm{I}_{1} u(\boldsymbol{p})=u(\boldsymbol{p}) \quad \forall \boldsymbol{p} \in \mathcal{V}(\mathcal{M})
\]

Recalling the definition of the nodalbasis \(\mathfrak{B}=\left\{b_{N}^{\boldsymbol{p}}: \boldsymbol{p} \in \mathcal{V}(\mathcal{M})\right\}\) of \(\mathcal{S}_{1}^{0}(\mathcal{M})\) from (3.2.2), where \(b_{N}^{\boldsymbol{p}}\) is the "tent function" associated with node \(p\), an equivalent definition is, cf. (3.5.44),
\[
\begin{equation*}
\mathrm{I}_{1} u=\sum_{\boldsymbol{p} \in \mathcal{V}(\mathcal{M})} u(\boldsymbol{p}) b_{N}^{p}, \quad u \in C^{0}(\bar{\Omega}) . \tag{5.3.14}
\end{equation*}
\]

Task: For "sufficiently smooth" \(u: \Omega \mapsto \mathbb{R}\left(\leftrightarrow u \in C^{\infty}(\bar{\Omega})\right.\) to begin with) estimate
interpolation error norm \(\quad\left\|u-l_{1} u\right\|_{H^{1}(\Omega)}\).

Idea:
Localization
\[
\mathrm{I}_{1} \text { local }>\text { first, estimate }\left\|u-\mathrm{I}_{1} u\right\|_{H^{1}(K)}^{2}, K \in \mathcal{M}
\] then, global estimate via summation as in Sect. 5.3.1.
\(\Rightarrow\) Focus on sinale trianale \(K \in \mathcal{M}\)

Crucial for localization to work: linear interpolation operator \(\mathrm{I}_{1}: C^{0}(\bar{\Omega}) \mapsto \mathcal{S}_{1}^{0}(\mathcal{M})\) can be defined purely locally by
\[
\begin{equation*}
\mathrm{I}_{1} u_{\mid K}=u\left(\boldsymbol{a}^{1}\right) \lambda_{1}+u\left(\boldsymbol{a}^{2}\right) \lambda_{2}+u\left(\boldsymbol{a}^{3}\right) \lambda_{3}, \tag{5.3.15}
\end{equation*}
\]
for each triangle \(K \in \mathcal{M}\) with vertices \(\boldsymbol{a}^{1}, \boldsymbol{a}^{2}, \boldsymbol{a}^{3}\) ( \(\lambda_{k} \hat{=}\) barycentric coordinate functions = local shape functions for \(\mathcal{S}_{1}^{0}(\mathcal{M})\), see Fig. ??).

Next step, cf. (5.3.7): representation formula for local interpolation error.


The formula (5.3.16) is easily verified by applying integration by parts
\[
f(b)-f(a)=\left[\xi f^{\prime}(\xi)\right]_{a}^{b}-\int_{a}^{b} \xi f^{\prime \prime}(\xi) \mathrm{d} \xi=f^{\prime}(a)(b-a)+\int_{a}^{b}(b-\xi) f^{\prime \prime}(\xi) \mathrm{d} \xi
\]
to the function \(\phi(t)=u\left(t \boldsymbol{a}^{j}+(1-t) \boldsymbol{x}\right)\) with \(a=0, b=1\)

Next, use (5.3.16) to replace \(u\left(\boldsymbol{a}^{j}\right)\) in the formula (5.3.15) for local linear interpolation. Also use the identities for the barycentric coordinate functions
\[
\begin{gather*}
\sum_{j=1}^{3} \lambda_{j}(\boldsymbol{x})=1 \quad, \quad \boldsymbol{x}=\sum_{j=1}^{3} \boldsymbol{a}^{j} \lambda_{j}(\boldsymbol{x}) \\
\mathrm{I}_{1} u(\boldsymbol{x})=\sum_{j=1}^{3} u\left(\boldsymbol{a}^{j}\right) \lambda_{j}(\boldsymbol{x})=u(\boldsymbol{x}) \cdot \underbrace{\sum_{j=1}^{3} \lambda_{j}(\boldsymbol{x})}_{=1}+\operatorname{grad} u(\boldsymbol{x}) \cdot \underbrace{\sum_{j=1}^{3}\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right) \lambda_{j}(\boldsymbol{x})}_{=0}+R(\boldsymbol{x}), \\
\text { with } \quad R(\boldsymbol{x}):=\sum_{j=1}^{3}\left(\int_{0}^{1}\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)^{\top} D^{2} u\left(\boldsymbol{x}+\xi\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)\right)\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)(1-\xi) \mathrm{d} \xi\right) \lambda_{j}(\boldsymbol{x}) . \tag{5.3.18}
\end{gather*}
\]

Again, as in the case of (5.3.7) for 1D linear interpolation we have arrived at an integral representation formula for the local interpolation error:
\[
\begin{equation*}
\left(u-\mathrm{I}_{1} u\right)(\boldsymbol{x})=\sum_{j=1}^{3}\left(\int_{0}^{1}\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)^{T} D^{2} u\left(\boldsymbol{x}+\xi\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)\right)\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)(1-\xi) \mathrm{d} \xi\right) \lambda_{j}(\boldsymbol{x}) . \tag{5.3.19}
\end{equation*}
\]

Together with the triangle inequality, the trivial bound \(\left|\lambda_{j}\right| \leq 1\) yields
\[
\left\|u-\mathrm{I}_{1} u\right\|_{L^{2}(K)} \leq \sum_{j=1}^{3}\left(\int_{K}\left(\int_{0}^{1}\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)^{T} D^{2} u\left(\boldsymbol{x}+\xi\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)\right)\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)(1-\xi) \mathrm{d} \xi\right)^{2} \mathrm{~d} \boldsymbol{x}\right)^{\frac{1}{2}}
\]

To estimate an expression of the form
\[
\begin{equation*}
\int_{K}\left(\int_{0}^{1}\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)^{T} D^{2} u\left(\boldsymbol{x}+\xi\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)\right)\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)(1-\xi) \mathrm{d} \xi\right)^{2} \mathrm{~d} \boldsymbol{x} \tag{5.3.20}
\end{equation*}
\]
we may assume, without loss of generality, that \(\boldsymbol{a}^{j}=0\).
> Task: estimate terms (where 0 is a vertex of \(K\) !)
\[
\int_{K}\left(\int_{0}^{1} \boldsymbol{x}^{\top} D^{2} u((1-\xi) \boldsymbol{x}) \boldsymbol{x}(1-\xi) \mathrm{d} \xi\right)^{2} \mathrm{~d} \boldsymbol{x}=\int_{K}\left(\int_{0}^{1} \boldsymbol{x}^{\top} D^{2} u(\xi \boldsymbol{x}) \boldsymbol{x} \xi \mathrm{d} \xi\right)^{2} \mathrm{~d} \boldsymbol{x}
\]

Denote \(\quad \gamma \hat{=}\) angle of \(K\) at vertex 0 ,
\(h \hat{=}\) length of longest edge of \(K\).
\(K\) is contained in the sector
\[
S:=\left\{\boldsymbol{x}=\binom{r \cos \varphi}{r \sin \varphi}: 0 \leq r<h, 0 \leq \varphi \leq \gamma\right\}
\]

Lemma 5.3.21. For any \(\psi \in L^{2}(S)\)
\[
\int_{S}\left(\int_{0}^{1}|\boldsymbol{y}|^{2} \psi(\tau \boldsymbol{y}) \tau \mathrm{d} \tau\right)^{2} \mathrm{~d} \boldsymbol{y} \leq \frac{h^{4}}{8}\|\psi\|_{L^{2}(S)}^{2}
\]


Using polar coordinates \((r, \varphi), \hat{\boldsymbol{s}}_{\varphi}=\binom{\cos \varphi}{\sin \varphi}\), see [19, Bsp. 8.5.3], and Cauchy-Schwarz inequality (2.2.15):
\[
\left.\int_{S}\left(\int_{0}^{1}|\boldsymbol{y}|^{2}\right] \psi(\tau \boldsymbol{y}) \tau \mathrm{d} \tau\right)^{2} \mathrm{~d} \boldsymbol{y}=\int_{0}^{\gamma} \int_{0}^{h}\left(\int_{0}^{1} r^{2} \psi\left(\tau r \widehat{\boldsymbol{s}}_{\varphi}\right) \tau \mathrm{d} \tau\right)^{2} r \mathrm{~d} r \mathrm{~d} \varphi
\]
\[
\begin{array}{r}
=\int_{0}^{\gamma} \int_{0}^{h}\left(\int_{0}^{r} \psi\left(\sigma \widehat{\boldsymbol{s}}_{\varphi}\right) \sigma \mathrm{d} \sigma\right)^{2} r \mathrm{~d} r \mathrm{~d} \varphi \leq \int_{0}^{\gamma} \int_{0}^{h} \int_{0}^{r} \psi^{2}\left(\sigma \widehat{\boldsymbol{s}}_{\varphi}\right) \sigma \mathrm{d} \sigma \cdot \int_{0}^{r} \sigma \mathrm{~d} \sigma r \mathrm{~d} r \mathrm{~d} \varphi \\
\leq \frac{1}{2} \int_{0}^{\gamma} \int_{0}^{h} \psi^{2}\left(\sigma \widehat{\boldsymbol{s}}_{\varphi}\right) \sigma \mathrm{d} \sigma \mathrm{~d} \varphi \cdot \int_{0}^{h} r^{3} \mathrm{~d} r
\end{array}
\]

Use \(\left|\boldsymbol{z}^{\top} \mathbf{A} \boldsymbol{y}\right| \leq\|\mathbf{A}\|_{F}|\boldsymbol{z}||\boldsymbol{y}|, \mathbf{A} \in \mathbb{R}^{n, n}, \boldsymbol{z}, \boldsymbol{y} \in \mathbb{R}^{n}\), and then apply Lemma 5.3 .21 with \(\boldsymbol{y}:=\) \(\boldsymbol{x}-\boldsymbol{a}^{j}, \tau=1-\xi\)
\[
\begin{equation*}
\Delta \quad\left\|u-\mathrm{I}_{1} u\right\|_{L^{2}(K)}^{2} \leq \frac{3}{8} h_{K}^{4}\| \| D^{2} u\left\|_{F}\right\|_{L^{2}(K)}^{2} \tag{5.3.22}
\end{equation*}
\]
with Frobenius matrix norm \(\left\|D^{2} u(\boldsymbol{x})\right\|_{F}^{2}:=\sum_{i, j=1}^{2}\left|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(\boldsymbol{x})\right|^{2}\), size of triangle \(\quad h_{K}:=\operatorname{diam} K:=\max \{|\boldsymbol{p}-\boldsymbol{q}|: \boldsymbol{p}, \boldsymbol{q} \in K\}\)

Estimate for gradient: from (5.3.16) we infer the local integral representation formula, which can also be obtained by taking the gradient of (5.3.19).
\[
\text { with } G(\boldsymbol{x}):=\sum_{j=1}^{3} \underbrace{\left(\int_{0}^{1}\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)^{\top} D^{2} u\left(\boldsymbol{x}+\xi\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)\right)\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)(1-\xi) \mathrm{d} \xi\right)}_{\text {cf. (5.3.20) }} \operatorname{grad} \lambda_{j}(\boldsymbol{x}) \text {. }
\]

Note that \(\quad \operatorname{grad} \sum_{j=1}^{3} \lambda_{j}(\boldsymbol{x})=\operatorname{grad} 1=0\) and
\(\sum_{j=1}^{3} \operatorname{grad} \lambda_{j}(\boldsymbol{x})\left(\boldsymbol{a}^{j}-\boldsymbol{x}\right)^{\top}=\sum_{j=1}^{3} \operatorname{grad} \lambda_{j}(\boldsymbol{x})\left(\boldsymbol{a}^{j}\right)^{\top}=\operatorname{grad}\left(\sum_{j=1}^{3} \lambda_{j}(\boldsymbol{x}) \boldsymbol{a}^{j}\right)=\operatorname{grad} \boldsymbol{x}=\mathbf{I}\).
\[
\begin{equation*}
(3.5 .22)>\quad\left|\operatorname{grad} \lambda_{j}(\boldsymbol{x})\right| \leq \frac{h_{K}}{2|K|}, \quad \boldsymbol{x} \in K \tag{5.3.23}
\end{equation*}
\]
\(>\left\|\operatorname{grad}\left(u-\mathrm{I}_{1} u\right)\right\|_{L^{2}(K)}^{2} \leq \frac{h_{K}^{2}}{4|K|^{2}}\|R\|_{L^{2}(K)}^{2} \stackrel{(\sqrt{5.3 .22)}}{=} \frac{3}{8} \frac{h_{K}^{6}}{4|K|^{2}}\| \| D^{2} u\left\|_{F}\right\|_{L^{2}(K)}^{2}\).

\section*{Lemma 5.3.25 (Local interpolation error estimates for 2D linear interpolation).} For any triangle \(K\) and \(u \in C^{2}(\bar{K})\) the following holds
\[
\begin{align*}
\left\|u-I_{1} u\right\|_{L^{2}(K)}^{2} & \leq \frac{3}{8} h_{K}^{4}\| \| D^{2} u\left\|_{F}\right\|_{L^{2}(K)}^{2}  \tag{5.3.22}\\
\left\|\operatorname{grad}\left(u-I_{1} u\right)\right\|_{L^{2}(K)}^{2} & \leq \frac{3}{24} \frac{h_{K}^{6}}{|K|^{2}}\| \| D^{2} u\left\|_{F}\right\|_{L^{2}(K)}^{2} \tag{5.3.24}
\end{align*}
\]

New aspect compared to Sect. 5.3.1: shape of \(K\) enters error bounds of Lemma 5.3.25.

We aim to extract this shape dependence from the bounds.

Definition 5.3.26 (Shape regularity measures).
For a simplex \(K \in \mathbb{R}^{d}\) we define its shape regularity measure as the ratio
\[
\rho_{K}:=h_{K}^{d}:|K|,
\]
and the shape regularity measure of a simplicial mesh \(\mathcal{M}=\{K\}\)
\[
\rho_{\mathcal{M}}:=\max _{K \in \mathcal{M}} \rho_{K} .
\]
```

Important: shape regularity measure ρ_{K} is an invariant of a similarity class of triangles.

```
(= if a triangle is transformed by scaling, rotation, and translation, the shape regularity measure does not change)
\(>\) Sloppily speaking, \(\rho_{K}\) depends only on the shape, not the size of \(K\)
\[
\text { For triangle } K: \quad \rho_{K} \text { large } \Leftrightarrow K \text { "distorted" } \Leftrightarrow K \text { has small angles }
\]


The shape regularity measure \(\rho_{\mathcal{M}}\) is often used to gauge the quality of meshes produced by mesh generators.

Final step: we add up the local estimates from Lemma [5.3.25] over all triangles of the mesh and take the square root.

Theorem 5.3.27 (Error estimate for piecewise linear interpolation). For any \(u \in C^{2}(\bar{\Omega})\)
\[
\begin{aligned}
\left\|u-I_{1} u\right\|_{L^{2}(\Omega)} & \leq \sqrt{\frac{3}{8}} h_{\mathcal{M}}^{2}\| \| D^{2} u\left\|_{F}\right\|_{L^{2}(\Omega)} \\
\left\|\operatorname{grad}\left(u-\mathrm{I}_{1} u\right)\right\|_{L^{2}(\Omega)} & \leq \sqrt{\frac{3}{24}} \rho_{\mathcal{M}} h_{\mathcal{M}}\| \| D^{2} u\left\|_{F}\right\|_{L^{2}(\Omega)}
\end{aligned}
\]

Remark 5.3.28 (Local interpolation onto higher degree Lagrangian finite element spaces).
\(\mathcal{M}\) : triangular/tetrahedral/quadrilateral/hybrid mesh of domain \(\Omega(\rightarrow\) Sect. 3.3.1 \()\)

Recall ( \(\rightarrow\) Sect. 3.4): nodal basis functions of \(p\)-th degree Lagrangian finite element space \(\mathcal{S}_{p}^{0}(\mathcal{M})\) defined via interpolation nodes, cf. (3.4.3).

Set of interpolation nodes: \(\mathcal{N}=\left\{\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{N}\right\} \subset \bar{\Omega}, \quad N=\operatorname{dim} \mathcal{S}_{p}^{0}(\mathcal{M})\).
\(>\) General nodal Lagrangian interpolation operator
\[
\mathrm{I}_{p}:\left\{\begin{aligned}
C^{0}(\bar{\Omega}) & \mapsto \mathcal{S}_{p}^{0}(\mathcal{M}) \\
u & \mapsto \mathrm{I}_{p}(u):=\sum_{l=1}^{N} u\left(\boldsymbol{p}_{l}\right) b_{N}^{l}
\end{aligned}\right.
\]
where \(b_{N}^{l}\) are the nodal basis functions.
\[
\text { (3.4.3) } \Rightarrow \mathrm{I}_{p}(u)\left(\boldsymbol{p}_{l}\right)=u\left(\boldsymbol{p}_{l}\right), \quad l=1, \ldots, N \quad \text { (Interpolation!) . }
\]

By virtue of the location of the interpolation nodes, see Ex. 3.4.2, Ex. 3.4.5, and Fig. 101, the nodal interpolation operators are purely local:
\[
\begin{gather*}
\forall K \in \mathcal{M}: \quad \mathbf{I}_{p} u_{\mid K}=\sum_{i=1}^{Q} u\left(\mathbf{q}_{i}^{K}\right) b_{i}^{K}  \tag{5.3.29}\\
\boldsymbol{q}_{j}^{K} \\
b_{i}^{K} \quad \begin{array}{l}
i=1, \ldots, Q \\
i=1, \ldots, Q
\end{array} \text { local shape functions } b_{i}^{K}\left(\boldsymbol{q}_{j}^{K}\right)=\delta_{i j}
\end{gather*}
\]

Example 5.3.30 (Piecewise quadratic interpolation). \(\rightarrow\) Ex. 3.4.2
triangle \(K=\) convex \(\left\{\boldsymbol{a}^{1}, \boldsymbol{a}^{2}, \boldsymbol{a}^{3}\right\}, p=2\)
\(\Rightarrow\) local quadratic interpolation:
\(\mathrm{I}_{2} u_{\mid K}=-\sum_{i=1}^{3} \lambda_{i}\left(1-2 \lambda_{i}\right) u\left(\mathbf{a}^{i}\right)+\sum_{1 \leq i<j \leq 3} 4 \lambda_{i} \lambda_{j} u\left(\frac{1}{2}\left(\mathbf{a}^{i}+\mathbf{a}^{j}\right)\right)\)

Remark 5.3.31 (Energy norm and \(H^{1}(\Omega)\)-norm).

Objection! Well, Cea's lemma Thm. 5.1.10 refers to the energy norm, but Thm. 5.3.27 provides esimates in \(H^{1}(\Omega)\)-norm only!

For uniformly positive definite ( \(\rightarrow\) Def. 2.1.9) and bounded coefficient tensor \(\alpha: \Omega \mapsto \mathbb{R}^{d, d}\), cf. (2.1.8),
\[
\exists 0<\alpha^{-}<\alpha^{+}: \quad \alpha^{-}\|\boldsymbol{z}\|^{2} \leq \boldsymbol{z}^{T} \boldsymbol{\alpha}(\boldsymbol{x}) \boldsymbol{z} \leq \alpha^{+}\|\boldsymbol{z}\|^{2} \quad \forall \boldsymbol{z} \in \mathbb{R}^{d}, \boldsymbol{x} \in \Omega,
\]
and the energy norm \((\rightarrow\) Def. 2.1.24) induced by
\[
\begin{equation*}
\mathrm{a}(u, v):=\int_{\Omega}(\boldsymbol{\alpha}(\boldsymbol{x}) \operatorname{grad} u) \cdot \boldsymbol{\operatorname { g r a d }} v \mathrm{~d} \boldsymbol{x}, \quad u, v \in H_{0}^{1}(\Omega), \tag{5.1.6}
\end{equation*}
\]
we immediately find the equivalence (= two-sided uniform estimate)
\[
\begin{equation*}
\sqrt{\alpha^{-}}|v|_{H^{1}(\Omega)} \leq\|v\|_{a} \leq \sqrt{\alpha^{+}}|v|_{H^{1}(\Omega)} . \tag{5.3.32}
\end{equation*}
\]

Thus, interpolation error estimates in \(|\cdot|_{H^{1}(\Omega)}\) immediately translate into estimates in terms of the energy norm.

Bounds in Thm. 5.3 .27 involve \(\left\|\left\|D^{2} u\right\|_{F}\right\|_{L^{2}(\Omega)} \quad\) mesures smoothness of \(u\)
- Norms of this type are a tool to measure the smoothness of functions (that usually are solutions of elliptic BVP):

Definition 5.3.33 (Higher order Sobolev spaces/norms).
The \(m\)-th order Sobolev norm, \(m \in \mathbb{N}_{0}\), for \(u: \Omega \subset \mathbb{R}^{d} \mapsto \mathbb{R}\) (sufficiently smooth) is defined by
\[
\begin{aligned}
\|u\|_{H^{m}(\Omega)}^{2}: & =\sum_{k=0}^{m} \sum_{\boldsymbol{\alpha} \in \mathbb{N}^{d},|\boldsymbol{\alpha}|=k} \int_{\Omega}\left|D^{\boldsymbol{\alpha}} u\right|^{2} \mathrm{~d} \boldsymbol{x}, \text { where } \quad D^{\boldsymbol{\alpha}} u:=\frac{\partial^{|\boldsymbol{\alpha}|_{u}}}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{d}^{\alpha_{d}}} . \\
& \text { Sobolev space } H^{m}(\Omega):=\left\{v: \Omega \mapsto \mathbb{R}:\|v\|_{H^{m}(\Omega)}<\infty\right\} .
\end{aligned}
\]

\section*{Recall: multiindex notation (3.3.4), (3.3.5)}

Gripe ( \(\rightarrow\) Sect. 2.2): Don't bother me with these Sobolev spaces !

Response: Well, these concepts are pervasive in the numerical analysis literature and you have to be familiar with them.

Reassuring: \(\quad\) Again, it is only the norms \(\|u\|_{H^{m}(\Omega)}\) that matter for us !

Now, we have come across an additional purpose of Sobolev spaces and their norms:
provide framework for variational formulation of elliptic BVP
( \(\rightarrow\) Sect. [2.2)

\[
\text { Sobolev scale: } \quad \ldots \subset H^{3}(\Omega) \subset H^{2}(\Omega) \subset H^{1}(\Omega) \subset L^{2}(\Omega)
\]

Observation: bounds in Thm. 5.3.27 = "principal parts" of Sobolev norms, that is, the parts containing the highest partial derivatives.

Definition 5.3.34 (Higher order Sobolev semi-norms). The m-th order Sobolev semi-norm, \(m \in \mathbb{N}\), for sufficiently smooth \(u: \Omega \mapsto \mathbb{R}\) is defined by
\[
|u|_{H^{m}(\Omega)}^{2}:=\sum_{\boldsymbol{\alpha} \in \mathbb{N}^{d},|\boldsymbol{\alpha}|=m} \int_{\Omega}\left|D^{\boldsymbol{\alpha}} u\right|^{2} \mathrm{~d} \boldsymbol{x}
\]

Elementary observation: \(\quad|p|_{H^{m}(\Omega)}=0 \Leftrightarrow p \in \mathcal{P}_{m-1}\left(\mathbb{R}^{d}\right)\)

By density arguments we can rewrite the interpolation error estimates of Thm. 5.3.27 in

Corollary 5.3.35 (Error estimate for piecewise linear interpolation in 2D).
Under the assumptions/with notations of Thm.5.3.27
\[
\begin{aligned}
\left\|u-I_{1} u\right\|_{L^{2}(\Omega)} & \leq \sqrt{\frac{3}{8}} h_{\mathcal{M}}^{2}|u|_{H^{2}(\Omega)}, \\
\left|u-I_{1} u\right|_{H^{1}(\Omega)} & \leq \sqrt{\frac{3}{24}} \rho_{\mathcal{M}} h_{\mathcal{M}}|u|_{H^{2}(\Omega)},
\end{aligned} \quad \forall u \in H^{2}(\Omega) .
\]

Remark 5.3.36 (Continuity of interpolation operators).

Apply \(\triangle\)-inequality to estimates of Cor. 5.3.35:
\[
\begin{equation*}
\left\|\mathrm{I}_{1} u\right\|_{L^{2}(\Omega)} \leq\|u\|_{L^{2}(\Omega)}+\sqrt{\frac{3}{8}} h_{\mathcal{M}}^{2}|u|_{H^{2}(\Omega)} \leq 2\|u\|_{H^{2}(\Omega)} \tag{5.3.37}
\end{equation*}
\]
if lengths are scaled such that \(h_{\mathcal{M}} \leq 1\). Estimate (5.3.37) means that \(\mathrm{I}_{1}: H^{2}(\Omega) \mapsto L^{2}(\Omega)\) is a continuous linear mapping.

The same conclusion could have been drawn from the following fundamental result:

Theorem 5.3.38 (Sobolev embedding theorem).
\(m>\frac{d}{2} \Rightarrow H^{m}(\Omega) \subset C^{0}(\bar{\Omega}) \quad \wedge \quad \exists C=C(\Omega)>0: \quad\|u\|_{\infty} \leq C\|u\|_{H^{m}(\Omega)} \quad \forall u \in H^{m}(\Omega)\).

On the other hand \(\mathrm{I}_{1}: H^{1}(\Omega) \mapsto L^{2}(\Omega)\) is not continuous, as we learn from Rem. 2.3.16.

\subsection*{5.3.4 Anisotropic interpolation error estimates}

Triangular cells with "bad shape regularity" ( \(\rho_{K}\) "large"): very small/large angles:


The estimates of Lemma 5.3 .25 might suggest that we face huge local interpolation errors, once \(\rho_{K}\) becomes large.

Issue: are the estimates of Lemma 5.3 .25 sharp ?

We will try to find this out experimentally by computing the best possible constants in the estimates
\[
\left\|u-\mathrm{I}_{1} u\right\|_{L^{2}(K)} \leq C_{K, 2} h_{k}^{2}\|u\|_{H^{2}(K)}, \quad\left\|u-\mathrm{I}_{1} u\right\|_{H^{1}(K)} \leq C_{K} h_{K}\|u\|_{H^{2}(K)}
\]

Note: Merely translating, rotating, or scaling \(K\) does not affect the constants \(C_{K, 2}\) and \(C_{K}\). Therefore, we can restrict ourselves to "canonical triangles". Every general triangle can be mapped to one of these by translating, rotating, and scaling.
\[
C_{K, 2}:=\sup _{u \in H^{2}(K) \backslash\{0\}} \frac{\left\|u-\mathrm{I}_{1} u\right\|_{L^{2}(K)}}{\|u\|_{H^{2}(K)}}, \quad C_{K}:=\sup _{u \in H^{2}(k) \backslash\{0\}} \frac{\left\|u-\mathrm{I}_{1} u\right\|_{H^{1}(K)}}{\|u\|_{H^{2}(K)}},
\]
on triangle \(K:=\) convex \(\left\{\binom{0}{0},\binom{1}{0},\binom{p_{x}}{p_{y}}\right\}\).

Sampling the space of "canonical" triangles (modulo similarity)

implementation by A. Inci (spectral polynomial Galerkin method)




The interpolant becomes steeper and steeper as \(h \rightarrow 0\) :
\(\Delta\|u\|_{H^{2}(K)}^{2}=\frac{3031}{1440} h, \quad\left\|u-\mathrm{I}_{1} u\right\|_{H^{1}(K)}^{2}=\frac{29}{2880} h+\frac{1}{12} h+\frac{1}{32} h^{-1}, \quad\left\|u-\mathrm{I}_{1} u\right\|_{L^{2}(K)}^{2}=\frac{29}{2889} h\)
\[
\frac{\left\|u-\mathrm{I}_{1} u\right\|_{H^{1}(K)}^{2}}{\|u\|_{H^{2}(K)}^{2}} \geq \frac{269}{6062}+\frac{45}{3031} h^{-2} \quad, \quad \frac{\left\|u-\mathrm{I}_{1} u\right\|_{L^{2}(K)}^{2}}{\|u\|_{H^{2}(K)}^{2}}=\frac{29}{6062} .
\]

Example 5.3.39 (Good accuracy on "bad" meshes).
\(\Omega=] 0,1{ }^{2}, u\left(x_{1}, x_{2}\right)=\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right)\), BVP \(-\Delta u=f, u_{\mid \partial \Omega}=0\), finite element Galerkin discretization on triangular meshes, \(V_{N}=\mathcal{S}_{1,0}^{0}(\mathcal{M})\).
meshes created by random distortion of tensor product grids

2D triangular mesh


2D triangular mesh



Monitored: for different mesh resolutions, \(H^{1}(\Omega)\)-seminorm of discretization error as function of smallest/largest angle in the mesh.

Observation:
Accuracy does not suffer much from distorted elements !

Example 5.3.40 (Gap between interpolation error and best approximation error).

Ex. 5.3.39 raises doubts whether the interpolation error can be trusted to provide good, that is, reasonably sharp bounds for the best approximation error.

In this example we will see that
\[
\inf _{v_{N} \in \mathcal{S}_{p}^{0}(\mathcal{M})}\left\|u-v_{N}\right\|_{1} \ll\left\|u-I_{p} u\right\|_{H^{1}(\Omega)} \quad \text { is possible! }
\]


Elementary cell of "bad mesh" \(\mathcal{M}_{\text {bad }}\)


Elementary cell of "good mesh" \(\mathcal{M}_{\text {good }}\)

On "bad" mesh : \(\sup _{u \in H^{2}(\Omega)} \frac{\left\|u-I_{1} u\right\|_{H^{1}(\Omega)}}{\|u\|_{H^{2}(\Omega)}} \rightarrow \infty\) as \(h / \delta \rightarrow \infty\),
On "good" mesh : \(\sup _{u \in H^{2}(\Omega)} \frac{\left\|u-I_{1} u\right\|_{H^{1}(\Omega)}}{\|u\|_{H^{2}(\Omega)}}\) uniformly bounded in \(h / \delta\).
\[
\text { Yet, } \quad \inf _{v_{N} \in \mathcal{S}_{1}^{0}\left(\mathcal{M}_{\text {bad }}\right)}\left\|u-v_{N}\right\|_{H^{1}(\Omega)} \leq \inf _{v_{N} \in \mathcal{S}_{1}^{0}\left(\mathcal{M}_{\text {good }}\right)}\left\|u-v_{N}\right\|_{H^{1}(\Omega)} \quad \forall u \in H^{2}(\Omega) .
\]

\subsection*{5.3.5 General approximation error estimates}

In Sect. 5.3.2 we only examined the behavior of norms of the interpolation error for piecewise linear interpolation into \(\mathcal{S}_{1}^{0}(\mathcal{M})\), that is, the case of Lagrangian finite elements of degree \(p=1\).

However, Ex. 5.2.2 sent the clear message that quadratic Lagrangian finite elements achieve fast convergence of the energy norm of the Galerkin discretization error, see Fig. 134, 135.

On the other quadratic finite elements could not deliver faster convergence in Ex. 5.2.6.

In this section we learn about theoretical results that shed light on these observations and extend the results of Sect. 5.3.2.

Remark 5.3.41 ( \(L^{\infty}\) interpolation error estimate in 1D).

The faster convergence of quadratic Lagrangian FE in Ex. 5.2.2 does not come as a surprise: recall the esimtate from [14, Eq. 9.2.1]:
\[
\left\|u-I_{p} u\right\|_{L^{\infty}([a, b])} \leq \frac{h_{\mathcal{M}}^{p+1}}{(p+1)!}\left\|u^{(p+1)}\right\|_{L^{\infty}([a, b])} \quad \forall u \in C^{p+1}([a, b])
\]
where \(\mathrm{I}_{p} u\) is the \(\mathcal{M}\)-piecewise polynomial interpolant of \(u\) of local degree \(p\). It generalizes (5.3.5).
\[
\left\|u-I_{p} u\right\|_{L^{\infty}([a, b])}=O\left(h_{\mathcal{M}}^{p+1}\right)!
\]

The following theorem summarized best approximation results for affine equivalent Lagrangian FE spaces \(\mathcal{S}_{p}^{0}(\mathcal{M})\left(\rightarrow\right.\) Sect. 3.4) on mesh \(\mathcal{M}\) of a bounded polygonal/polyhedral domain \(\Omega \subset \mathbb{R}^{d}\). It is the result of many years of research in approximation theory, see [18, Sect. 3.3], [2].

Theorem 5.3.42 (Best approximation error estimates for Lagrangian finite elements). Let \(\Omega \subset \mathbb{R}^{d}\), \(d=1,2,3\), be a bounded polygonal/polyhedral domain equipped with a mesh \(\mathcal{M}\) consisting of simplices or parallelepipeds. Then, for each \(k \in \mathbb{N}\), there is a constant \(C>0\) depending only on \(k\) and the shape regularity measure \(\rho_{\mathcal{M}}\) such that
\[
\begin{equation*}
\inf _{v_{N} \in \mathcal{S}_{p}^{0}(\mathcal{M})}\left\|u-v_{N}\right\|_{H^{1}(\Omega)} \leq C\left(\frac{h_{\mathcal{M}}}{p}\right)^{\min \{p+1, k\}-1}\|u\|_{H^{k}(\Omega)} \quad \forall u \in H^{k}(\Omega) \tag{5.3.43}
\end{equation*}
\]

This theorem is a typical example of finite element analysis results that you can find in the literature. It is important to know what kind of information can be gleaned from statements like that of Thm. 55.3.42.

\section*{Remark 5.3.44 ("Generic constants").}

A statement like (5.3.43) is typical of a priori error estimates in the numerical analysis literature, which often come in the form
\[
\left\|u-u_{N}\right\|_{X} \leq C \cdot \text { "discretization parameter" } \cdot\|u\|_{Y},
\]
where
- \(C>0\) is not specified precisely or only claimed to exist (though, in principle, they could be computed),
- \(C\) must neither depend on the exact solution \(u\) nor the discrete solution \(u_{N}\),
- the possible dependence of \(C\) on problem parameters or discretization paramters has to stated unequivocally.

Such constants \(C>0\) are known as generic constants. Customarily, different generic constants are even denoted by the same symbol (" \(C\) " is most common).

Remark 5.3.45 (Nature of a priori estimates). \(\quad \rightarrow\) Sect. 1.6.2

Cea's lemma, Thm. 5.1.10 \(>\) Thm. 5.3.42 implies a priori estimates of the energy norm of the finite element Galerkin discretization error (see also Rem. 5.3.31) of the form
\[
\begin{equation*}
\left\|u-u_{N}\right\|_{\mathrm{a}} \leq C\left(\frac{h_{\mathcal{M}}}{p}\right)^{\min \{p+1, k\}-1}\|u\|_{H^{k}(\Omega)} \tag{5.3.46}
\end{equation*}
\]
where \(u\) is the exact solution of the discretized 2nd-order elliptic boundary value problem.
(5.3.46) does not give concrete information about \(\left\|u-u_{N}\right\|_{a}\), because
- we do not know the value of the "generic constant" \(C>0\), see Rem. 5.3.44,
- as \(u\) is unknown, a bound for \(\|u\|_{H^{k}(\Omega)}\) may not be available.

A priori error estimates like (5.3.46) exhibit only the trend of the (norm of) the discretization error as discretization parameters \(h_{\mathcal{M}}\) (mesh width), \(p\) (polynomial degree) are varied.

Remark 5.3.47. The estimate of Thm. 5.3 .42 is sharp: the powers of \(h_{\mathcal{M}}\) and \(p\) cannot be increased.

Question 5.3.48. What computational effort buys us what error (measured in energy norm)?

Bad luck ( \(\rightarrow\) Rem. 5.3.45): actual error norm remains elusive! Therefore, rephrase the question so that it fits the available information about the effect of changing discretization parameters on the error:

Question 5.3.49. What increase in computational effort buys us a presribed decrease of the (energy norm of the) error?

The answer to this question offers an a priori gauge of the asymptotic efficiency of a discretization method.

Convention: computational effort \(\approx\) number of unkonwns \(N=\operatorname{dim} \mathcal{S}_{p}^{0}(\mathcal{M})\) (problem size)

Framework: \(\quad\) family \(\mathbb{M}\) of simplicial meshes of domain \(\Omega \subset \mathbb{R}^{d}, d=1,2,3\), created by global regular refinement of a single initial mesh

Global regular refinement of a simplicial mesh ( \(\rightarrow\) Ex. 5.1.12)
- avoids greater distortion of "child cells" w.r.t. their parents,
- spawns meshes with fairly uniform size \(h_{K}\) of cells.
\[
\begin{array}{lc}
\exists C>0: & \rho_{\mathcal{M}} \leq C \\
\exists C>0: & \max \left\{h_{K} / h_{K^{\prime}}, K, K^{\prime} \in \mathcal{M}\right\} \leq C
\end{array}
\]
\[
\forall \mathcal{M} \in \mathbb{M}
\]

Now, for meshes \(\in \mathbb{M}\), we investigate " \(N\)-dependence", \(N=\operatorname{dim} \mathcal{S}_{p}^{0}(\mathcal{M})\), of energy norm of finite element discretization error:

Counting argument \(\quad N=\operatorname{dim} \mathcal{S}_{p}^{0}(\mathcal{M}) \approx p^{d} h_{\mathcal{M}}^{-d} \Rightarrow \frac{h_{\mathcal{M}}}{p} \approx N^{-1 / d}\).


Notation: \(\approx \hat{=}\) equivalence up to constants only depending on \(\gamma\) (in \(\left.\mathbb{M}_{\gamma}\right), \Omega\)

Example 5.3.51 (Dimensions of Lagrangian finite element spaces on triangular meshes).
\(d=2: \quad\) for triangular meshes \(\mathcal{M}\), by Lemma 3.3.6
\[
\operatorname{dim} \mathcal{S}_{p}^{0}(\mathcal{M})=\sharp\{\operatorname{nodes}(\mathcal{M})\}+\sharp\{\operatorname{edges}(\mathcal{M})\}(p-1)+\sharp \mathcal{M} \frac{1}{2}(p-1)(p-2) .
\]

1 basis function per vertex
\(p-1\) basis functions per edge
\(\frac{1}{2}(p-1)(p-2)\) "interior" basis functions

Geometric considerations: the number of triangles sharing a vertex can be bounded in terms of \(\rho \mathcal{M}\), because \(\rho_{\mathcal{M}}\) implies a lower bound for the smallest angles of the triangular cells.
\[
\exists C=C\left(\rho_{\mathcal{M}}\right): \quad \sharp\left\{K_{j} \in \mathcal{M}: \bar{K}_{i} \cap \bar{K}_{j} \neq \emptyset\right\} \leq C \quad(i=1,2, \ldots, \# . \mathcal{M})
\]

If every vertex belongs only to a small number of triangles, the number \(\sharp\{\) nodes \((\mathcal{M})\}\) can be bounded by \(C \cdot \sharp \mathcal{M}\), where \(C>0\) will depend on \(\rho_{\mathcal{M}}\) only. The same applies to the edges.
\[
\sharp\{\operatorname{nodes}(\mathcal{M})\}, \sharp\{\operatorname{edges}(\mathcal{M})\} \approx \sharp \mathcal{M}
\]
\[
\begin{equation*}
\operatorname{dim} \mathcal{S}_{p}^{0}(\mathcal{M}) \approx(\sharp \mathcal{M}) p^{2} \tag{5.3.52}
\end{equation*}
\]
with constants hidden in \(\approx\) depending on \(\rho_{\mathcal{M}}\) only.
\[
\begin{equation*}
u \in H^{k}(\Omega) \stackrel{\operatorname{Thm} .5 .3 .42}{\Rightarrow} \inf _{v_{N} \in \mathcal{S}_{p}^{0}(\mathcal{M})}\left\|u-v_{N}\right\|_{H^{1}(\Omega)} \leq C N^{-\frac{\min \{p, k-1\}}{d}}\|u\|_{H^{k}(\Omega)}, \tag{5.3.53}
\end{equation*}
\]
with \(C>0\) depending only on \(d, p, k\), and \(\rho_{\mathcal{M}}\).
(5.3.53) \(>\)
algebraic convergence ( \(\rightarrow\) Def. 1.6.19) in problem size
(rate \(\frac{\min \{p, k-1\}}{d}\) )
We observe that
- the rate of convergence is limited by the polynomial degree \(p\) of the Lagragian FEM,
- the rate of convergence is limited by the smoothness of the exact solution \(u\), measured by means of the Sobolev index \(k\), see Sect. 5.3.3,
- the rate of convergence will be worse for \(d=3\) than for \(d=2\), the effect being more pronounced for small \(k\) or \(p\).

Assumption: a priori error estimate (5.3.53) is sharp
\[
\begin{gathered}
\exists C=C(u, \ldots)>0: \quad \operatorname{error} \operatorname{norm}(N) \approx C N^{-\frac{\min \{p, k-1\}}{d}} \forall \mathcal{M} \in \mathbb{M} . \\
\\
\quad \frac{\text { error norm }\left(N_{1}\right)}{\text { error norm }\left(N_{2}\right)} \approx\left(\frac{N_{1}}{N_{2}}\right)^{-\frac{\min \{p, k-1\}}{d}} .
\end{gathered}
\]
reduction of (the energy norm of) the error by a factor \(\rho>1\)
increase of the problem size
requires
by factor \(\rho^{\frac{d}{\min \{p, k-1\}}}\)


Discussion:
\[
\text { Solution } u \in H^{k}(\Omega) \quad>\quad \text { optimal asymptotic efficiency for } p=k-1
\]

Remark 5.3.54 (Asymptotic estimates).

Now we deduce asymptotic estimates for the best approximation errors from Thm. 5.3.42, and (5.3.53), in particular, for the case \(N \rightarrow \infty\) :
- h-refinement: \(\quad p\) fixed, \(h_{\mathcal{M}} \rightarrow 0\) for \(\mathcal{M} \in \mathbb{M}\) :
\[
\begin{array}{lc}
\text { (5.3.53) } \Rightarrow & \text { algebraic convergence w.r.t. } N \\
p \leq k-1 \quad \inf _{v_{N} \in \mathcal{S}_{p}^{0}(\mathcal{M})}\left\|u-v_{N}\right\|_{1}=O\left(N^{-p / d}\right)
\end{array}
\]
\(k \leq p+1\)
\[
\begin{equation*}
\inf _{v_{N} \in \mathcal{S}_{p}^{0}(\mathcal{M})}\left\|u-v_{N}\right\|_{1}=O\left(N^{-(k-1) / d}\right) \tag{5.3.56}
\end{equation*}
\]

Note: for very smooth solution \(u\), i.e. \(k \gg 1\), polynomial degree \(p\) limits speed of convergence
- p-refinement: \(\mathcal{M} \in \mathbb{M}\) fixed, \(p \rightarrow \infty\) :
\(p\) large
\[
\begin{equation*}
\inf _{v_{N} \in \mathcal{S}_{p}^{0}(\mathcal{M})}\left\|u-v_{N}\right\|_{1}=O\left(N^{-(k-1) / d}\right) \tag{5.3.57}
\end{equation*}
\]

Note: arbitrarily fast (super-)algebraic convergence for very smooth solutions \(u \in C^{\infty}(\bar{\Omega})\)

\subsection*{5.4 Elliptic regularity theory}

Crudely speaking, in Sect. 5.3 .5 we saw that the asymptotic behavior of the Lagrangian finite element Galerkin discretization error (for 2nd-order elliptic BVPs) can be predicted provided that
- we use families of meshes, whose cells have rather uniform size and whose shape regularity measure is uniformly bounded,
- we have an idea about the smoothness of the exact solution \(u\), that is, we know \(u \in H^{k}(\Omega)\) for a (maximal) \(k\), see Thm. 5.3.42.

Knowledge about the mesh can be taken for granted, but
how can be guess the smoothness of the (unknown!) exact solution \(u\) ?

A (partial) answer is given in this section.

Focus: Scalar 2nd-order elliptic BVP with homogeneous Dirichlet boundary conditions
\[
-\operatorname{div}(\sigma(\boldsymbol{x}) \operatorname{grad} u)=f \quad \text { in } \Omega \quad, \quad u=g \quad \text { on } \partial \Omega
\]

To begin with, we summarize the available information:
> Known:


Informtion about coefficient \(\sigma\), domain \(\Omega\), source function \(f\), boundary data \(g\)
\(u\) will belong to a certain class of functions (e.g. subspace \(S \subset V\) )

\section*{Example 5.4.1 (Elliptic lifting result in 1D).}
\(d=1, \Omega=] 0,1[\), coefficient \(\sigma \equiv 1\), homogeneous Dirichlet boundary conditions:
\[
\begin{aligned}
& u^{\prime \prime}=f \quad, \quad u(0)=u(1)=0 \\
& f \in H^{k}(\Omega) \Rightarrow u \in H^{k+2}(\Omega) \quad \text { (a lifting theorem) }
\end{aligned}
\]

Can this be generalized to higher dimensions \(d>1\) ?

Partly so:

Theorem 5.4.2 (Smooth elliptic lifting theorem).
If \(\partial \Omega\) is \(C^{\infty}\)-smooth, ie. possesses a local parameterization by \(C^{\infty}\)-functions, and \(\sigma \in C^{\infty}(\bar{\Omega})\), then, for any \(k \in \mathbb{N}\),
\[
\begin{aligned}
& u \in H_{0}^{1}(\Omega) \quad \text { and } \quad-\operatorname{div}(\sigma \operatorname{grad} u) \in H^{k}(\Omega) \\
& u \in H^{1}(\Omega),-\operatorname{div}(\sigma \operatorname{grad} u) \in H^{k}(\Omega) \text { and } \quad \operatorname{grad} u \cdot \mathbf{n}=0 \text { on } \partial \Omega
\end{aligned}
\]

In addition, for such \(u\) there is \(C=C(k, \Omega, \sigma)\) such that
\[
\|u\|_{H^{k+2}(\Omega)} \leq C\|\operatorname{div}(\sigma \operatorname{grad} u)\|_{H^{k}(\Omega)} .
\]

What about non-smooth \(\partial \Omega\) ?


These are very common in engineering applications ("CAD-geometries").
\(\triangleleft\) polygonal domain with corners \(\boldsymbol{c}^{i}\)
How will the corners affect the smoothness of solutions of
\[
u \in H_{0}^{1}(\Omega): \quad \Delta u=f \in C^{\infty}(\bar{\Omega}) ?
\]

corner singular function
\[
\begin{align*}
& u_{s}(r, \varphi)=r^{\frac{\pi}{\omega}} \sin \left(\frac{\pi}{\omega} \varphi\right)  \tag{5.4.4}\\
& \quad r \geq 0, \quad 0 \leq \varphi \leq \omega
\end{align*}
\]
(in local polar coordinates)
\(\nabla u_{s}=0\) on \(\partial \Omega\) locally at \(\boldsymbol{c}!\)

An in fact:
\[
\Delta u_{s}=0 \text { in } \Omega!
\]

Recall: \(\Delta\) in polar coordinates:
\[
\begin{align*}
& \Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}} .  \tag{5.4.5}\\
& \stackrel{(5.4 .4)}{\Longrightarrow} \Delta u_{s}(r, \varphi)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\pi}{\omega} r^{\frac{\pi}{\omega}-1} \sin \left(\frac{\pi}{\omega} \varphi\right)\right)+\frac{1}{r^{2}} r r^{\frac{\pi}{\omega}} \frac{\partial}{\partial \varphi} \cos \left(\frac{\pi}{\omega} \varphi\right) \frac{\pi}{\omega} \\
& =\left(\frac{\pi}{\omega}\right)^{2} r^{\frac{\pi}{\omega}-2} \sin \left(\frac{\pi}{\omega} \varphi\right)-\left(\frac{\pi}{\omega}\right)^{2} r^{\frac{\pi}{\omega}-2} \sin \left(\frac{\pi}{\omega} \varphi\right)=0 .
\end{align*}
\]

What is "singular" about these functions? Plot them for \(\omega=\frac{3 \pi}{2}\), cf. Ex. [5.2.6



Recall gradient (2.3.19) in polar coordinates
\[
\begin{gather*}
\operatorname{grad} u=\frac{\partial u}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial u}{\partial \varphi} \mathbf{e}_{\varphi} .  \tag{2.3.19}\\
\stackrel{(5.4 .4)}{\Rightarrow} \operatorname{grad} u_{s}(r, \varphi)=\frac{\pi}{\omega} r^{\frac{\pi}{\omega}-1}\left(\sin \left(\frac{\pi}{\omega} \varphi\right) \mathbf{e}_{r}+\cos \left(\frac{\pi}{\omega} \varphi\right)\right) \mathbf{e}_{\varphi} . \\
\omega>\pi\left(\text { "re-entrant corner") } \Longrightarrow " \operatorname{grad} u_{s}(0)=\infty "\right.
\end{gather*}
\]

How does this "blow-up" of the gradient affect the Sobolev regularity (that is, the smoothness as expressed through " \(u_{s} \in H^{k}(\Omega)\) ") of the corner singular function \(u_{s}\) ?

We try to compute \(|u|_{H^{2}(D)}\), with (in polar coordinates, see Fig. 160)
\[
D:=\{(r, \varphi): 0<r<1,0<\varphi<\omega\} .
\]

By tedious computations we find
\[
\begin{gathered}
\omega>\pi \Rightarrow \int_{D}\left\|D^{2} u_{s}(r, \varphi)\right\|_{F}^{2} r \mathrm{~d}(r, \varphi)=\infty . \\
\stackrel{\text { Def. [5.3.33] }}{ }\left\{\begin{array}{c}
\left.\omega>\pi \Rightarrow u_{s} \notin H^{2}(D)\right\} .
\end{array} .\right.
\end{gathered}
\]

Bad news: With the exeption of concocted examples, Corner singular functions like (5.4.4) will be present in the solution of linear scalar 2nd-order elliptic BVP on polygonal domains!

The meaning of "being present" is elucidated in the following theorem:

Theorem 5.4.6 (Corner singular function decomposition).
Let \(\Omega \subset \mathbb{R}^{2}\) be a polygon with \(J\) corners \(\mathbf{c}^{i}\). Denote the polar coordinates in the corner \(\mathbf{c}^{i}\) by \(\left(r_{i}, \varphi_{i}\right)\) and the inner angle at the corner \(\mathbf{c}^{i}\) by \(\omega_{i}\). Additionally, let \(f \in H^{l}(\Omega)\) with \(l \in \mathbb{N}_{0}\) and \(l \neq \lambda_{i k}-1\), where the \(\lambda_{i k}\) are given by the singular exponents
\[
\begin{equation*}
\lambda_{i k}=\frac{k \pi}{\omega_{i}} \quad \text { for } k \in \mathbb{N} \tag{5.4.7}
\end{equation*}
\]

Then \(u \in H_{0}^{1}(\Omega)\) with \(-\Delta u=f\) in \(\Omega\) can be decomposed
\[
\begin{equation*}
u=u^{0}+\sum_{i=1}^{J} \psi\left(r_{i}\right) \sum_{\lambda_{i k}<l+1} \kappa_{i k} s_{i k}\left(r_{i}, \varphi_{i}\right), \quad \kappa_{i k} \in \mathbb{R} \tag{5.4.8}
\end{equation*}
\]
with regular part \(u^{0} \in H^{l+2}(\Omega)\), cut-off functions \(\psi \in C^{\infty}\left(\mathbb{R}^{+}\right)(\psi \equiv 1\) in a neighborhood of 0 ), and corner singular functions
\[
\begin{align*}
& \lambda_{i k} \notin \mathbb{N}: s_{i k}(r, \varphi)=r^{\lambda_{i k}} \sin \left(\lambda_{i k} \varphi\right), \\
& \lambda_{i k} \in \mathbb{N}: s_{i k}(r, \varphi)=r^{\lambda_{i k}(\ln r) \sin \left(\lambda_{i k} \varphi\right)} . \tag{5.4.9}
\end{align*}
\]
\(\Omega \subset \mathbb{R}^{2}\) has re-entrant corners
if \(u\) solves \(\Delta u=f\) in \(\Omega, u=0\) on \(\partial \Omega\), then \(u \notin H^{2}(\Omega)\) in general.

Theorem 5.4.10 (Elliptic lifting theorem on convex domains).
\[
\text { If } \Omega \subset \mathbb{R}^{d} \text { convex, } u \in H_{0}^{1}(\Omega), \Delta u \in L^{2}(\Omega) \Rightarrow u \in H^{2}(\Omega)
\]

Terminology: if conclusion of Thm. 5.4.10 true \(\rightarrow\) Dirichlet problem 2-regular.

Similar lifting theorems also hold for Neumann BVPs, BVPs with smooth coefficients.

Remark 5.4.11 (Causes for non-smoothness of solutions of elliptic BVPs).

Causes for poor Sobolev regularity of solution \(u\) of BVPs for \(-\operatorname{div}(\sigma(\boldsymbol{x}) \operatorname{grad} u)=f\) :
- Corner of \(\partial \Omega\), see above
- Discontinuities of \(\sigma\)
\(\rightarrow\) singular functions at "material corners"
- Mixed boundary conditions
- Non-smooth source function \(f\)

"material corner" at c

\subsection*{5.5 Variational crimes}

Variational crime \(=\) replacing (exact) discrete (linear) variational problem
\[
\begin{equation*}
u_{N} \in V_{0, N}: \quad \mathrm{a}\left(u_{N}, v_{N}\right)=f\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N}, \tag{3.1.3}
\end{equation*}
\]
with perturbed variational problem
\[
\begin{gather*}
\widetilde{u}_{N} \in V_{0, N}: \quad a_{N}\left(\widetilde{u}_{N}, v_{N}\right)=f_{N}\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N} .  \tag{5.5.1}\\
\text { perturbation of Galerkin solution } u_{N} \Leftrightarrow \text { perturbed solution } \widetilde{u}_{N} \in V_{0, N}
\end{gather*}
\]

Approximations \(\mathrm{a}_{N}(\cdot, \cdot) \approx \mathrm{a}(\cdot, \cdot), f_{N}(\cdot) \approx f(\cdot)\) due to
- use of numerical quadrature \(\rightarrow\) Sect. 3.5.4,
- approximation of boundary \(\partial \Omega \rightarrow\) Sect. 3.6.4.

We are all sinners! Variational crimes are inevitable in practical FEM, recall Rem. 1.5.3!

\subsection*{5.5.1 Impact of numerical quadrature}

Model problem: on polygonal/polyhedral \(\Omega \subset \mathbb{R}^{d}\) :
\[
\begin{equation*}
u \in H_{0}^{1}(\Omega): \quad \mathrm{a}(u, v):=\int_{\Omega} \sigma(\mathbf{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=f(v):=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} . \tag{5.5.3}
\end{equation*}
\]

Assumptions: \(\sigma\) satisfies (2.5.4), \(\quad \sigma \in C^{0}(\bar{\Omega}), f \in C^{0}(\bar{\Omega})\)
- Galerkin finite element discretization, \(V_{N}:=\mathcal{S}_{p}^{0}(\mathcal{M})\) on simplicial mesh \(\mathcal{M}\)
- Approximate evaluation of a \(\left(u_{N}, v_{N}\right), f\left(v_{N}\right)\) by a fixed stable local numerical quadrature rule \((\rightarrow\) Sect. 3.5.4) bigskip
> perturbed bilinear form \(\mathrm{a}_{N}\), right hand side \(f_{N}\) (see (5.5.1))

Focus: \(h\)-refinement (key discretization parameter is the mesh width \(h_{\mathcal{M}}\) )

Example 5.5.4 (Impact of numerical quadrature on finite element discretization error).
\(\Omega=] 0,1\left[^{2}, \sigma \equiv 1, f(x, y)=2 \pi^{2} \sin (\pi x) \sin (\pi y),(x, y)^{T} \in \Omega\right.\)
\(>\) solution \(u(x, y)=\sin (\pi x) \sin (\pi y), g=0\).

Details of numerical experiment:
- Quadratic Lagrangian \(\mathrm{FE}\left(V_{N}=\mathcal{S}_{2}^{0}(\mathcal{M})\right)\) on triangular meshes \(\mathcal{M}\), obtained by regular refinement
- "Exact" evaluation of bilinear form by very high order quadrature
- \(f_{N}\) from one point quadrature rule (3.5.37) of order 2


Observation: Use of quadrature rule of order \(2 \Rightarrow \begin{aligned} & \text { Algebraic rate of convergence (w.r.t. } \\ & \text { drops from } \alpha=1 \text { to } \alpha=1 / 2!\end{aligned}\)

Finite element theory [6, Ch. 4,§4.1] tells us that the Guideline 5.5.2] can be met, if the local numerical quadrature rulehas sufficiently high order. The quantitative results can be condensed into the following rules of thumb:
\[
\left\|u-u_{N}\right\|_{1}=O\left(h_{\mathcal{M}}^{p}\right) \text { at best } \searrow \text { Quadrature rule of order } 2 p-1 \text { sufficient for } f_{N} \text {. }
\]
\[
\left\|u-u_{N}\right\|_{1}=O\left(h_{\mathcal{M}}^{p}\right) \text { at best }>\text { Quadrature rule of order } 2 p-1 \text { sufficient for } \mathrm{a}_{N} .
\]

\subsection*{5.5.2 Approximation of boundary}

We focus on 2nd-order scalar linear variational problems as in the previous section.

Example 5.5.5 (Impact of linear boundary fitting on FE convergence).
\[
\text { Setting: } \begin{aligned}
\Omega & :=B_{1}(0):=\left\{\mathbf{x} \in \mathbb{R}^{2}:|\mathbf{x}|<1\right\}, u(r, \varphi)=\cos (r \pi / 2) \text { (polar coordinates) } \\
& >f=\frac{\pi}{2 r} \sin (r \pi / 2)+\frac{\pi}{2} \cos (r \pi / 2)
\end{aligned}
\]
- Sequences of unstructured triangular meshes \(\mathcal{M}\) obtained by regular refinement (of coarse mesh with 4 triangles) + linear boundary fitting.
- Galerkin FE discretization based on \(V_{N}:=\mathcal{S}_{1,0}^{0}(\mathcal{M})\) or \(V_{N}:=\mathcal{S}_{2,0}^{0}(\mathcal{M})\).
- Recorded: approximate norm \(\left|u-u_{N}\right|_{1, \Omega_{h}}\), evaluated using numerical quadrature rule (3.5.38).

2D triangular mesh



Linearly boundary fitted unstructured triangular meshes of \(\Omega=B_{1}(0)\).

Discretization errors with respect to \(\mathrm{H}^{1}\) semi-norm

\(H^{1}(\Omega)\)-norm of discretization error on unit ball \((-\leftrightarrow p=1,-\leftrightarrow p=2)\)

\section*{Theoretical guideline:}
\[
\text { If } V_{0, N}=\mathcal{S}_{p}^{0}(\mathcal{M}) \text {, use boundary fitting with polynomials of degree } p \text {. }
\]
5.6 Duality techniques

\subsection*{5.6.1 Linear output functionals}

Adopt abstract setting of Sect. 5.1:

Iinear variational problem (1.4.5) in the form
\[
\begin{equation*}
u \in V_{0}: \quad \mathrm{a}(u, v)=\ell(v) \quad \forall v \in V_{0}, \tag{3.1.1}
\end{equation*}
\]
- \(V_{0} \hat{=}\) (real) vector space, a space of functions \(\Omega \mapsto \mathbb{R}\) for scalar 2nd-order elliptic variational problems, usually "energy space" \(H^{1}(\Omega) / H_{0}^{1}(\Omega)\), see Sect. 2.2
- a : \(V_{0} \times V_{0} \mapsto \mathbb{R} \hat{=}\) a bilinear form, see Def. 1.3.11,
- \(\ell: V_{0} \mapsto \mathbb{R} \hat{=}\) a linear form, see Def. [1.3.11,
- Assumptions 5.1.1, 5.1.2, 5.1.3 are supposed to hold \(>\) existence, uniqueness, and stability of solution \(u\) by Thm. 5.1.4.
(Examples of 2nd-order linear BVPs discussed in Rem. 5.1.5, Sect. 2.8)

Galerkin discretization using \(V_{0, N} \subset V_{0}>\) discrete variational problem
\[
\begin{equation*}
u_{N} \in V_{0, N}: \quad \mathrm{a}\left(u_{N}, v_{N}\right)=f\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N} . \tag{3.1.3}
\end{equation*}
\]

New twist: we are interested mainly/only in the number \(F(u)\), where
\[
F: V_{0} \mapsto \mathbb{R} \quad \text { is an output functional. }
\]

Mathematical terminology: functional \(=\) mapping from a function space into \(\mathbb{R}\)

Example 5.6.1 (Output functionals).
Some output functionals for solutions of PDEs commonly encountered in applications:
- mean values, see Ex. 5.6.4 below
\(\bullet\) total heat flux through a surface (for heat conduction model \(\rightarrow\) Sect. 2.5), see Ex. 5.6.13 below
- total surface charge of a conducting body (for electrostatics \(\rightarrow\) Sect. 2.1.2)
- total heat production (Ohmic losses) by stationary currents
- total force on a charged conductor (for electrostatics \(\rightarrow\) Sect. 2.1.2)
- lift and drag in computational fluid dynamics (aircraft simulation)
- and many more . . .

We consider output functionals with special properties, which are rather common in practice:

Assumption 5.6.2 (Linearity of output functional).
The output functional \(F\) is alinear form \(\left(\rightarrow\right.\) Def. [1.3.11) on \(V_{0}\)

To put the next assumption into context, please recall Ass. 5.1.2 and Rem. 2.3.11.

Assumption 5.6.3 (Continuity of output functional).
The output functional is continuous w.r.t. the energy norm in the sense that
\[
\exists C_{f}>0: \quad|F(v)| \leq C_{f}\|v\|_{\mathrm{a}} \quad \forall v \in V_{0}
\]

Now consider Galerkin discretization of (3.1.1) based on Galerkin trial/test space \(V_{0, N} \subset V_{0}, N:=\) \(\operatorname{dim} V_{0, N}<\infty \quad>\) discrete variational problem
\[
\begin{equation*}
u_{N} \in V_{0, N}: \quad a\left(u_{N}, v_{N}\right)=\ell\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N} \tag{3.1.3}
\end{equation*}
\]

What would you dare to sell as an approximation of \(F(u)\) ? Of course, . .

Galerkin solution \(u_{N} \in V_{0, N} \quad \Leftrightarrow \quad\) approximate output value \(F\left(u_{N}\right)\)

How accurate is \(F\left(u_{N}\right)\), that is, how big is the output error \(\left|F(u)-F\left(u_{N}\right)\right| \boldsymbol{?}\)

Linearity ( \(\rightarrow\) Ass. 5.6.2) and continuity Ass. 5 .6.3 conspire to furnish a very simple estimate
\[
\left|F(u)-F\left(u_{N}\right)\right| \leq C_{f}\left\|u-u_{N}\right\|_{a}
\]

A priori estimates for \(\left\|u-u_{N}\right\|_{a} \leadsto\) estimates for \(\left|F(u)-F\left(u_{N}\right)\right|\)

Hence, Thm. 5.3.42 immediately tells us the asymptotic convergence of linear and continuous output functionals defined for solutions of 2nd-order scalar elliptic BVPs and Lagrangian finite element discretization.

Example 5.6.4 (Approximation of mean temperature).

Heat conduction model ( \(\rightarrow\) Sect. [2.5), scaled heat conductivity \(\kappa \equiv 1\), on domain \(\Omega=] 0,1\left[^{2}\right.\), fixed temperature \(u=0\) on \(\partial \Omega\) :
\[
-\Delta u=f \quad \text { in } \Omega \quad, \quad u=0 \quad \text { on } \partial \Omega .
\]
\[
\begin{aligned}
& \quad f(x, y)=2 \pi^{2} \sin (\pi x) \sin (\pi y) \quad(x, y)^{T} \in \Omega \\
& u(x, y)=\sin (\pi x) \sin (\pi y)
\end{aligned}
\]
\[
\text { mean temperature } \quad F(u)=\frac{1}{|\Omega|} \int_{\Omega} u \mathrm{~d} \boldsymbol{x}
\]

Details of finite element Galerkin discretization:
- Sequence of triangular meshes \(\mathcal{M}\) created by regular refinement.
- Galerkin discretization: \(V_{0, N}:=\mathcal{S}_{1,0}^{0}(\mathcal{M})\) (linear Lagrangian finite elements \(\rightarrow\) Sect. 3.2).
- Quadrature rule (3.5.38) of order 6 for assembly of right hand side vector (more than sufficiently accurate \(\rightarrow\) guidelines from Sect. 5.5.1)

Expected: algebraic convergence in \(h_{\mathcal{M}}\) with rate 1 of approximate mean temperature


Error between mean and exact solution


Error in mean value on unit square ( \(-\leftrightarrow p=1,-\leftrightarrow p=2\) )

Observation: Mean value converges twice as fast as expected: algebraic convergence \(O\left(h_{\mathcal{M}}^{2}\right)\) !

Theorem 5.6.5 (Duality estimate for linear functional output).
Define the dual solution \(g_{F} \in V_{0}\) to \(F\) as solution of
\[
g_{F} \in V_{0}: \quad \mathrm{a}\left(v, g_{F}\right)=F(v) \quad \forall v \in V_{0} .
\]

Then
\[
\begin{equation*}
\left|F(u)-F\left(u_{N}\right)\right| \leq\left\|u-u_{N}\right\|_{\mathrm{a}} \inf _{v_{N} \in V_{0, N}}\left\|g_{F}-v_{N}\right\|_{\mathrm{a}} \tag{5.6.6}
\end{equation*}
\]

Proof. For any \(v_{N} \in V_{0, N}\) :
\[
F(u)-F\left(u_{N}\right)=\mathrm{a}\left(u-u_{N}, g_{F}\right) \stackrel{(*)}{=} \mathrm{a}\left(u-u_{N}, g_{F}-v_{N}\right) \leq\left\|u-u_{N}\right\|_{\mathrm{a}}\left\|g_{F}-v_{N}\right\|_{\mathrm{a}} .
\]
\((*) \leftarrow\) by Galerkin orthogonality (5.1.7).

If \(g_{F}\) can be approximated well in \(V_{0, N}\), then the output error can converge \(\rightarrow 0\) (much) faster than \(\left\|u-u_{N}\right\|_{a}\).

Example 5.6.7 (Approximation of mean temperature cnt'd). \(\rightarrow\) Ex. 5.6.4
- The mean temperature functional (5.6.6) is obviously linear \(\rightarrow\) Ass. 5.6.2
- By the Cauchy-Schwarz inequality (2.2.15) it clearly satisfies Ass. 5.6.3 even with \(\|\cdot\|_{a}=\) \(\|\cdot\|_{L^{2}(\Omega)}\), let alone for \(\|\cdot\|_{a}=|\cdot|_{H^{1}(\Omega)}\) on \(H_{0}^{1}(\Omega)\).

What is \(g_{F} \in H_{0}^{1}(\Omega)\) in this case? By Thm. 5.6.5 it is the solution of the variational problem
\[
\int_{\Omega} \operatorname{grad} g_{F} \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=F(v)=\frac{1}{|\Omega|} \int_{\Omega} v \mathrm{~d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega) .
\]

The associated 2nd-order BVP reads
\[
-\Delta g_{F}=\frac{1}{|\Omega|} \quad \text { in } \Omega, \quad g_{F}=0 \quad \text { on } \partial \Omega
\]

Now recall the elliptic lifting theory Thm. 5.4.10 for convex domains: since \(\Omega=] 0,1[2\) is convex, we conclude \(g_{F} \in H^{2}(\Omega)\).

By interpolation estimate of Thm. 5.3.27 ( \(\mathrm{l}_{1} \hat{=}\) linear interpolation onto \(\mathcal{S}_{1}^{0}(\mathcal{M})\) )
\[
\inf _{v_{N} \in \mathcal{S}_{1}^{0}(\mathcal{M})}\left|g_{F}-v_{N}\right|_{H^{1}(\Omega)} \leq\left|g_{F}-\left.\right|_{1} g_{F}\right|_{H^{1}(\Omega)} \leq C h_{\mathcal{M}}\left|g_{F}\right|_{H^{2}(\Omega)},
\]
where \(C>0\) may depend on \(\Omega\) and the shape regularity measure \((\rightarrow\) Def. 5.3.26) of \(\mathcal{M}\).

Plug this into the duality estimate (5.6.6) of Thm. 5.6 .5 and note that \(u \in H^{2}(\Omega)\) by virtue of Thm. 5.4.10 and \(f \in L^{2}(\Omega)\) :
\[
\pm\left|F(u)-F\left(u_{N}\right)\right| \leq C h_{\mathcal{M}} \cdot \underbrace{\left|u-u_{N}\right|_{H^{1}(\Omega)}}_{\leq C h_{\mathcal{M}} \text { if } u \in H^{2}(\Omega)} \leq C h_{\mathcal{M}}^{2}
\]
where the "generic constant" \(C>0\) depends only on \(\Omega, u, \rho_{\mathcal{M}}\).
Again, by the elliptic lifting theory Thm. 5.4.10 we infer that \(u \in H^{2}(\Omega)\) holds for this example since \(f \in L^{2}(\Omega)\).

Model problem (process engineering):
Long pipe carrying turbulent flow of coolant (water)
\(\Omega \subset \mathbb{R}^{2}\) : cross-section of pipe
\(\kappa \quad:\) (scaled) heat conductivity of pipe material (assumed homogeneous, \(\kappa=\) const)

Assumption: Constant temperatures \(u_{o}, u_{i}\) at outer/inner wall \(\Gamma_{o}, \Gamma_{i}\) of pipe
Task: \(\quad\) Compute heat flow pipe \(\rightarrow\) water


Mathematical model: elliptic boundary value for stationary heat conduction \((\rightarrow\) Sect. 2.5)
\[
\begin{gather*}
-\operatorname{div}(\kappa \operatorname{grad} u)=0 \quad \text { in } \Omega \quad, \quad u=u_{x} \quad \text { on } \Gamma_{x}, x \in\{i, o\} .  \tag{5.6.8}\\
\text { Heat flux through } \Gamma_{i}: \quad J(u):=\int_{\Gamma_{i}} \kappa \operatorname{grad} u \cdot \boldsymbol{n} \mathrm{~d} S . \tag{5.6.9}
\end{gather*}
\]

Relate to abstract framework: \(\quad(5.6 .8) \cong(3.1 .1), \quad V_{0} \cong H_{0}^{1}(\Omega) \quad(\rightarrow\) Sect. 2.8)
(Actually, \(u \in H^{1}(\Omega)\), but by means of Iffset functions we can switch to the variational space \(H_{0}^{1}(\Omega)\), see Sects. [2.1.3, (3.5.5.)

Numerical method: finite element computation of heat conduction in pipe (e.g. linear Lagrangian finite element Galerkin discretization, Sect. 3.2)

Expectation: Algebraic convergence \(\left|J(u)-J\left(u_{N}\right)\right|=O\left(h_{\mathcal{M}}^{2}\right)\) for regular h-refinement

This expectation is based on the analogy to Ex. 5.6.4 (Approximation of mean temperature), where duality estimates yielded \(O\left(h_{\mathcal{M}}^{2}\right)\) convergence of the mean temperature error in the case of Galerkin discretization by means of linear Lagrangian finite elements on a sequence of meshes obtained by regular refinement. Now, it seems, we can follow the same reasoning.

Example 5.6.10 (Computation of heat flux).
- Setting: model problem "heat flux pipe to water", see (5.6.8) and Fig. 169.
- Linear output functional from (5.6.9)
- Domain \(\Omega=B_{R_{o}}(0) \backslash B_{R_{i}}(0):=\left\{\mathbf{x} \in \mathbb{R}^{2}: R_{i}<|\mathbf{x}|<R_{o}\right\}\) with \(R_{o}=1\) and \(R_{i}=1 / 2\)
- Dirichlet boundary data \(u_{i}=60^{\circ} \mathrm{C}\) on \(\Gamma_{i}, u_{o}=10^{\circ} \mathrm{C}\) on \(\Gamma_{o}\), heat source \(f \equiv 0\), heat conductivity \(\kappa \equiv 1\).
\(>\) Exact solution: \(u(r, \varphi)=C_{1} \ln (r)+C_{2}\), \(\quad\) with \(C_{1}:=\left(u_{o}-u_{i}\right) /\left(\ln R_{i}-\ln R_{o}\right)\),
\(>\) Exact heat flux: \(J=2 \pi \kappa C_{1}\).
\[
C_{2}:=\left(\ln R_{o} u_{i}-\ln R_{i} u_{o}\right) /\left(\ln R_{i}-\ln R_{o}\right) .
\]

Details of linear Lagrangian finite element Galerkin discretization:
- Sequences of unstructured triangular meshes \(\mathcal{M}\) obtained by regular refinement of coarse mesh (from grid generator).
- Galerkin FE discretization based on \(V_{0, N}:=\mathcal{S}_{1,0}^{0}(\mathcal{M})\).
- Approximate evaluation of \(\mathrm{a}\left(u_{N}, v_{N}\right), f\left(v_{N}\right)\) by six point quadrature rule (3.5.38) ("overkill quadrature", see Sect. [5.5.1)
- Approximate evaluation of \(J\left(u_{N}\right)\) by 4 point Gauss-Legendre quadrature rule on boundary edges of \(\mathcal{M}\).
- Linear boundary approximation (circle replaced by polygon).
- Recorded: errors \(\left|J-J\left(u_{N}\right)\right|\) on sequence of meshes.

2D triangular mesh
2D triangular mesh

 Unstructured triangular meshes for \(\Omega=B_{1}(0) \backslash B_{1 / 2}(0)\) (two coarsest specimens).


Why was our expectation mistaken?

Suspicion: the output functional \(J\) fails to meet requirements of duality estimates of Thm. 5.6.5:
\[
\text { boundary flux functional } J \text { from (5.6.9) is not continuous on } H^{1}(\Omega) \text { ! }
\]

Example 5.6.11 (Non-continuity of boundary flux functional).

Idea: find \(u \in H^{1}(\Omega)\), for which " \(J(u)=\infty\) ", cf. non-continuity of point evaluation functional on \(H^{1}(\Omega) \rightarrow\) Rem. 2.3.16.

On \(\Omega=] 0,1\left[^{2}\right.\) consider \(\quad u(\boldsymbol{x})=x_{1}^{\alpha}, \frac{1}{2}<\alpha<1\), and boundary flux functional for left side of square
\[
J_{0}(v)=\int_{0}^{1} \frac{\partial v}{\partial x_{1}}\left(0, x_{2}\right) \mathrm{d} x_{2}
\]

Straightforward computations of improper integral:
\[
\begin{gathered}
|u|_{H^{1}(\Omega)}^{2}=\int_{\Omega}\|\operatorname{grad} u(\boldsymbol{x})\|^{2} \mathrm{~d} \boldsymbol{x}=\int_{0}^{1} \int_{0}^{1} \alpha^{2} x_{1}^{2 \alpha-2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\frac{\alpha^{2}}{2 \alpha-1}<\infty . \\
\text { Def. [2.2.12] }
\end{gathered} \quad u \in H^{1}(\Omega) .
\]

On the other hand
\[
" \frac{\partial u}{\partial x_{1}}\left(0, x_{2}\right)=\infty " \Rightarrow J_{0}(u)=\infty
\]

\section*{Ex.5.6.11 \(>\) Thm.5.6.5 cannot be applied}
(Potentially) poor convergence of flux obtained from straightforward evaluation of \(J\left(u_{N}\right)\) for FE solution \(u_{N} \in \mathcal{S}_{1,0}^{0}(\mathcal{M})\) !

Apparently there is no remedy, because the boundary flux functional (5.6.9) seems to be enforced on us by the problem: we are not allowed to tinker with it, are we?

Trick:
\[
\text { use fixed cut-off function } \psi \in C^{0}(\bar{\Omega}) \cap H^{1}(\Omega), \psi \equiv 1 \text { on } \Gamma_{i}, \psi_{\mid \Gamma_{o}}=0
\]
\[
\int_{\Gamma_{i}} \kappa \operatorname{grad} u \cdot \boldsymbol{n} \mathrm{~d} S=\int_{\Gamma_{i}}(\kappa \operatorname{grad} u \cdot \boldsymbol{n}) \psi \mathrm{d} S=\int_{\Omega} \underbrace{\operatorname{div}(\kappa \operatorname{grad} u)}_{=0} \psi+\kappa \operatorname{grad} u \cdot \operatorname{grad} \psi \mathrm{~d} \boldsymbol{x}
\]
\[
\begin{equation*}
\Delta \quad \text { use } \quad J^{*}(u):=\int_{\Omega} \kappa \operatorname{grad} u \cdot \operatorname{grad} \psi \mathrm{~d} \boldsymbol{x} \tag{5.6.12}
\end{equation*}
\]

Obviously \((*)\) : \(\quad J^{*}: H^{1}(\Omega) \mapsto \mathbb{R}\) continuous \& \(J^{*}(u)=J(u)\) for solution of (5.6.8)
(*): By the Cauchy-Schwarz inequality (2.2.15), since \(\kappa=\) const,
\[
\left|J^{*}(u)\right| \leq \kappa\|\operatorname{grad} u\|_{L^{2}(\Omega)}\|\operatorname{grad} \psi\|_{L^{2}(\Omega)} \leq C|u|_{H^{1}(\Omega)},
\]
with \(C:=\kappa\|\operatorname{grad} \psi\|_{L^{2}(\Omega)}\), which is a constant independent of \(u\), as \(\psi\) is a fixed function.

Objection: You cannot just tamper with the output functional of a problem just because you do not like it!

Retort: Of course, one can replace the output function \(J\) with another one \(J^{*}\) as long as
\[
J(u)=J^{*}(u) \text { for the exact solution } u \text { of the BVP, }
\]
because the objective is not to "evaluate \(J\) ", but to obtain an approximation for \(J(u)\) !

Example 5.6.13 (Computation of heat flux \(\mathrm{cnt}^{\prime} \mathrm{d}\) ). \(\rightarrow\) Ex. 5.6.13

Further details on flux evaluation:
- Galerkin FE discretization based on \(V_{0, N}:=\mathcal{S}_{1,0}^{0}(\mathcal{M})\) or \(V_{0, N}:=\mathcal{S}_{2,0}^{0}(\mathcal{M})\).
- Approximate evaluation of \(J^{*}\left(u_{N}\right)\) by six point quadrature rule (3.5.38) ("overkill quadrature", see Sect. 5.5.1)
- Cut-off function with linear decay in radial direction
- Recorded: errors \(\left|J-J\left(u_{N}\right)\right|\) and \(\left|J-J^{*}\left(u_{N}\right)\right|\).

\(\triangleleft\) Convergence of \(\left|J(u)-J\left(u_{N}\right)\right|\) and \(\mid J(u)-\) \(J^{*}\left(u_{N}\right) \mid\) for linear Lagrangian finite element discretization.

Additional observations:
- Algebraic convergence \(\left|J(u)-J^{*}\left(u_{N}\right)\right|=O\left(h_{\mathcal{M}}^{2}\right)\) (rate 2 !) for alternative output functional \(J^{*}\) from (5.6.12).
- Dramatically reduced output error!

Remark 5.6.14 (Finding continuous replacement functionals).

Now you will ask: How can we find good (continuous) replacement functionals, if we are confronted with an unbounded output functional on the energy space?

Unfortunately, there is no recipe, and sometimes it does not seem to be possible to find a suitable \(J^{*}\) at all, for instance in the case of point evaluation, cf. Rem. 2.3.16.

Good news: another opportunity to show off how smart you are!
5.6.3 \(\quad L^{2}\)-estimates

So far we have only studied the energy norm ( \(\leftrightarrow H^{1}(\Omega)\)-norm, see Rem. 5.3.31) of the finite element discretization error for 2nd-order elliptic BVP.

The reason was the handy tool of Cea's lemma Thm. 5.1.10.

What about error estimates in other "relevant norms", e.g,,
- in the mean square norm or \(L^{2}(\Omega)\)-norm, see Def. 2.2.5,
\(\bullet\) in the supremum norm or \(L^{\infty}(\Omega)\)-norm, see Def. 1.6.4?

In this section we tackle \(\left\|u-u_{N}\right\|_{L^{2}(\Omega)}\). We largely reuse the abstract framework of Sect. 5.6.1: linear variational problem (3.1.1) with exact solution \(u \in V_{0}\), Galerkin finite element solution \(u_{N} \in V_{0, N}\), see p. 547, and the special framework of linear 2nd-order elliptic BVPs, see Rem. 5.1.5: concretely,
\[
\mathrm{a}(u, v):=\int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}, \quad u, v \in H_{0}^{1}(\Omega) .
\]

Setting: \(\quad \Omega=] 0,1\left[^{2}, D \equiv 1, f(x, y)=2 \pi^{2} \sin (\pi x) \sin (\pi y),(x, y)^{\top} \in \Omega\right.\) \(>\quad u(x, y)=\sin (\pi x) \sin (\pi y)\).
- Sequence of triangular meshes \(\mathcal{M}\), created by regular refinement.
- FE Galerkin discretization based on \(\mathcal{S}_{1,0}^{0}(\mathcal{M})\) or \(\mathcal{S}_{2}^{0}(\mathcal{M})\).
- Quadrature rule (3.5.38) for assembly of local load vectors ( \(\rightarrow\) Sect. ??).
- Approximate \(L^{2}(\Omega)\)-norm by means of quadrature rule (3.5.38).

Discretization errors with respect to \(L^{2}\) norm


\(L^{2}(\Omega)\)-norm of discretization error on unit square \((-\leftrightarrow p=1,-\leftrightarrow p=2)\)

Observations: • Linear Lagrangian FE \((p=1) \quad\left\|u-u_{N}\right\|_{0}=O\left(N^{-1}\right)\)
- Quadratic Lagrangian FE \((p=2)\) \& \(\left\|u-u_{N}\right\|_{0}=O\left(N^{-1.5}\right)\)

Remark 5.6.16 ( \(L^{2}\) interpolation error).

Recall the interpolation error estimate of Thm. 5.3.27
\[
\left\|u-\mathrm{I}_{1} u\right\|_{L^{2}(\Omega)}=O\left(h_{\mathcal{M}}^{2}\right) \quad \text { vs. } \quad\left|u-\mathrm{I}_{1} u\right|_{H^{1}(\Omega)}=O\left(h_{\mathcal{M}}\right)
\]
on a family of meshes with uniformly bounded shape regularity measure.
Higher rate of algebraic convergence of the interpolation error when measured in the weaker \(L^{2}(\Omega)\)-norm compared to the stronger \(H^{1}(\Omega)\)-norm.

Therefore a similar observation in the case of the finite element approximation error is not so surprising.

Now we supply a rigorous underpinning and explanation of the behavior of \(\left\|u-u_{N}\right\|_{L^{2}(\Omega)}\) that we have observed and expect.

Idea: Consider special continuous linear output functional
\[
J(v):=\int_{\Omega} v \cdot\left(u-u_{N}\right) \mathrm{d} \boldsymbol{x} \quad!
\]

This functional is highly relevant for \(L^{2}\)-estimates, because
\[
F(u)-F\left(u_{N}\right)=\left\|u-u_{N}\right\|_{L^{2}(\Omega)}^{2} \quad!
\]
\(>\) estimates for the output error will provide bounds for \(\left\|u-u_{N}\right\|_{L^{2}(\Omega)}\) !

Note: Both \(u\) and \(u_{N}\) are fixed functions \(\in H^{1}(\Omega)\) !
\(>\) Linearity of \(J(\rightarrow\) Ass. 5.6.2) is obvious.
Continuity \(J: H_{0}^{1}(\Omega) \mapsto \mathbb{R}(\rightarrow\) Ass. 5.6.3) is clear, use Cauchy-Schwarz inequality (2.2.15).

Duality estimate of Thm. 5.6.5 can be applied:
\[
\begin{equation*}
F(u)-F\left(u_{N}\right)=\left\|u-u_{N}\right\|_{L^{2}(\Omega)}^{2} \leq C\left|u-u_{N}\right|_{H^{1}(\Omega)} \inf _{v_{N} \in V_{0, N}}\left|g_{F}-v_{N}\right|_{H^{1}(\Omega)} \tag{5.6.17}
\end{equation*}
\]
where \(C>0\) may depend only on \(\kappa\), and the dual solution \(g_{F} \in H_{0}^{1}(\Omega)\) satisfies
\[
\begin{gather*}
\mathrm{a}\left(g_{F}, v\right)=F(v) \quad \forall v \in V_{0} \Leftrightarrow \int_{\Omega} \int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} g_{F} \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} v\left(u-u_{N}\right) \mathrm{d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega) \\
\Downarrow \\
 \tag{5.6.18}\\
-\operatorname{div}\left(\kappa(\boldsymbol{x}) \operatorname{grad} g_{F}\right)=u-u_{N} \quad \text { in } \Omega \quad, \quad g_{F}=0 \quad \text { on } \partial \Omega .
\end{gather*}
\]

Assumption 5.6.19 (2-regularity of homogeneous Dirichlet problem).
We assume that the homogeneous Dirichlet problem with coefficient \(\kappa\) is 2 -regulal on \(\Omega\) : There is \(C>0\), which depends on \(\Omega\) only such that
\[
\begin{gathered}
u \in H_{0}^{1}(\Omega) \\
\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u) \in L^{2}(\Omega)
\end{gathered} \Rightarrow u \in H^{2}(\Omega) \quad \text { and } \quad|u|_{H^{2}(\Omega)} \leq C\|\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)\|_{L^{2}(\Omega)}
\]

By the elliptic lifting theorem for convex domains Thm. 5.4 .10 we know
\(\Omega\) convex \(\Longrightarrow\) Ass. 5.6.19 is satisfied.
Ass. 5.6.19 in conjunction with (5.6.18) yields
\[
\begin{equation*}
\left|g_{F}\right|_{H^{2}(\Omega)} \leq C\left\|u-u_{N}\right\|_{L^{2}(\Omega)}, \tag{5.6.20}
\end{equation*}
\]
where \(C>0\) depends only on \(\Omega\).

Now we can appeal to the general best approximation theorem for Lagrangian finite element spaces Thm. 5.3.42:
\[
\begin{equation*}
\inf _{v_{N} \in \mathcal{S}_{p}^{0}(\mathcal{M})}\left|g_{F}-v_{N}\right|_{H^{1}(\Omega)} \leq C \frac{h_{\mathcal{M}}}{p}\left|g_{F}\right|_{H^{2}(\Omega)} \stackrel{(5.6 .20)}{\leq} C \frac{h_{\mathcal{M}}}{p}\left\|u-u_{N}\right\|_{L^{2}(\Omega)} \tag{5.6.21}
\end{equation*}
\]
where the "generic constants" \(C>0\) depend only on \(\Omega\) and the shape regularity measure \(\rho_{\mathcal{M}}(\rightarrow\) Def. 5.3.26).

Combine (5.6.17) and (5.6.21) and cancel one power of \(\left\|u-u_{N}\right\|_{L^{2}(\Omega)}\) :

With \(C>0\) depending only on \(\Omega, \kappa\), and the shape regularity measure \(\rho_{\mathcal{M}}\) we conclude

Ass. 5.6.19 \(\Rightarrow\left\|u-u_{N}\right\|_{L^{2}(\Omega)} \leq C \frac{h_{\mathcal{M}}}{p}\left\|u-u_{N}\right\|_{H^{1}(\Omega)}\). for \(h\)-refinement: \(\quad\) gain of one factor \(O\left(h_{\mathcal{M}}\right) \quad\) (vs. \(H^{1}(\Omega)\)-estimates)

Is it important to assume 2-regtularity, Ass. 5.6 .19 or merely a technical requirement of the theoretical approach?

Example 5.6.22 ( \(L^{2}\)-estimates on non-convex domain). cf. Ex. 5.2.6

Setting: \(\quad \Omega=]-1,1\left[^{2} \backslash(] 0,1[\times]-1,0[), D \equiv 1, u(r, \varphi)=r^{2 / 3} \sin (2 / 3 \varphi)\right.\) (polar coordinates)
\(>f=0\), Dirichlet data \(g=u_{\mid \partial \Omega}\).

Finite element Galerkin discretization and evaluations as in Ex. 5.6.15.


\(L^{2}(\Omega)\)-norm of discretization error on "L-shaped" domain \((-\leftrightarrow p=1,-\leftrightarrow p=2)\)
\[
\text { Observation: For both }(p=1,2) \quad \text { algebraic convergence }\left\|u-u_{N}\right\|_{0}=O\left(N^{-2 / 3}\right)
\]

Comparison with Ex. 5.2.6: for both linear and quadratic Lagrangian FEM
\[
\left\|u-u_{N}\right\|_{L^{2}(\Omega)}=O\left(N^{-2 / 3}\right) \longleftrightarrow\left\|u-u_{N}\right\|_{H^{1}(\Omega)}=O\left(N^{-1 / 3}\right),
\]
that is, we again observe a doubling of the rate of convergence for the weaker norm.

No gain through the use of quadratic FEM, because of limited smoothness of both \(u\) and dual solution \(g_{F}\). For both the gradient will have a singularity at 0 .

\subsection*{5.7 Discrete maximum principle}

So far we have investigated the accuracy of finite element Galerkin solutions: we studied relevant norms \(\left\|u-u_{N}\right\|\) of the discretization error.

Now new perspective: structure preservation by FEM

To what extent does the finite element solution \(u_{N}\) inherit key structural properties of the solution \(u\) of a 2 nd-order scalar elliptic BVP?

This issue will be discussed for a special structural property of the solution of the linear 2nd-order elliptic BVP (inhomogeneous Dirichlet problem) in variational form ( \(\rightarrow\) Sect. [2.8)
\[
\begin{equation*}
u \in \widetilde{g}+H_{0}^{1}(\Omega): \quad \text { a }(u, v):=\int_{\Omega} \kappa \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega) . \tag{5.7.1}
\end{equation*}
\]
where \(\widetilde{g} \hat{=}\) Offset function, extension of Dirichlet data \(g \in C^{0}(\partial \Omega)\), see Sect. 2.3.1, (2.3.5),
\(\kappa \hat{=}\) bounded and uniformly positive definite diffusion coefficient, see (2.5.4).
(5.7.1) \(\longleftrightarrow\) BVP
\[
-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)=f \quad \text { in } \Omega \quad, \quad u=g \quad \text { on } \partial \Omega .
\]

Recall \((\rightarrow\) Sect. 2.5): (5.7.1) models stationary temperature distribution in body, when temperature on its surface is prescribed by \(g\).

Intuition: - In the absence of heat sources maximal and minimal temperature attained on surface.
- In the presence of a heat source \((f \geq 0)\) the temperature minimum will be attained on surface \(\partial \Omega\).
- If \(f \leq 0\) (heat sink), then the maximal temperature will be attained on the surface.

In fact this is a theorem, cf. Sect. 2.7.

Theorem 5.7 .2 (Maximum principle for 2nd-order elliptic BVP).
For \(u \in C^{0}(\bar{\Omega}) \cap H^{1}(\Omega)\) holds the maximum principle
\[
\begin{aligned}
& -\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u) \geq 0 \quad \Longrightarrow \quad \min _{\boldsymbol{x} \in \partial \Omega} u(\boldsymbol{x})=\min _{\boldsymbol{x} \in \Omega} u(\boldsymbol{x}), \\
& -\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u) \leq 0 \quad \Longrightarrow \quad \max _{\boldsymbol{x} \in \partial \Omega} u(\boldsymbol{x})=\max _{\boldsymbol{x} \in \Omega} u(\boldsymbol{x})
\end{aligned}
\]
\[
\Delta u=0
\]

Maximum/minimum on \(\partial \Omega\)


Fig. 174

Proof. (for the case \(-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)=0\) )

Sect. 2.1.3 \(u\) solves quadratic minimization problem
\[
u=\underset{\substack{v \in H^{1}(\Omega) \\ v=\sigma \cap \Omega \\ \operatorname{argmin}}}{ } \int_{\Omega} \kappa(\boldsymbol{x})\|\boldsymbol{\operatorname { g r a d }} v(\boldsymbol{x})\|^{2} \mathrm{~d} \boldsymbol{x} .
\]

If \(u\) had a global maximum at \(\boldsymbol{x}^{*}\) in the interior of \(\Omega\), that is
\[
\exists \delta>0: \quad u\left(\boldsymbol{x}^{*}\right) \geq \max _{\boldsymbol{x} \in \partial \Omega} u(\boldsymbol{x})+\delta
\]

Now "chop off" the maximum and define
\[
w(\boldsymbol{x}):=\min \left\{u(\boldsymbol{x}), u\left(\boldsymbol{x}^{*}\right)-\delta\right\}, \quad \boldsymbol{x} \in \Omega
\]


Fig. 175
Fig. 176
\[
\int_{\Omega} \kappa(\boldsymbol{x})\|\operatorname{grad} w(\boldsymbol{x})\|^{2} \mathrm{~d} \boldsymbol{x} \geq \int_{\Omega} \kappa(\boldsymbol{x})\|\operatorname{grad} v(\boldsymbol{x})\|^{2} \mathrm{~d} \boldsymbol{x} .
\]
also belong to \(H^{1}(\Omega)\). However
\[
\int_{\Omega} \kappa(\boldsymbol{x})\|\boldsymbol{\operatorname { g r a d }} w(\boldsymbol{x})\|^{2} \mathrm{~d} \boldsymbol{x}<\int_{\Omega} \kappa(\boldsymbol{x})\|\boldsymbol{\operatorname { g r a d }} u(\boldsymbol{x})\|^{2} \mathrm{~d} \boldsymbol{x}
\]
which contradicts the definition of \(u\) as the global minmizer of the quadratic energy functional.

Now we consider a finite element Galerkin discretization of (5.7.1) by means of linear Lagrangian finite elements ( \(\rightarrow\) Sect. 3.4), using offset functions supported near \(\partial \Omega\) as explained in Sect. 3.5.5.
\[
\text { finite element Galerkin solution } u_{N} \in \mathcal{S}_{1}^{0}(\mathcal{M}) \subset C^{0}(\bar{\Omega})
\]

Issue: does \(u_{N}\) satisfy a maximum principle, that is, can we conclude
\[
\begin{align*}
f \geq 0 & \Longrightarrow \quad \min _{\boldsymbol{x} \in \partial \Omega} u_{N}(\boldsymbol{x})=\min _{\boldsymbol{x} \in \Omega} u_{N}(\boldsymbol{x}) \\
f \leq 0 & \Longrightarrow \quad \max _{\boldsymbol{x} \in \partial \Omega} u_{N}(\boldsymbol{x})=\max _{\boldsymbol{x} \in \Omega} u_{N}(\boldsymbol{x}) ? \tag{5.7.3}
\end{align*}
\]

Example 5.7.4 (Maximum principle for finite difference discretization).

Recall from Sect. 4.1: finite difference discretization of
\[
-\Delta u=0 \quad \text { in } \Omega:=] 0,1\left[^{2} \quad, \quad u=g \quad \text { on } \partial \Omega\right.
\]
on an \(M \times M\) tensor product mesh
\[
\mathcal{M}:=\{[(i-1) h, i h] \times[(j-1) h, j h], 1 \leq i, j \leq M\}, \quad M \in \mathbb{N}
\]

Unknowns in the finite difference method: \(\mu_{i j} \approx u\left((i h, j h)^{T}\right), 1 \leq i, j \leq M-1\)

Unknowns are solutions of a linear system of equations, see (4.1.1)
\[
\begin{equation*}
\frac{1}{h^{2}}\left(4 \mu_{i, j}-\mu_{i-1, j}-\mu_{i+1, j}-\mu_{i, j-1}-\mu_{i, j+1}\right)=0, \quad 1 \leq i, j \leq M-1 \tag{5.7.5}
\end{equation*}
\]
where values corresponding to points on the boundary are gleaned from \(g\) :
\[
\mu_{0, j}:=g(0, h j), \quad \mu_{M, j}:=g(1, h j), \quad \mu_{i, 0}:=g(h i, 0), \quad \mu_{i, M}:=g(h i, 1), \quad 1 \leq i, j<M
\]


The finite difference solution \(\left(\mu_{i, j}\right)_{1 \leq i, j<M}\) will attain its maximal value somewhere:
\[
\exists n, m \in\{1, \ldots, M-1\}: \quad \mu_{n, m}=\mu_{\max }:=\max _{0 \leq i, j \leq M} \mu_{i, j} .
\]

Assume: \(\quad(n h, m h)^{T}\) in the interior \(\Leftrightarrow 1 \leq n, m<M\)

Be aware of the following two facts:
\[
\begin{align*}
& \mu_{n-1, m}, \mu_{n+1, m}, \mu_{n, m-1}, \mu_{n, m+1} \leq \mu_{n, m} \\
& \mu_{n, m}=\frac{1}{4}\left(\mu_{n-1, m}+\mu_{n+1, m}+\mu_{n, m-1}+\mu_{n, m+1}\right) \quad \text { (average!). }  \tag{5.7.6}\\
& \Downarrow \leftarrow \text { "averaging argument" }  \tag{5.7.7}\\
& \quad \mu_{n-1, m}=\mu_{n+1, m}=\mu_{n, m-1}=\mu_{n, m+1}=\mu_{n, m}! \tag{5.7.8}
\end{align*}
\]

The same argument can now target the neighboring grid points \(((n-1) h, m h)^{T},((n+1) h, m h)^{T}\), \((n h,(m-1) h)^{T},(n h,(m+1) h)^{T}\). By induction we find:
\[
\mu_{i, j}=\mu_{\max } \quad \forall 0 \leq i, j \leq M
\]
that is, the finite difference solution has to be constant!

The finite difference solution can attain its maximum in the interior only in the case of constant boundary data \(g\) !

Maximum principle satisfied for \(f=0\) !

Now we try to generalize the considerations of the previous example to the discretization by means of linear Lagrangian finite elements on a triangular mesh (of a polygonal domain \(\Omega \subset \mathbb{R}^{2}\) ) see Sect. 3.2.
\[
\widetilde{\mathbf{A}} \in \mathbb{R}^{M, M} \hat{=} \mathcal{S}_{1}^{0}(\mathcal{M}) \text {-Galerkin matrix for a from (5.7.1) } \quad(M:=\sharp \mathcal{V}(\mathcal{M}))
\]

Row of this matrix connects all values \(\mu_{j}=u_{N}\left(\mathrm{x}^{j}\right)\) of Galerkin solution \(u_{N} \in \mathcal{S}_{1}^{0}(\mathcal{M})\) according to
\[
(\widetilde{\mathbf{A}})_{i i} \mu_{i}+\sum_{j \neq i}(\widetilde{\mathbf{A}})_{i j} \mu_{j}=(\overrightarrow{\boldsymbol{\varphi}})_{i}, \quad \mathbf{x}^{i} \text { interior node }
\]
where \(\mu_{j}:=g\left(\boldsymbol{x}^{j}\right)\) for \(\boldsymbol{x}^{j} \in \partial \Omega\).

The above averaging argument from Ex. 5.7 .4 carries over, if the entries of \(\widetilde{\mathbf{A}}\) satisfy the following conditions:
\[
\begin{equation*}
(\widetilde{\mathbf{A}})_{i i}>0 \quad \text { (positive diagonal) }, \tag{5.7.9}
\end{equation*}
\]
\[
\begin{equation*}
(\widetilde{\mathbf{A}})_{i j} \leq 0 \quad \text { for } j \neq i \quad \text { (non-positive off-diagonal entries) } \tag{5.7.10}
\end{equation*}
\]
- \(\quad \sum(\widetilde{\mathbf{A}})_{i j}=0\), if \(\boldsymbol{x}^{i}\) is interior node.
(Recall [14, Def. [2.7.3]: matrix \(\widetilde{\mathbf{A}}\) satisfying (5.7.9)-(5.7.11) is diagonally dominant.)
averaging argument \(>u_{N}\left(\boldsymbol{x}^{i}\right)=\max _{\boldsymbol{y} \in \mathcal{V}(\mathcal{M})} u_{N}(\boldsymbol{y})\) can only hold for an interior node \(\boldsymbol{x}^{i}\),
\[
\text { if } \mu_{N}=\text { const. }
\]

Since \(u_{N} \in \mathcal{S}_{1}^{0}(\mathcal{M})\) attains its extremal values at nodes of the mesh, the maximum principles holds for it in the case \(f=0\) provided that (5.7.9)-(5.7.11) are satisfied.

More general case \(f \leq 0\) :
\[
\quad(\overrightarrow{\boldsymbol{\varphi}})_{i}=\int_{\Omega} f(\boldsymbol{x}) b_{N}^{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \leq 0, \quad \text { since } b_{N}^{i} \geq 0 .
\]

Then the averaging argument again rules out the existence of an interior maximum for an nonconstant solution. The case \(f \geq 0\) follows similarly.

When will (5.7.9)-(5.7.11) hold for \(\mathcal{S}_{1}^{0}(\mathcal{M})\)-Galerkin matrix?

First consider
\[
\kappa \equiv 1, \quad \leftrightarrow \quad-\Delta u=f
\]
(The linear finite element discretization of this BVP was scrutinized in Sect. 3.2)

From formula (3.2.9) for element matrix \& assembly, see Fig. 72:
\[
\begin{gathered}
(\widetilde{\mathbf{A}})_{i j}=-\cot \alpha-\cot \beta=-\frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta} . \\
\Downarrow \\
(\widetilde{\mathbf{A}})_{i j} \leq 0 \Leftrightarrow \alpha+\beta<\pi
\end{gathered}
\]


Moreover
\[
\sum_{x \in \mathcal{V}(\mathcal{M})} b_{N}^{x} \equiv 1 \Rightarrow \sum_{j}(\widetilde{\mathbf{A}})_{i j}=0 \quad(\leftrightarrow(5.7 .11))
\]

The condition \((5.7 .9) \leftrightarrow(\widetilde{\mathbf{A}})_{i i}>0\) is straightforward.

Theorem 5.7.12 (Maximum principle for linear FE solution of Poisson equation). The linear finite element solution of
\[
-\Delta u=0 \quad \text { in } \Omega \subset \mathbb{R}^{2} \quad, \quad u=g \quad \text { on } \partial \Omega
\]
on a triangular mesh \(\mathcal{M}\) satisfies the maximumprinciple (5.7.3), if \(\mathcal{M}\) is a Delaunay triangulation.

Remark 5.7.13 (Maximum principle for linear FE for 2nd-order elliptic BVPs).

For \(\mathcal{S}_{1}^{0}(\mathcal{M})\)-Galerkin discretization of (5.7.1) on triangular mesh, the conditions (5.7.9)-(5.7.11) are fulfilled,
if all angles of triangles of \(\mathcal{M} \leq \frac{\pi}{2}\).

Remark 5.7.14 (Maximum principle for higher order Lagrangian FEM).

Even when using \(p\)-degree Lagrangian finite elements with nodal basis functions associated with interpolation nodes, see Sect. 3.4.1, the discrete maximum principle will fail to hold on any mesh for \(p>1\).

\section*{2nd-Order Linear Evolution Problems}

Now we study Scalar linear partial differential equations for which one coordinate direction is special and identified with time and denoted by the independent variable \(t\). The other coordinates are regarded as spatial coordinates and designated by \(\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)^{T}\).
solution will be a "function of time and space": \(u=u(\boldsymbol{x}, t)\)

The domain for such PDEs will have tensor product structure (tensor product of spatial domain and a bounded time interval):

Computational domain:
\[
\widetilde{\Omega}:=\Omega \times] 0, T\left[\subset \mathbb{R}^{d+1} .\right.
\]
space-time cylinder
\(\Omega \subset \mathbb{R}^{d} \hat{=}\) spatial domain (satisfying assumptions of Sect. 2.1.1)
\(T>0 \hat{=}\) final time
On \(\Omega \times\{0\} \rightarrow\) initial conditions, on \(\partial \Omega \times] 0, T[\rightarrow\) (spatial) boundary conditions.


PDE for \(u(\boldsymbol{x}, t)\)
\(+\)
initial conditions
boundary conditions

Note: No boundary conditions on \(\Omega \times\{T\}\) ("final conditions") are prescribed: time is supposed to have a "direction" that governs the flow of information in the evolution problem.
evolution problems (on bounded spatial domains) are also known as

> initial-boundary value problems (IBVP).

Remark 6.0.1 (Initial time).
Why do we always pick initial time \(t=0\) ?

The modelled physical systems will usually be time-invariant, so that we are free to shift time. Remember the analoguous situation with autonomous ODE, see [14, Sect. [11.1].

\subsection*{6.1 Parabolic initial-boundary value problems}

\subsection*{6.1.1 Heat equation}

Sect. 2.5 treated stationary heat conduction: no change of temperature with time (temporal equilibrium)

Now we consider the evolution of a temperature distribution \(u=u(\boldsymbol{x}, t)\).
```

$\Omega \subset \mathbb{R}^{d} \quad:$ space occupied by solid body (bounded spatial computational domain),
$\kappa=\kappa(\boldsymbol{x}) \quad:$ (spatially varying) heat conductivity $\left([\kappa]=\frac{W}{K m}\right)$,
$T>0 \quad:$ final time for "observation period" $[0, T]$,
$u_{0}: \Omega \mapsto \mathbb{R} \quad$: initial temperature distribution in Ω,
$g: \partial \Omega \times[0, T] \mapsto \mathbb{R}:$ surface temperature, varying in space and time: $g=g(\boldsymbol{x}, t)$,
$f: \Omega \times[0, T] \mapsto \mathbb{R} \quad:$ time-dependent heat source/sink $\left([f]=\frac{\mathrm{W}}{\mathrm{m}^{3}}\right): f=f(\boldsymbol{x}, t)$.

```
Goal: derive PDE governing transient heat conduction.
\[
\begin{equation*}
\underbrace{\frac{d}{d t} \int_{V} \rho u \mathrm{~d} \boldsymbol{x}+\int_{\partial V} \mathbf{j} \cdot \boldsymbol{n} \mathrm{~d} S=\int_{V} f \mathrm{~d} \boldsymbol{x}}_{\text {ored in } V} \underbrace{\text { for all "control volumes" } V}_{\text {power flux through } \partial V} \tag{6.1.1}
\end{equation*}
\]
\(\rho=\rho(\mathbf{x})\) : (spatially varying) heat capacity \(\left([\rho]=\mathrm{JK}^{-1}\right)\), uniformly positive, cf. (2.5.4).

As in Sect. [2.5, now apply Gauss' Theorem Thm. 2.4.5 to the power flux integral in (6.1.1). This converts the surface integral to a volume integral over \(\operatorname{div} \mathbf{j}\) and we get
\[
\frac{d}{d t} \int_{V} \rho u \mathrm{~d} \boldsymbol{x}+\int_{V} \operatorname{div} \mathbf{j} \mathrm{~d} \boldsymbol{x}=\int_{V} f \mathrm{~d} \boldsymbol{x} \quad \text { for all "control volumes" } V
\]

Now appeal to another version of the fundamental lemma of the calculus of variations, see Lemma 2.4.10, this time involving piecewise constant test functions.

Local form of energy balance law (Heat equation)
\[
\begin{equation*}
\frac{\partial}{\partial t}(\rho u)(\boldsymbol{x}, t)+\left(\operatorname{div}_{\boldsymbol{x}} \mathbf{j}\right)(\boldsymbol{x}, t)=f(\boldsymbol{x}, t) \text { in } \widetilde{\Omega} . \tag{6.1.2}
\end{equation*}
\]

The heat flux is linked to temperature variations by Fourier's law:
\[
\begin{equation*}
\mathbf{j}(\boldsymbol{x})=-\kappa(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}), \quad \mathbf{x} \in \Omega \tag{2.5.3}
\end{equation*}
\]

From here we let all differential operators like grad and div act on the spatial independent variable \(\boldsymbol{x}\). As earlier, the independent variables \(\boldsymbol{x}\) and \(t\) will be omitted frequently. Watch out!

Now, plug (2.5.3) into (6.1.2).
\[
\begin{equation*}
\left.\frac{\partial}{\partial t}(\rho u)-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u)=f \quad \text { in } \quad \widetilde{\Omega}:=\Omega \times\right] 0, T[. \tag{6.1.3}
\end{equation*}
\]
+ Dirichlet boundary conditions (fixed surface temperatur) on \(\partial \Omega \times] 0, T[\) :
\[
\begin{equation*}
u(\boldsymbol{x}, t)=g(\boldsymbol{x}, t) \quad \text { for } \quad(\boldsymbol{x}, t) \in \partial \Omega \times] 0, T[ \tag{6.1.4}
\end{equation*}
\]
+ initial conditions for \(t=0\) :
\[
\begin{equation*}
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \text { for all } \boldsymbol{x} \in \Omega . \tag{6.1.5}
\end{equation*}
\]

Terminology: \((6.1 .2) \&(6.1 .4) \&(6.1 .5)\) is a specimen of a
2nd-order parabolic initial-boundary value problem

Remark 6.1.6 (Compatible boundary and initial data).

Natural regularity requirements for Dirichlet data \(g\) :
\(g\) continuous in time and space

Natural compatibility requirement at initial time and \(u_{0} \in C^{0}(\bar{\Omega})\)
\[
g(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \quad \forall \boldsymbol{x} \in \partial \Omega
\]

Remark 6.1.7 (Boundary conditions for 2nd-order parabolic IBVPs).

Physical intuition for transient heat conduction:
On \(\partial \Omega] 0, T\) [ we can impose any of the boundary conditions discussed in Sect. [2.6:
- Dirichlet boundary conditions \(u(\boldsymbol{x}, t)=g(\boldsymbol{x}, t)\), see (6.1.4) (fixed surface temperature),
- Neumann boundary conditions \(\mathbf{j}(\boldsymbol{x}, t) \cdot \boldsymbol{n}=-h(\boldsymbol{x}, t)\) (fixed heat flux through surface),
- radiation boundary conditions \(\mathbf{j}(\boldsymbol{x}, t) \cdot \boldsymbol{n}=\Psi(u(\boldsymbol{x}, t))\),
and any combination of these as discussed in Ex. 2.6.7, yet, only one of them at any part of \(\partial \Omega \times] 0, T[\), see Rem. [2.6.6.

\subsection*{6.1.2 Spatial variational formulation}

Now we study the linear 2nd-order parabolic initial-boundary value problem with pure Dirichlet boundary conditions, introduced in the preceding section:
\[
\begin{align*}
\frac{d}{d t}(\rho u)-\operatorname{div}(\kappa(\boldsymbol{x}) \operatorname{grad} u) & =f \text { in } \widetilde{\Omega}:=\Omega \times] 0, T[,  \tag{6.1.3}\\
u(\boldsymbol{x}, t) & =g(\boldsymbol{x}, t) \text { for } \quad(\boldsymbol{x}, t) \in \partial \Omega \times] 0, T[,  \tag{6.1.4}\\
u(\boldsymbol{x}, 0) & =u_{0}(\boldsymbol{x}) \text { for all } \boldsymbol{x} \in \Omega \tag{6.1.5}
\end{align*}
\]

Assume:
Homogeneous Dirichlet boundary conditions \(g=0\)

The general case can be reduced to this by using the offset function trick, see Sect. 3.5.5, and solve the parabolic initial-boundary value problem for \(w(\boldsymbol{x}, t):=u(\boldsymbol{x}, t)-\widetilde{g}(\boldsymbol{x}, t)\), where \(\widetilde{g}(\cdot, t)\) is an extension of the Dirichlet data \(g\) to \(\widetilde{\Omega}\). Then \(w\) will satisfy homogeneous Dirichlet boundary conditions and solve an evolution equation with a modified source function \(\widetilde{f}(\boldsymbol{x}, t)\).

Now we pursue the formal derivation of the spatial variational formulation of (6.1.3)-(6.1.4).

The steps completely mirror those discussed in Sect. 2.8

Note: test function does not depend on time: \(\quad v=v(\boldsymbol{x})\) !
STEP 2 :
integrate over domain \(\Omega\)

STEP 3: perform integration by parts in space
(by using Green's first formula, Thm. 2.4.7)

STEP 4: [optional] incorporate boundary conditions into boundary terms

For the concrete PDE (6.1.3) and boundary conditions (6.1.4) refer to Ex. [2.8.1) for more general boundary conditions to Ex. 2.8.5.

Spatial variational form of (6.1.3)-(6.1.4): seek \(t \in] 0, T\left[\mapsto u(t) \in H_{0}^{1}(\Omega)\right.\)
\[
\begin{equation*}
\int_{\Omega} \rho(\boldsymbol{x}) \dot{u}(t) v \mathrm{~d} \boldsymbol{x}+\int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u(t) \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f(\boldsymbol{x}, t) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega) \tag{6.1.9}
\end{equation*}
\]
\[
\begin{equation*}
u(0)=u_{0} \in H_{0}^{1}(\Omega) \tag{6.1.8}
\end{equation*}
\]

Be aware: \(\quad u(t) \hat{=}\) function space \(\left(H_{0}^{1}(\Omega)\right.\)-)valued function on \(] 0, T[\).
Also note that grad acts on the spatial independent variables that are suppressed in the notation \(u(t)\).

Notation: \(\quad \dot{u}(t)=\frac{\partial u}{\partial t}(t) \hat{=}\) (partial) derivative w.r.t. time.

Shorthand notation (with obvious correspondences):
\[
t \in] 0, T\left[\mapsto u(t) \in V_{0}: \quad\left\{\begin{array}{l}
\mathrm{m}(i(t), v)+\mathrm{a}(u(t), v)=\ell(t)(v) \quad \forall v \in V_{0},  \tag{6.1.10}\\
u(0)=u_{0} \in V_{0} .
\end{array}\right.\right.
\]

Again, here \(\ell(t) \hat{=}\) linear form valued function on \(] 0, T[\).

Concretely:
\[
\begin{aligned}
\mathrm{m}(u, v) & :=\int_{\Omega} \rho(\boldsymbol{x}) \dot{u}(t) v \mathrm{~d} \boldsymbol{x}, \quad u, v \in H_{0}^{1}(\Omega), \\
\mathrm{a}(u, v) & :=\int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u(t) \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}, \quad u, v \in H_{0}^{1}(\Omega), \\
\ell(t)(v) & :=\int_{\Omega} f(\boldsymbol{x}, t) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad v \in H_{0}^{1}(\Omega) .
\end{aligned}
\]

Note that both m and a are symmetric, positive definite bilinear forms ( \(\rightarrow\) Def. [2.1.22).

Equivalent formulation, since the bilinear formm does not depend on time:
\[
t \in] 0, T\left[\mapsto u(t) \in V_{0}: \quad\left\{\begin{array}{l}
\frac{d}{d t} \mathrm{~m}(u(t), v)+\mathrm{a}(u(t), v)=\ell(t)(v) \quad \forall v \in V_{0},  \tag{6.1.11}\\
u(0)=u_{0} \in V_{0} .
\end{array}\right.\right.
\]

Now we are concerned with the stability of parabolic evolution problems: We investigate whether \(\|u\|_{H^{1}(\Omega)}\) stays bounded for all times in the case \(f \equiv 0\).

For the sake of simplicity:
\[
\text { consider } \rho \equiv 1 \text { and } \kappa \equiv 1
\]
(General case is not more difficult, because both \(\rho\) and \(\kappa\) are bounded and uniformly positive, see (2.5.4). )

By the first Poincaré-Friedrichs inequality Thm. 2.2.16
\[
\begin{equation*}
\exists \gamma>0: \quad|v|_{H^{1}(\Omega)}^{2} \geq \gamma\|v\|_{L^{2}(\Omega)}^{2} \quad \forall v \in H_{0}^{1}(\Omega) \tag{6.1.12}
\end{equation*}
\]

In fact, Thm. 2.2.16 reveals \(\gamma=\operatorname{diam}(\Omega)^{-2}\).

Remark 6.1.13 (Differentiating bilinear forms with time-dependent arguments).

Consider (temporally) smooth \(u:[0, T] \mapsto V_{0}, v:[0, T] \mapsto V_{0}\) and a symmetric bilinear form \(\mathrm{b}: V_{0} \times V_{0} \mapsto \mathbb{R}\).

What is \(\frac{d}{d t} \mathbf{b}(u(t), v(t))\) ?

Formal Taylor expansion:
\[
\begin{aligned}
& \mathrm{b}(u(t+\tau), v(t+\tau))=\mathrm{b}\left(u(t)+\dot{u}(t) \tau+O\left(\tau^{2}\right), v(t)+\dot{v}(t) \tau+O\left(\tau^{2}\right)\right) \\
& =\mathrm{b}(u(t), v(t))+\tau(\mathrm{b}(\dot{u}(t), v(t))+\mathrm{b}(u(t), \dot{v}(t)))+O\left(\tau^{2}\right) . \\
& \\
& \quad \lim _{\tau \rightarrow 0} \frac{\mathrm{~b}(u(t+\tau), v(t+\tau))-\mathrm{b}(u(t), v(t))}{\tau}=\mathrm{b}(\dot{u}(t), v(t))+\mathrm{b}(u(t), \dot{v}(t)) .
\end{aligned}
\]

This is a general product rule, see [14, Eq. 3.4.3].

Lemma 6.1.14 (Decay of solutions of parabolic evolutions).
For \(\rho \equiv 1, \kappa \equiv 1\), and \(f \equiv 0\) the solution \(u(t)\) of (6.1.8) satisfies
\[
\left.\|u(t)\|_{L^{2}(\Omega)} \leq e^{-\gamma t}\left\|u_{0}\right\|_{L^{2}(\Omega)} \quad, \quad|u(t)|_{H^{1}(\Omega)} \leq e^{-\gamma t}\left|u_{0}\right|_{H^{1}(\Omega)} \quad \forall t \in\right] 0, T[
\]

Proof. Multiply the solution of the parabolic IBVP with an exponential weight function:
\[
\begin{equation*}
w(t):=\exp (\gamma t) u(t) \in H_{0}^{1}(\Omega) \Rightarrow \dot{w}:=\frac{d w}{d t}(t)=\gamma w(t)+\exp (\gamma t) \frac{d u}{d t}(t), \tag{6.1.15}
\end{equation*}
\]
solves the parabolic IBVP
\[
\begin{align*}
\mathrm{m}(\dot{w}, v)+\widetilde{\mathrm{a}}(w, v) & =0 \quad \forall v \in V,  \tag{6.1.16}\\
w(0) & =u_{0},
\end{align*}
\]
with \(\widetilde{\mathrm{a}}(w, v)=\mathrm{a}(w, v)-\gamma \mathrm{m}(w, v), \gamma\) from (6.1.12). To see this, use that \(u(t)\) solves (6.1.11) with \(f \equiv 0\) (elementary calculation).

Note:
\[
\text { (6.1.12) } \Rightarrow \widetilde{\mathrm{a}}(v, v) \geq 0 \quad \forall v \in V
\]

Exponential decay of \(\|\cdot\|_{L^{2}(\Omega)}\)-norm of solution:
\[
\begin{equation*}
\frac{d}{d t} \frac{1}{2}\|w\|_{L^{2}(\Omega)}^{2}=\frac{d}{d t} \frac{1}{2} \mathrm{~m}(w, w)=\mathrm{m}(\dot{w}, w)=-\widetilde{\mathbf{a}}(w, w) \leq 0 \tag{6.1.17}
\end{equation*}
\]

This confirms that \(t \mapsto\|w\|_{L^{2}(\Omega)}(t)\) is a decreasing function, which involves
\[
\text { (6.1.17) } \Rightarrow\|w(t)\|_{L^{2}(\Omega)} \leq\|w(0)\|_{L^{2}(\Omega)}
\]
and the first assertion of the Lemma is evident. Next, we verify the exponential decay of \(|\cdot|_{H^{1}(\Omega)}\)-norm of solution by a similar trick:
\[
\begin{gathered}
\frac{d}{d t}\|w\|_{\widetilde{\mathrm{a}}}^{2}=\widetilde{\mathrm{a}}\left(\frac{d}{d t} w, w\right)=-\mathrm{m}\left(\frac{d}{d t} w, \frac{d}{d t} w\right) \leq 0 \Rightarrow\|w(t)\|_{\widetilde{\mathrm{a}}} \leq\|w(0)\|_{\widetilde{\mathrm{a}}} \\
\mathrm{D} \\
|w(t)|_{H^{1}(\Omega)}^{2} \leq|w(0)|_{H^{1}(\Omega)}^{2}-\gamma(\underbrace{\|w(0)\|_{L^{2}(\Omega)}^{2}-\|w(t)\|_{L^{2}(\Omega)}^{2}}_{\geq 0 \text { by (6.1.17) }})
\end{gathered}
\]

Exponential decrease of energy during parabolic evolution without excitation ("Parabolic evolutions dissipate energy")

E MATLAB animation heatevl ()

\subsection*{6.1.3 Method of lines}

Idea: Apply Galerkin discretization \((\rightarrow\) Sect. 3.1) to abstract linear parabolic variational problem (6.1.11).
\[
t \in] 0, T\left[\mapsto u(t) \in V_{0}: \quad\left\{\begin{array}{l}
\mathrm{m}(\dot{u}(t), v)+\mathrm{a}(u(t), v)=\ell(t)(v) \quad \forall v \in V_{0}  \tag{6.1.11}\\
u(0)=u_{0} \in V_{0}
\end{array}\right.\right.
\]

1st step: replace \(V_{0}\) with a finite dimensional subspace \(V_{0, N}, N:=\operatorname{dim} V_{0, N}<\infty\)
- Discrete parabolic evolution problem
\[
t \in] 0, T\left[\mapsto u(t) \in V_{0, N}: \quad\left\{\begin{array}{l}
\mathrm{m}\left(\dot{u}_{N}(t), v_{N}\right)+\mathrm{a}\left(u_{N}(t), v_{N}\right)=\ell(t)\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N},  \tag{6.1.18}\\
u_{N}(0)=\text { projection/interpolant of } u_{0} \text { in } V_{0, N} .
\end{array}\right.\right.
\]

2nd step: introducce (ordered) basis \(\mathfrak{B}_{N}:=\left\{b_{N}^{1}, \ldots, b_{N}^{N}\right\}\) of \(V_{0, N}\)
\[
\text { (6.1.18) } \Rightarrow\left\{\begin{array}{l}
\mathbf{M}\left\{\frac{d}{d t} \overrightarrow{\boldsymbol{\mu}}(t)\right\}+\mathbf{A} \overrightarrow{\boldsymbol{\mu}}(t)=\overrightarrow{\boldsymbol{\varphi}}(t) \quad \text { for } 0<t<T  \tag{6.1.19}\\
\overrightarrow{\boldsymbol{\mu}}(0)=\overrightarrow{\boldsymbol{\mu}}_{0}
\end{array}\right.
\]
\(\triangleright \quad\) s.p.d. stiffness matrix \(\mathbf{A} \in \mathbb{R}^{N, N},(\mathbf{A})_{i j}:=\mathrm{a}\left(b_{N}^{j}, b_{N}^{i}\right)\) (independent of time),
\(\triangleright \quad\) s.p.d. mass matrix \(\mathbf{M} \in \mathbb{R}^{N, N},(\mathbf{M})_{i j}:=\mathrm{m}\left(b_{N}^{j}, b_{N}^{i}\right)\) (independent of time), \(\triangleright\) source (load) vector \(\overrightarrow{\boldsymbol{\varphi}}(t) \in \mathbb{R}^{N},(\overrightarrow{\boldsymbol{\varphi}}(t))_{i}:=\ell(t)\left(b_{N}^{i}\right)\) (time-dependent),
\(\triangleright \quad \overrightarrow{\boldsymbol{\mu}}_{0} \hat{=}\) coefficient vector of a projection of \(u_{0}\) onto \(V_{0, N}\).

For the concrete linear parabolic evolution problem (6.1.8)-(6.1.9) and spatial finite element discretization based on a finite element trial/test space \(V_{0, N} \subset H^{1}(\Omega)\) we can compute
- the mass matrix \(\mathbf{M}\) as the Galerkin matrix for the bilinear form \(\quad(u, v) \mapsto \int_{\Omega} \rho(\boldsymbol{x}) u v \mathrm{~d} \boldsymbol{x}\), \(u, v \in L^{2}(\Omega)\),
- the stiffness matrix \(\mathbf{A}\) as Galerkin matrix arising from the bilinear form \(\quad(u, v) \mapsto \int_{\Omega} \kappa(\boldsymbol{x}) \operatorname{grad} u\). \(\boldsymbol{\operatorname { g r a d }} v \mathrm{~d} \boldsymbol{x}, u, v \in H^{1}(\Omega)\).

The calculations are explained in Sects. 3.5 .3 and 3.5 .4 and may involve numerical quadrature.

Conversion (6.1.11) \(\rightarrow\) (6.1.19) through Galerkin discretization in space only is known as method of lines.
(6.1.19) \(\hat{=}\)

\section*{A semi-discrete evolution problem}

Discretized in space \(\longleftrightarrow\) but still continuous in time

Remark 6.1.20 (Spatial discretization options).

Beside the Galerkin approach any other method for spatial discretization of 2nd-order elliptic BVPs can be used in the context of the method of lines: the matrices A, M may also be generated by finite differences ( \(\rightarrow\) Sect. 4.1), finite volume methods ( \(\rightarrow\) Sect. 4.2), or collocation methods ( \(\rightarrow\) Sect. (1.5.2).

For implementation we need a fully discrete evolution problem. This requires additional discretization in time:
semi-discrete evolution problem (6.1.19) + timestepping \(\square\) fully discrete evolution problem Benefit of method of lines: we can apply already known integrators for initial value problems for ODEs to (6.1.19).

First, refresh central concepts from numerical integration of initial value problems for ODEs, see [14, Ch. 11], [14, Ch. 12]:
- single step methods of order \(p\), see [14, Def. 11.2.1] and [14, Thm. 11.3],
- explicit and implicit Runge-Kutta single step methods, see [14, Sect. [11.4], [14, Sect. ??], encoded by Butcher scheme [14, Eq. [11.4.5], [14, Eq [12.3.3].
- the notion of a stiff problem \((\rightarrow\) [14, Notion [12.2.1] \(]\),
- the definition of the stability function of a single step method, see [14, Thm. [12.3.2],
- the concept of L-stability [14, Def [12.3.3] and how to verify it for Runge-Kutta methods.

Recall: single step methods \((\rightarrow\) [14, Def. [11.2.1] \()\)
- are based on a temporal mesh \(\left\{0=t_{0}<t_{1}<\ldots<t_{M-1}<t_{M}:=T\right\}\) (with local timestep \(\left.\operatorname{size} \tau_{j}=t_{j}-t_{j-1}\right)\),
- compute sequence \(\left(\overrightarrow{\boldsymbol{\mu}}^{(j)}\right)_{j=0}^{M}\) of approximations \(\overrightarrow{\boldsymbol{\mu}}^{(j)} \approx \boldsymbol{\mu}\left(t_{j}\right)\) to the solution of (6.1.19) at the nodes of the temporal mesh according to
\[
\overrightarrow{\boldsymbol{\mu}}^{(j)}:=\boldsymbol{\Psi}^{t_{j-1}, t_{j}} \overrightarrow{\boldsymbol{\mu}}^{(j-1)}:=\boldsymbol{\Psi}\left(t_{j-1}, t_{j}, \overrightarrow{\boldsymbol{\mu}}^{(j-1)}\right), \quad j=1, \ldots, M
\]
where \(\Psi\) is the discrete evolution defining the single step method, see [14, Def. [11.2.1].

We target the initial value problem
\[
\begin{align*}
& \mathbf{M}\left\{\frac{d}{d t} \overrightarrow{\boldsymbol{\mu}}(t)\right\}+\mathbf{A} \overrightarrow{\boldsymbol{\mu}}(t)=\overrightarrow{\boldsymbol{\varphi}}(t) \quad \text { for } 0<t<T,  \tag{6.1.19}\\
& \overrightarrow{\boldsymbol{\mu}}(0)=\overrightarrow{\boldsymbol{\mu}}_{0} .
\end{align*}
\]

Explicit Euler method [14, Eq. 11.2.1]: replace \(\frac{d}{d t}\) in (6.1.19) with forward difference quotient, see [14, Rem. [11.2.2]:
\[
\begin{equation*}
(6.1 .19)>\mathbf{M} \overrightarrow{\boldsymbol{\mu}}^{(j)}=\mathbf{M} \boldsymbol{\mu}^{(\overrightarrow{j-1})}-\tau_{j} \mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j-1)}+\overrightarrow{\boldsymbol{\varphi}}\left(t_{j-1}\right), \quad j=1, \ldots, M-1 . \tag{6.1.22}
\end{equation*}
\]

Implicit Euler method [14, Eq. [11.2.4]: replace \(\frac{d}{d t}\) in (6.1.19) with backward difference quotient
\[
\begin{equation*}
(6.1 .19) \searrow \mathbf{M} \overrightarrow{\boldsymbol{\mu}}^{(j)}=\mathbf{M} \boldsymbol{\mu}\left(\overrightarrow{j-1)}-\tau_{j} \mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j)}+\overrightarrow{\boldsymbol{\varphi}}\left(t_{j}\right), \quad j=1, \ldots, M-1\right. \tag{6.1.23}
\end{equation*}
\]

Note that both (6.1.22) and (6.1.23) require the solution of a linear system of equations in each step
(6.1.22): \(\quad \overrightarrow{\boldsymbol{\mu}}^{(j)}=\overrightarrow{\boldsymbol{\mu}}^{(j-1)}+\tau_{j} \mathbf{M}^{-1}\left(\overrightarrow{\boldsymbol{\varphi}}\left(t_{j-1}\right)-\mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j-1)}\right)\),
(6.1.23): \(\quad \overrightarrow{\boldsymbol{\mu}}^{(j)}=\left(\tau_{j} \mathbf{A}+\mathbf{M}\right)^{-1}\left(\mathbf{M} \boldsymbol{\mu}^{(\overrightarrow{j-1})}+\overrightarrow{\boldsymbol{\varphi}}\left(t_{j}\right)\right)\).

Recall [14, Sect. 11.3]: both Euler method are of first order.

Crank-Nicolson method = implicit midpoint rule: replace \(\frac{d}{d t}\) in (6.1.19) with symmetric difference quotient and average right hand side:
\[
\begin{gather*}
\mathbf{M}\left\{\frac{d}{d t} \overrightarrow{\boldsymbol{\mu}}(t)\right\}+\mathbf{A} \overrightarrow{\boldsymbol{\mu}}(t)=\overrightarrow{\boldsymbol{\varphi}}(t) \\
\Downarrow \\
\frac{\overrightarrow{\boldsymbol{\mu}}^{(j)}-\overrightarrow{\boldsymbol{\mu}}^{(j-1)}}{\tau}=-\frac{1}{2} \mathbf{A}\left(\overrightarrow{\boldsymbol{\mu}}^{(j)}+\overrightarrow{\boldsymbol{\mu}}^{(j-1)}\right)+\frac{1}{2}\left(\overrightarrow{\boldsymbol{\varphi}}\left(t_{j}\right)+\overrightarrow{\boldsymbol{\varphi}}\left(t_{j-1}\right)\right) . \tag{6.1.25}
\end{gather*}
\]

This yields a method that is 2 nd-order consistent.

Definition 6.1.26 (General Runge-Kutta method). \(\quad \rightarrow\) [14, Def. [12.3.1]
For coefficients \(b_{i}, a_{i j} \in \mathbb{R}, c_{i}:=\sum_{j=1}^{s} a_{i j}, i, j=1, \ldots, s, s \in \mathbb{N}\), the discrete evolution \(\Psi^{s, t}\) of an \(s\)-stage Runge-Kutta single step method (RK-SSM) for the ODE \(\dot{\mathbf{y}}=\mathbf{f}(t, \mathbf{y})\), is defined by
\[
\mathbf{k}_{i}:=\mathbf{f}\left(t+c_{i} \tau, \mathbf{y}+\tau \sum_{j=1}^{s} a_{i j} \mathbf{k}_{j}\right), \quad i=1, \ldots, s \quad, \quad \boldsymbol{\Psi}^{t, t+\tau} \mathbf{y}:=\mathbf{y}+\tau \sum_{i=1}^{s} b_{i} \mathbf{k}_{i}
\]

The \(\mathbf{k}_{i} \in \mathbb{R}^{d}\) are called increments.

Shorthand notation for \(s\)-stage Runge-Kutta methods: \(\quad\) Butcher scheme \(\rightarrow\) [14, Eq. 12.3.3]
\[
\begin{array}{c|c|ccccc} 
 \tag{6.1.27}\\
\mathbf{c} & \mathfrak{A} \\
\hline \mathbf{b}^{T}
\end{array} \hat{=} \quad \begin{array}{c|cccc}
c_{1} & a_{11} & a_{12} & \ldots & \ldots \\
c_{2} & a_{21} & \ddots & & \\
\vdots & \vdots & & \ddots & a_{2 s} \\
c_{s} & a_{s 1} & \vdots & & \\
\hline & b_{1} & b_{2} & \ldots & \ldots
\end{array} \quad a_{s s} . \quad \mathbf{c}, \mathbf{b} \in \mathbb{R}^{s}, \quad \mathfrak{A} \in \mathbb{R}^{s, s}
\]

Concretely for linear parabolic evolution: application of \(s\)-stage Runge-Kutta method to
\[
\begin{equation*}
\mathbf{M}\left\{\frac{d}{d t} \overrightarrow{\boldsymbol{\mu}}(t)\right\}+\mathbf{A} \overrightarrow{\boldsymbol{\mu}}(t)=\overrightarrow{\boldsymbol{\varphi}}(t) \Leftrightarrow \dot{\overrightarrow{\boldsymbol{\mu}}}=\underbrace{\mathbf{M}^{-1}(\overrightarrow{\boldsymbol{\varphi}}(t)-\mathbf{A} \overrightarrow{\boldsymbol{\mu}}(t))}_{=\mathbf{f}(t, \overrightarrow{\boldsymbol{\mu}})} . \tag{6.1.19}
\end{equation*}
\]
\(\nabla\) Timestepping scheme for (6.1.19): compute \(\overrightarrow{\boldsymbol{\mu}}^{(j+1)}\) from \(\overrightarrow{\boldsymbol{\mu}}^{(j)}\) through
\[
\begin{gather*}
\overrightarrow{\boldsymbol{\kappa}}_{i} \in \mathbb{R}^{N}: \mathbf{M} \overrightarrow{\boldsymbol{\kappa}}_{i}+\sum_{m=1}^{s} \tau a_{i m} \mathbf{A} \overrightarrow{\boldsymbol{\kappa}}_{m}=\vec{\varphi}\left(t_{j}+c_{i} \tau\right)-\mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j)}, \quad i=1, \ldots, s,  \tag{6.1.28}\\
\overrightarrow{\boldsymbol{\mu}}^{(j+1)}=\overrightarrow{\boldsymbol{\mu}}^{(j)}+\tau \sum_{m=1}^{s} \overrightarrow{\boldsymbol{\kappa}}_{m} b_{m} \tag{6.1.29}
\end{gather*}
\]

Note: For an implicit RK-method (6.1.28) is a linear system of equations of size \(N s\).

\subsection*{6.1.4.2 Stability}

Example 6.1.30 (Convergence of Euler timestepping).

Parabolic evolution problem in one spatial dimension (IBVP):
\[
\begin{equation*}
\left.\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad \text { in }[0,1] \times\right] 0,1[ \tag{6.1.31}
\end{equation*}
\]
\[
\begin{gather*}
u(t, 0)=u(t, 1)=0 \quad \text { for } 0 \leq t \leq 1, \quad u(0, x)=\sin (\pi x) \quad \text { for } 0<x<1  \tag{6.1.32}\\
\quad \text { exact solution } \quad u(t, x)=\exp \left(-\pi^{2} t\right) \sin (\pi x) \tag{6.1.33}
\end{gather*}
\]
- Spatial finite element Galerkin discretization by means of linear finite elements ( \(V_{0, N}=\) \(\mathcal{S}_{1,0}^{0}(\mathcal{M})\) ) on equidistant mesh \(\mathcal{M}\) with meshwidth \(h:=\frac{1}{N} \rightarrow\) Sect. 1.5.1.2.
- \(u_{N, 0}:=I_{1} u_{0}\) by linear interpolation on \(\mathcal{M}\), see Sect. 5.3.1.
- Timestepping by explicit and implicit Euler method (6.1.22), (6.1.23) with uniform timestep \(\tau:=\) \(\frac{1}{M}\).

Galerkin matrices, see (1.5.56):


\section*{Code 6.1.34: Euler timestepping for (6.1.31)}
```

function [errex,errimp] = sinevl(N,M,u)
% Solve fully discrete two-point parabolic evolution problem (6.1.31)
% in [0, 1]\times]0,1[. Use both explicit and implicit Euler method for timestepping
% N: number of spatial grid cells
% M: number of timesteps
% u: handle of type @(t,x) to exact solution
if (nargin < 3), u = @(t,x) (exp(-(pi^2)*t).*sin(pi*x)); end %
Exact solution
h = 1/N; tau = 1/M; % Spatial and temporal meshwidth
x = h:h:1-h; % Spatial grid, interior points
% Finite element stiffness and mass matrix
Amat = gallery('tridiag' ,N-1, -1,2,-1)/h;
Mmat = h/6*gallery ('tridiag',N-1,1,4,1);
Xmat = Mmat+tau*Amat;
muO = u(0,x)'; % Discrete initial value
mui = mu0; mue = mu0;

```
```

%Timestepping
erre = 0; erri = 0;
for k=1:M
mue = mue - tau*(Mmat\(Amat*mue)); % explicit Euler step
mui = Xmat\(Mmat*mui);
% implicit Euler step
utk = u(k*tau,x)';
erre = erre + norm(mue-utk)^2;
erri = erri + norm(mui-utk)^2;
end
errex = sqrt(erre*h*tau);
errimp = sqrt(erri*h*tau);

```

Evulation of approximate space-time \(L^{2}\)-norm of the discretization error:
\[
\begin{equation*}
\operatorname{err}^{2}:=h \tau \cdot \sum_{j=1}^{M} \sum_{i=1}^{N-1}\left|u\left(t_{j}, x_{i}\right)-\mu_{i}^{(j)}\right|^{2} \tag{6.1.35}
\end{equation*}
\]

Error norm for explicit Euler timestepping:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(N \backslash M\) & 50 & 100 & 200 & 400 & 800 & 1600 & 3200 \\
\hline 5 & Inf & 0.009479 & 0.006523 & 0.005080 & 0.004366 & 0.004011 & 0.003834 \\
\hline 10 & Inf & Inf & Inf & Inf & 0.001623 & 0.001272 & 0.001097 \\
\hline 20 & Inf & Inf & Inf & Inf & Inf & Inf & 0.000405 \\
\hline 40 & Inf \\
\hline 80 & Inf \\
\hline 160 & Inf \\
\hline 320 & Inf \\
\hline
\end{tabular}

Error norm for implicit Euler timestepping:
\begin{tabular}{l|ccccccc}
\(N \backslash M\) & 50 & 100 & 200 & 400 & 800 & 1600 & 3200 \\
\hline 5 & 0.007025 & 0.001828 & 0.000876 & 0.002257 & 0.002955 & 0.003306 & 0.003482 \\
10 & 0.009641 & 0.004500 & 0.001826 & 0.000461 & 0.000228 & 0.000575 & 0.000749 \\
20 & 0.010303 & 0.005175 & 0.002509 & 0.001149 & 0.000461 & 0.000116 & 0.000058 \\
40 & 0.010469 & 0.005345 & 0.002681 & 0.001321 & 0.000634 & 0.000289 & 0.000116 \\
80 & 0.010511 & 0.005387 & 0.002724 & 0.001364 & 0.000677 & 0.000332 & 0.000159 \\
160 & 0.010521 & 0.005398 & 0.002734 & 0.001375 & 0.000688 & 0.000343 & 0.000170 \\
320 & 0.010524 & 0.005400 & 0.002737 & 0.001378 & 0.000691 & 0.000346 & 0.000172
\end{tabular}

Explicit Euler timestepping: we observe a glaring instability (exponential blow-up) in case of large timestep combined with fine mesh.

Implicit Euler timestepping: no blow-up at any combination of spatial and temporal mesh width.

Example 6.1.36 (ode 45 for discrete parabolic evolution).

Same IBVP and spatial discretization as in Ex. 6.1.30.
Adaptive Runge-Kutta timestepping by MATLAB standard integrator ode45.

Monitored: - Number of timesteps as a function on spatial meshwidth \(h\),
- discrete \(L^{2}\)-error (6.1.35).

Code 6.1.37: ode45 applied semi-discrete (6.1.31)
```

function [Nsteps,err] = peode45(N,tol,u)
% Solving fully discrete two-point parabolic evolution problem (6.1.31)
% in [0,1]\times]0,1[by means of adaptiv MATLAB standard Runge-Kutta integrator.
if (nargin < 3), u = @(t,x) (exp(-(pi^2) *t).*sin(pi*x)); end %
Exact solution
% Finite element stiffness and mass matrix, see Sect. 1.5.1.2
h = 1/N; % spatial meshwidth
Amat = gallery('tridiag' ,N-1, -1,2,-1)/h;
Mmat = h/6*gallery ('tridiag',N-1,1,4,1);
x = h:h:1-h; % Spatial grid, interior points
mu0 = u(0,x)'; % Discrete initial value
fun = @(t,muv) -(Mmat\(Amat*muv)); % right hand side of ODE
opts = odeset('reltol',tol,'abstol',0.01*tol);
[t,mu] = ode45(fun, [0,1],mu0,opts);
Nsteps = length(t);
[T,X] = meshgrid(t,x); err = norm(mu'-u(T,X),'fro');

```


\section*{Observations:}
- ode45: dramatic increase of no. of timesteps for \(h_{\mathcal{M}} \rightarrow 0\) without gain in accuracy.
- Implicit Euler achieves better accuracy with only 100 equidistant timesteps!

This reminds us of the stiff initial value problems studied in [14, Thm. 12.2]:

Notion 6.1.38 (Stiff IVP). \(\quad \rightarrow\) [14, Notion[12.2.1]
An initial value problem for an ODE is called stiff, if stability imposes much tighter timestep constraints on explicit single step methods than the accuracy requirements.

Admittedly, this is a fuzzy notion. Yet, it cannot be fleshed out on the abstract level, but has to be discussed for concrete evolution problem, which is done next.

Let us try to understand, why semi-discrete parabolic evolutions (6.1.19) arising from the method of lines lead to stiff initial value problems.

Technique: Diagonalization, cf. [14, Eq. 12.2.3]
(Recall the concept of a "square root" \(\mathbf{M}^{1 / 2}\) of an s.p.d. matrix \(\mathbf{M}\), see [14, Sect. (4.3])
\(\mathbf{A}, \mathbf{M}\) symmetric positive definite \(\Rightarrow \mathbf{M}^{-1 / 2} \mathbf{A M}^{-1 / 2}\) symmetric positive definite.
[14., Cor.[5.1.7] \(\exists\) orthogonal \(\mathbf{T} \in \mathbb{R}^{N, N}: \quad \mathbf{T}^{\top} \mathbf{M}^{-1 / 2} \mathbf{A} \mathbf{M}^{-1 / 2} \mathbf{T}=\mathbf{D}:=\operatorname{diag}\left(\lambda_{1} \ldots, \lambda_{N}\right)\),
where the \(\lambda_{i}>0\) are generalized eigenvalues for \(\mathbf{A} \overrightarrow{\boldsymbol{\xi}}=\lambda \mathbf{M} \overrightarrow{\boldsymbol{\xi}}>\lambda_{i} \geq \gamma\) for all \(i\) ( \(\gamma\) is the constant introduced in (6.1.12)).

Transformation ("diagonalization") of (6.1.19) based on substitution \(\overrightarrow{\boldsymbol{\eta}}:=\mathrm{T}^{\top} \mathbf{M}^{1 / 2} \vec{\mu}\) :
\[
\begin{equation*}
\text { (6.1.19) } \stackrel{\vec{\eta}:=\mathbf{T}^{\top} \mathbf{M}^{1 / 2} \vec{\mu}}{\Longrightarrow} \frac{d}{d t} \overrightarrow{\boldsymbol{\eta}}(t)+\mathrm{D} \overrightarrow{\boldsymbol{\eta}}=\mathbf{T}^{\top} \mathbf{M}^{-1 / 2} \overrightarrow{\boldsymbol{\varphi}}(t) . \tag{6.1.39}
\end{equation*}
\]
> Since \(\mathbf{D}\) is diagonal, (6.1.39) amounts to \(N\) decoupled scalar ODEs (for eigencomponents \(\eta_{i}\) of \(\vec{\mu}\) ).

Note:
\[
\text { for } \overrightarrow{\boldsymbol{\varphi}} \equiv 0, \lambda>0: \quad \eta_{i}(t)=\exp \left(-\lambda_{i} t\right) \eta_{i}(0) \rightarrow 0 \quad \text { for } t \rightarrow \infty
\]

As in [14, Thm. 12.2.5] this transformation can be applied to the explicit Euler timestepping (6.1.22) (for \(\overrightarrow{\boldsymbol{\varphi}} \equiv 0\), uniform timestep \(\tau>0\) )
\[
\overrightarrow{\boldsymbol{\mu}}^{(j)}=\overrightarrow{\boldsymbol{\mu}}^{(j-1)}-\tau \mathbf{M}^{-1} \mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j-1)} \quad \overrightarrow{\boldsymbol{\eta}}:=\mathbf{T}^{\top} \mathbf{M}^{1 / 2} \overrightarrow{\boldsymbol{\mu}} \quad \overrightarrow{\boldsymbol{\eta}}^{(j)}=\overrightarrow{\boldsymbol{\eta}}^{(j-1)}-\tau \mathbf{D} \overrightarrow{\boldsymbol{\mu}}^{(j-1)}
\]
that is, the decoupling of eigencomponents carries over to the explicit Euler method: for \(i=1, \ldots, N\)
\[
\begin{gather*}
\eta_{i}^{(j)}=\eta_{i}^{(j-1)}-\tau \lambda_{i} \eta^{(j-1)} \Rightarrow \eta_{i}^{(j)}=\left(1-\tau \lambda_{i}\right)^{j} \eta_{i}^{(0)}  \tag{6.1.40}\\
\left|1-\tau \lambda_{i}\right|<1 \Leftrightarrow \lim _{j \rightarrow \infty} \eta_{i}^{(j)}=0 . \tag{6.1.41}
\end{gather*}
\]

The condition \(\left|1-\tau \lambda_{i}\right|<1\) enforces a
\[
\begin{equation*}
\text { timestep size constraint: } \quad \tau<\frac{2}{\lambda_{i}} \tag{6.1.42}
\end{equation*}
\]
in order to achieve the qualitatively correct behavior \(\lim _{j \rightarrow \infty} \eta_{i}^{(j)}=0\) and to avoid blow-up \(\lim _{j \rightarrow \infty}\left|\eta_{i}^{(j)}\right|=\) \(\infty\) : the timestep size constraint (6.1.42) is necessary only for the sake of stability (not in order to guarantee a prescribed accuracy).

This accounts to the observed blow-ups in Ex. 6.1.30. On the other hand, adaptive stepsize control [14, Sect. [11.5] manages to ensure the timestep constraint, but the expense of prohibitively small timesteps that render the method grossly inefficient, if some of the \(\lambda_{i}\) are large.

The next numerical demonstrations and Lemma show that \(\lambda_{\max }:=\max _{i} \lambda_{i}\) will inevitably become huge for finite element discretization on fine meshes.

Example 6.1.43 (Behavior of generalized eigenvalues of \(\mathbf{A} \overrightarrow{\boldsymbol{\mu}}=\lambda \mathbf{M} \vec{\mu})\).

Bilinear forms associated with parabolic IBVP and homogeneous Dirichlet boundary conditions
\[
\mathrm{a}(u, v)=\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} x \quad, \quad \mathrm{~m}(u, v)=\int_{\Omega} u(x) v(x) \mathrm{d} x, \quad u, v \in H_{0}^{1}(\Omega) .
\]

Linear finite element Galerkin discretization, see Sect. 1.5.1.2 for 1D, and Sect. 3.2 for 2D.
Numerical experiments in 1D \& 2D:
- \(\Omega=] 0,1[\), equidistant meshes \(\rightarrow\) Ex. 6.1 .30
- "disk domain" \(\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{2}:\|\boldsymbol{x}\|<1\right\}\), sequence of regularly refined meshes.

Monitored: largest and smallest generalized eigenvalue

Code 6.1.44: Computation of extremal generalized eigenvalues
```

% LehrFEM MATLAB script for computing Dirichlet eigenvalues of Laplacian
% on a unit disc domain.
GD_HANDLE = @(x,varargin) zeros(size (x,1),1); % Zero Dirichlet data
HO =[. 25 .2 .1 .05 .02 .01 0.005]'; % target mesh widths
NRef = length(HO); % Number of refinement steps
% Variables for mesh widths and eigenvalues
M_W = zeros (NRef,1); lmax = M_W; lmin = M_W;
% Main refinement loop
for iter = 1:NRef
% Set parameters for mesh
C = [0 0]; % Center of circle
R = 1; % Radius of circle
BBOX = [-1 -1; 1 1]; % Bounding box
DHANDLE = @dist_circ; % Signed distance function
HHANDLE = @h_uniform; % Element size function
FIXEDPOS = []; % Fixed boundary vertices of the mesh
DISP = 0;
% Display flag

```
```

Mesh generation
Mesh =
init_Mesh(BBOX,H0(iter), DHANDLE,HHANDLE,FIXEDPOS,DISP, C,R);
Mesh = add_Edges(Mesh); % Provide edge information
Loc = get_BdEdges(Mesh); % Obtain indices of edges on }\partial
Mesh.BdFlags = zeros(size (Mesh.Edges,1),1);
Mesh.BdFlags(LOc) = -1; % Flag boundary edges
Mesh.ElemFlag = zeros(size(Mesh.Elements,1),1);
M_W(iter) = get_MeshWidth(Mesh); % Get mesh width
fprintf ('Mesh on level %i: %i elements, h =
%f\n',iter,size (Mesh,1),M_W(iter));
% Assemble stiffness matrix and mass matrix
A = assemMat_LFE(Mesh,@STIMA_Lapl_LFE,P7O6());
M = assemMat_LFE(Mesh,@MASS_LFE,P7O6());
% Incorporate Dirichlet boundary data (nothing to do here)
[U,FreeNodes] = assemDir_LFE(Mesh,-1,GD_HANDLE);
A = A(FreeNodes,FreeNodes);
M = M(FreeNodes,FreeNodes);
% Use MATLAB's built-in eigs-function to compute the
% extremal eigenvalues, see [14, Sect. 5.4].
NEigen = 6;

```
```

 d = eigs(A,M,NEigen,'sm'); lmin(iter) = min(d);
 d = eigs(A,M,NEigen,' lm'); lmax(iter) = max(d);
 end
figure; plot (M_W,lmin,'b-+',M_W,lmax,'r-*'); grid on;
set (gca,'XScale',' log' ,'YScale',' log','XDir','reverse');
title ('\bf Eigenvalues of Laplacian on unit disc');
xlabel(' {\bf mesh width h}','fontsize', 14);
ylabel(' {\bf generalized eigenvalues}','fontsize',14);
legend ('\lamboda_{min}' ,'\lambda_{max}' ''Location' ,'NorthWest')
p = polyfit(log(M_W), log(lmax), 1);
add_Slope(gca,'east',p(1));
print -depsc2 '../../../Slides/NPDEPics/geneigdisklfe.eps';

```

Linear FE in 1D: lambda

\(\Omega=] 0,1[\)

\(\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{2}:\|\boldsymbol{x}\|<1\right\}\)

\section*{Observation:}
- \(\lambda_{\text {min }}:=\min _{i} \lambda_{i}\) does hardly depend on the mesh width.
- \(\lambda_{\max }:=\max _{i} \lambda_{i}\) displays a \(O\left(h_{\mathcal{M}}^{-2}\right)\) growth as \(h_{\mathcal{M}} \rightarrow 0\)

Remark 6.1.45 (Spectrum of elliptic operators).

The observation made in Ex. 6.1.43 is not surprising!

To understand why, let us translate the generalized eigenproblem "back to the ODE/PDE level":
\[
\begin{align*}
& \mathbf{A} \overrightarrow{\boldsymbol{\mu}}=\lambda \mathbf{M} \vec{\mu}  \tag{6.1.46}\\
& \text { § } \\
& u_{N} \in V_{0, N}: \quad \mathrm{a}\left(u_{N}, v_{N}\right)=\lambda \mathrm{m}\left(u_{N}, v_{N}\right) \quad \forall v_{N} \in V_{0, N} . \\
& \longleftarrow \leftarrow \text { "undo Galerkin discretization" } \\
& u \in H_{0}^{1}(\Omega): \quad \int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\lambda \int_{\Omega} u \cdot v \mathrm{~d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega) . \\
& \Downarrow \\
& -\Delta u=\lambda u \text { in } \Omega, u=0 \quad \text { on } \partial \Omega, \tag{6.1.47}
\end{align*}
\]
which is a so-called elliptic eigenvalue problem.

It is easily solved in 1 D on \(\Omega=] 0,1[\) :
\[
\begin{aligned}
&(6.1 .47) \hat{=} \quad \frac{d^{2} u}{d x^{2}}(x)=\lambda u(x), \quad 0<x<1, \quad u(0)=u(1)=0 \\
& \Rightarrow \quad u_{k}(x)=\sin (k \pi x) \quad \leftrightarrow \quad \lambda_{k}=(\pi k)^{2}, \quad k \in \mathbb{N}
\end{aligned}
\]

Note that we find an infinite number of eigenfunctions and eigenvalues, parameterized by \(k \in \mathbb{N}\). The eigenvalues tend to \(\infty\) for \(k \rightarrow \infty\) :
\[
\lambda_{k}=O\left(k^{2}\right) \text { for } k \rightarrow \infty
\]

Of course, (6.1.46) can have a finite number of eigenvectors only. Crudely speaking, they correspond to those eigenfunctions \(u_{k}(x)=\sin (k \pi x)\) that can be resolved by the mesh (if \(u_{k}\) "oscillates too much", then it cannot be represented on a grid). These are the first \(N\) so that we find in 1D for an equidistant mesh
\[
\lambda_{\max }=O\left(N^{2}\right)=O\left(h_{\mathcal{M}}^{-2}\right)
\]

This is heuristics, but the following Lemma will a precise statement.

Lemma 6.1.48 (Behavior of of generalized eigenvalues).
Let \(\mathcal{M}\) be a simplicial mesh and \(\mathrm{A}, \mathrm{M}\) denote the Galerkin matrices for the bilinear forms \(\mathrm{a}(u, v)=\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}\) and \(\mathrm{m}(u, v)=\int_{\Omega} u(x) v(x) \mathrm{d} \boldsymbol{x}\), respectively, and \(V_{0, N}:=\) \(\mathcal{S}_{p, 0}^{0}(\mathcal{M})\). Then the smallest and largest generalized eigenvalues of \(\mathbf{A} \vec{\mu}=\lambda \mathrm{M} \vec{\mu}\), denoted by \(\lambda_{\text {min }}\) and \(\lambda_{\text {max }}\), satisfy
\[
\frac{1}{\operatorname{diam}(\Omega)^{2}} \leq \lambda_{\min } \leq C \quad, \quad \lambda_{\max } \geq C h_{\mathcal{M}}^{-2}
\]
where the "generic constants" ( \(\rightarrow\) Rem. 5.3.44) depend only on the polybomial degree \(p\) and the shape regularity measure \(\rho_{\mathcal{M}}\).

Proof. (partial) We rely on the Courant-Fischer min-max theorem [14, Thm. 5.3.5] that, among other consequencees, expresses the boundaries of the spectrum of a symmetric matrix through the extrema of its Rayleigh quotient
\[
\mathbf{T}=\mathbf{T}^{T} \in \mathbb{R}^{N, N} \Rightarrow \lambda_{\min }(\mathbf{T})=\min _{\overrightarrow{\boldsymbol{\xi}} \in \mathbb{R}^{N} \backslash\{0\}} \frac{\overrightarrow{\boldsymbol{\xi}}^{T} \mathbf{T} \overrightarrow{\boldsymbol{\xi}}}{\overrightarrow{\boldsymbol{\xi}}^{T} \overrightarrow{\boldsymbol{\xi}}}, \quad \lambda_{\max }(\mathbf{T})=\max _{\overrightarrow{\boldsymbol{\xi}} \in \mathbb{R}^{N} \backslash\{0\}} \frac{\overrightarrow{\boldsymbol{\xi}}^{T} \mathbf{T} \overrightarrow{\boldsymbol{\xi}}}{\overrightarrow{\boldsymbol{\xi}}^{T} \overrightarrow{\boldsymbol{\xi}}} .
\]

Apply this to the generalized eigenvalue problem
\[
\begin{align*}
& \mathbf{A} \overrightarrow{\boldsymbol{\mu}}=\lambda \mathbf{M} \overrightarrow{\boldsymbol{\mu}} \quad \stackrel{\overrightarrow{\boldsymbol{\zeta}}:=\mathbf{M}^{1 / 2} \overrightarrow{\boldsymbol{\mu}}}{\Leftrightarrow} \underbrace{\mathbf{M}^{-1 / 2} \mathbf{A} \mathbf{M}^{-1 / 2}}_{=: \mathbf{T}} \overrightarrow{\boldsymbol{\zeta}}=\lambda \overrightarrow{\boldsymbol{\zeta}} \\
&  \tag{6.1.49}\\
& \lambda_{\min }=\min _{\overrightarrow{\boldsymbol{\mu}} \neq 0} \frac{\overrightarrow{\boldsymbol{\mu}}^{T} \mathbf{A} \overrightarrow{\boldsymbol{\mu}}}{\overrightarrow{\boldsymbol{\mu}}^{T} \mathbf{M} \overrightarrow{\boldsymbol{\mu}}}, \quad \lambda_{\max }=\max _{\overrightarrow{\boldsymbol{\mu}} \neq 0} \frac{\overrightarrow{\boldsymbol{\mu}}^{T} \mathbf{A} \overrightarrow{\boldsymbol{\mu}}}{\overrightarrow{\boldsymbol{\mu}}^{T} \mathbf{M} \overrightarrow{\boldsymbol{\mu}}}
\end{align*}
\]

As a consequence we only have to find bounds for the extrema of a generalized Rayleigh quotient, cf. [14, Eq. 5.3.13]. This generalized Rayleigh quotient can be expressed as
\[
\begin{equation*}
\frac{\overrightarrow{\boldsymbol{\mu}}^{T} \mathbf{A} \overrightarrow{\boldsymbol{\mu}}}{\overrightarrow{\boldsymbol{\mu}}^{T} \mathbf{M} \overrightarrow{\boldsymbol{\mu}}}=\frac{\mathrm{a}\left(u_{N}, u_{N}\right)}{\mathrm{m}\left(u_{N}, u_{N}\right)}, \quad \overrightarrow{\boldsymbol{\mu}} \hat{=} \text { coefficient vector for } u_{N} \tag{6.1.50}
\end{equation*}
\]

Now we discuss a lower bound for \(\lambda_{\max }\), which can be obtained by inserting a suitable candidate function into (6.1.50).

Discussion for special setting: \(\quad V_{0, N}=\mathcal{S}_{1}^{0}(\mathcal{M})\) on triangular mesh \(\mathcal{M}\)

Candidate function: "tent function" \(u_{N}=b_{N}^{i}\left(\rightarrow\right.\) Sect. 3.2.3) for some node \(\boldsymbol{x}^{i} \in \mathcal{V}(\mathcal{M})\) of the mesh!

By elementary computations as in Sect. 3.2 .5 we find
\[
\begin{equation*}
\mathrm{a}\left(b_{N}^{i}, b_{N}^{i}\right) \approx C \quad, \quad \mathrm{~m}\left(b_{N}^{i}, b_{N}^{i}\right) \geq C \max _{K \in \mathcal{U}\left(\boldsymbol{x}^{i}\right)} h_{K}^{2} \tag{6.1.51}
\end{equation*}
\]
where the generic constants \(C>0\) depend on the shape regularity measure \(\rho_{\mathcal{M}}\) only.
\[
(6.1 .49) \&(6.1 .51) \Rightarrow \lambda_{\max } \geq C h_{\mathcal{M}}^{-2}
\]

Lemma 6.1.48 \(\triangle\) timestep constraint (6.1.42) unacceptable to semi-discrete parabolic evolutions!

From [14, Sect. 12.3] we already know that some implicit single step methods are not affected by stability induced timestep constraints.

Recall [14, Ex. 12.3.1]: apply diagonalization technique, see (6.1.39), to implicit Euler timestepping with uniform timestep \(\tau>0\)
\[
\overrightarrow{\boldsymbol{\mu}}^{(j)}=\overrightarrow{\boldsymbol{\mu}}^{(j-1)}-\tau \mathbf{M}^{-1} \mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j)} \quad \overrightarrow{\boldsymbol{\eta}}:=\mathbf{T}^{\top} \mathbf{M}^{1 / 2} \overrightarrow{\boldsymbol{\mu}} \quad \overrightarrow{\boldsymbol{\eta}}^{(j)}=\overrightarrow{\boldsymbol{\eta}}^{(j-1)}-\tau \mathbf{D} \overrightarrow{\boldsymbol{\mu}}^{(j)},
\]
that is, the decoupling of eigencomponents carries over to the implicit Euler method: for \(i=1, \ldots, N\)
\[
\begin{gather*}
\eta_{i}^{(j)}=\eta_{i}^{(j-1)}-\tau \lambda_{i} \eta^{(j)} \Rightarrow \eta_{i}^{(j)}=\left(\frac{1}{1+\tau \lambda_{i}}\right)^{j} \eta_{i}^{(0)} .  \tag{6.1.52}\\
{\left[\left|\frac{1}{1+\tau \lambda_{i}}\right|<1 \text { and } \lambda_{i}>0 \Rightarrow\right] \quad \lim _{j \rightarrow \infty} \eta_{i}^{(j)}=0 \quad \forall \tau>0 .} \tag{6.1.53}
\end{gather*}
\]

This diagonalization trick can be applied to general Runge-Kutta single step methods (RKSSM, \(\rightarrow\) Def. (6.1.26). Loosely speaking, the following diagram commutes
\[
\begin{align*}
& \mathbf{M} \frac{d}{d t} \overrightarrow{\boldsymbol{\mu}}+\mathbf{A} \boldsymbol{\mu}=0 \xrightarrow{\text { transformation } \overrightarrow{\boldsymbol{\eta}}=\mathbf{T}^{T} \mathbf{M}^{1 / 2} \overrightarrow{\boldsymbol{\mu}}} \quad \frac{d}{d t} \eta_{i}=-\lambda_{i} \eta_{i}, i=1, \ldots, N \\
& \text { RK-SSM } \downarrow  \tag{6.1.54}\\
& \overrightarrow{\boldsymbol{\mu}}^{(j)}=\boldsymbol{\Psi}^{\tau} \overrightarrow{\boldsymbol{\mu}}^{(j-1)} \xrightarrow{\text { transformation } \overrightarrow{\boldsymbol{\eta}}=\mathbf{T}^{T} \mathbf{M}^{1 / 2} \overrightarrow{\boldsymbol{\mu}}} \vec{\eta}_{i}^{(j)}=\widetilde{\Psi}^{\tau} \vec{\eta}_{i}^{(j-1)}, i=1, \ldots, N .
\end{align*}
\]

The bottom line is
that we have to study the behavior of the RK-SSM only for linear scalar ODEs \(\dot{y}=-\lambda y, \lambda>0\).

This is the gist of the model problem analysis discussed in [14, Sect. 12.3].

There we saw that everything boils down to inspecting the modulus of a rational stability function on \(\mathbb{C}\), see [14, Thm. 12.3.2]. This gave rise to the concept of L-stability, see [14, Def. 12.3.3]. Here, we will not delve into a study of stability functions.

Necessary condition for suitability of a single step method for semi-discrete parabolic evolution problem (6.1.19) ("method of lines"):

The discrete evolution \(\Psi_{\lambda}^{\tau}: \mathbb{R} \mapsto \mathbb{R}\) of the single step method applied to the scalar ODE \(\dot{y}=-\lambda y\) satisfies
\[
\begin{equation*}
\lambda>0 \Rightarrow \lim _{j \rightarrow \infty}\left(\Psi_{\lambda}^{\tau}\right)^{j} y_{0}=0 \quad \forall y_{0} \in \mathbb{R}, \quad \forall \tau>0 . \tag{6.1.55}
\end{equation*}
\]

Definition 6.1.56 ( \(\mathrm{L}(\pi)\)-stability).
A single step method satisfying (6.1.55) is called \(L(\pi)\)-stable.

Example 6.1.57 ( \(\mathrm{L}(\pi)\)-stable Runge-Kutta single step methods).

Simplest example: implicit Euler timestepping (6.1.23).

Some commonly used higher order methods, specified through their Butcher schemes, see (6.1.27):


RADAU-3 scheme (order 3)
(6.1.58) \begin{tabular}{c|cc}
\(\lambda\) & \(\lambda \begin{array}{c}\lambda \\
1\end{array}\) & \(1-\lambda\) \\
\hline & \(1-\lambda\) & \(\lambda\)
\end{tabular},\(\quad \lambda:=1-\frac{1}{2} \sqrt{2}\),

SDIRK-2 scheme (order 2)

More examples \(\rightarrow\) [14, Ex. 12.3.4]
6.1.5 Convergence

Why should one prefer complicated implicit \(L(\pi)\)-stable Runge-Kutta single step methods \((\rightarrow\) Ex. 6.1.57) to the simple implicit Euler method?

Silly question! Because these methods deliver "better accuracy"!

However, we need some clearer idea of what is meant by this. To this end, we now study the dependence of (a norm of) the discretization error for a parabolic IBVP on the parameters of the spatial and temporal discretization.

Example 6.1.60 (Convergence of fully discrete timestepping in one spatial dimension).
- \(\frac{d}{d t} u-u^{\prime \prime}=f(t, x)\) on \(] 0,1[\times] 0,1[\)
- exact solution \(u(x, t)=\left(1+t^{2}\right) e^{-\pi^{2} t} \sin (\pi x)\), source term accordingly
- Linear finite element Galerkin discretization equidistant mesh, see Sect. 1.5.1.2, \(V_{0, N}=\mathcal{S}_{1,0}^{0}(\mathcal{M})\),
- piecewise linear spatial approximation of source term \(f(x, t)\)
- implicit Euler timestepping ( \(\rightarrow\) Ex. 6.1.21) with uniform timestep \(\tau>0\)

Monitored:
\[
\text { error norm } \quad\left(\tau \sum_{j=1}^{M}\left|u-u_{N}(\tau j)\right|_{H^{1}(\Omega)}^{2}\right)^{\frac{1}{2}} \text {. }
\]

The norms \(\left|u-u_{N}(\tau j)\right|_{H^{1}(\Omega)}\) were approximated by high order local quadrature rules, whose impact can be neglected.
\(\triangleleft h_{\mathcal{M}^{-}}\)and \(\tau\)-dependence of error norm


Obervation:
\(\tau\) small: error norm \(\approx h_{\mathcal{M}}\)
\(h_{\mathcal{M}}\) small: error norm \(\approx \tau\)
The error seems to behave like
\[
\begin{equation*}
\text { error norm } \approx C_{1} h_{\mathcal{M}}+C_{2} \tau \tag{6.1.61}
\end{equation*}
\]

Recall from Sect. 5.3.5, Thm. 5.1.10, Thm. 5.3.42:
energy norm of spatial finite element discretization error \(O\left(h_{\mathcal{M}}\right)\) for \(h_{\mathcal{M}} \rightarrow 0\)

Since the implicit Euler method is first order consistent we expect
\[
\text { temporal timestepping error } O(\tau)
\]
(6.1.61) \(>\) conjecture: total error is sum of spatial and temporal discretization error.

From Fig. 185 we draw the compelling conclusion:
- for big mesh width \(h_{\mathcal{M}}\) (spatial error dominates) further reduction of timestep size \(\tau\) is useless,
- if timestep \(\tau\) is large (temporal error dominates), refinement of the finite element space does not yield a reduction of the total error.

Example 6.1.62 (Higher order timestepping for 1D heat equation).
- same IBVP as in Ex. 6.1.60
- spatial discretization on equidistant grid, very small meshwidth \(h=0.5 \cdot 10^{-4}, V_{N}=\mathcal{S}_{1,0}^{0}(\mathcal{M})\)

Various timestepping methods
( \(>\) different orders of consistency)
- implicit Euler timestepping (6.1.23), first order
- Crank-Nicolson-method (6.1.25), order 2
- SDIRK-2 timestepping ( \(\rightarrow\) Ex. 6.1.57), order 2
- Gauss-Radau-Runge-Kutta collocation methods with \(s\) stages, order \(2 s-1\)

Note: all methods \(L(\pi)\)-stable ( \(\rightarrow\) Def. 6.1.56) ), except for Crank-Nicolson-method.


Monitored: \(\max _{j}\left\|u\left(t_{j}\right)-u_{N}^{(j)}\right\|_{L^{2}(] 0,1[)}\) (evaluated by high order quadrature)
"Meta-theorem" 6.1.63 (Convergence of solutions of fully discrete parabolic evolution problems).
Assume that
- the solution of the parabolic IBVP (6.1.3)-(6.1.5) is "sufficiently smooth",
- its spatial Galerkin finite element discretization relies on degree p Lagrangian finite elements ( \(\rightarrow\) Sect. 3.4) on uniformly shape-regular families of meshes,
- timestepping is based on an \(L(\pi)\)-stable single step method of order \(q\) with uniform timestep \(\tau>0\).

Then we can expect an asymptotic behavior of the total discretization error according to
\[
\begin{equation*}
\left(\tau \sum_{j=1}^{M}\left|u-u_{N}(\tau j)\right|_{H^{1}(\Omega)}^{2}\right)^{\frac{1}{2}} \leq C\left(h^{p} \mathcal{M}^{+}+\tau^{q}\right) \tag{6.1.64}
\end{equation*}
\]
where \(C>0\) must not depend on \(h_{\mathcal{M}}, \tau\).

This has been dubbed a "meta-theorem", because quite a few technical assumptions on the exact solution and the methods have been omitted in its statement. Therefore it is not a mathematically rigorous statement of facts. More details in [15].

A message contained in (6.1.64):
total discretization error \(=\) spatial error + temporal error

Rem. 5.3.45 still applies: (6.1.64) does not give information about actual error, but only about the trend of the error, when discretization parameters \(h_{\mathcal{M}}\) and \(\tau\) are varied.

Nevertheless, as in the case of the a priori error estimates of Sect. 5.3.5, we can draw conclusions about optimal refinement strategies in order to achieve prescribed error reduction.

As in Sect. 5.3 .5 we make the assumption that the estimates (6.1.64) are sharp for all contributions to the total error and that the constants are the same (!)
\[
\begin{align*}
\text { contribution of spatial error } & \approx C h_{\mathcal{M}}^{p}, h_{\mathcal{M}} \hat{=} \text { mesh width }(\rightarrow \text { Def. 5.2.3) }, \\
\text { contribution of temporal error } & \approx C \tau^{q}, \tau \hat{=} \text { timestep size } \tag{6.1.65}
\end{align*}
\]

This suggests the following change of \(h_{\mathcal{M}}, \tau\) in order to achieve error reduction by a factor of \(\rho>1\) :


Remark 6.1.67 (Potential inefficiency of conditionally stable single step methods).

Terminology: A timestepping scheme is labelled conditionally stable, if blow-up can be avoided by using sufficient small timesteps (timestep constraint).

Now we can answer the question, why a stability induced timestep constraint like
\[
\begin{equation*}
\tau \leq O\left(h_{\mathcal{M}}^{-2}\right) \tag{6.1.68}
\end{equation*}
\]
can render a single step method grossly inefficient for integrating semi-discrete parabolic IBVPs.
(??) \(>\) in order to reduce the error by a fixed factor \(\rho\) one has to reduce both timestep and meshwidth by some other fixed factors (asymptotically). More concretely, for the timestep \(\tau\) :
(6.1.66) \(>\) accuracy requires reduction of \(\tau\) by a factor \(\rho^{1 / q}\)
(6.1.68) \(>\) stability entails reduction of \(\tau\) by a factor \(\left(\rho^{1 / p}\right)^{2}=\rho^{2 / p}\).
\[
\begin{aligned}
\frac{1}{q}<\frac{2}{p} & \Rightarrow \text { stability enforces smaller timestep than required by accuracy } \\
& \Rightarrow \text { timestepping is inefficient! }
\end{aligned}
\]

Faced with conditional stability (6.1.68), then for the sake of efficiency use high-order spatial discretization combined with low order timestepping.

However, this may not be easy to achieve
- because high-order timestepping is much simpler than high-order spatial discretization,
- because limited spatial smoothness of exact solution ( \(\rightarrow\) results of Sect. 5.4 apply!) may impose a limit on \(q\) in (6.1.64).

Concretely: 5th-order ode 45 timestepping \((q=5) \stackrel{\frac{1}{q}=\frac{2}{p}}{\Rightarrow}\) use degree-10 Lagrangian FEM!

\subsection*{6.2 Wave equations}

Lemma 6.1.14 teaches that in the absence of time-dependent sources the rate of change of temperature will decay exponentially in the case of heat conduction.

Now we will encounter a class of evolution problems where temporal and spatial fluctuations will not be demped and will persist for good:

This will be the class of linear conservative wave propagation problems

As before these initial-boundary value problems (IBVP) will be posed on a space time cylinder \(\widetilde{\Omega}:=\) \(\Omega \times] 0, T\left[\subset \mathbb{R}^{d+1}\left(\rightarrow\right.\right.\) Fig. [180), where \(\Omega \subset \mathbb{R}^{d}, d=2,3\), is a bounded spatial domain as introduced in the context of elliptic boundary value problems, see Sect. 2.1.1.

The unknown will be a function \(u=(\boldsymbol{x}, t): \widetilde{\Omega} \mapsto \mathbb{R}\).

\subsection*{6.2.1 Vibrating membrane}

\section*{Recall:}
- Tense string model ( \(\rightarrow\) Sect. 1.4), shape of string described by continuous displacement function \(u:[a, b] \mapsto \mathbb{R}, u \in H^{1}([a, b])\).
- Taut membrane model ( \(\rightarrow\) Sect. 2.1.1), shape of membrane given by displacement function \(u\) : \(\Omega \mapsto \mathbb{R}, u \in H^{1}(\Omega)\), over base domain \(\Omega \subset \mathbb{R}^{2}\).


Tense string \(\leftrightarrow u:[a, b] \mapsto \mathbb{R}\)


Taut membrane \(\leftrightarrow u: \Omega \mapsto \mathbb{R}\)

In Sect. 2.1.3 we introduced the general variational formulation: with Dirichlet data (elevation of frame) given by \(g \in C^{0}(\partial \Omega)\),
\[
V:=\left\{v \in H^{1}(\Omega): v_{\mid \partial \Omega}=g\right\}
\]
\(u \in V: \quad \int_{\Omega} \sigma(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \forall v \in H_{0}^{1}(\Omega)\),
where \(f: \Omega \mapsto \mathbb{R} \quad \hat{=} \quad\) density of vertical force,
```

$\sigma: \Omega \mapsto \mathbb{R} \hat{=}$ uniformly positive stiffness coefficient (characteristic of material of the membrane).

```

Now we switch to a dynamic setting: we allow variation of displacement with time, \(u=u(\boldsymbol{x}, t)\), the membrane is allowed to vibrate.

Recall (secondary school): Newton's second law of motion (law of inertia)


Apply this in a local version (stated for densities) to membrane
\[
\begin{equation*}
\text { force density } f(\boldsymbol{x}, t)=\rho(\boldsymbol{x}) \cdot \frac{\partial^{2} u}{\partial t^{2}}(\boldsymbol{x}, t), \tag{6.2.4}
\end{equation*}
\]
where \(\quad \rho: \Omega \mapsto \mathbb{R}^{+} \hat{=}\) uniformly positive mass density of membrane, \([\rho]=\mathrm{kg} \mathrm{m}^{-2}\),
- \(\ddot{u}:=\frac{\partial^{2} u}{\partial t^{2}} \hat{=}\) vertical aceleration (second temporal derivative of position).

Now, we assume that the force \(f\) in (2.3.2) is due to inertia forces only and express these using (6.2.4):
(2.3.2) \(\stackrel{(6.2 .4)}{\leftrightharpoons} \int_{\Omega} \sigma(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}, t) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=-\int_{\Omega} \rho(\boldsymbol{x}) \cdot \frac{\partial^{2} u}{\partial t^{2}}(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} \quad \forall v \in H_{0}^{1}(\Omega)\).

Why the "-"-sign? Because, here the inertia force enters as a reaction force.

Linear wave equation in variational form (Dirichlet boundary conditions):
\[
u \in V(t): \int_{\Omega} \rho(\boldsymbol{x}) \cdot \frac{\partial^{2} u}{\partial t^{2}}(\boldsymbol{x}, t) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}+\int_{\Omega} \sigma(\boldsymbol{x}) \operatorname{\operatorname {grad}} u(\boldsymbol{x}, t) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0 \quad \forall v \in H_{0}^{1}(\Omega)
\]
\[
\begin{equation*}
u \in V(t): \quad \mathrm{m}(\ddot{u}, v)+\mathrm{a}(u, v)=0 \quad \forall v \in V_{0} \tag{6.2.6}
\end{equation*}
\]
where
\[
\begin{aligned}
& V(t):=\{v:] 0, T\left[\mapsto H^{1}(\Omega): v(\boldsymbol{x}, t)=g(\boldsymbol{x}, t) \text { for } \boldsymbol{x} \in \partial \Omega, 0<t<T\right\} \\
& \quad \text { (with continuous time-dependent Dirichlet data } g: \partial \Omega \times] 0, T[\mapsto \mathbb{R} \text {.) }
\end{aligned}
\]

Undo integration by parts by reverse application of Green's first formula Thm. 2.4.7:
\[
\begin{equation*}
\text { (6.2.5) } \Rightarrow \int_{\Omega}\left\{\frac{\partial^{2} u}{\partial t^{2}}(\boldsymbol{x}, t)-\operatorname{div} \boldsymbol{x}\left(\sigma(\boldsymbol{x})\left(\operatorname{grad}_{\boldsymbol{x}} u\right)(\boldsymbol{x}, t)\right)\right\} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0 \quad \forall v \in H_{0}^{1}(\Omega) . \tag{6.2.7}
\end{equation*}
\]

Here it is indicated that the differential operators grad and div act on the spatial independent variable \(x\) only. This will tacitly be assumed below.

Now appeal to the fundamental lemma of calculus of variations in higher dimensions Lemma 2.4.10.
\[
\begin{equation*}
\text { (6.2.7) } \stackrel{\text { Lemma } 2.4 .10}{\Longrightarrow} \frac{\partial^{2} u}{\partial t^{2}}-\operatorname{div}(\sigma(\boldsymbol{x}) \operatorname{grad} u)=0 \quad \text { in } \tilde{\Omega} \text {. } \tag{6.2.8}
\end{equation*}
\]
(6.2.8) is called a (homogeneous) wave equation. A general wave equation is obtained, when an addition exciting vertical force density \(f=f(\boldsymbol{x}, t)\) comes into play:
\[
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-\operatorname{div}(\sigma(\boldsymbol{x}) \operatorname{grad} u)=f(\boldsymbol{x}, t) \text { in } \widetilde{\Omega} \tag{6.2.9}
\end{equation*}
\]

The wave equations (6.2.8), (6.2.9) have to be supplemented by
- spatial boundary conditions: \(\quad v(\boldsymbol{x}, t)=g(\boldsymbol{x}, t)\) for \(\boldsymbol{x} \in \partial \Omega, 0<t<T\),
- two initial conditions
\[
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \quad, \quad \frac{\partial u}{\partial t}(\boldsymbol{x}, 0)=v_{0} \quad \text { for } \quad \boldsymbol{x} \in \Omega
\]
with initial data \(u_{0}, v_{0} \in H^{1}(\Omega)\), satisfying the compatibility conditions \(u_{0}(\boldsymbol{x})=g(\boldsymbol{x}, 0)\) for \(\boldsymbol{x} \in\) \(\partial \Omega\).
(6.2.8) \& boundary conditions \& initial conditions \(=\) hyperbolic evolution problem

Hey, why do we need two initial conditions in contrast to the heat equation?

Remember that
- (6.2.8) is a second-order equation also in time (whereas the heat equation is merely first-order),
- for second order ODEs \(\ddot{\mathbf{y}}=\mathbf{f}(\mathbf{y})\) we need two initial conditions
\[
\begin{equation*}
\mathbf{y}(0)=\mathbf{y}_{0} \quad \text { and } \quad \dot{\mathbf{y}}(0)=\mathbf{v}_{0} \tag{6.2.10}
\end{equation*}
\]
in order to get a well-posed initial value problem, see [14, Rem. 11.1.7].

The physical meaning of the initial conditions \((6.2 .10)\) in the case of the membrane model is
- \(u_{0} \hat{=}\) initial displacement of membrane, \(u_{0} \in H^{1}(\Omega)\) "continuous",
- \(v_{0} \hat{=}\) initial vertical velocity of membrane.

Remark 6.2.11 (Boundary conditions for wave equation).

Rem. 6.1.7 also applies to the wave equation (6.2.8):

On \(\partial \Omega \times] 0, T\) [ we can impose any of the boundary conditions discussed in Sect. 2.6:
- Dirichlet boundary conditions \(u(\boldsymbol{x}, t)=g(\boldsymbol{x}, t)\) (membrane attached to frame),
- Neumann boundary conditions \(\mathbf{j}(\boldsymbol{x}, t) \cdot \boldsymbol{n}=0\) (free boundary, Rem. 2.4.16)
- radiation boundary conditions \(\mathbf{j}(\boldsymbol{x}, t) \cdot \boldsymbol{n}=\Psi(u(\boldsymbol{x}, t))\),
and any combination of these as discussed in Ex. 2.6.7, yet, only one of them at any part of \(\partial \Omega \times] 0, T[\), see Rem. [2.6.6.

Remark 6.2.12 (Wave equation as first order system in time).

Usual procedure [14, Rem. 11.1.7]: higher-order ODE can be converted into first-order ODEs by introducing derivatives as additional solution components. This approach also works for the secondorder (in time) wave equation (6.2.8):

Additional unknown: \(\quad\) velocity \(\quad v(\boldsymbol{x}, t)=\frac{\partial u}{\partial t}(\boldsymbol{x}, t)\)
\[
\frac{\partial^{2} u}{\partial t^{2}}-\operatorname{div}(\sigma(\boldsymbol{x}) \operatorname{grad} u)=0 \quad\left\{\begin{array}{l}
\dot{u}=v,  \tag{6.2.13}\\
\dot{v}=\operatorname{div}(\sigma(\boldsymbol{x}) \operatorname{grad} u)
\end{array} \quad \text { in } \widetilde{\Omega}\right.
\]
with initial conditions
\[
\begin{equation*}
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \quad, \quad v(\boldsymbol{x}, 0)=v_{0}(\boldsymbol{x}) \quad \text { for } \quad \boldsymbol{x} \in \Omega . \tag{6.2.14}
\end{equation*}
\]

\subsection*{6.2.2 Wave propagation}

Constant coefficient wave equation for \(d=1, \Omega=\mathbb{R} \quad\) ("Cauchy problem")
\[
\begin{equation*}
c>0: \quad \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \quad, \quad u(x, 0)=u_{0}(x), \quad \frac{\partial u}{\partial t}(x, 0)=v_{0}(x), \quad x \in \mathbb{R} . \tag{6.2.15}
\end{equation*}
\]

Change of variables: \(\quad \xi=x+c t, \quad \tau=x-c t: \quad \widetilde{u}(\xi, \tau):=u\left(\frac{\xi+\tau}{2}, \frac{\xi-\tau}{2 c}\right)\). Applying the chain rule we immediately see
\[
u \text { satisfies (6.2.15) } \square \frac{\partial^{2} \widetilde{u}}{\partial \xi \partial \tau}=0 \Rightarrow \widetilde{u}(\xi, \tau)=F(\xi)+G(\tau)
\]
for any \(F, G \in C^{2}(\mathbb{R})\) !
\(\longrightarrow\) matching initial data
\[
\begin{equation*}
u(x, t)=\frac{1}{2}\left(u_{0}(x+c t)+u_{0}(x-c t)\right)+\frac{1}{2} \int_{x-c t}^{x+c t} v_{0}(s) \mathrm{d} s \tag{6.2.16}
\end{equation*}
\]
\((6.2 .16)=\) d'Alembert solution of Cauchy problem (6.2.15).

\(v_{0}=0>\) initial data \(u_{0}\) travel with speed \(c\) in opposite directions
finite speed of propagation is typical feature of solutions of wave equations

Note: (6.2.16) meaningful even for discontinuous \(u_{0}, v_{0}\) !
\(\Rightarrow\) "generalized solutions"!
"point value" \(u(\bar{x}, \bar{t}),(\bar{x}, \bar{t}) \in \widetilde{\Omega}\), may not depend on initial values outside proper subdomain of \(\Omega\) !

Example 6.2.17 (Domain of dependence/influence for 1D wave equation, constant coefficient case).
Consider \(d=1\), initial-boundary value problem ( (6.2.15) for wave equation:
\[
\begin{equation*}
c>0: \quad \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \quad, \quad u(x, 0)=u_{0}(x), \quad \frac{\partial u}{\partial t}(x, 0)=v_{0}(x), \quad x \in \mathbb{R} . \tag{6.2.15}
\end{equation*}
\]

Intuitive: from D'Alembert formula (6.2.16)

domain of dependence of \((\bar{x}, \bar{t}) \in \widetilde{\Omega}\)

domain of influence of \(I_{0} \subset \mathbb{R}\)

Domain of influence: intial data in \(I_{0}\) will be relevant for the solution only in the yellow triangle in Fig. 190.

Theorem 6.2.18 (Domain of dependence for isotropic wave equation). \(\rightarrow\) [10, 2.5, Thm. 6] Let \(u: \widetilde{\Omega} \mapsto \mathbb{R}\) be a (classical) solution of \(\frac{\partial^{2} u}{\partial t^{2}}-c \Delta u=0\). Then
\[
\left(\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right| \geq R \Rightarrow u(\boldsymbol{x}, 0)=0\right) \Rightarrow u(x, t)=0 \quad \text {, if } \quad\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right| \geq R+c t
\]

The solution formula (6.2.16) clearly indicates that in 1D and in the absence of boundary conditions the solution of the wave equation will persist undamped for all times.

This absence of damping corresponds to a conservation of total energy, which is a distinguishing feature of conservative wave propagation phenomena.

\section*{Now, we examine this for the model problem}
\[
\begin{gather*}
u \in H_{0}^{1}(\Omega): \int_{\Omega} \rho(\boldsymbol{x}) \cdot \frac{\partial^{2} u}{\partial t^{2}} v \mathrm{~d} \boldsymbol{x}+\int_{\Omega} \sigma(\boldsymbol{x}) \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}=0 \quad \forall v \in H_{0}^{1}(\Omega)  \tag{6.2.19}\\
u \in V_{0}: \quad \mathrm{m}(\ddot{u}, v)+\mathrm{a}(u, v)=0 \quad \forall v \in V_{0} . \tag{6.2.20}
\end{gather*}
\]

Here we do not include the case of non-homogeneous spatial Dirichlet boundary conditions through an affine trial space. This can always be taken into account by offset functions, see the remark after (6.1.5).

Theorem 6.2.21 (Energy conservation in wave propagation). If \(u: \widetilde{\Omega} \mapsto \mathbb{R}\) solves ( 6.2 .20 ), then
\[
t \mapsto \quad \frac{1}{2} \mathrm{~m}\left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial t}\right)+\frac{1}{2} \mathrm{a}(u, u) \equiv \text { const } .
\]

Proof. A "formal proof" boils down to a straightforward application of the product rule \((\rightarrow\) Rem. 6.1.13) together with the symmetry of the bilinear forms m and a .

Introduce the total energy
\[
\begin{gathered}
E(t):=\frac{1}{2} \mathrm{~m}\left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial t}\right)+\frac{1}{2} \mathrm{a}(u, u) \\
\nabla \quad \frac{d E}{d t}(t)=\mathrm{m}(\ddot{u}, \dot{u})+\mathrm{a}(\dot{u}, u)=0 \quad \text { for solution } u \text { of (6.2.20) }
\end{gathered}
\]
because this is what we conclude from (6.2.20) for the special test function \(v(\boldsymbol{x})=\dot{u}(\boldsymbol{x}, t)\) for any \(t \in] 0, T[\).

The method of lines approach to the wave equation (6.2.19), (6.2.20) is exactly the same as for the heat equation, see Sect. 6.1.3.

Idea: Apply Galerkin discretization ( \(\rightarrow\) Sect. 3.1) to abstract linear parabolic variational problem (6.1.11).
\[
t \in] 0, T\left[\mapsto u(t) \in V_{0} \quad: \quad\left\{\begin{array}{l}
\mathrm{m}\left(\frac{d^{2} u}{d t^{2}}(t), v\right)+\mathrm{a}(u(t), v)=0 \quad \forall v \in V_{0}  \tag{6.2.22}\\
u(0)=u_{0} \in V_{0} \quad, \quad \frac{d u}{d t}(0)=v_{0} \in V_{0}
\end{array}\right.\right.
\]

1st step: replace \(V_{0}\) with a finite dimensional subspace \(V_{0, N}, N:=\operatorname{dim} V_{0, N}<\infty\)
Discrete hyperbolic evolution problem
\(t \in] 0, T\left[\mapsto u(t) \in V_{0, N}:\left\{\begin{array}{l}\mathrm{m}\left(\frac{d^{2} u_{N}}{d t^{2}}(t), v_{N}\right)+\mathrm{a}\left(u_{N}(t), v_{N}\right)=0 \quad \forall v_{N} \in V_{0, N}, \\ u_{N}(0)=\text { projection/interpolant of } u_{0} \text { in } V_{0, N}, \\ \frac{d u_{N}}{d t}(0)=\text { projection/interpolant of } v_{0} \text { in } V_{0, N} .\end{array}\right.\right.\)

2nd step: introducce (ordered) basis \(\mathfrak{B}_{N}:=\left\{b_{N}^{1}, \ldots, b_{N}^{N}\right\}\) of \(V_{0, N}\)
\[
\left(\text { (6.2.23) } \quad \Rightarrow \quad \left\{\begin{array}{l}
\mathbf{M}\left\{\frac{d^{2}}{d t^{2}} \overrightarrow{\boldsymbol{\mu}}(t)\right\}+\mathbf{A} \overrightarrow{\boldsymbol{\mu}}(t)=0 \quad \text { for } 0<t<T,  \tag{6.2.24}\\
\overrightarrow{\boldsymbol{\mu}}(0)=\overrightarrow{\boldsymbol{\mu}}_{0} \quad, \quad \frac{d \overrightarrow{\boldsymbol{\mu}}}{d t}(0)=\overrightarrow{\boldsymbol{\nu}}_{0}
\end{array}\right.\right.
\]
\(\triangleright\) s.p.d. stiffness matrix \(\mathbf{A} \in \mathbb{R}^{N, N},(\mathbf{A})_{i j}:=\mathrm{a}\left(b_{N}^{j}, b_{N}^{i}\right)\) (independent of time), \(\triangleright\) s.p.d. mass matrix \(\mathbf{M} \in \mathbb{R}^{N, N},(\mathbf{M})_{i j}:=\mathrm{m}\left(b_{N}^{j}, b_{N}^{i}\right)\) (independent of time), \(\triangleright\) source (load) vector \(\overrightarrow{\boldsymbol{\varphi}}(t) \in \mathbb{R}^{N},(\overrightarrow{\boldsymbol{\varphi}}(t))_{i}:=\ell(t)\left(b_{N}^{i}\right)\) (time-dependent), \(\triangleright \quad \vec{\mu}_{0} \hat{=}\) coefficient vector of a projection of \(u_{0}\) onto \(V_{0, N}\). \(\triangleright \overrightarrow{\boldsymbol{\nu}}_{0} \hat{=}\) coefficient vector of a projection of \(v_{0}\) onto \(V_{0, N}\).

Remark 6.2.25 (First-order semidiscrete hyperbolic evolution problem).

Completely analoguous to Rem. 6.2.12:
\[
\begin{gather*}
\mathbf{M}\left\{\frac{d^{2}}{d t^{2}} \overrightarrow{\boldsymbol{\mu}}(t)\right\}+\mathbf{A} \overrightarrow{\boldsymbol{\mu}}(t)=0 \\
\left\{\begin{array}{lc}
\frac{d}{d t} \overrightarrow{\boldsymbol{\mu}}(t)=\overrightarrow{\boldsymbol{\nu}}(t), & \text { auxiliary unkr } \\
\frac{d}{d t} \overrightarrow{\boldsymbol{\nu}}(t)=-\mathbf{A} \overrightarrow{\boldsymbol{\mu}}(t), & 0<t<T .
\end{array}\right. \tag{6.2.26}
\end{gather*}
\]
with intial conditions
\[
\begin{equation*}
\overrightarrow{\boldsymbol{\mu}}(0)=\overrightarrow{\boldsymbol{\mu}}_{0} \quad, \quad \overrightarrow{\boldsymbol{\nu}}(0)=\overrightarrow{\boldsymbol{\nu}}_{0} \tag{6.2.27}
\end{equation*}
\]

The method of lines approach gives us the semi-discrete hyperbolic evolution problem \(=2\) nd-order ODE:
\[
\begin{equation*}
\mathbf{M}\left\{\frac{d^{2}}{d t^{2}} \vec{\mu}(t)\right\}+\mathbf{A} \vec{\mu}(t)=0 \quad, \quad \vec{\mu}(0)=\vec{\mu}_{0}, \quad \frac{d \vec{\mu}}{d t}(0)=\vec{\eta}_{0} . \tag{6.2.28}
\end{equation*}
\]

Key features of (6.2.28) \(\Rightarrow\) to be respected "approximately" by timestepping:
- reversibility: (6.2.28) invariant under time-reversal \(t \leftarrow-t\)
- energy conservation, cf. Thm. 6.2.21: \(\quad E_{N}(t):=\frac{1}{2} \frac{d \vec{\mu}}{d t} \cdot \mathbf{M} \frac{d \vec{\mu}}{d t}+\frac{1}{2} \vec{\mu} \cdot \mathbf{A} \vec{\mu}=\) const

Example 6.2.29 (Euler timestepping for 1st-order form of semi-discrete wave equation).


Model problem: wave propagation on a square membrane
\[
\begin{gathered}
\left.\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=0 \quad \text { on } \quad\right] 0,1\left[^{2} \times\right] 0,1[ \\
u(\boldsymbol{x}, t)=0 \quad \text { on } \quad \partial \Omega \times] 0, T[ \\
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \quad, \quad \frac{\partial u}{\partial t}(\boldsymbol{x}, 0)=0
\end{gathered}
\]
- Initial data \(u_{0}(\boldsymbol{x})=\max \left\{0, \frac{1}{5}-\|\boldsymbol{x}\|\right\}, v_{0}(\boldsymbol{x})=0\),
- \(\mathcal{M} \hat{=}\) "structured triangular tensor product mesh", see Fig. 121, \(n\) squares in each direction,
- linear finite element space \(V_{N, 0}=\mathcal{S}_{1,0}^{0}(\mathcal{M}), N:=\operatorname{dim} \mathcal{S}_{1,0}^{0}(\mathcal{M})=(n-1)^{2}\),
- All local computations ( \(\rightarrow\) Sect. 3.5.4) rely on 3-point vertex based local quadrature formula "2D trapezoidal rule" (3.2.13). More explanations will be given in Rem. 6.2.34 below.
- \(\mathbf{A}=N \times N\) Poisson matrix, see (4.1.2), scaled with \(h:=n^{-1}\),
- mass matrix \(\mathbf{M}=h \mathbf{I}\), thanks to quadrature formula, see Rem. 6.2.34.

Timestepping: implicit and explicit Euler method ( \(\rightarrow\) Ex. 6.1.21, [14, Sect. 11.2]) for 1st-order ODE (6.2.26), timestep \(\tau>0\) :
\[
\begin{aligned}
\overrightarrow{\boldsymbol{\mu}}^{(j)}-\overrightarrow{\boldsymbol{\mu}}^{(j-1)} & =\tau \overrightarrow{\boldsymbol{\nu}}^{(j-1)}, \\
\mathbf{M}\left(\overrightarrow{\boldsymbol{\nu}}^{(j)}-\overrightarrow{\boldsymbol{\nu}}^{(j-1)}\right) & =-\tau \mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j-1)} .
\end{aligned}
\]
explicit Euler
\[
\begin{aligned}
\overrightarrow{\boldsymbol{\mu}}^{(j)}-\overrightarrow{\boldsymbol{\mu}}^{(j-1)} & =\tau \overrightarrow{\boldsymbol{\nu}}^{(j)}, \\
\mathbf{M}\left(\overrightarrow{\boldsymbol{\nu}}^{(j)}-\overrightarrow{\boldsymbol{\nu}}^{(j-1)}\right) & =-\tau \mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j)} .
\end{aligned}
\]
implicit Euler

Monitored: behavior of (discrete) kinetic, potential, and total energy
\[
E_{\text {kin }}^{(j)}=\left(\overrightarrow{\boldsymbol{\nu}}^{(j)}\right)^{T} \mathbf{M} \overrightarrow{\boldsymbol{\nu}}^{(j)} \quad, \quad E_{\mathrm{pot}}^{(j)}=\left(\overrightarrow{\boldsymbol{\mu}}^{(j)}\right)^{T} \mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j)}, \quad j=0,1, \ldots
\]

Explicit Euler timestepping:

Spatial resolution \(\mathrm{n}=30\), 3000 timesteps



Implcit Euler timestepping:


Observation: neither method conserves energy,
\& explicit Euler timestepping \(>\) steady increase of total energy
implicit Euler timestepping \(>\) steady decrease of total energy

Ex. 6.2.29> Euler methods violate energy conservation!
(The same is true of all explicit Runge-Kutta methods, which lead to an increase of the total energy over time, and \(L(\pi)\)-stable implicit Runge-Kutta method, which make the total energy decay.)

Let us try another simple idea for the 2nd-order ODE (6.2.24):
\[
\begin{align*}
& \text { Replace } \frac{d^{2}}{d t^{2}} \overrightarrow{\boldsymbol{\mu}} \text { with symmetric difference quotient (1.5.92) } \\
& \mathbf{M}\left\{\frac{d^{2}}{d t^{2}} \vec{\mu}(t)\right\}+\mathbf{A} \vec{\mu}(t)=0  \tag{6.2.28}\\
& \mathbf{M} \frac{\overrightarrow{\boldsymbol{\mu}}^{(j+1)}-2 \overrightarrow{\boldsymbol{\mu}}^{(j)}+\overrightarrow{\boldsymbol{\mu}}^{(j-1)}}{\tau^{2}}=-\mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j)}, \quad j=0,1, \ldots . \tag{6.2.30}
\end{align*}
\]

However, from where do we get \(\overrightarrow{\boldsymbol{\mu}}^{(-1)}\) ? Tow-step methods need to be kick-started by a special initial step: This is constructed by approximating the second initial condition by a symmetric difference quotient:
\[
\begin{equation*}
\frac{d}{d t} \overrightarrow{\boldsymbol{\mu}}(0)=\overrightarrow{\boldsymbol{\nu}}_{0} \quad>\quad \frac{\overrightarrow{\boldsymbol{\mu}}^{(1)}-\overrightarrow{\boldsymbol{\mu}}^{(-1)}}{\tau}=\overrightarrow{\boldsymbol{\nu}}_{0} . \tag{6.2.31}
\end{equation*}
\]

Example 6.2.32 (Leapfrog timestepping).

For the semi-discrete wave equation we again consider the explicit trapezoidal rule (Störmer scheme):
\[
\begin{equation*}
\mathbf{M} \frac{\overrightarrow{\boldsymbol{\mu}}^{(j+1)}-2 \overrightarrow{\boldsymbol{\mu}}^{(j)}+\overrightarrow{\boldsymbol{\mu}}^{(j-1)}}{\tau^{2}}=-\mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j)}, \quad j=1, \ldots \tag{6.2.30}
\end{equation*}
\]

Inspired by Rem. 6.2.25 we introduce the auxiliary variable
\[
\overrightarrow{\boldsymbol{\nu}}^{(j+1 / 2)}:=\frac{\overrightarrow{\boldsymbol{\mu}}^{(j+1)}-\overrightarrow{\boldsymbol{\mu}}^{(j)}}{\tau}
\]
which can be read as an approximation of the velocity \(v:=\dot{u}\).

This leads to a timestepping scheme, which is algebraically equivalent to the explicit trapezoidal rule:
leapfrog timestepping (with uniform timestep \(\tau>0\) ):
\[
\begin{align*}
& \mathbf{M} \frac{\overrightarrow{\boldsymbol{\nu}}^{\left(j+\frac{1}{2}\right)}-\overrightarrow{\boldsymbol{\nu}}^{\left(j-\frac{1}{2}\right)}}{\tau}=-\mathbf{A} \overrightarrow{\boldsymbol{\mu}}^{(j)}, \quad j=0,1, \ldots \\
& \frac{\overrightarrow{\boldsymbol{\mu}}^{(j+1)}-\overrightarrow{\boldsymbol{\mu}}^{(j)}}{\tau}=\overrightarrow{\boldsymbol{\nu}}^{\left(j+\frac{1}{2}\right)},  \tag{6.2.33}\\
&+\quad \text { initial step } \overrightarrow{\boldsymbol{\nu}}^{\left(-\frac{1}{2}\right)}+\overrightarrow{\boldsymbol{\nu}}^{\left(\frac{1}{2}\right)}=2 \overrightarrow{\boldsymbol{\nu}}_{0} .
\end{align*}
\]

work per step:
\(1 \times\) evaluation \(\mathbf{A} \times\) vector,
\(1 \times\) solution of linear system for \(M\)

Remark 6.2.34 (Mass lumping).
Required in each step of leapfrog timestepping: solution of linear system of equations with (large sparse) system matrix \(\mathbf{M} \in \mathbb{R}^{N, N}>\) epxensive!

Trick for (bi-)linear finite element Galerkin discretization: \(\quad V_{0, N} \subset \mathcal{S}_{1}^{0}(\mathcal{M})\) :

> use vertex based local quadrature rule
(e.g. "2D trapezoidal rule" (3.2.13) on triangular mesh)
\[
\int_{K} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \approx \frac{|K|}{\sharp \mathcal{V}(K)} \sum_{\boldsymbol{p} \in \mathcal{V}(K)} f(\boldsymbol{p}), \quad \mathcal{V}(K):=\text { set of vertices of } K .
\]
(For a comprehensive discussion of local quadrature rules see Sect. 3.5.4)
Mass matrix M will become a diagonal matrix (due to defining equation (3.2.2) for nodal basis functions, which are associated with nodes of the mesh).

This so-called mass lumping trick was was used in the finite element discretization of Ex. 6.2.29.

Example 6.2.35 (Energy conservation for leapfrog).

Model problem and discretization as in Ex. 6.2.29.
Leapfrog timestepping with constant timestep size \(\tau=0.01\)

Code 6.2.36: Computing behavior of energies for Störmer timestepping
```

function lfen(n,m)
% leapfrom timestepping for 2D wave equation, computation of energies
% n: spatial resolution (no. of cells in one direction)
% m: number of timesteps
% Assemble stiffness matrix, see Sect. 4.1, (4.1.2)
N=(n-1)^2; h=1/n; A = gallery ('poisson', n-1)/(h*h);
% initial displacement }\mp@subsup{u}{0}{}(\boldsymbol{x})=\operatorname{max}{0,\frac{1}{5}-|\boldsymbol{x}|
[X,Y] = meshgrid(0:h:1,0:h:1);

```
```

U0 = 0.2-sqrt((X-0.5).^^2+(Y-0.5).^^2);
U0(find (U0 < 0)) = 0.0;
u0 = reshape(U0 (2:end-1, 2:end-1),N,1);
v0 = zeros (N,1); % initial velocity
% loop for Störmer timestepping, see (6.2.30
tau = 1/m; % uniform timestep size
u = u0+tau*v0-0.5*tau^2*A*u0; % special initial step
u_old = u0;
[pen,ken] = geten(A,tau,u0,u); % compute potential and kinetic energy
E = [0.5*tau,pen,ken,pen+ken];
for k=1:m-1
u_new = -(tau^2)*(A*u) + 2*u - u__old;
[pen,ken] = geten(A,tau,u,u_new);
E = [E; (k+0.5) *tau,pen,ken,pen+ken];
u_old = u; u = u_new;
end
figure('name',' Leapfrog energies');
plot(E(:,1),E(:, 3),'r-',E(:,1),E(:,2),'b-',E(:,1),E(:, 4),'m-');
xlabel('{\bf time t}','fontsize',14);
ylabel('{\bf energies}','fontsize',14);
legend('kinetic energy','potential energy','total

```

Code 6.2.37: Computing potential and kinetic energiy for Störmer timestepping
```

function [pen,ken] = geten(A,ts,u_old,u_new)
% Compute the current approximate potential and kinetic energies for u_old
% and u_new from Sörmer timestepping
\circ
meanv = 0.5*(u_old+u_new); pen = 0.5*dot(meanv,A*meanv); % potential
energy
6 dtemp = (u_new-u_old)/ts; ken = 0.5*dot(dtemp,dtemp); % kinetic
energy

```


This behavior is explained by the deep mathemtical theorie of symplectic integrators, see [13].

\subsection*{6.2.5 CFL-condition}

Example 6.2.38 (Blow-up for leapfrog timestepping).
\(\triangleleft\) Ex. 6.2.35 repeated with \(\tau=0.04\)

Observation:
Leapfrog suffers a blow-up: exponential increase of energies!
A similar behavior is observed with the explicit Euler scheme for the semi-discrete heat equation, in case the timestep constraint is violated, see Sect. 6.1.4.2.
\(>\) (as in Sect. 6.1.4.2) Stability analysis of leapfrog timestepping based on diagonalization:
\(\exists\) orthogonal \(\mathbf{T} \in \mathbb{R}^{N, N}: \quad \mathbf{T}^{\top} \mathbf{M}^{-1 / 2} \mathbf{A} \mathbf{M}^{-1 / 2} \mathbf{T}=\mathbf{D}:=\operatorname{diag}\left(\lambda_{1} \ldots, \lambda_{N}\right)\).
where the \(\lambda_{i}>0\) are generalized eigenvalues for \(\mathbf{A} \overrightarrow{\boldsymbol{\xi}}=\lambda \mathbf{M} \overrightarrow{\boldsymbol{\xi}}>\lambda_{i} \geq \gamma\) for all \(i(\gamma\) is the constant introduced in (6.1.12)).

Next, apply transformation \(\overrightarrow{\boldsymbol{\eta}}:=\mathbf{T}^{T} \mathbf{M}^{1 / 2} \overrightarrow{\boldsymbol{\mu}}\) to the 2-step formulation (6.2.30)
\[
\text { (6.2.30) } \overrightarrow{\boldsymbol{\eta}}:=\mathbf{T}^{\top} \mathbf{M}^{1 / 2} \overrightarrow{\boldsymbol{\mu}} \quad \overrightarrow{\boldsymbol{\eta}}^{(j+1)}-2 \overrightarrow{\boldsymbol{\eta}}^{(j)}+\overrightarrow{\boldsymbol{\eta}}^{(j-1)}=-\tau^{2} \mathbf{D} \overrightarrow{\boldsymbol{\eta}}^{(j)}
\]

Again, we have achieved a complete decoupling of the timestepping for the eigencomponents.
\[
\begin{equation*}
\eta_{i}^{(j+1)}-2 \eta_{i}^{(j)}+\eta_{i}^{(j-1)}=-\tau^{2} \lambda_{i} \eta_{i}^{(j)}, \quad i=1, \ldots, N, \quad j=1,2, \ldots \tag{6.2.39}
\end{equation*}
\]

In fact, (6.2.39) is what we end up with then applying Störmers scheme to the scalar linear 2nd-order ODE \(\ddot{\eta}_{i}=-\lambda_{i} \eta_{i}\). In a sense, the commuting diagram (6.1.54) remains true for 2-step methods and second-order ODEs.
(6.2.39) is a linear two-step recurrence formula for the sequences \(\left(\eta_{i}^{(j)}\right)_{j}\).

Try:
\[
\eta_{i}^{(j)}=\xi^{j} \quad \text { for some } \quad \xi \in \mathbb{C} \backslash\{0\}
\]

Plug this into (6.2.39)
\[
\begin{aligned}
& \Rightarrow \quad \xi^{2}-2 \xi+1=-\tau^{2} \lambda_{i} \xi \quad \Leftrightarrow \quad \xi^{2}-\left(2-\tau^{2} \lambda_{i}\right) \xi+1=0 \\
& \Rightarrow \quad \text { two solutions } \quad \xi_{ \pm}=\frac{1}{2}\left(2-\tau^{2} \lambda_{i} \pm \sqrt{\left(2-\tau^{2} \lambda_{i}\right)^{2}-4}\right)
\end{aligned}
\]

We can get a blow-up of some solutions of (6.2.39), if \(\left|\xi_{+}\right|>1\) of \(\left|\xi_{-}\right|>1\). From secondary school we know Vieta's formula
\[
\begin{aligned}
& \xi_{+} \cdot \xi_{-}=1 \Rightarrow\left\{\xi_{ \pm} \in \mathbb{R} \text { and } \xi_{+} \neq \xi_{-} \Rightarrow\left|\xi_{+}\right|>1 \text { or }\left|\xi_{-}\right|>1\right\} \\
&\left\{\xi_{-}=\xi_{+}^{*} \Rightarrow\left|\xi_{-}\right|=\left|\xi_{+}\right|=1\right\}
\end{aligned}
\]
where \(\xi_{+}^{*}\) designates complex conjugation. So the recurrence (6.2.39) has only bounded solution, if and only if
\[
\begin{equation*}
\text { discriminant } D:=\left(2-\tau^{2} \lambda_{i}\right)^{2}-4 \leq 0 \Leftrightarrow \tau<\frac{2}{\sqrt{\lambda_{i}}} \tag{6.2.40}
\end{equation*}
\]
stability induced timestep constraint for leapfrog timestepping

Special setting: spatial finite element Galerkin discretization based on fixed degree Lagrangian finite element spaces ( \(\rightarrow\) Sect. 3.4), meshes created by uniform regular refinement.

Under these conditions a generalization of Lemma 6.1.48 shows

Stability of leapfrog timestepping entails \(\tau \leq O\left(h_{\mathcal{M}}\right)\) for \(h_{\mathcal{M}} \rightarrow 0\)

Remark 6.2.41 (Geometric interpretation of CFL condition in 1D).

Setting:
- 1D wave equation, (spatial) boundary conditions ignored ("Cauchy problem"),
\[
\begin{equation*}
c>0: \quad \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \quad, \quad u(x, 0)=u_{0}(x), \quad \frac{\partial u}{\partial t}(x, 0)=v_{0}(x), \quad x \in \mathbb{R} \tag{6.2.15}
\end{equation*}
\]
- Linear finite element Galerkin discretization on equidistant spatial mesh \(\mathcal{M}:=\left\{\left[x_{j-1}, x_{j}\right]: j \in\right.\) \(\mathbb{Z}\}, x_{j}:=h j\) (meshwidth \(h\) ), see Sect. 1.5.1.2.
- Mass lumping for computation of mass matrix, which will become \(h \cdot \mathbf{I}\), see Rem 6.2.34.
- Timestepping by Sörmer scheme (6.2.30) with constant timestep \(\tau>0\).

\(\triangleleft\) flow of information in one step of Störmer
scheme

Since the method is a two-step method, information from time-slices \(t_{k}\) and \(t_{k-1}\) is needed.

Below: yellow region \(\hat{=}\) domain of dependence (d.o.d.) of \((\bar{x}, \bar{t})\)

\(c \tau<h\) : numerical domain of dependence (marked -) contained in d.o.d.
\(\Rightarrow\) CFL-condition met


\(c \tau>h\) : numerical domain of dependence (marked -) not contained in d.o.d.
\(\Rightarrow\) CFL-condition violated
\((\bullet \hat{=}\) coarse grid, \(\square \hat{=}\) fine grid, \(\square \hat{=}\) d.o.d)
\(\triangleleft\) 1D consideration:
sequence of equidistant space-time grids of \(\widetilde{\Omega}\) with \(\tau=\gamma h(\tau / h=\) meshwidth in time/space)

If \(\gamma>\) CFL-constraint (here \(\gamma>c^{-1}\) ), then analytical domain of dependence
© initial data \(u_{0}\) outside numerical domain of dependence cannot influence approximation at grid point \((\bar{x}, \bar{t})\) on any mesh no convergence!

CFL-condition \(\Leftrightarrow\) analytical domain of dependence \(\subset\) numerical domain of dependence

Will the CFL-condition thwart the efficient use of leapfrog, see Rem. 6.1.67?

To this end we need an idea about the convergence of the solutions of the fully discrete method:
"Meta-theorem" 6.2.42 (Convergene of fully discrete solutions of the wave equation).
Assume that
- the solution of the IBVP for the wave equation (6.2.19) is "sufficiently smooth",
- its spatial Galerkin finite element discretization relies on degree p Lagrangian finite elements ( \(\rightarrow\) Sect. 3.4) on uniformly shape-regular families of meshes,
- timestepping is based on the leapfrog method (6.2.33) with uniform timestep \(\tau>0\).

Then we can expect an asymptotic behavior of the total discretization error according to
\[
\begin{equation*}
\left(\tau \sum_{j=1}^{M}\left\|u-u_{N}(\tau j)\right\|_{H^{1}(\Omega)}^{2}\right)^{\frac{1}{2}} \leq C\left(h^{p} \mathcal{M}^{p}+\tau^{2}\right) \tag{6.2.43}
\end{equation*}
\]
where \(C>0\) must not depend on \(h_{\mathcal{M}}, \tau\).
L.F. is 2nd-order!

As in the case of Metatheorem 6.1.63 (nothing new!) we find:

Rem. 5.3 .45 still applies: (6.2.43) does not give information about actual error, but only about the trend of the error, when discretization parameters \(h_{\mathcal{M}}\) and \(\tau\) are varied.

Nevertheless, as in the case of the a priori error estimates of Sect. 5.3.5, we can draw conclusions about optimal refinement strategies in order to achieve prescribed error reduction.

As in Sect. 5.3 .5 we make the assumption that the estimates (6.2.43) are sharp for all contributions to the total error and that the constants are the same (!)
contribution of spatial error \(\approx C h_{\mathcal{M}}^{p}, h_{\mathcal{M}} \hat{=}\) mesh width ( \(\rightarrow\) Def. 5.2.3) ,
contribution of temporal error \(\approx C \tau^{2}, \tau \hat{=}\) timestep size.
This suggests the following change of \(h_{\mathcal{M}}, \tau\) in order to achieve error reduction by a factor of \(\rho>1\) :
reduce mesh width by factor \(\rho^{1 / p} \stackrel{(6.1 .65)}{\Longrightarrow}\) error reduction by \(\rho>1\). reduce timestep by factor \(\rho^{1 / 2}\)
\(=\)

Guideline: spatial and temporal resolution have to be adjusted in tandem

Parallel zu Rem. 6.1.67 we may wonder whether the timestep constraint \(\tau<O\left(h_{\mathcal{M}}\right)\) (asymptotically) enforces small timesteps not required for accuracy:

Only for \(p=1\) (linear Lagrangian finite elements) the requirement \(\tau<O\left(h_{\mathcal{M}}\right)\) stipulates the use of a smaller timestep than accuracy balancing according to (6.2.45).

The leapfrog timestep constraint \(\tau \leq O\left(h_{\mathcal{M}}\right)\) does not compromise (asymptotic) efficiency, if \(p \geq 2\) ( \(p \hat{=}\) degree of spatial Lagrangian finite elements).

\section*{Convection-Diffusion Problems}

\subsection*{7.1 Heat conduction in a fluid}
\(\Omega \subset \mathbb{R}^{d} \hat{=}\) bounded computational domain, \(d=1,2,3\)

To begin with we want to develop a mathematical model for stationary fluid flow, for instance, the steady streaming of water.
\[
\mathbf{v}: \Omega \mapsto \mathbb{R}^{d}
\]

Assumption:
\[
\mathbf{v} \text { is continuous, } \mathbf{v} \in\left(C^{0}(\bar{\Omega})\right)^{d}
\]

In fact, we will require that \(v\) is uniformly Lipschitz continuous, but this is a mere technical assumption.


Clearly:
\[
\mathbf{v}(\boldsymbol{x}) \hat{=} \text { fluid velocity at point } \boldsymbol{x} \in \Omega
\]
> v corresponds to a velocity field!

Given a flow field \(\mathbf{v} \in\left(C^{0}(\bar{\Omega})\right)^{d}\) we can consider the autonomous initial value problems
\[
\begin{equation*}
\frac{d}{d t} \mathbf{y}=\mathbf{v}(\mathbf{y}) \quad, \quad \mathbf{y}(0)=\boldsymbol{x}_{0} \tag{7.1.1}
\end{equation*}
\]

Its solution \(t \mapsto \mathbf{y}(t)\) defines the path travelled by a particle carried along by the fluid, a particle trajectory, also called a streamline.

\(\triangleleft\) particle trajectories (streamlines) in flow field of Fig. 202.
\[
\text { ( } * \hat{=} \text { initial particle positions) }
\]

A flow field induces a transformation (mapping) of space! to explain this, let us temporarily make the assumption that
the flow does neither enter nor leave \(\Omega\), (this applies to fluid flow in a close container)
which can be modelled by
\[
\begin{equation*}
\mathbf{v}(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x})=0 \quad \forall \boldsymbol{x} \in \partial \Omega \tag{7.1.2}
\end{equation*}
\]
that is, the flow is always parallel to the boundary of \(\Omega\) : all particle trajectories stay inside \(\Omega\).

Now we fix some "time of interest" \(t>0\).
\[
>\text { mapping } \quad \Phi^{t}:\left\{\begin{array}{c}
\Omega  \tag{7.1.3}\\
x_{0} \mapsto \mathbf{~}
\end{array} \mathbf{y}^{(t)} \text {. } \quad, \quad t \mapsto \mathbf{y}(t)\right. \text { solution of IVP (7.1.1) }
\]
is well-defined mapping of \(\Omega\) to itself, the flow map. Obviously, it satisfies
\[
\begin{equation*}
\boldsymbol{\Phi}^{0} \boldsymbol{x}_{0}=\boldsymbol{x}_{0} \quad \forall \boldsymbol{x}_{0} \in \Omega \tag{7.1.4}
\end{equation*}
\]

In [14, Def. 11.1.6] the more general concept of an evolution operator was introduced, which agrees with the flow map in the current setting.

\(\Phi^{\tau}(V) \hat{=}\) volume occupied at time \(t=\tau\) by particles that occupied \(V \subset \Omega\) at time \(t=0\).
\(u: \Omega \mapsto \mathbb{R} \hat{=}\) stationary temperature distribution in fluid moving according to a stationary flow field \(\mathbf{v}: \Omega \mapsto \mathbb{R}^{d}\)

We adapt the considerations of Sect. 2.5 that led to the stationary heat equation. Recall


From 2.5.2 by Gauss' theorem Thm. 2.4.5
\[
\int_{V} \operatorname{div} \mathbf{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{V} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad \text { for all "control volumes" } V \subset \Omega .
\]

Now appeal to another version of the fundamental lemma of the calculus of variations, see Lemma 2.4.10, this time sporting piecewise constant test functions.

\section*{local form of energy conservation:}
\[
\begin{equation*}
\operatorname{div} \mathbf{j}=f \quad \text { in } \Omega . \tag{2.5.5}
\end{equation*}
\]

However, in a moving fluid a power flux through a fixed surface is already caused by the sheer fluid flow carrying along thermal energy. This is reflected in a modified Fourier's law (2.5.3):

\(\kappa>0 \hat{=}\) heat conductivity \(\left([\kappa]=1 \frac{\mathrm{~W}}{\mathrm{Km}}\right), \rho>0 \hat{=}\) heat capavity \(\left([\rho]=\frac{\mathrm{J}}{\mathrm{Km}^{3}}\right)\), both assumed to be constant (in contrast to the models of Sect. 2.5 and Sect. 6.1.1).

Combine equations (2.5.5) \& (7.1.5):
\[
\begin{align*}
\operatorname{div} \mathbf{j} & =f \quad+\quad \underline{\mathbf{j}(\boldsymbol{x})=-\kappa \operatorname{grad}} u(\boldsymbol{x})+\mathbf{v}(\mathbf{x}) \rho u(\boldsymbol{x}) \\
& -\operatorname{div}(\kappa \operatorname{grad} u)+\operatorname{div}(\rho \mathbf{v}(\boldsymbol{x}) u)=f \text { in } \Omega . \tag{7.1.6}
\end{align*}
\]

Linear scalar convection-diffusion equation (for unknown temperature \(u\) )
\[
\begin{array}{cc}
-\operatorname{div}(\kappa \operatorname{grad} u) & + \\
\downarrow & \operatorname{div}(\rho \mathbf{v}(\boldsymbol{x}) u)=f . \\
\text { diffusive term } & \text { convective term }
\end{array}
\]

The 2nd-order elliptic PDE (7.1.6) has to be supplemented with exactly one boundary condition on any part of \(\partial \Omega\), see Sect. 2.6, Ex. 2.6.7. This can be any of the boundary conditions introduced in Sect. 2.6:
- Dirichlet boundary conditions: \(u=g \in C^{0}(\partial \Omega)\) on \(\partial \Omega\) (fixed surface temperatur),
- Neumann boundary conditions: \(\mathbf{j} \cdot \boldsymbol{n}=-h\) on \(\partial \Omega\) (fixed heat flux),
- (non-linear) radiation boundary conditions: \(\mathbf{j} \cdot \boldsymbol{n}=\Psi(u)\) on \(\partial \Omega\) (temperature dependent heat flux).

\subsection*{7.1.3 Incompressible fluids}

For the sake of simplicity we will mainly consider incompressible fluids.

Definition 7.1.7 (Incompressible flow field).
A fluid flow is called incompressible, if the associated flow map \(\Phi^{t}\) is volume preserving,
\[
\left|\Phi^{t}(V)\right|=\left|\Phi^{0}(V)\right| \quad \text { for all sufficiently small } t>0, \text { for all control volumes } V .
\]

Can incompressibility be read off the velocity field \(v\) of the flow?

To investigate this issue, again assume the "no flow through the boundary condition" (7.1.2) and recall that the flowmap \(\Phi^{t}\) from (7.1.3) satisfies
\[
\begin{equation*}
\frac{\partial}{\partial t} \boldsymbol{\Phi}(t, \boldsymbol{x})=\mathbf{v}(\boldsymbol{\Phi}(t, \boldsymbol{x})), \quad \boldsymbol{x} \in \Omega, t>0 \tag{7.1.8}
\end{equation*}
\]

Here, in order to make clear the dependence on independent variables, time occurs as an argument of \(\Phi\) in brackets, on par with \(\boldsymbol{x}\).

Next, formal differentiation w.r.t. \(\boldsymbol{x}\) and change of order of differentiation yields a differential equation for the Jacobian \(D_{x} \Phi^{t}\),
\[
\begin{aligned}
& \text { (7.1.8) } \Rightarrow \frac{\partial}{\partial t}\left(D_{\boldsymbol{x}} \boldsymbol{\Phi}\right)(t, \boldsymbol{x})=D \mathbf{v}(\boldsymbol{\Phi}(t, \boldsymbol{x}))\left(D_{\boldsymbol{x}} \boldsymbol{\Phi}\right)(t, \boldsymbol{x}) . \\
& \text { Jacobian } \in \mathbb{R}^{d, d} \\
& \text { Jacobian } \in \mathbb{R}^{d, d}
\end{aligned}
\]

Second strand of thought: apply transformation formula for integrals (3.5.31), [19, Satz 8.5.2]: for fixed \(t>0\)
\[
\begin{equation*}
|\boldsymbol{\Phi}(t, V)|=\int_{\boldsymbol{\Phi}(t, V)} 1 \mathrm{~d} \boldsymbol{x}=\int_{V}\left|\operatorname{det}\left(D_{\boldsymbol{x}} \boldsymbol{\Phi}\right)(t, \widehat{\boldsymbol{x}})\right| \mathrm{d} \widehat{\boldsymbol{x}} . \tag{7.1.10}
\end{equation*}
\]

Volume preservation by the flow map is equivalent to
\[
t \mapsto|\boldsymbol{\Phi}(t, V)|=\text { const. } \Longleftrightarrow \frac{d}{d t}|\boldsymbol{\Phi}(t, V)|=0
\]
for any control volume \(V \subset \Omega\).
\[
\text { (7.1.10) } \Rightarrow \frac{d}{d t}|\boldsymbol{\Phi}(t, V)|=\int_{V} \frac{\partial}{\partial t}\left|\operatorname{det}\left(D_{x} \boldsymbol{\Phi}\right)(t, \widehat{\boldsymbol{x}})\right| \mathrm{d} \widehat{\boldsymbol{x}} .
\]

Theorem 7.1.11 (Differentiation formula for determinants).
Let \(\mathbf{S}: I \subset \mathbb{R} \mapsto \mathbb{R}^{n, n}\) be a smooth matrix-valued function. If \(\mathbf{S}\left(t_{0}\right)\) is regular for some \(t_{0} \in I\), then
\[
\frac{d}{d t}(\operatorname{det} \mathrm{o} \mathbf{S})\left(t_{0}\right)=\operatorname{det}\left(\mathbf{S}\left(t_{0}\right)\right) \operatorname{tr}\left(\frac{d \mathbf{S}}{d t}\left(t_{0}\right) \mathbf{S}^{-1}\left(t_{0}\right)\right)
\]
\[
\begin{aligned}
& \frac{\partial}{\partial t} \operatorname{det}\left(D_{x} \boldsymbol{\Phi}\right)(t, \widehat{\boldsymbol{x}}) \stackrel{(\overline{7.1 .9)}}{=} \\
& \operatorname{det}\left(D_{\boldsymbol{x}} \boldsymbol{\Phi}\right)(t, \widehat{\boldsymbol{x}}) \operatorname{tr}(D \mathbf{v}(\boldsymbol{\Phi}(t, \widehat{\boldsymbol{x}})) \underbrace{\left(D_{x} \boldsymbol{\Phi}\right)(t, \widehat{\boldsymbol{x}})\left(D_{\boldsymbol{x}} \boldsymbol{\Phi}\right)^{-1}(t, \widehat{\boldsymbol{x}})}_{=\mathbf{I}}) \\
&=\operatorname{det}\left(D_{\boldsymbol{x}} \boldsymbol{\Phi}\right)(t, \widehat{\boldsymbol{x}}) \operatorname{div} \mathbf{v}(\boldsymbol{\Phi}(t, \widehat{\boldsymbol{x}})),
\end{aligned}
\]
because the divergence of a vector field v is just the trace of its Jacobian \(D \mathrm{v}\) ! From (7.1.4) we know that for small \(t>0\) the Jacobian \(D_{x} \boldsymbol{\Phi}(t, \widehat{\boldsymbol{x}})\) will be close to I and, therefore, \(\operatorname{det}\left(D_{x} \boldsymbol{\Phi}\right)(t, \widehat{\boldsymbol{x}}) \neq 0\) for \(t \approx 0\). Thus, for small \(t>0\) we conclude
\[
\frac{d}{d t}|\boldsymbol{\Phi}(t, V)|=0 \quad \Leftrightarrow \quad \operatorname{div} \mathbf{v}(\boldsymbol{\Phi}(t, \widehat{\boldsymbol{x}}))=0 \quad \forall \widehat{\boldsymbol{x}} \in V
\]

Since this is to hold for any control volume \(V\), the final equivalence is
\[
\frac{d}{d t}|\boldsymbol{\Phi}(t, V)|=0 \quad \forall \text { control volumes } V \quad \Leftrightarrow \quad \operatorname{div} \mathbf{v}=0 \quad \text { in } \Omega .
\]

Theorem 7.1.12 (Divergence-free velocity fields for incompressible flows).
A stationary fluid flow in \(\Omega\) is incompressible ( \(\rightarrow\) Def. [7.1.7), if and only if its associated velocity field \(\mathbf{v}\) satisfies \(\operatorname{div} \mathbf{v}=0\) everywhere in \(\Omega\).

In the sequel we make the assumption:
\[
\operatorname{div} \mathbf{v}=\sum_{j=1}^{d} \frac{\partial v_{j}}{\partial x_{j}}=0
\]
(Note: for \(d=1\) this boils down to \(\frac{d v}{d x}=0\) and implies \(v=\) const.)

Then we can use the product rule in higher dimensions of Lemma [2.4.3:
\[
\operatorname{div}(\rho \mathbf{v} u){ }^{\operatorname{Lemma}}=\frac{[2.4 .3}{} \rho(u \operatorname{div} \mathbf{v}+\mathbf{v} \cdot \operatorname{grad} u)^{\operatorname{div} \mathbf{v}=0} \rho \mathbf{v} \cdot \operatorname{grad} u .
\]

Thus, we can rewrite the scalar convection-diffusion equation (7.1.6) for an incompressible flow field
\[
\begin{array}{r}
-\operatorname{div}(\kappa \operatorname{grad} u)+\operatorname{div}(\rho \mathbf{v}(\boldsymbol{x}) u)=f \text { in } \Omega \\
\leftarrow \operatorname{div} \mathbf{v}=0
\end{array}
\]
\[
\begin{equation*}
-\kappa \Delta u+\rho \mathbf{v} \cdot \operatorname{grad} u=f \quad \text { in } \Omega \tag{7.1.13}
\end{equation*}
\]

When carried along by the flow of an incompressible fluid, the temperature cannot be increased by local compression, the effect that you can witness when pumping air. Hence, only sources/sinks can lead to local extrema of the temperature.

Now recall the discussion of the physical intuition behind the maximum principle of Thm. 5.7.2. These considerations still apply to stationary heat flow in a moving incompressible fluid.

Theorem 7.1.14 (Maximum principle for scalar 2nd-order convection diffusion equations).
Let \(\mathrm{v}: \Omega \mapsto \mathbb{R}^{d}\) be a continuously differentiable vector field. Then there holds the maximum principle
\[
\begin{aligned}
-\Delta u+\mathbf{v} \cdot \operatorname{grad} u \geq 0 & \Longrightarrow \quad \min _{\boldsymbol{x} \in \partial \Omega} u(\boldsymbol{x})=\min _{\boldsymbol{x} \in \Omega} u(\boldsymbol{x}) \\
-\Delta u+\mathbf{v} \cdot \operatorname{grad} u \leq 0 & \Longrightarrow \quad \max _{\boldsymbol{x} \in \partial \Omega} u(\boldsymbol{x})=\max _{\boldsymbol{x} \in \Omega} u(\boldsymbol{x})
\end{aligned}
\]

\subsection*{7.1.4 Transient heat conduction}

In Sect. 6.1.1 we generalized the laws of stationary heat conduction derived in Sect. 2.5 to timedependent temperature distributions \(u=u(\boldsymbol{x}, t)\) sought on a space-time cylinder \(\widetilde{\Omega}:=\Omega \times] 0, T[\). The same ideas apply to heat conduction in a fluid:
- Start from energy balance law (6.1.1) and convert it into local form (6.1.2).
- Combine it with the extended Forier's law (7.1.5).
\[
\begin{equation*}
\left.\frac{\partial}{\partial t}(\rho u)-\operatorname{div}(\kappa \operatorname{grad} u)+\operatorname{div}(\rho \mathbf{v}(\boldsymbol{x}, t) u)=f(\boldsymbol{x}, t) \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[ \tag{7.1.15}
\end{equation*}
\]

For details and notations refer to Sect. 6.1.1.

This PDE has to be supplemented with
- boundary conditions (as in the stationary case, see Sect. 2.6),
- initial conditions (same as for pure diffusion, see Sect. 6.1.1).

Under the assumption \(\operatorname{div} \boldsymbol{x} \mathbf{v}(\boldsymbol{x}, t)=0\) of incompressibilty \((\rightarrow\) Def. 7.1.7 and Thm. 7.1.12) (7.1.15) is equivalent to
\[
\begin{equation*}
\left.\frac{\partial}{\partial t}(\rho u)-\kappa \Delta u+\rho \mathbf{v}(\boldsymbol{x}, t) \cdot \operatorname{grad} u=f(\boldsymbol{x}, t) \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[ \tag{7.1.16}
\end{equation*}
\]

\subsection*{7.2 Stationary convection-diffusion problems}

Model problem, cf. (7.1.13), modelling stationary heat flow in an incompressible fluid with prescribed temperature at "walls of the container" ( \(\leftrightarrow\) Dirichlet boundary conditions).
\[
-\kappa \Delta u+\rho \mathbf{v}(\boldsymbol{x}) \cdot \operatorname{grad} u=f \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega .
\]

Perform scaling \(\hat{=}\) choice of physical units: makes equation non-dimensional by fixing "reference length", "reference time interval".

A suitable choice of physical units leads to rescaled physical constants \(\kappa \rightarrow \epsilon, \rho \rightarrow 1,\|\mathbf{v}\|_{L^{\infty}(\Omega)} \rightarrow 1\).
After scaling we deal with the non-dimensional boundary value problem


Remark 7.2.2 (Variational formulation for convection-diffusion BVP).

Standard "4-step approach" of Sect. 2.8 can be directly applied to BVP (7.2.1) with one new twist:

Do not use integration by parts (Green's formula, Thm. 2.4.7) on convective terms!
\(\Delta\) variational formulation for BVP (7.2.1):
\[
u \in H_{0}^{1}(\Omega): \underbrace{\epsilon \int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x}+\int_{\Omega}(\mathbf{v} \cdot \boldsymbol{\operatorname { g r a d }} u) v \mathrm{~d} \boldsymbol{x}}_{\text {bilinear form } \mathrm{a}(u, v)}=\underbrace{\int_{\Omega} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}}_{\text {linear form } \ell(v)} \quad \forall v \in H_{0}^{1}(\Omega) .
\]
\(\hat{=}\) a linear variational problem, see Sect. 2.3.1.

Surprise: a is positive definite ( \(\rightarrow\) Def. 2.1.22), because
\[
\begin{aligned}
& \int_{\Omega}(\mathbf{v} \cdot \operatorname{grad} u) u \mathrm{~d} \boldsymbol{x}=\int_{\Omega}(\mathbf{v} u) \cdot \operatorname{grad} u \mathrm{~d} \boldsymbol{x} \\
& \text { Green's formula } \\
&= \int_{\Omega} \operatorname{div}(\mathbf{v} u) \cdot \operatorname{grad} u \mathrm{~d} \boldsymbol{x}+\int_{\partial \Omega}^{\underbrace{u^{2}}_{=0}} \mathbf{v} \cdot \boldsymbol{n} \mathrm{~d} S
\end{aligned}
\]
\[
\begin{gather*}
(2.4 .4) \& \int_{\Omega}^{=}(\mathbf{d i v} \mathbf{v}=0 \\
\left.\square \quad \mathrm{a}(u, u)=\epsilon \int_{\Omega} \| \operatorname{grad} u\right) u \mathrm{~d} \boldsymbol{x}  \tag{7.2.3}\\
\nabla \|^{2} \mathrm{~d} \boldsymbol{x}>0 \quad \forall u \in H_{0}^{1}(\Omega) \backslash\{0\} .
\end{gather*}
\]

From this we conclude existence and uniqueness of solutions of the BVP (7.2.1) in the Sobolev space \(H_{0}^{1}(\Omega)\).

\subsection*{7.2.1 Singular perturbation}

Setting: fast-moving fluid \(\leftrightarrow\) convection dominates diffusion \(\leftrightarrow \epsilon \ll 1\) in (7.2.1)

Example 7.2.4 (1D convection-diffusion boundary value problem).
\[
\begin{gathered}
-\epsilon \frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}=1 \quad \text { in } \Omega \\
u(0)=0 \quad, \quad u(1)=0 \\
\square \quad u(x)=x+\frac{\exp (-x / \epsilon)-1}{1-\exp (-1 / \epsilon)}
\end{gathered}
\]

For \(\epsilon \ll 1\) :
boundary layer at \(x=1\)
For \(\epsilon \rightarrow 0\) :
\[
u(x) \rightarrow x
\]

"Limit problem": ignore diffusion \(>\) set \(\epsilon=0\)
\[
\begin{equation*}
\text { (7.2.1) } \quad \stackrel{\epsilon=0}{\square} \quad \mathbf{v}(\boldsymbol{x}) \cdot \operatorname{grad} u=f(\boldsymbol{x}) \text { in } \Omega \tag{7.2.5}
\end{equation*}
\]

Case \(d=1(\Omega=] 0,1[, v= \pm 1)\)
\[
\begin{equation*}
\text { (7.2.5) } \stackrel{d=1}{\square} \pm \frac{d u}{d x}(x)=f(x) \Rightarrow u(x)=\int f \mathrm{~d} x+C \tag{7.2.6}
\end{equation*}
\]

What about this constant \(C\) ?
If \(v=1 \leftrightarrow\) fluid flows "from left to right", so we should integrate the source from 0 to \(x\) :
\[
\begin{equation*}
u(x)=u(0)+\int_{0}^{x} f(s) \mathrm{d} s=\int_{0}^{x} f(s) \mathrm{d} s \tag{7.2.7}
\end{equation*}
\]
because \(u(0)=0\) by the boundary condition \(u=0\) on \(\partial \Omega\). If \(v=-1\) we start the integration at \(x=1\). Note that this makes the maximum principle of Thm. 7.1.14 hold.

For \(d>1\) we can solve (7.2.5) by the method of characteristics:
To motivate it, be aware that (7.2.5) describes pure transport of a temperature distribution in the velocity field \(\mathbf{v}\), that is, the heat/temperature is just carried along particle trajectories and changes only under the influence of heat sources/sinks along that trajectory.

Denote by \(u\) the solution of (7.2.5) and recall the differential equation (7.1.1) for a particle trajectory
\[
\begin{gather*}
\frac{d \mathbf{y}}{d t}(t)=\mathbf{v}(\mathbf{y}(t)) \quad, \quad \mathbf{y}(0)=\boldsymbol{x}_{0}  \tag{7.1.1}\\
\nabla \frac{d}{d t} u(\mathbf{y}(t))=\operatorname{grad} u(\mathbf{y}(t)) \cdot \frac{d}{d t} \mathbf{y}(t)=\operatorname{grad} u \cdot \mathbf{v}(\mathbf{y}(t)) \stackrel{(7.2 .5)}{=} f(\mathbf{y}(t))
\end{gather*}
\]
\(>\) Compute \(\mathbf{u}(\mathbf{y}(t))\) by integrating source \(f\) along particle trajectory!
\[
\begin{equation*}
u(\mathbf{y}(t))=u\left(\boldsymbol{x}_{0}\right)+\int_{0}^{t} f(\mathbf{y}(s)) \mathrm{d} s \tag{7.2.8}
\end{equation*}
\]

Taking the cue from \(d=1\) we choose \(x_{0}\) as "the point on the boundary where the particle enters \(\Omega\) ". These points form the part of the boundary through which the flow enters \(\Omega\), the inflow boundary
\[
\begin{equation*}
\Gamma_{\mathrm{in}}:=\{\boldsymbol{x} \in \partial \Omega: \mathbf{v}(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x})<0\} \tag{7.2.9}
\end{equation*}
\]

Its complement in \(\partial \Omega\) contains the outflow boundary
\[
\begin{equation*}
\Gamma_{\text {out }}:=\{\boldsymbol{x} \in \partial \Omega: \mathbf{v}(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x})>0\} \tag{7.2.10}
\end{equation*}
\]

Remark 7.2.11 (Recirculating flow).
\(\rightarrow\) velocity field
一: Streamline connecting \(\Gamma_{\text {in }}\) and \(\Gamma_{\text {out }}\)
-: Closed streamline


In the case of closed streamlines the stationary pure transport problem fails to have a unique solution: on a closed streamline \(u\) can attain "any" value, because there is no boundary value to fix \(u\).

Return to case \(d=1\). In general solution \(u(x)\) from (7.2.6) will not satisfy the boundary condition \(u(1)=0\) ! Also for \(u(\boldsymbol{x})\) from (7.2.8) the homogeneos boundary conditions may be violated where the particle trajectory leaves \(\Omega\) !

In the limit case \(\epsilon=0\) not all boundary conditions of (7.2.1) can be satisfied.

Definition 7.2.12 (Singularly perturbed problem).
A boundary value problem depending on parameter \(\epsilon \approx \epsilon_{0}\) is called singularly perturbed, if the limit problem for \(\epsilon \rightarrow \epsilon_{0}\) is not compatible with the boundary conditions.

Especially in the case of 2nd-order elliptic boundary value problems:
Singular perturbation \(=1\) st-order terms become dominant for \(\epsilon \rightarrow \epsilon_{0}\)

Focus: linear finite element Galerkin discretization for 1D model problem, cf. Ex. 7.2.4
\[
\begin{equation*}
-\epsilon \frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}=f(x) \quad \text { in } \Omega, \quad u(0)=0 \quad, \quad u(1)=0 \tag{7.2.13}
\end{equation*}
\]

Variational formulation, see Rem. 7.2.2:
\[
u \in H_{0}^{1}(] 0,1[): \underbrace{\epsilon \int_{0}^{1} \frac{d u}{d x}(x) \frac{d u}{d x}(x) \mathrm{d} x+\int_{0}^{1} \frac{d u}{d x}(x) v(x) \mathrm{d} x}_{=: \mathrm{a}(u, v)}=\underbrace{\int_{0}^{1} f(x) v(x) \mathrm{d} x}_{=: \ell(v)} \quad \forall v \in H_{0}^{1}(] 0,1[) .
\]

As in Sect. 1.5.1.2: use equidistant mesh \(\mathcal{M}\) (mesh width \(h>0\) ), composite trapezoidal rule (1.5.55) for right hand side linear form, standard "tent function basis", see (1.5.49).
linear system of equations for coefficients \(\mu_{i}, i=1, \ldots, M-1\), providing approximations for point values \(u(i h)\) of exact solution \(u\).
\[
\begin{equation*}
\left(-\frac{\epsilon}{h}-\frac{1}{2}\right) \mu_{i-1}+\frac{2 \epsilon}{h} \mu_{i}+\left(-\frac{\epsilon}{h}+\frac{1}{2}\right) \mu_{i+1}=h f(i h), \quad i=1, \ldots, M-1, \tag{7.2.14}
\end{equation*}
\]
where the homogeneous Dirichlet boundary conditions are taken into account by setting \(\mu_{0}=\mu_{M}=\) 0 .

Remark 7.2.15 (Finite differences for convection-diffusion equation in 1D).

As in Sect. 1.5 .3 on the finite difference in 1D, we can also obtain (7.2.14) by replacing the derivatives by suitable difference quotients:
\[
\begin{array}{ccc}
-\epsilon \frac{d^{2} u}{d x^{2}} & + & \begin{array}{c}
\frac{d u}{d x} \\
\downarrow \\
\epsilon \\
\text { difference quotient for } \frac{d^{2} u}{d x^{2}}
\end{array} \frac{\downarrow(x)}{h^{2}}+\underbrace{\frac{\mu_{i+1}+2 \mu_{i}-\mu_{i-1}}{h^{2}}}_{\text {symmetric d.q. for } \frac{d u}{d x}}
\end{array}=f(i h) .
\]
- Model boundary value problem (7.2.13)
- linear finite element Galerkin discretization as described above
- As in Ex. 7.2.4: \(f \equiv 1\)

exact solutions


FE solutions

In order to understand this observation, study the linear finite element Galerkin discretization in the limit case \(\epsilon=0\)
\[
\begin{equation*}
\text { (7.2.14) } \stackrel{\epsilon=0}{\triangleright} \mu_{i+1}-\mu_{i-1}=2 h f(i h), \quad i=1, \ldots, M . \tag{7.2.17}
\end{equation*}
\]
(7.2.17) \(\hat{=}\) Linear system of equations with singular system matrix!

For \(\epsilon>0\) the Galerkin matrix will always be regular due to (7.2.3), but the linear relationship (7.2.17) will become more and more dominant as \(\epsilon>0\) becomes smaller and smaller. In particular, (7.2.17) sends the message that values at even and odd numbered nodes will become decoupled, which accounts for the oscillations.

\section*{Desired:}
\(=\) discretization that produces qualitatively correct solutions for any \(\epsilon>0\)

Guideline:

Numerical methods for singularly perturbed problems must "work" for the limit problem

What is a meaningful scheme for limit problem \(u^{\prime}=f\) on an equidistant mesh of \(\left.\Omega:=\right] 0,1[?\)
\[
\text { Explicit Euler method: } \quad \mu_{i+1}-\mu_{i}=h f\left(\xi_{i}\right) \quad i=0, \ldots, N
\] Implicit Euler method: \(\quad \mu_{i+1}-\mu_{i}=h f\left(\xi_{i+1}\right) \quad i=0, \ldots, N\).

Use one-sided difference quotients for discretization of convective term!
Which type ? (Explicit or implicit Euler ?)

Linear system arising from use of backward difference quotient \(\left.\frac{d u}{d x}\right|_{x=x_{i}}=\frac{\mu_{i}-\mu_{i-1}}{h}\) :
\[
\begin{equation*}
\left(-\frac{\epsilon}{h}-1\right) \mu_{i-1}+\left(\frac{2 \epsilon}{h}+1\right) \mu_{i}+-\frac{\epsilon}{h} \mu_{i+1}=h f(i h), \quad i=1, \ldots, M-1 \tag{7.2.18}
\end{equation*}
\]

Linear system arising from use of forward difference quotient \(\left.\frac{d u}{d x}\right|_{x=x_{i}}=\frac{\mu_{i+1}-\mu_{i}}{h}\) :
\[
\begin{equation*}
-\frac{\epsilon}{h} \mu_{i-1}+\left(\frac{2 \epsilon}{h}-1\right) \mu_{i}+\left(-\frac{\epsilon}{h}+1\right) \mu_{i+1}=h f(i h), \quad i=1, \ldots, M-1 \tag{7.2.19}
\end{equation*}
\]

Example 7.2.20 (One-sided difference approximation of convective terms).

Model problem of Ex. 7.2.16, discretizations (7.2.18) and (7.2.19).

Upwind discretization, \(M=30\)

backward difference quotient

Downwind discretization, \(\mathrm{M}=30\)

forward difference quotient

Only the discretization of \(\frac{d u}{d x}\) based on the backward difference quotient generates qualitatively correct (piecewise linear) discrete solutions (a "good method").

If the forward difference quotient is used, the discrete solutions may violate the maximum principle of Thm. 7.1.14 (a "bad method").

How can we tell a good method from a bad method by merely examining the system matrix?

Heuristic criterion for \(\epsilon \rightarrow 0\)-robust stability of nodal finite element Galerkin discretization/finite difference discretization of singularly perturbed scalar linear convection-diffusion BVP (7.2.1) (with Dirichlet b.c.):
(Linearly interpolated) discrete solution satisfies maximum principle (5.7.3).
§
System matrix complies with sign-conditions (5.7.9)-(5.7.11).

Nodal finite element Galerkin discretization \(\hat{=}\) basis expansion coefficients \(\mu_{i}\) of Galerkin solution \(u_{N} \in V_{N}\) double as point values of \(u_{N}\) at interpolation nodes. This is satisfied for Lagrangian finite element methods ( \(\rightarrow\) Sect. 3.4) when standard nodal basis functions according to (3.4.3) are used.

Recall the sign-conditions \((5.7 .9)-(5.7 .11)\) for the system matrix A arising from nodal finite element Galerkin discretization or finite difference discretization:
- (5.7.9) : positive diagonal entries,
\[
(\mathbf{A})_{i i}>0
\]
- (5.7.10) : non-positive off-diagonal entries,
\[
(\mathbf{A})_{i j} \leq 0, \text { if } i \neq j
\]
- "(5.7.11)": diagonal dominance,
\[
\sum_{j}(\mathbf{A})_{i j} \geq 0
\]

These conditions are met for equidistant meshes in 1D
- for the standard \(\mathcal{S}_{1}^{0}(\mathcal{M})\)-Galerkin discretization (7.2.14), provided that \(\left|\epsilon h^{-1}\right| \geq \frac{1}{2}\),
- when using backward difference quotients for the convective term (7.2.18) for any choice of \(\epsilon \geq 0\), \(h>0\),
- when using forward difference quotients for the convective term (7.2.19), provided that \(\left|\epsilon h^{-1}\right| \geq 1\).

Only the use of a backward difference quotient for the convective term guarantees the (discrete) maximum principle in an \(\epsilon \rightarrow 0\)-robust fashion!

Terminology: Approximation of \(\frac{d u}{d x}\) by backward difference quotients \(\hat{=}\) upwinding

Example 7.2.21 (Spurious Galerkin solution for 2D convection-diffusion BVP).
- Triangle domain \(\Omega=\{(x, y): 0 \leq x \leq 1,-x \leq y \leq x\}\).
- Velocity \(\mathbf{v}(\boldsymbol{x})=\binom{1}{0}>\) (7.2.1) becomes \(-\epsilon \Delta u+u_{x}=1\).
- Exact solution: \(u_{\epsilon}\left(x_{1}, x_{2}\right)=x-\frac{1}{1-e^{-1 / \epsilon}}\left(e^{-\left(1-x_{1}\right) / \epsilon}-e^{-1 / \epsilon}\right)\), Dirichlet boundary conditions set accordingly
- Standard Galerkin discretization by means of linear finite elements on sequence of triangular mesh created by regular refinement.


Coarse initial mesh


Exact solution
\[
\left(\epsilon=10^{-10}\right)
\]


Standard Galerkin solution on \(x_{2}=0\)-line

Issue:
extension of upwinding idea to \(d>1\)

\subsection*{7.2.2.1 Upwind quadrature}

Revisit 1D model problem
\[
\begin{equation*}
-\epsilon \frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}=f(x) \quad \text { in } \Omega, \quad u(0)=0 \quad, \quad u(1)=0 \tag{7.2.13}
\end{equation*}
\]
with variational formulation, see Rem. 7.2.2:
convective term
\[
u \in H_{0}^{1}(] 0,1[): \underbrace{\epsilon \int_{0}^{1} \frac{d u}{d x}(x) \frac{d u}{d x}(x) \mathrm{d} x+\int_{0}^{1} \frac{d u}{d x}(x) v(x) \mathrm{d} x}_{=: \mathrm{a}(u, v)}=\underbrace{\int_{0}^{1} f(x) v(x) \mathrm{d} x}_{=: \ell(v)} \quad \forall v \in H_{0}^{1}(] 0,1[)
\]

Linear finite element Galerkin discretization on equidistant mesh \(\mathcal{M}\) with \(M\) cells, meshwidth \(h=\frac{1}{M}\), cf. Sect. 1.5.1.2.

We opt for the composite trapezoidal rule
\[
\int_{0}^{1} \psi(x) \mathrm{d} x \approx h \sum_{j=1}^{M-1} \psi(j h), \quad \text { for } \quad \psi \in C^{0}(] 0,1[), \psi(0)=\psi(1)=0
\]
for evaluation of convective term in bilinear form a:
\[
\begin{equation*}
\int_{0}^{1} \frac{d u_{N}}{d x}(x) v_{N}(x) \mathrm{d} x \approx h \sum_{j=1}^{M-1} \frac{d u_{N}}{d x}(j h) v(h j), \quad v_{N} \in \mathcal{S}_{1,0}^{0}(\mathcal{M}) \tag{7.2.22}
\end{equation*}
\]

Note: this is not a valid formula, because \(\frac{d u_{N}}{d x}(j h)\) is ambiguous, since \(\frac{d u_{N}}{d x}\) is discontinuous at nodes of the mesh for \(u_{N} \in \mathcal{S}_{1,0}^{0}(\mathcal{M})\) !

Up to now we resolved this ambiguity by the policy of local quadrature, see Sect. 3.5.4: quadrature rule applied locally on each cell with all information taken from that cell.

\section*{However:} Convection transports information in the direction of \(\mathbf{v}\) !

\section*{Idea:}

Use upstream/upwind information to evaluate \(\frac{d u_{N}}{d x}(j h)\) in (7.2.22)
\[
\left.\frac{d u_{N}}{d x}(j h): \left.=\lim _{\delta \rightarrow 0} \frac{d u_{N}}{d x}(j h-\delta)=\frac{d u_{N}}{d x} \right\rvert\,\right] x_{j-1}, x_{j}[.
\]
\(\hat{=}\) upwind quadrature

Upwind quadrature yields the following contribution of the discretized convective term to the linear system using the basis expansion \(u_{N}=\sum_{l=1}^{M-1} \mu_{l} b_{N}^{l}\) into locally supported nodal basis functions ("tent functions")
\[
\int_{0}^{1} \sum_{l=1}^{M-1} \mu_{l} \frac{d b_{N}^{l}}{d x}(x) b_{N}^{i}(x) \mathrm{d} x \stackrel{(7.2 .22)}{\approx} h \frac{\mu_{i}-\mu_{i-1}}{h},
\]
where we used
- \(b_{N}^{i}(j h)=\delta_{i j}\), see (1.5.50),
- \(\frac{d u_{N}}{d x}\left|\left|x_{j-1}, x_{j}\right| ~=\frac{\mu_{i}-\mu_{i-1}}{h}\right.\) from (1.5.51).

Linear system from upwind quadrature:
\[
\left(-\frac{\epsilon}{h}-1\right) \mu_{i-1}+\left(\frac{2 \epsilon}{h}+1\right) \mu_{i}+-\frac{\epsilon}{h} \mu_{i+1}=h f(i h), \quad i=1, \ldots, M-1
\]
which is the same as that obtained from a backward finite difference discretization of \(\frac{d u}{d x}\) !

The idea of upwind quadrature can be generalized to \(d>1\) : we consider \(d=2\) and linear Lagrangian finite element Galerkin discretization on triangular meshes, see Sect. 3.2.
(1) Approximation of contribution of convective terms to bilinear form by means of global trapezoidal rule:
\[
\begin{equation*}
\int_{\Omega}(\mathbf{v} \cdot \operatorname{grad} u) v \mathrm{~d} \boldsymbol{x} \approx \sum_{\boldsymbol{p} \in \mathcal{N}(\mathcal{M})}\left(\frac{1}{3} \sum_{K \in \mathcal{U}_{p}}|K|\right) \cdot \mathbf{v}(\boldsymbol{p}) \cdot \operatorname{grad} u(\boldsymbol{p}) v(\boldsymbol{p}) \tag{7.2.23}
\end{equation*}
\]
notation: \(\mathcal{U}_{\boldsymbol{p}}:=\{K \in \mathcal{M}: \boldsymbol{p} \in \bar{K}\}\)
(2) Fix the ambiguous value of \(\mathbf{v}(\boldsymbol{p})\) \(\operatorname{grad} u_{N}(\boldsymbol{p}), u_{N} \in \mathcal{S}_{1}^{0}(\mathcal{M})\), by taking the gradient from the triangle upstream to the node \(p\) :


Idea: Use upstream/upwind information to evaluate \(\operatorname{grad} u_{N}(\boldsymbol{p})\) in (7.2.23)
\[
\begin{equation*}
\mathbf{v}(\boldsymbol{p}) \cdot \operatorname{grad} u_{N}(\boldsymbol{p}):=\lim _{\delta \rightarrow 0} \mathbf{v}(\boldsymbol{p}) \cdot \operatorname{grad} u_{N}(\boldsymbol{p}-\delta \mathbf{v}(\boldsymbol{p})) . \tag{7.2.24}
\end{equation*}
\]
\(\hat{=}\) general upwind quadrature

Note: By (7.1.1) the vector \(\mathbf{v}(\boldsymbol{p})\) supplies the direction of the streamline through \(\boldsymbol{p}\). Hence, \(-\mathrm{v}(\boldsymbol{p})\) is the direction from which information is "carried into \(p\) " by the flow.

Contribution of convective term to the \(i\)-th linear of the final linear system of equations (test function = tent function \(b_{N}^{i}\) )
\[
\underbrace{\left(\frac{1}{3} \sum_{K \in \mathcal{U}_{i}}|K|\right)}_{=: U_{i}} \mathbf{v}\left(\boldsymbol{x}^{i}\right) \cdot \operatorname{grad} u_{N \mid K_{u}},
\]
where \(K_{u}\) is the upstream triangle of \(p\).


Using the expressions for the gradients of barycentric coordinate functions from Sect. 3.2.5 and the nodal basis expansion of \(u_{N}\), we obtain for the convective contribution to the \(i\)-th line of the final
linear system
\[
\frac{U_{i}}{2\left|K_{u}\right|}(\underbrace{-\left\|\mathbf{x}^{j}-\mathbf{x}^{k}\right\| \boldsymbol{n}^{i} \cdot \mathbf{v}\left(\boldsymbol{x}^{i}\right)}_{\leftrightarrow \text { diagonal entry }} \mu_{i}-\left\|\mathbf{x}^{i}-\mathbf{x}^{j}\right\| \boldsymbol{n}^{k} \cdot \mathbf{v}\left(\boldsymbol{x}^{i}\right) \mu_{k}-\left\|\mathbf{x}^{i}-\mathbf{x}^{k}\right\| \boldsymbol{n}^{j} \cdot \mathbf{v}\left(\boldsymbol{x}^{i}\right) \mu_{j})
\]

By the very definition of the upstream triangle \(K_{u}\) we find
\[
\boldsymbol{n}^{i} \cdot \mathbf{v}\left(\boldsymbol{x}^{i}\right) \leq 0 \quad, \quad \boldsymbol{n}^{k} \cdot \mathbf{v}\left(\boldsymbol{x}^{i}\right) \geq 0 \quad, \quad \boldsymbol{n}^{j} \cdot \mathbf{v}\left(\boldsymbol{x}^{i}\right) \geq 0
\]
\(>\) sign conditions (5.7.9), (5.7.10) are satisfied, (5.7.11) is obvious.

Example 7.2.25 (Upwind quadrature discretization).
- \(\Omega=[0,1]^{2}\)
- \(\quad-\epsilon \Delta u+\binom{1}{1} \cdot \operatorname{grad} u=0\)
- Dirichlet boundary conditions: \(u(x, y)=1\) for \(x>y\) and \(u(x, y)=0\) for \(x \leq y\)
- Limiting case \((\epsilon \rightarrow 0): u(x, y)=1\) for \(x>y\) and \(u(x, y)=0\) for \(x \leq y\)
- layer along the diagonal from \(\binom{0}{1}\) to \(\binom{1}{0}\) in the limit \(\epsilon \rightarrow 0\)
- linear finite element upwind quadrature discretization on triangular mesh.

D Monitored: discrete solutions along diagonal \(\binom{0}{1}-\binom{1}{0}\) for \(\epsilon=10^{-10}\).


Upwind quadrature scheme respects maximum principle, whereas the standard Galerkin solution is rendered useless by spurious oscillations.

\subsection*{7.2.2.2 Streamline diffusion}

We take another look at the 1D upwind discretization of (7.2.13) and view it from a different perspecfive.

1D upwind (finite difference) discretization of (7.2.13):
\[
\begin{array}{r}
\left(-\frac{\epsilon}{h}-1\right) \mu_{i-1}+\left(\frac{2 \epsilon}{h}+1\right) \mu_{i}+-\frac{\epsilon}{h} \mu_{i+1}=h f(i h) \cdot i=1, \ldots, M-1 . \\
(\epsilon+h / 2) \underbrace{\frac{-\mu_{i-1}+2 \mu_{i}-\mu_{i+1}}{h^{2}}}_{\hat{\Downarrow}}+\underbrace{\stackrel{-\mu_{i-1}+\mu_{i+1}}{2 h}}_{\hat{=} \text { difference quotient for } \frac{d^{2} u}{d x^{2}}}=f(i h),
\end{array}
\]

Upwinding \(=h\)-dependent enhancement of diffusive term artificial diffusion/viscosity

We also observe that the upwinding strategy just ads the minimal amount of diffusion to make the resulting system matrix comply with the conditions (5.7.9)-(5.7.11), which ensure that the discrete solution satisfies the maximum principle.

Issue: \(\quad\) How to extend the trick of adding artificial diffusion to \(d>1\) ?

Well, just add an extra \(h\)-dependent multiple of \(-\Delta\) ! Let's try.

Example 7.2.26 (Effect of added diffusion).

Convection-diffusion boundary value problem ((7.2.1) with \(\mathbf{v}=\binom{1}{0}\) )
\[
\left.-\epsilon \Delta u+\frac{\partial u}{\partial x_{1}}=0 \quad \text { in } \Omega=\right] 0,1\left[^{2}, \quad u=g \quad \text { on } \partial \Omega .\right.
\]

Here, Dirichlet data \(g(\boldsymbol{x})=1-2\left|x_{2}-\frac{1}{2}\right|\).
Thus, for \(\epsilon \approx 0\) we expect \(u \approx g\), because the Dirichlet data are just transported in \(x_{1}\)-direction and there are no boundary layers.


Stronger diffusion leads to "smearing" of features that the flow field transports into the interior of the domain.
(We are no longer solving the right problem!)

Remark 7.2.27 (Internal layers).
\[
u \approx 1
\]

Internal layer
\(u=0\)

Pure transport problem:
where \(\Omega=] 0,1\left[^{2}, \mathbf{v}=\binom{2}{1}, \epsilon=10^{-4}\right.\),
Dirchlet b.c. that can only partly be fulfilled: \(u=1\) on \(\left\{x_{1}=0\right\} \cup\left\{x_{2}=1\right\}, u=0\) on \(\left\{x_{1}=1\right\} \cup\) \(\left\{x_{2}=0\right\}\)

Solution of pure transport problem with discontinuous boundary data
- displays a discontinuity across the streamline emanating from the point of discontinuity on \(\partial \Omega\),
- is smooth along streamlines.

Qualitative solution of
\[
-\delta \Delta+\mathbf{v} \cdot \operatorname{grad} u=0 \quad \text { in } \Omega,
\]
with \(\delta>0\), the same boundary data

Smearing of internal layer!

We would also find a boundary layer which is omitted in the figure.


Heuristics: If the solution is smooth along streamlines, then adding diffusion in the direction of streamlines cannot do much harm.

What does "diffusion in a direction" mean?

Think of a generalized Fourier's law (2.5.3) for \(d=2\), e.g,"
\[
\mathbf{j}(\boldsymbol{x})=-\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \operatorname{grad} u(\boldsymbol{x})
\]

This means, only a temperature variation in \(x_{1}\)-direction triggers a heat flow.
\(\Rightarrow\) diffusion in a direction \(\mathbf{v} \in \mathbb{R}^{2}\)
\[
\begin{equation*}
\mathbf{j}(\boldsymbol{x})=-\mathbf{v} \mathbf{v}^{T} \operatorname{grad} u(\boldsymbol{x}) \tag{7.2.28}
\end{equation*}
\]

Such an extended Fourier's law is an example of anisotropic diffusion.

Anisotropic diffusion can simply be taken into account in variational formulations and Galerkin discretization by replacing the heat conductivity \(\kappa /\) stiffness \(\sigma\) with a symmetric, positive (semi-)definite matrix, the diffusion tensor.
\[
\text { On cell } K \text { replace: } \quad \epsilon \leftarrow \underbrace{\epsilon \boldsymbol{I}+\delta_{K} \mathbf{v}_{K} \mathbf{v}_{K}^{T}}_{\text {new diffusion tensor }} \in \mathbb{R}^{2,2} .
\]
\(\mathbf{v}_{K} \hat{=}\) local velocity (e.g., obtained by averaging)
\(\delta_{K}>0 \hat{=}\) method parameter controlling the streng of anisotropic diffusion

When combined with linear finite element Galerkin discretization \(\left(V_{N, 0} \subset \mathcal{S}_{1}^{0}(\mathcal{M})\right.\) ), then it leads to a linear variational problem
\[
u_{N} \in V_{0, N}: \quad \mathrm{a}_{\mathrm{SD}}\left(u_{N}, v_{N}\right)=\ell_{\mathrm{SG}}\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N},
\]
with the streamline diffusion bilinear form
\[
\begin{align*}
\mathrm{a}_{\mathrm{SD}}(u, v)= & \int \epsilon \operatorname{grad} u \cdot \operatorname{grad} v+\operatorname{grad} u \cdot \mathbf{v} v \mathrm{~d} \boldsymbol{x} \\
& +\underbrace{\sum_{K \in \mathcal{M}} \int_{K}\left(-\epsilon \Delta u+\delta_{K} \mathbf{v}_{K} \cdot \operatorname{grad} u\right)\left(\mathbf{v}_{K} \cdot \operatorname{grad} v\right) \mathrm{d} \boldsymbol{x}}_{\text {"stabilizing term" }}, \quad u, v \in H^{1}(\Omega) . \tag{7.2.29}
\end{align*}
\]

\section*{Maintain consistency of variational problem!}

This means
\[
\begin{equation*}
\operatorname{a}_{\mathrm{SD}}\left(u, v_{N}\right)=\ell\left(v_{N}\right) \quad \forall v_{N} \in V_{0, N} \quad \text { for the exact solution } u \text { of the BVP. } \tag{7.2.30}
\end{equation*}
\]

To guarantee (7.2.30), we have to modify the standard right-hand-side functional and replace it with the streamline diffusion source functional
\[
\begin{equation*}
\ell\left(v_{N}\right):=\int_{\Omega} f(\boldsymbol{x}) v_{N}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}+\sum_{K \in \mathcal{M}} \int_{K} \delta_{K} f(\boldsymbol{x})\left(\mathbf{v}_{K} \cdot \operatorname{grad} v_{N}(\boldsymbol{x})\right) \mathrm{d} \boldsymbol{x}, \quad \mathbf{v}_{N} \in V_{0, N} \tag{7.2.31}
\end{equation*}
\]

The control parameter is usually chosen according to the rule
\[
\delta_{K}:= \begin{cases}\epsilon^{-1} h_{K}^{2} & , \text { if } \frac{\|\mathbf{v}\|_{K, \infty} h_{K}}{2 \epsilon} \leq 1 \\ h_{K} & , \text { if }\end{cases}
\]
which is suggested by theoretical investigations and practical experience.

Example 7.2.32 (Streamline-diffusion discretization).

Exactly the same setting as in Ex. 7.2 .25 with the upwind quadrature approach replaced with the streamline diffusion method.

upwind quadrature solution

- The streamline upwind method does not exactly respect the maximum principle, but offers a better resolution of the internal layer compared with upwind quadrature (Parlance: streamline diffusion method is "less diffusive").

\subsection*{7.3 Transient convection-diffusion BVP}

Sect. 7.1.4 introduced the transient heat conduction model in a fluid, whose motion is described by a non-stationary velocity field ( \(\rightarrow\) Sect. 7.1 .1 ) \(\mathbf{v}: \Omega \times] 0, T\left[\mapsto \mathbb{R}^{d}\right.\)
\[
\begin{equation*}
\left.\frac{\partial}{\partial t}(\rho u)-\operatorname{div}(\kappa \operatorname{grad} u)+\operatorname{div}(\rho \mathbf{v}(\boldsymbol{x}, t) u)=f(\boldsymbol{x}, t) \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[ \tag{7.1.15}
\end{equation*}
\]
where \(u=u(\boldsymbol{x}, t): \widetilde{\Omega} \mapsto \mathbb{R}\) is the unknown temperature.

Assuming \(\operatorname{div} \mathbf{v}(\boldsymbol{x}, t)=0\), as in Sect. 7.2, by scaling we arrive at the model equation for transient convection-diffusion
\[
\begin{equation*}
\left.\frac{\partial u}{\partial t}-\epsilon \Delta u+\mathbf{v}(\boldsymbol{x}, t) \cdot \operatorname{grad} u=f \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[ \tag{7.3.1}
\end{equation*}
\]
supplemented with
- Dirichlet boundary conditions: \(u(\boldsymbol{x}, t)=g(\boldsymbol{x}, t) \quad \forall \boldsymbol{x} \in \partial \Omega, \quad 0<t<T\),
- initial conditions: \(u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \quad \forall \boldsymbol{x} \in \Omega\).

\subsection*{7.3.1 Method of lines}

For the solution of IBVP (7.3.1) follow the general policy introduced in Sect. 6.1.3:
(1) Discretization in space on a fixed mesh \(>\) initial value problem for ODE
(2) Discretization in time (by suitable numerical integrator \(=\) timestepping)

For instance, in the case of Dirichlet boundary conditions,
\[
\left\{\begin{align*}
& \frac{\partial u}{\partial t}-\epsilon \Delta u+\mathbf{v}(\boldsymbol{x}, t) \cdot \operatorname{grad} u=f\text { in } \widetilde{\Omega}:=\Omega \times] 0, T[  \tag{7.3.2}\\
& u(\boldsymbol{x}, t)=g(\boldsymbol{x}, t) \quad \forall \boldsymbol{x} \in \partial \Omega, 0<t<T \quad, \quad u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \quad \forall \boldsymbol{x} \in \Omega
\end{align*}\right.
\]
\(\leftarrow\) spatial discretization
\[
\begin{equation*}
\mathbf{M} \frac{d \overrightarrow{\boldsymbol{\mu}}}{d t}(t)+\epsilon \mathbf{A} \overrightarrow{\boldsymbol{\mu}}(t)+\mathbf{B} \overrightarrow{\boldsymbol{\mu}}(t)=\overrightarrow{\boldsymbol{\varphi}}(t) \tag{7.3.3}
\end{equation*}
\]
- \(\overrightarrow{\boldsymbol{\mu}}=\overrightarrow{\boldsymbol{\mu}}(t):] 0, T\left[\mapsto \mathbb{R}^{N} \hat{=}\right.\) coefficient vector describing approximation \(u_{N}(t)\) of \(u(\cdot, t)\),
- \(\mathbf{A} \in \mathbb{R}^{N, N} \hat{=}\) s.p.d. matrix of discretized \(-\Delta\), e.g., (finite element) Galerkin matrix,
- \(\mathbf{M} \in \mathbb{R}^{N, N} \hat{=}\) (lumped \(\rightarrow\) Rem. 6.2.34) mass matrix
- \(\mathbf{B} \in \mathbb{R}^{N, N} \hat{=}\) matrix for discretized convective term, e.g., Galerkin matrix, upwind quadrature matrix ( \(\rightarrow\) Sect. 7.2.2.1), streamline diffusion matrix \((\rightarrow\) Sect. 7.2.2.2).

Example 7.3.4 (Implicit Euler method of lines for transient convection-diffusion).
1D convection-diffusion IBVP:
\[
\begin{equation*}
\frac{\partial u}{\partial t}-\epsilon \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}=0, \quad u(x, 0)=\max \left(1-3\left|x-\frac{1}{3}\right|, 0\right), \quad u(0)=u(1)=0 \tag{7.3.5}
\end{equation*}
\]
- Spatial discretization on equidistant mesh with meshwidth \(h=1 / N\) :
1. central finite difference scheme, see (7.2.14),
2. upwind finite difference discretization, see (7.2.18),
- \(\mathbf{M}=h \mathbf{I}\) ("lumped" mass matrix, see Rem. 6.2.34),
- Temporal discretization with uniform timestep \(\tau>0\) :
1. implicit Euler method, see (6.1.23),
2. explicit Euler method, see (6.1.22),

Computations with \(\epsilon=10^{-5}\), implicit Euler discretization, \(h=0.01, \tau=0.00125\) :


\section*{Observation:}
- Central finite differences display spurious oscillations as in Ex. 7.2.16.
- Upwinding suppresses spurious oscillations, but introduces spurious damping.

Computations with \(\epsilon=10^{-5}\), spatial upwind discretization, \(h=0.01, \tau=0.005\) :


Observation: implicit Euler timestepping causes stronger spurious damping than explicit Euler timestepping.

However, explicit Euler subject to tight stability induced timestep constraint for larger values of \(\epsilon\), see Sect. 6.1.4.2.

Advice for spatial discretization for method of lines approach

Use \(\epsilon\)-robustly stable spatial discretization of convective term.

Remark 7.3.6 (Choice of timestepping for m.o.l. for transient convection-diffusion).

If \(\epsilon\)-robustness for all \(\epsilon>0\) (including \(\epsilon>1\) ) desired \(>\) Arguments of Sect. 6.1.4.2 stipulate use of \(L(\pi)\)-stable \((\rightarrow\) Def. 6.1.56) timestepping methods (implicit Euler (6.1.23), RADAU-3 (6.1.58), SDIRK-2 (6.1.59))

In the singularly perturbed case \(0<\epsilon \ll 1\) conditionally stable explicit timestepping is an option, due to a timestep constraint of the form " \(\tau<O\left(h_{\mathcal{M}}\right)\) ", which does not interfere with efficiency, cf. the discussion in Sect. 6.1.5.

\subsection*{7.3.2 Transport equation}

Focus on the situation of singular perturbation ( \(\rightarrow\) Def. (7.2.12): \(0<\epsilon \ll 1\)
\(>\) study limit problem (as in Sect. 7.2.1)
\[
\begin{gather*}
\left.\frac{\partial u}{\partial t}-\epsilon \Delta u+\mathbf{v}(\boldsymbol{x}, t) \cdot \operatorname{grad} u=f \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[, \\
\left.\frac{\partial u}{\partial t}+\mathbf{v}(\boldsymbol{x}, t) \cdot \operatorname{grad} u=f \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[. \\
\text { transport equation } \tag{7.3.7}
\end{gather*}
\]

Let \(u=u(\boldsymbol{x}, t)\) be a \(C^{1}\)-solution of
\[
\begin{equation*}
\left.\frac{\partial u}{\partial t}+\mathbf{v}(\boldsymbol{x}, t) \cdot \operatorname{grad} u=0 \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[ \tag{7.3.8}
\end{equation*}
\]

Recall: for the stationary pure tranport problem (7.2.5) we found solutions by integrating the source term along streamlines (following the flow direction).
\(>\quad\) study the behavior of \(u\) "as seen from a moving fluid particle"
\[
t \mapsto u(\mathbf{y}(t), t), \quad \text { where } \quad \mathbf{y}(t) \quad \text { solves } \quad \frac{d \mathbf{y}}{d t}(t)=\mathbf{v}(\mathbf{y}(t), t), \quad \text { see (7.1.1) }
\]

By the chain rule
\[
\begin{align*}
& \quad \frac{d}{d t} u(\mathbf{y}(t), t)=\operatorname{grad} u(\mathbf{y}(t), t) \cdot \frac{d \mathbf{y}}{d t}(t)+\frac{\partial u}{\partial t}(\mathbf{y}(t), t)  \tag{7.3.9}\\
& =\operatorname{grad} u(\mathbf{y}(t), t) \cdot \mathbf{v}(\mathbf{y}(t), t)+\frac{\partial u}{\partial t}(\mathbf{y}(t), t) \stackrel{(\overline{(7.3 .8)}}{=} 0 \tag{7.3.10}
\end{align*}
\]

> A fluid particle "sees" a constant temperature!

Remark 7.3.11 (Solution formula for sourceless transport).

Situation: no inflow/outflow (e.g., fluid in a container)
\[
\begin{equation*}
\mathbf{v}(\boldsymbol{x}, t) \cdot \boldsymbol{n}(\boldsymbol{x})=0 \quad \forall \boldsymbol{x} \in \partial \Omega, 0<t<T \tag{7.1.2}
\end{equation*}
\]
\(>\) all streamlines will "stay inside \(\Omega^{\prime \prime}\) ", flow map \(\Phi^{t}(7.1 .3)\) defined for all times \(t \in \mathbb{R}\).

Initial value problem:
\[
\mathbf{v}(\boldsymbol{x}, t) \cdot \operatorname{grad} u=0 \quad \text { in } \widetilde{\Omega} \quad, \quad u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \quad \forall \boldsymbol{x} \in \Omega .
\]

\section*{Exact solution}
\[
\begin{equation*}
u(\boldsymbol{x}, t)=u_{0}\left(\boldsymbol{x}_{0}(\boldsymbol{x}, t)\right), \tag{7.3.12}
\end{equation*}
\]
where \(\boldsymbol{x}_{0}(\boldsymbol{x}, t)\) is the position of the fluid particle that is located in \(x\) at time \(t\) at initial time \(t=0\).


This solution formula can be generalized to any divergence free velocity field \(\mathbf{v}: \Omega \mapsto \mathbb{R}^{d}\) and \(f \neq 0\). The new aspect is that streamlines can enter and leave the domain \(\Omega\). In the former case the solution value is given by a "transported boundary value":
\[
\begin{gather*}
\frac{d}{d t} u(\mathbf{y}(t))=f(\mathbf{y}(t), t) \\
-u(\boldsymbol{x}, t)= \begin{cases}u_{0}\left(\boldsymbol{x}_{0}\right)+\int_{0}^{t} f(\mathbf{y}(s), s) \mathrm{d} s \quad \text { if } \quad \boldsymbol{y}(s) \in \Omega \quad \forall 0<s<t \\
g\left(\mathbf{y}\left(s_{0}\right), s_{0}\right)+\int_{s_{0}}^{t} f(\mathbf{y}(s), s) \mathrm{d} s & \text {, if } \quad \boldsymbol{y}\left(s_{0}\right) \in \partial \Omega, \boldsymbol{y}(s) \in \Omega \quad \forall s_{0}<s<t .\end{cases} \tag{7.3.13}
\end{gather*}
\]

\subsection*{7.3.3 Lagrangian split-step method}

Lagrangian discretization schemes for the IBVP (7.3.2) are inspired by insight into the traits of solutions of pure transport problems.

The variant that we are going to study separates the transient convection-diffusion problem into a pure diffusion problem (heat equation \(\rightarrow\) Sect. 6.1.1) and a pure transport problem (7.3.7). This is achieved by means of a particular approach to timestepping.

\subsection*{7.3.3.1 Split-step timestepping}

Abstract perspective: consider ODE, whose right hand side is the sum of two (smooth) functions
\[
\begin{equation*}
\dot{\mathbf{y}}=\mathbf{g}(t, \mathbf{y})+\mathbf{h}(t, \mathbf{y}), \quad \mathbf{g}, \mathbf{h}: \mathbb{R}^{m} \mapsto \mathbb{R}^{m} . \tag{7.3.14}
\end{equation*}
\]

There is an abstract timestepping scheme that offers great benefits if one commands efficient methods to solve initial value problems for both \(\dot{\mathbf{z}}=\mathbf{g}(\mathbf{z})\) and \(\dot{\mathbf{w}}=\mathbf{h}(\mathbf{w})\).

Strang splitting single step method for (7.3.14), timestep \(\tau:=t_{j}-t_{j-1}>0\) : compute \(\mathbf{y}^{(j)} \approx\) \(\mathbf{y}\left(t_{j}\right)\) from \(\mathbf{y}^{(j-1)} \approx \mathbf{y}\left(t_{j-1}\right)\) according to
\[
\begin{align*}
\widetilde{\mathbf{y}}:=\mathbf{z}\left(t_{j-1}+\frac{1}{2} \tau\right), & \text { where } \mathbf{z}(t) \text { solves } \dot{\mathbf{z}}=\mathbf{g}(t, \mathbf{z}), \quad \mathbf{z}\left(t_{j-1}\right)=\mathbf{y}  \tag{7.3.15}\\
\widehat{\mathbf{y}}:=\mathbf{w}\left(t_{j}\right) & \text { where } \mathbf{w}(t) \text { solves } \dot{\mathbf{w}}=\mathbf{h}(t, \mathbf{w}), \quad \mathbf{w}\left(t_{j-1}\right)=\widetilde{\mathbf{y}},  \tag{7.3.16}\\
\mathbf{y}^{(j)}:=\mathbf{z}\left(t_{j}\right), & \text { where } \mathbf{z}(t) \text { solves } \dot{\mathbf{z}}=\mathbf{g}(t, \mathbf{z}), \quad \mathbf{z}\left(t_{j-1}+\frac{1}{2} \tau\right)=\widehat{\mathbf{y}} . \tag{7.3.17}
\end{align*}
\]

One timestep involves three sub-steps:
1. Solve \(\dot{\mathbf{z}}=\mathbf{g}(t, \mathbf{z})\) over time \(\left[t_{j-1}, t_{j-1}+\frac{1}{2} \tau\right]\) using the result of the previous timestep as initial value \(\leftrightarrow\) (7.3.15).
2. Solve \(\dot{\mathbf{w}}=\mathbf{h}(t, \mathbf{w})\) over time \(\tau\) using the result of 1 . as initial value \(\leftrightarrow\) (7.3.16).
3. Solve \(\dot{\mathbf{z}}=\mathbf{g}(t, \mathbf{z})\) over time \(\left[t_{j-1}+\frac{1}{2} \tau, t_{j}\right]\) using the result of 2 . as initial value \(\leftrightarrow\) (7.3.17).


Theorem 7.3.18 (Order of Strang splitting single step method).
Assuming exact solution of the initial value problems of the sub-steps, the Strang splitting single

This applies to Strang splitting timestepping for initial value problems for ODEs. Now we boldly regard (7.3.2) as an "ODE in function space" for the unknown "function space valued function" \(u=u(t)\) : \([0, T] \mapsto H^{1}(\Omega)\).
\[
\begin{aligned}
\frac{d u}{d t} & =\epsilon \Delta u+f-\mathbf{v} \cdot \operatorname{grad} u \\
\uparrow & \uparrow \\
\dot{\mathbf{y}} & =\mathbf{g}(\mathbf{y})+\underset{\mathbf{h}(\mathbf{y})}{\downarrow}
\end{aligned}
\]

Formally, we arrive at the following "timestepping scheme in function space" on a temporal mesh \(0=t_{0}<t_{1}<\cdots<t_{M}:=T:\)

Given approximation \(u^{(j-1)} \approx u\left(t_{j-1}\right)\),
(1) Solve (autonomous) IBVP for pure diffusion from \(t_{j-1}\) to \(t_{j-1}+\frac{1}{2} \tau\)
\[
\begin{gather*}
\left.\frac{\partial w}{\partial t}-\epsilon \Delta w=0 \quad \text { in } \Omega \times\right] t_{j-1}, t_{j-1}+\frac{1}{2} \tau[ \\
\text { (7.3.15) } \leftrightarrow \quad w(\boldsymbol{x}, t)=g\left(\boldsymbol{x}, t_{j-1}\right) \quad \forall \boldsymbol{x} \in \partial \Omega, t_{j-1}<t<t_{j-1}+\frac{1}{2} \tau,  \tag{7.3.19}\\
w\left(\boldsymbol{x}, t_{j-1}\right)=u^{(j-1)}(\boldsymbol{x}) \quad \forall \boldsymbol{x} \in \Omega \text { bdot }
\end{gather*}
\]
(2) Solve IBVP for pure transport (= advection), see Sect. 7.3.2,
\[
\begin{gather*}
\left.\frac{\partial z}{\partial t}+\mathbf{v}(\boldsymbol{x}, t) \cdot \operatorname{grad} z=f(\boldsymbol{x}, t) \quad \text { in } \Omega \times\right] t_{j-1}, t_{j}[, \\
\text { (7.3.16) } \leftrightarrow \quad z(\boldsymbol{x}, t)=g(\boldsymbol{x}, t) \quad \text { on inflow boundary } \Gamma_{\text {in }}, t_{j-1}<t<t_{j},  \tag{7.3.20}\\
z\left(\boldsymbol{x}, t_{j-1}\right)=w\left(\boldsymbol{x}, t_{j-1}+\frac{1}{2} \tau\right) \quad \forall \boldsymbol{x} \in \Omega .
\end{gather*}
\]
(3) Solve IBVP for pure diffusion from \(t_{j-1}+\frac{1}{2} \tau\) to \(t_{j}\)
\[
\begin{align*}
& \left.\frac{\partial w}{\partial t}-\epsilon \Delta w=0 \quad \text { in } \Omega \times\right] t_{j-1}+\frac{1}{2} \tau, t_{j}[, \\
& \text { (7.3.17) } \leftrightarrow \quad w(\boldsymbol{x}, t)=g\left(\boldsymbol{x}, t_{j}\right) \quad \forall \boldsymbol{x} \in \partial \Omega, t_{j-1}+\frac{1}{2} \tau<t<t_{j},  \tag{7.3.21}\\
& w\left(\boldsymbol{x}, t_{j-1}+\frac{1}{2} \tau\right)=z\left(\boldsymbol{x}, t_{j}\right) \quad \forall \boldsymbol{x} \in \Omega .
\end{align*}
\]

Then set
\[
u^{(j)}(\boldsymbol{x}):=w\left(\boldsymbol{x}, t_{j}\right), \boldsymbol{x} \in \Omega .
\]

Efficient "implementation" of Strang splitting timestepping, if \(\mathrm{g}=\mathrm{g}(\mathbf{y})\) : combine last sub-step with first sub-step of next timestep


Remark 7.3.22 (Approximate sub-steps for Strang splitting time).

The solutions of the initial value problems in the sub-steps of Strang splitting timestepping may be computed only approximately.

If this is done by one step of a \(2 n d\)-order timestepping method in each case, then the resulting approximate Strang splitting timestepping will still be of second order, cf. Thm. 7.3.18.

Recall the discussion of the IBVP for the pure transport (= advection) equation from Sect. 7.3.2
\[
\begin{gather*}
\left.\frac{\partial u}{\partial t}+\mathbf{v}(\boldsymbol{x}, t) \cdot \boldsymbol{g r a d} u=f \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[, \\
\left.u(\boldsymbol{x}, t)=g(\boldsymbol{x}, t) \quad \text { on } \quad \Gamma_{\text {in }} \times\right] 0, T[,  \tag{7.3.23}\\
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \text { in } \Omega,
\end{gather*}
\]
with inflow boundary
\[
\begin{equation*}
\Gamma_{\text {in }}:=\{\boldsymbol{x} \in \partial \Omega: \mathbf{v}(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x})<0\} . \tag{7.2.9}
\end{equation*}
\]

Case \(\quad f \equiv 0\) : a travelling fluid particle sees a constant solution
\[
\Delta u(\boldsymbol{x}, t)=\left\{\begin{array}{lll}
u_{0}\left(\boldsymbol{x}_{0}\right) & \text {, if } \boldsymbol{y}(s) \in \Omega \quad \forall 0<s<t  \tag{7.3.24}\\
g\left(\mathbf{y}\left(s_{0}\right), s_{0}\right) & \text {, if } \boldsymbol{y}\left(s_{0}\right) \in \partial \Omega, \boldsymbol{y}(s) \in \Omega
\end{array} \quad \forall s_{0}<s<t,\right.
\]
where \(s \mapsto \mathbf{y}(s)\) solves the initial value problem \(\frac{d \mathbf{y}}{d s}(s)=\mathbf{v}(\mathbf{y}(s), s), \mathbf{y}(t)=\boldsymbol{x}\) ("backward particle trajectory").

Case of general \(f\) : Since \(\frac{d}{d t} u(\mathbf{y}(t))=f(\mathbf{y}(t), t)\)
\(\Delta u(\boldsymbol{x}, t)= \begin{cases}u_{0}\left(\boldsymbol{x}_{0}\right)+\int_{0}^{t} f(\mathbf{y}(s), s) \mathrm{d} s \quad, \text { if } \quad \boldsymbol{y}(s) \in \Omega \quad \forall 0<s<t, \\ g\left(\mathbf{y}\left(s_{0}\right), s_{0}\right)+\int_{s_{0}}^{t} f(\mathbf{y}(s), s) \mathrm{d} s & , \text { if } \quad \boldsymbol{y}\left(s_{0}\right) \in \partial \Omega, \boldsymbol{y}(s) \in \Omega \quad \forall s_{0}<s<t .\end{cases}\)

The solution formula (7.3.13) suggests an approach for solving (7.3.23) approximately.

We first consider the simple situation of no inflow/outflow (e.g., fluid in a container, see Rem. 7.3.11)
\[
\begin{equation*}
\mathbf{v}(\boldsymbol{x}, t) \cdot \boldsymbol{n}(\boldsymbol{x})=0 \quad \forall \boldsymbol{x} \in \partial \Omega, 0<t<T . \tag{7.1.2}
\end{equation*}
\]
(1) Pick suitable interpolation nodes \(\left\{\boldsymbol{p}_{i}\right\}_{i=1}^{N} \subset \Omega\) (initial 'particle positions")
(2) Solve initial value problems (cf. ODE (7.1.1) for particle trajectories)
\[
\dot{\mathbf{y}}(t)=\mathbf{v}(\mathbf{y}(t), t) \quad, \quad \mathbf{y}(0)=\boldsymbol{p}_{i}, \quad i=1, \ldots, N
\]
by means of a suitable single-step method with uniform timestep \(\tau:=T / M, M \in \mathbb{N}\).
\(>\quad\) sequencies of solution points \(\boldsymbol{p}_{i}^{(j)}, j=0, \ldots, M, i=1, \ldots, N\)
(3) Reconstruct approximation \(u_{N}^{(j)} \approx u\left(\cdot, t_{j}\right), t_{j}:=j \tau\), by interpolation:
\[
u_{N}^{(j)}\left(\boldsymbol{p}_{i}^{(j)}\right):=u_{0}\left(\boldsymbol{p}_{i}\right)+\tau \sum_{l=1}^{j-1} f\left(\frac{1}{2}\left(\boldsymbol{p}_{i}^{(l)}+\boldsymbol{p}_{i}^{(l-1)}\right), \frac{1}{2}\left(t_{l}+t_{l-1}\right)\right), \quad i=1, \ldots, N
\]
where the composite midpoint quadrature rule was used to approximate the source integral in (7.3.13).

This method falls into the class of
- particle methods, because the interpolation nodes can be regarded fluid particles tracked by the method,
- Lagrangian methods, which treat the IBVP in coordinate systems moving with the flow,
- characteristic method, which reconstruct the solution from knowledge about its behavior along streamlines.

For general velocity field \(\mathbf{v}: \Omega \mapsto \mathbb{R}^{d}\) :
- Stop tracking \(i\)-th trajectory as soon as an interpolation nodes \(\boldsymbol{p}_{i}^{(j)}\) lies outside spatial domain \(\Omega\).
- In each timestep start new trajectories from fixed locations on inflow boundary \(\Gamma_{\text {in }}\) ("particle injection"). These interpolation nodes will carry the boundary value.

Example 7.3.25 (Point particle method for pure advection).
- \(\operatorname{IBVP}(7.3 .23)\) on \(\Omega=] 0,1\left[^{2}, T=2\right.\), with \(f \equiv 0, g \equiv 0\).
- Initial locally supported bump \(u_{0}(\boldsymbol{x})=\max \left\{0,1-4\left\|\boldsymbol{x}-\binom{1 / 2}{1 / 4}\right\|\right\}\).
- Two stationary divergence-free velocity fields
- \(\mathbf{v}_{1}(\boldsymbol{x})=\binom{-\sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)}{\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right)}\) satisfying (7.1.2),
- \(\mathbf{v}_{2}(\boldsymbol{x})=\binom{-x_{2}}{x_{1}}\).
- Initial positions of interpolation points on regular tensor product grid with meshwidth \(h=\frac{1}{40}\).
- Approximation of trajectories by means of explicit trapezoidal rule [14, Eq. 11.4.3] (method of Heun).


Fig. 229
velocity field \(\mathbf{v}_{2}\)
Code 7.3.26: Point particle method for pure advection
```

function partadv(v,u0,g,n,tau,m)
% Point particle method for pure advection problem
% on the unit sqaure

```
```

v: handle to a function returning the velocity field for (an array) of
points
% u0: handle to a function returning the initial value u0 for (an array)
% of points
% g: handle to a function g = g(x) returning the Dirichlet boundary values
% n: h=1/n is the grid spacing of the inintial point distribution
% tau: timestep size, m: number of timesteps, that is, T=m\tau
% Initialize points
h = 1/n; [Xp,Yp] = meshgrid (0:h:1,0:h:1);
P = [reshape(Xp,1,(n+1)^ 2); reshape(Yp,1,(n+1)^2)];
% Initialize points on the boundary

```

```

 [(0:h:1);ones (1,n+1)],[zeros (1,n+1);(0:h:1)]];
 U = uO(P); % Initial values
% Plot velocity field
hp = 1/10; [Xp,Yp] = meshgrid(0:hp:1,0:hp:1);
Up = zeros(size(Xp)); Vp = zeros(size(Xp));
for i=0:10, for j=0:10
x = v([Xp(i+1,j+1);Yp(i+1,j+1)]);
Up(i+1,j+1) = x(1); Vp(i+1,j+1) = x(2);
end; end
figure ('name','velocity field','renderer','painters');
quiver(Xp,Yp,Up,Vp,'b-'); set(gca,'fontsize', 14); hold on;

```
```

plot([[0 1 1 1 0 0],[[0}0
axis([-0.1 1.1 -0.1 1.1]);
xlabel('{\bf x_1}'); ylabel(' {\bf x_2}');
axis off;
fp = figure('name','particles' ''renderer','painters');
fs = figure('name','solution','renderer','painter');
% Visualize points (interior points in red, boundary points in blue)
figure(fp); plot (P(1,:),P(2,:),'r+', BP(1,:), BP(2,:),'b*');
title(sprintf('n = %i, t = %f,
tau = %f, %i
points', n,0,tau,size(P,2)));
drawnow; pause;
% Visualize solution
figure(fs); plotpartsol(P,U); drawnow;
t = 0;
for l=1:m
% Advect points (explicit trapezoidal rule)
P1 = P + tau/2*v(P); P = P + tau*v(P1);
% Remove points on the boundary or outside the domain
Pnew = []; Unew = []; l = 1;

```
```

 for p=P
 if ((p(1) > eps) (p(1) < 1-eps) (p (2) > eps) (p (2) <
 1-eps))
 Pnew = [Pnew,p]; Unew = [Unew; U(l)];
 end
 l = l+1;
 end
 % Add points on the boundary (particle injection)
P = [Pnew, BP]; U = [Unew; g(BP)];
% Visualize points
figure(fp); plot(P(1,:),P(2,:),'r+', BP(1,:), BP(2,:),'b*');
title(sprintf('n = %i, t = %f,
tau = %f, %i
points', n,t,tau, size(P, 2)));
drawnow;
% Visualize solution
figure(fs); plotpartsol(P,U); drawnow;
t = t+tau;
end

```

\subsection*{7.3.3.3 Particle mesh method}

The method introduced in the previous section, can be used to tackle the pure advection problem (7.3.20) in the 2nd sub-step of the Strang splitting timestepping.

Issue: How to combine Lagrangian advection with a method for the pure diffusion problem (7.3.19) faced in the other sub-steps of the Strang splitting timestepping?

Idea: two views
\[
\begin{gathered}
\text { "particle temperatures" } u\left(\boldsymbol{p}_{i}^{(j)}\right) \\
\downarrow
\end{gathered}
\]

Nodal values of finite element function \(u_{N}^{(j)} \in \mathcal{S}_{1}^{0}(\mathcal{M})\)

Outline: algorithm for one step of size \(\tau>0\) of Strang splitting timestepping for transient convection-diffusion problem
\[
\left\{\begin{array}{c}
\left.\frac{\partial u}{\partial t}-\epsilon \Delta u+\mathbf{v}(\boldsymbol{x}, t) \cdot \operatorname{grad} u=f \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[  \tag{7.3.27}\\
u(\boldsymbol{x}, t)=0 \quad \forall \boldsymbol{x} \in \partial \Omega, 0<t<T \quad, \quad u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \quad \forall \boldsymbol{x} \in \Omega
\end{array}\right.
\]
(1) Given \(\bullet\) triangular mesh \(\mathcal{M}^{(j-1)}\) of \(\Omega\),
\[
\text { - } u_{N}^{(j-1)} \in \mathcal{S}_{1,0}^{0}\left(\mathcal{M}^{(j-1)}\right) \leftrightarrow \text { coefficient vector } \overrightarrow{\boldsymbol{\mu}}^{(j-1)} \in \mathbb{R}^{N_{j-1}}
\]
approximately solve (7.3.19) by a single step of implicit Euler (??) (size \(\frac{1}{2} \tau\) )
\[
\overrightarrow{\boldsymbol{\nu}}=\left(\mathbf{M}+\frac{1}{2} \tau \epsilon \mathbf{A}\right)^{-1} \overrightarrow{\boldsymbol{\mu}}^{(j-1)},
\]
where \(\mathbf{A} \in \mathbb{R}^{N_{j-1}, N_{j-1}} \hat{=} \mathcal{S}_{1,0}^{0}(\mathcal{M})\)-Galerkin matrix for \(-\Delta, \mathbf{M} \hat{=}\) (possibly lumped) \(\mathcal{S}_{1,0}^{0}(\mathcal{M})\)-mass matrix.
(2) Lagrangian advection step (of size \(\tau\) ) for (7.3.20) with
- initial "particle positions" \(\boldsymbol{p}_{i}\) given by nodes of \(\mathcal{M}^{(j-1)}, i=1, \ldots, N_{j}\),
- initial "particle temperatures" given by corresponding coefficients \(\nu_{i}\).
(3) Remeshing: advection step has moved nodes to new positions \(\widetilde{\boldsymbol{p}}_{i}\) (and, maybe, introduced nev nodes by "particle injection", deleted nodes by "particle removal").
\(>\) Create new triangular mesh \(\mathcal{M}^{(j)}\) with nodes \(\widetilde{\boldsymbol{p}}_{i}\) (+ boundary nodes), \(i=1, \ldots, N_{j}\)
(4) Repeat diffusion step © starting with \(w_{N} \in \mathcal{S}_{1,0}^{0}\left(\mathcal{M}^{(j)}\right)=\) linear interpolant ( \(\rightarrow\) Def. 5.3.13) of "particle temperatures" on \(\mathcal{M}^{(j)}\).
> new approximate solution \(u_{N}^{(j)}\)
Example 7.3.28 (Delaunay-remeshing in 2D).

Delaunay algorithm for creating a 2D triangular mesh with prescribed nodes:
(1) Compute Voronoi cells, see (4.2.3) \& http://www.qhull.org/.
(2) Connect two nodes, if their associated Voronoi dual cells have an edge in common.
\(\Rightarrow\) MATLAB TRI = delaunay \((x, y)\)


Code 7.3.29: Demonstration of Delaunay-remeshing
```

function meshadv (v, n, tau, m)
% Point advaction and remeshing for Lagrangian method
% v: handle to a function returning the velocity field for (an array) of
points
% n: h=1/n is the grid spacing of the inintial point distribution
% Initialize points
7 h = 1/n; [Xp,Yp] = meshgrid (0:h:1,0:h:1);

```
```

$P=\left[\right.$ reshape $\left(X p, 1,(n+1)^{\wedge} 2\right) ;$ reshape $\left.\left(Y p, 1,(n+1)^{\wedge} 2\right)\right] ;$

- Initialize points on the boundary
$\mathrm{BP}=[[(0: h: 1) ; \operatorname{zeros}(1, \mathrm{n}+1)],[\operatorname{ones}(1, \mathrm{n}+1) ;(0: h: 1)], \ldots$
$[(0: h: 1) ; \operatorname{ones}(1, n+1)],[z e r o s(1, n+1) ;(0: h: 1)]] ;$
\% Plot triangulation
fp $=$ figure ('name' ' ${ }^{\prime}$ evolving meshes' ' 'renderer' ${ }^{\prime}$ 'painters');
TRI $=$ delaunay $(P(1,:), P(2,:))$;
plot (P (1,:) , P(2,:) 'r+') ; hold on;
triplot (TRI, P(1,:), P(2,:),'blue'); hold off;
title (sprintf (' $\mathrm{n}=\% \mathrm{i}, \mathrm{t}=\% \mathrm{f}, ~ \backslash \backslash \mathrm{tau}=\% \mathrm{f}, \% i$
points', $n, 0, t a u, s i z e(P, 2))$);
drawnow; pause;
$t=0 ;$
for l=1:m
\% Advect points (explicit trapezoidal rule)
$\mathrm{P} 1=\mathrm{P}+\mathrm{tau} / 2 * \mathrm{v}(\mathrm{P}) ; \mathrm{P}=\mathrm{P}+\mathrm{tau*v}(\mathrm{P} 1)$;
\% Remove points on the boundary or outside the domain
Pnew = []; l = 1;
for $p=P$
if $((\mathrm{p}(1)>$ eps $)(\mathrm{p}(1)<1$-eps $) \quad(\mathrm{p}(2)>$ eps) (p(2) <
1-eps))

```
```

 Pnew = [Pnew,p];
 end
 l = l+1;
 end
 P = [Pnew, BP]; % Add points on the boundary (particle injection)
 % Plot triangulation
TRI = delaunay(P(1,:),P(2,:));
plot(P(1,:), P(2,:),'r+'); hold on;
triplot(TRI,P(1,:),P(2,:),'blue'); hold off;
title (sprintf ('n = %i, t = %f,
tau = %f, %i
points', n,t,tau, size(P,2)));
drawnow;
t = t+tau;
end

```
meshadv(@circvel, 20,0.05, 40);
```

meshadv(@rotvel, 20,0.05,40);

```

Example 7.3.30 (Lagrangian method for convection-diffusion in 1D).

Same IBVP as in Ex. 7.3.4
- Linear finite element Galerkin discretization with mass lumping in space
- Strang splitting applied to diffusive and convective terms
- Implicit Euler timestepping for diffusive partial timestep


Code 7.3.31: Lagrangian method for (7.3.5)
function lagr (epsilon, \(N, M\) )
```

2|% This function implements a simple Lagrangian advection scheme for the ID
convection-diffusion
OIBVP - \epsilon d\mp@subsup{d}{}{\frac{\mp@subsup{d}{}{2}}{0}}\frac{2}{2}}+\frac{du}{dx}=0,\quadu(x,0)=max(1-3|x-\frac{1}{3}|,0)
% and homogeneous Dirichlet boundary conditions u(0)=u(1)=0. Timestepping
employs Strang splitting
% applied to diffusive and convective spatial operators.
% epsilon: strength of diffusion
% N: number of cells of spatial mesh
% M: number of timesteps
T = 0.5; tau = T/M;
timestep size
h=1/N; x = 0:h:1; u = max(1-3*abs(x(2:end-1)-1/3),0)'; % Initial
value
[Amat,Mmat] = getdeltamat(x); % Obtain stiffness and mass
matrix
u = (Mmat+0.5*tau*epsilon*Amat)$Mmat*u); % Implicit Euler timestep
for j=1:M+1
 % Advection step: shift meshpoints, drop those travelling out of \Omega=]0,1[,
 insert
 % new meshpoints from the left. Solution values are just copied.
 xm = x(2:end-1)+tau; % Transport of meshpoints (here: explicit
 Euler)
 idx = find (xm < 1); % Drop meshpoints beyond x=1
 x = [0,tau,xm(idx),1]; % Insert new meshpoint at left end of \Omega
 u = [0;u(idx)]; % Copy nodal values and feed 0 from left
```
```
 % Diffusion partial timestep
 [Amat,Mmat] = getdeltamat(x); % Obtain stiffness and mass
 matrix on new mesh
 u = (Mmat+tau*epsilon*Amat)\(Mmat*u); % Implicit Euler step
 end
end
```
\[
\epsilon=10^{-5}:
\]





"Reference solution" computed by method of lines, see Ex. 7.3.4, with \(h=10^{-3}, \tau=5 \cdot 10^{-5}$ :





Advantage of Lagrangian (particle) methods for convection diffusion:
No artificial diffusion required (no "smearing")
No stability induced timestep constraint

Drawback of Lagrangian (particle) methods for convection diffusion:
Remeshing (may be) expensive and difficult.
Point advection may produce "voids" in point set.

### 7.3.4 Semi-Lagrangian method

Now we study a family of methods for transient convection-diffusion that takes into account transport along streamlines, but, in constrast to genuine Lagrangian methods, relies on a fixed mesh.

Definition 7.3.32 (Material derivative).
Given a velocity field $\mathbf{v}: \Omega \times] 0, T\left[\mapsto \mathbb{R}^{d}\right.$, the material derivative of a function $f=f(\boldsymbol{x}, t)$ at $(\boldsymbol{x}, t)$ is

$$
\frac{D f}{D \mathbf{v}}(\boldsymbol{x}, t)=\lim _{\delta \rightarrow 0} \frac{f(\mathbf{y}(\delta), t+\delta)-f(\boldsymbol{x}, t)}{\delta},
$$

where $s \mapsto \mathbf{y}(s)$ solves the initial value problem

$$
\frac{d \mathbf{y}}{d s}(s)=\mathbf{v}(\mathbf{y}(s), t+s) \quad, \quad \mathbf{y}(0)=\boldsymbol{x}
$$

By a straightforward application of the chain rule for smooth $f$

$$
\begin{equation*}
\frac{D f}{D \mathbf{v}}(\boldsymbol{x}, t)=\operatorname{grad}_{\boldsymbol{x}} f(\boldsymbol{x}, t) \cdot \mathbf{v}(\boldsymbol{x}, t)+\frac{\partial f}{\partial t}(\boldsymbol{x}, t) \tag{7.3.33}
\end{equation*}
$$

The transient convection-diffusion equation can be rewritten as (7.3.1)

$$
\begin{gathered}
\left.\frac{\partial u}{\partial t}-\epsilon \Delta u+\mathbf{v}(\boldsymbol{x}, t) \cdot \operatorname{grad} u=f \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[, \\
\\
\leftarrow(\overline{7.3 .33)})
\end{gathered}
$$

$$
\begin{equation*}
\left.\frac{D u}{D \mathbf{v}}-\epsilon \Delta u=f \quad \text { in } \widetilde{\Omega}:=\Omega \times\right] 0, T[. \tag{7.3.34}
\end{equation*}
$$

Idea: Backward difference ("implicit Euler") discretization of material derivative
where $s \mapsto \mathbf{y}(s)$ solves the initial value problem $\frac{d \mathbf{y} \overline{\boldsymbol{x}}}{d s}(s)=\mathbf{v}(\mathbf{y} \overline{\boldsymbol{x}}(s), \bar{t}+s)$, $\mathbf{y}_{\overline{\boldsymbol{x}}}(0)=\overline{\boldsymbol{x}}$.

Combine this with Galerkin discretization (here discussed for linear finite elements, homogeneous Dirichlet boundary conditions $u=0$ on $\partial \Omega$ ).

This yields one timestep for the Semi-Lagrangian method:
$u_{N}^{(j)} \in \mathcal{S}_{1,0}^{0}(\mathcal{M}): \int_{\Omega} \frac{u_{N}^{(j)}(\boldsymbol{x})-u_{N}^{(j-1)}\left(\mathbf{y}_{\boldsymbol{x}}(-\tau)\right)}{\tau} v_{N}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}+\epsilon \int_{\Omega} \operatorname{grad} u_{N}^{(j)} \cdot \boldsymbol{\operatorname { g r a d }} v_{N} \mathrm{~d} \boldsymbol{x}$

$$
\begin{equation*}
=\int_{\Omega} f\left(\boldsymbol{x}, t_{j}\right) v_{N}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad \forall v_{N} \in \mathcal{S}_{1,0}^{0}(\mathcal{M}) . \tag{7.3.35}
\end{equation*}
$$

Here, $\mathcal{M}$ is supposed to be a fixed triangular mesh of $\Omega$.
However, (7.3.35) cannot be implemented: $\quad \boldsymbol{x} \mapsto u_{N}^{(j-1)}\left(\mathbf{y}_{\boldsymbol{x}}(-\tau)\right) \notin \mathcal{S}_{1}^{0}(\mathcal{M})$ ! (Not even piecewise smooth on $\mathcal{M}$, which thwarts local quadrature.)

Idea: - replace $u_{N}^{(j-1)}\left(\mathbf{y}_{\boldsymbol{x}}(-\tau)\right)$ with linear interpolant

$$
\mathrm{I}_{1} u_{N}^{(j-1)}\left(\mathbf{y}_{\boldsymbol{x}}(-\tau)\right) \in \mathcal{S}_{1,0}^{0}(\mathcal{M})
$$

- approximate $\left.\mathbf{y}_{\boldsymbol{x}}(-\tau)\right)$ by $\boldsymbol{x}-\tau \mathbf{v}\left(\boldsymbol{x}, t_{j}\right)$ (explicit Euler).
- Implementable version of (7.3.35) (using mass lumping, see Rem. 6.2.34)

$$
u_{N}^{(j)} \in \mathcal{S}_{1,0}^{0}(\mathcal{M}): \quad \frac{1}{3}\left|U_{\boldsymbol{p}}\right|\left(\mu_{\boldsymbol{p}}^{(j)}-u_{N}^{(j-1)}\left(\boldsymbol{p}-\tau \mathbf{v}\left(\boldsymbol{p}, t_{j}\right)\right)+\tau \int_{\Omega} \operatorname{grad} u_{N}^{(j)} \cdot \operatorname{grad} b_{N}^{\boldsymbol{p}} \mathrm{d} \boldsymbol{x}\right.
$$

where $\mu_{\boldsymbol{p}}^{(j)}$ are the nodal values of $u_{N}^{(j)} \in \mathcal{S}_{1,0}^{0}(\mathcal{M})$ associated with the interior nodes of the mesh $\mathcal{M}, b_{N}^{p}$ is the "tent function" belonging to node $\boldsymbol{p},\left|U_{\boldsymbol{p}}\right|$ is the sum of the areas of all triangles adjacent to $p$.

Example 7.3.37 (Semi-Lagrangian method for convection-diffusion in 1D).

Same IBVP as in Ex. 7.3.30

- Linear finite element Galerkin discretization with mass lumping in space
- Semi-Lagrangian method: 1D version of (7.3.35)
- Explicit Euler streamline backtracking


"Reference solution" computed by method of lines, see Ex. 7.3.4, with $h=10^{-3}, \tau=5 \cdot 10^{-5}$ :



## Numerical Methods for Conservation

## Laws

Conservation laws describe physical phenomena governed by

- conservation laws for certain physical quantities (e.g., mass momentum, energy, etc.),
- transport of conserved physical quantities.

We have already examined problems of this type in connection with transient heat conduction in Sect. 7.1.4. There thermal energy was the conserved quantity and a prescribed external velocity field v determined the transport.

A new aspect emerging for general conservation laws is that the transport velocity itself may depend on the conserved quantities themselves, which gives rise to non-linear models.

## Cauchy problems

$$
\text { Spatial domain } \quad \Omega=\mathbb{R}^{d} \quad \text { (unbounded!) }
$$

- Cauchy problems are pure initial value problems (no boundary values).

Rationale: (1) Finite speed of propagation typical of conservation laws
(Potential spatial boundaries will not affect the solution for some time in the case of compactly supported initial data, cf. situation for wave equation, where we also examined the Cauchy problem, see (6.2.15).)
(2) No spatial boundary $>$ need not worry about (spatial) boundary conditions!
(Issue of spatial boundary conditions can be very intricate for conservation laws)

Cauchy problem for linear transport equation (advection equation) $\rightarrow$ Sect. 7.1.4, (7.1.15):

$$
\begin{array}{cl}
\frac{\partial}{\partial t}(\rho u)+\operatorname{div}(\mathbf{v}(\boldsymbol{x}, t)(\rho u))=f(\boldsymbol{x}, t) & \text { in } \left.\widetilde{\Omega}:=\mathbb{R}^{d} \times\right] 0, T[, \\
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \text { for all } \quad \boldsymbol{x} \in \mathbb{R}^{d} & \text { (initial conditions) } . \tag{8.1.2}
\end{array}
$$

$u=u(\boldsymbol{x}, t) \hat{=}$ temperature, $\rho>0 \hat{=}$ heat capacity, $\mathbf{v}=\mathbf{v}(\boldsymbol{x}, t) \hat{=}$ prescibed velocity field.

$$
\text { (8.1.1) }=\text { linear scalar conservation law }
$$

Conserved quantity: thermal energy (density) $\rho u$ (Recall the derivation of (7.1.15) through conservation of energy, cf. (6.1.1).)

Simplfied problem: assume constant heat capacity $\rho \equiv 1$, no sources $f \equiv 0$, stationary velocity field $\mathbf{v}=\mathbf{v}(\boldsymbol{x}) \quad>$ rescaled initial value problem written in conserved variables

$$
\begin{gather*}
\left.\frac{\partial u}{\partial t}+\operatorname{div}(\mathbf{v}(\boldsymbol{x}) u)=0 \quad \text { in } \quad \widetilde{\Omega}:=\mathbb{R}^{d} \times\right] 0, T[  \tag{8.1.3}\\
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \text { for all } \quad \boldsymbol{x} \in \mathbb{R}^{d} \quad \text { (initial conditions) }
\end{gather*}
$$

Convention: differential operator div acts on spatial independent variable only,

$$
(\operatorname{div} \mathbf{f})(\boldsymbol{x}, t):=\frac{\partial f_{1}}{\partial x_{1}}+\cdots+\frac{\partial f_{1}}{\partial x_{d}}, \quad \mathbf{f}(\boldsymbol{x}, t)=\left(\begin{array}{c}
f_{1}(\boldsymbol{x}, t) \\
\vdots \\
f_{d}(\boldsymbol{x}, t)
\end{array}\right)
$$

- $d=1 \quad>\quad \Omega=\mathbb{R}$,
- constant velocity $v=$ const. .

$$
\begin{equation*}
\left.\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}(v u)=0 \quad \text { in } \quad \widetilde{\Omega}=\mathbb{R} \times\right] 0, T\left[, \quad u(x, 0)=u_{0}(x) \quad \forall x \in \mathbb{R}\right. \tag{8.1.4}
\end{equation*}
$$

This is the 1D version of the transport equation (7.3.7) $>$ solution given by $(7.3 .12)$

$$
\begin{equation*}
\text { (7.3.12) } \quad u(x, t)=u_{0}(x-v t), \quad x \in \mathbb{R}, \quad 0 \leq t<T \tag{8.1.5}
\end{equation*}
$$

Solution $u=u(x, t)=$ initial data "travelling" with velocity $v$.

Solution formula (8.1.5) makes perfect sense even for discontinuous initial data $u_{0}$ !
$\Rightarrow \quad$ We should not expect $u=u(x, t)$ to be differentiable in space or time.
A "weaker" concept of solution is required, see Sect. 8.2 .3 below.

This consideration should be familiar: for second order elliptic boundary value problems, for which classical solutions are to be twice continuously differentiable, the concept of a variational solution
made it possible to give a meaning to solutions $\in H^{1}(\Omega)$ that are merely continuous and piecwise differentiable, see Rem. [1.3.23.

Remark 8.1.6 (Boundary conditions for linear advection).

Recall the discussion in Sects. 7.2.1, 7.3.2, cf. solution formula (7.3.13):

For the scalar linear advection initial boundary value problem

$$
\begin{gather*}
\left.\frac{\partial u}{\partial t}+\operatorname{div}(\mathbf{v}(\boldsymbol{x}, t) u)=f(\boldsymbol{x}, t) \quad \text { in } \quad \widetilde{\Omega}:=\Omega \times\right] 0, T[,  \tag{8.1.7}\\
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \text { for all } \quad \boldsymbol{x} \in \Omega, \tag{8.1.8}
\end{gather*}
$$

on a bounded domain $\Omega \subset \mathbb{R}^{d}$, boundary conditions (e.g., prescribed temperature)

$$
\left.u(\boldsymbol{x}, t)=g(\boldsymbol{x}, t) \quad \text { on } \quad \Gamma_{\mathrm{in}}(t) \times\right] 0, T[,
$$

can be imposed on the inflow boundary

$$
\begin{equation*}
\Gamma_{\mathrm{in}}(t):=\{\boldsymbol{x} \in \partial \Omega: \mathbf{v}(\boldsymbol{x}, t) \cdot \boldsymbol{n}(\mathbf{x})<0\}, \quad 0<t<T \tag{8.1.9}
\end{equation*}
$$

Note: $\quad \Gamma_{\text {in }}$ can change with time!

Bottom line:

> Knowledge of local and current direction of transport needed to impose meaningful boundary conditions!

### 8.1.2 Inviscid gas flow

Frictionless gas flow in (infinitely) long pipe
Gas
Terminology: frictionless $\hat{=}$ inviscid

## Assumption:

 variation of gas density negligible ("near incompressibility") motion of fluid driven by inertia $\leftrightarrow$ conservation of linear momentumWe derive a continuum model for inviscid, nearly incompressible fluid in a straight infinitely long pipe $\leftrightarrow \Omega=\mathbb{R}$ (Cauchy problem).

This simple model will be based on conservation of linear momentum, whereas conservation of mass and energy will be neglected (and violated). Hence, the crucial conserved quantity will be the momentum.
by near incompressibility
Unkown: $u=u(x, t)=$ momentum density $\leftrightarrow$ momentum density $\sim$ local velocity $v=v(x, t)$ of fluid
Conserved quantity: $\quad$ (linear) momentum of fluid $u=u(x, t)$

[^0]Conservation of linear momentum $(\sim u):$ for all control volumes $V:=] x_{0}, x_{1}[\subset \Omega$ :

$$
\begin{equation*}
\underbrace{\int_{x_{0}}^{x_{1}} u\left(x, t_{1}\right)-u\left(x, t_{0}\right) \mathrm{d} x}_{\text {change of momentum in } V}+\underbrace{\int_{t_{0}}^{t_{1}} \frac{1}{2} u^{2}\left(x_{1}, t\right)-\frac{1}{2} u^{2}\left(x_{0}, t\right) \mathrm{dt}}_{\text {outflow of momentum }}=0 \quad \forall 0<t_{0}<t_{1}<T \tag{8.1.10}
\end{equation*}
$$

Temporarily assume that $u=u(x, t)$ is smooth in both $x$ and $t$ and set $x_{1}=x_{0}+h, t_{1}=t_{0}+\tau$. First approximate the integrals in (8.1.10).

$$
\begin{aligned}
& \int_{x_{0}}^{x_{1}} u\left(x, t_{1}\right)-u\left(x, t_{0}\right) \mathrm{d} x=h\left(u\left(x_{0}, t_{1}\right)-u\left(x_{0}, t_{0}\right)\right)+O\left(h^{2}\right) \text { for } h \rightarrow 0, \\
& \int_{t_{0}}^{t_{1}} \frac{1}{2} u^{2}\left(x_{1}, t\right)-\frac{1}{2} u^{2}\left(x_{0}, t\right) \mathrm{dt}=\tau\left(\frac{1}{2} u^{2}\left(x_{1}, t_{0}\right)-\frac{1}{2} u^{2}\left(x_{0}, t_{0}\right)\right)+O\left(\tau^{2}\right) \text { for } \tau \rightarrow 0 .
\end{aligned}
$$

Then employ Taylor expansion for the differences:

$$
\begin{aligned}
u\left(x_{0}, t_{1}\right)-u\left(x_{0}, t_{0}\right) & =\frac{\partial u}{\partial t}\left(x_{0}, t_{0}\right) \tau+O\left(\tau^{2}\right) \quad \text { for } \quad \tau \rightarrow 0 \\
\frac{1}{2} u^{2}\left(x_{1}, t_{0}\right)-\frac{1}{2} u^{2}\left(x_{0}, t_{0}\right) & =\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)\left(x_{0}, t_{0}\right)+O\left(h^{2}\right) \quad \text { for } \quad h \rightarrow 0
\end{aligned}
$$

Finally, divide by $h$ and $\tau$ and take the limit $\tau \rightarrow 0, h \rightarrow 0$ :

$$
\begin{equation*}
\left.\nabla \quad \frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)=0 \quad \text { in } \Omega \times\right] 0, T[ \tag{8.1.11}
\end{equation*}
$$

(8.1.11) $=$ Burgers equation: a one-dimensional scalar conservation law (without sources)

Remark 8.1.12 (Euler equations).

The above gas model blatantly ignores the fundamental laws of conservation of mass and of energy. These are taken into account in a famous more elaborate model of inviscid fluid flow:

$$
\begin{align*}
&\left.\frac{\partial}{\partial t}\left(\begin{array}{c}
\rho \\
\rho u \\
E
\end{array}\right)+\frac{\partial}{\partial x}\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
(E+p) u
\end{array}\right)=0 \quad \text { in } \quad \mathbb{R} \times\right] 0, T[  \tag{8.1.13}\\
& u(x, 0)=u_{0}(x) \quad, \quad \rho(x, 0)=\rho_{0}(x) \quad, \quad E(x, 0)=E_{0}(x) \quad \text { for } x \in \mathbb{R},
\end{align*}
$$

where

- $\rho=\rho(x, t) \hat{=}$ fluid density, $[\rho]=\mathrm{kg} \mathrm{m}^{-1}$,
- $u=u(x, t) \hat{=}$ fluid velocity, $[u]=\mathrm{ms}^{-1}$,
- $p=p(x, t) \hat{=}$ fluid pressure, $[p]=\mathrm{N}$,
- $E=E(x, t) \hat{=}$ total energy density, $[E]=\mathrm{Jm}^{-1}$.
+ state equation (material specific constitutive equations), e.g., for ideal gas

$$
p=(\gamma-1)\left(E-\frac{1}{2} \rho u^{2}\right), \quad \text { with adiabatic index } 0<\gamma<1
$$

Conserved quantities (densities):
$\rho \leftrightarrow$ mass density $\quad \rho u \leftrightarrow$ momentum density $\quad E \leftrightarrow$ energy density.

- First equation $\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)=0 \quad \leftrightarrow \quad$ conservation of mass,
- Second equation $\frac{\partial(\rho u)}{\partial t}+\frac{\partial}{\partial x}\left(\rho u^{2}+p\right)=0 \quad \leftrightarrow \quad$ conservation of momentum,
- Third equation $\quad \frac{\partial E}{\partial t}+\frac{\partial}{\partial x}((E+p) u)=0 \quad \leftrightarrow \quad$ conservation of energy.

Euler equations $(8.1 .13)=\quad$ non-linear system of conservation laws (in 1D)

As is typical of non-linear systems of conservations laws, the analysis of the Euler equations is intrinsically difficult: hitherto not even existence and uniqueness of solutions for general initial values could be established. Moreover, solutions display a wealth of complicated structures. Therefore, this course is confined to scalar conservation laws, for which there is only one unknown real-valued function of space and time.

### 8.2 Scalar conservation laws in 1D

### 8.2.1 Integral and differential form

What we have seen so far (except for Euler's equations in Rem. 8.1.12)

$$
\begin{aligned}
\text { Burgers equation: } & \left.\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)=0 \quad \text { in } \Omega \times\right] 0, T[ \\
\text { linear advection: } & \left.\frac{\partial}{\partial t}(\rho u)+\operatorname{div}(\mathbf{v}(\boldsymbol{x}, t)(\rho u))=f(\boldsymbol{x}, t) \quad \text { in } \quad \mathbb{R}^{d} \times\right] 0, T[.
\end{aligned}
$$

Now, we learn about a class of Cauchy problems to which these two belong. First some notations and terminology:

- $\Omega \subset \mathbb{R}^{d} \hat{=}$ fixed (bounded/unbounded) spatial domain $\left(\Omega=\mathbb{R}^{d}=\right.$ Cauchy problem $)$ - computational domain: space-time cylinder $\widetilde{\Omega}:=\Omega \times] 0, T[, T>0$ final time
$U \subset \mathbb{R}^{m}(m \in \mathbb{N}) \hat{=}$ phase space (state space) for conserved quantitities $u_{i}$ (usually $U=\mathbb{R}^{m}$ )

Our focus below:

```
scalar case m=1
```

Conservation law for transient state distribution $\quad u: \widetilde{\Omega} \mapsto U: u=u(\boldsymbol{x}, t)$, for $0 \leq t \leq T$

$$
\begin{array}{cc}
\frac{d}{d t} \int_{V} u \mathrm{~d} \boldsymbol{x}+\int_{\partial V} \mathbf{f}(u, \boldsymbol{x}) \cdot \mathbf{n} \mathrm{d} S(\boldsymbol{x})=\int_{V} s(u, \boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} & \forall \text { "control volumes" } V \subset \Omega .  \tag{8.2.1}\\
\text { change of amount } \quad \text { inflow/outflow } & \text { production term }
\end{array}
$$

Terminology: $\triangleright$ fluxfunction $\mathbf{f}: U \times \Omega \mapsto \mathbb{R}^{d}$
$\triangleright$ source function $s: U \times \Omega \times] 0, T[\mapsto \mathbb{R} \quad$ (here usually $s=0$ )

- For Burgers equation (8.1.11): $f(u, x)=\frac{1}{2} u^{2}, \quad s=0$,
- For linear advection (8.1.1): $\mathbf{f}(u, \boldsymbol{x})=\mathbf{v}(\boldsymbol{x}, t) u, \quad s=f(\boldsymbol{x}, t)$
(Note: in this case the conserved quantity is actually $\rho u$, which was again denoted by $u$ )
(8.2.1) has the same structure as the "conservation of energy law" (6.1.1) for heat conduction.

Conservation of energy:

$$
\frac{d}{d t} \int_{V} \rho u \mathrm{~d} \boldsymbol{x}+\int_{\partial V} \mathbf{j} \cdot \boldsymbol{n} \mathrm{~d} S=\int_{V} f \mathrm{~d} \boldsymbol{x} \quad \text { for all "control volumes" } V
$$

In this case the heat flux was given by

$$
\begin{equation*}
\text { Fourier's law } \quad \mathbf{j}(\boldsymbol{x})=-\kappa(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega, \tag{2.5.3}
\end{equation*}
$$

or its extended version (7.1.5). In Fourier's law the flux is a linear function of derivatives of $u$.

Conversely, for the flux function $\mathbf{f}: U \times \Omega \mapsto \mathbb{R}^{d}$ in (8.2.1) we assume
f only depends on local state $u$, not on derivatives of $u$ !

On the other hand we go far beyond Fourier's law, since

$$
\mathrm{f} \text { will in general be a non-linear function of } u \text { ! }
$$

Remark 8.2.2 (Diffusive flux).

Taking into account the relationship with heat "diffusion", a flux function of the form of Fourier's law (2.5.3)

$$
\mathbf{f}(u)=-\kappa(\boldsymbol{x}) \operatorname{grad} u
$$

Now, integrate (8.2.1) over time period $\left[t_{0}, t_{1}\right] \subset[0, T]$ and use fundamental theorem of calculus:
$\Delta$ Space-time integral form of (8.2.1), cf. (8.1.10),

$$
\begin{equation*}
\int_{V} u\left(\boldsymbol{x}, t_{1}\right) \mathrm{d} \boldsymbol{x}-\int_{V} u\left(\boldsymbol{x}, t_{0}\right) \mathrm{d} \boldsymbol{x}+\int_{t_{0}}^{t_{1}} \int_{\partial V} \mathbf{f}(u, \boldsymbol{x}) \cdot \boldsymbol{n} \mathrm{d} S(\boldsymbol{x}) \mathrm{d} t=\int_{t_{0}}^{t_{1}} \int_{V} s(u, \boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} \mathrm{~d} t \tag{8.2.3}
\end{equation*}
$$

for all $V \subset \Omega, 0<t_{0}<t_{1}<T, \boldsymbol{n} \hat{=}$ exterior unit normal at $\partial V$
[Gauss theorem Thm. 2.4.5] (local) differential form of (8.2.1):

$$
\begin{align*}
& \frac{\partial}{\partial t} u+\operatorname{div}_{x} \mathbf{f}(u, \boldsymbol{x})=s(u, \boldsymbol{x}, t) \quad \text { in } \widetilde{\Omega} .  \tag{8.2.4}\\
& \text { div acting on spatial variable } \boldsymbol{x} \text { only }
\end{align*}
$$

$$
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega
$$

$$
\begin{gather*}
\text { Special case } d=1 \leftrightarrow(\overline{8.2 .4)}=\text { one-dimensional scalar conservation law for "density" } u: \widetilde{\Omega} \mapsto \mathbb{R} \\
\left.\frac{\partial u}{\partial t}(x, t)+\frac{\partial}{\partial x}(f(u(x, t), x))=s(u(x, t), x, t) \quad \text { in }\right] \alpha, \beta[\times] 0, T[, \alpha, \beta \in \mathbb{R} \cup\{ \pm \infty\} . \quad \text { (8.2.5) } \tag{8.2.5}
\end{gather*}
$$

Remark 8.2.6 (Boundary values for conservation laws).
Suitable boundary values on $\partial \Omega \times] 0, T[\boldsymbol{?} \quad \rightarrow$ usually tricky question (highly f-dependent)

Reason: remember discussion in Rem. 8.1.6, meaningful boundary conditions hinge on knowledge of local (in space and time) transport direction, which, in a non-linear conservation law, will usually depend on the unknown solution $u=u(x, t)$.

We consider Cauchy problem ( $\Omega=\mathbb{R}$ ) for one-dimensional scalar conservation law (8.2.5):

$$
\therefore \quad \begin{align*}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u) & =0 \quad \text { in } \mathbb{R} \times] 0, T[  \tag{8.2.7}\\
u(x, 0) & =u_{0}(x) \text { in } \mathbb{R}
\end{align*}
$$

Assumption: flux function $f: \mathbb{R} \mapsto \mathbb{R} \quad$ smooth $\left(f \in C^{2}\right)$ and convex [19, Def. 5.5.2]
Recall [19, Thm. 5.5.2]:
$f$ convex $\Rightarrow$ derivative $f^{\prime}$ increasing

Definition 8.2.8 (Characteristic curve for one-dimensional scalar conservation law).
A curve $\Gamma:=(\gamma(\tau), \tau):[0, T] \mapsto \mathbb{R} \times] 0, T[$ in the $(x, t)$-plane is a characteristic curve of (8.2.7), if

$$
\begin{equation*}
\frac{d}{d \tau} \gamma(\tau)=f^{\prime}(u(\gamma(\tau), \tau)), \quad 0 \leq \tau \leq T \tag{8.2.9}
\end{equation*}
$$

where $u$ is a continuously differentiable solution of (8.2.7).


Example 8.2.10 (Characteristics for advection). Constant linear advection (8.1.4): $f(u)=v u$
$\rightarrow \quad$ characteristics $\gamma(\tau)=v \tau+c, c \in \mathbb{R}$. solution (8.1.5) $\quad u(x, t)=u_{0}(x-v t)$ meaningful for any $u_{0}$ ! (cf. Sect.7.3.2)


This example reveals a close relationship between streamlines ( $\rightarrow$ Sect. 7.1.1) and characteristic curves. That the latter are a true generalization is also reflected by the following simple observation, which generlizes the considerations in Sect. 7.3.2, (7.3.9).

Lemma 8.2.11 (Classical solutions and characteristic curves).
Smooth solutions of (8.2.7) are constant along characteristic curves.

Proof. Apply chain rule twice, cf. (7.3.9), and use the defining equation (8.2.9) for a characteristic curve:

$$
\begin{aligned}
\frac{d}{d \tau} u(\gamma(\tau), \tau) & \stackrel{\text { chain rule }}{=} \frac{\partial u}{\partial x}(\gamma(\tau), \tau) \frac{d}{d \tau} \gamma(\tau)+\frac{\partial u}{\partial t}(\gamma(\tau), \tau) \\
& \stackrel{(8.2 .9)}{=} \frac{\partial u}{\partial x}(\gamma(\tau), \tau) \cdot f^{\prime}(u(\gamma(\tau), \tau))+\frac{\partial u}{\partial t}(\gamma(\tau), \tau) \\
& \stackrel{\text { chain rule }}{=}\left(\frac{\partial}{\partial x} f(u)\right)(\gamma(\tau), \tau)+\frac{\partial u}{\partial t}(\gamma(\tau), \tau)=0
\end{aligned}
$$

notation: $\quad f^{\prime} \hat{=}$ derivative of flux function $f: U \subset \mathbb{R} \mapsto \mathbb{R}$

So, $\quad u$ is constant on a characteristic curve.
$>\quad f^{\prime}(u)$ is constant on a characteristic curve.
(8.2.9) $\Rightarrow$ slope of characteristic curve is constant!

Characteristic curve through $\left(x_{0}, 0\right)=$ straight line $\left(x_{0}+f^{\prime}\left(u_{0}\left(x_{0}\right)\right) \tau, \tau\right), 0 \leq \tau \leq T$ !
!? implicit solution formula for (8.2.7) ( $f^{\prime}$ monotone !):

$$
\begin{equation*}
u(x, t)=u_{0}\left(x-f^{\prime}(u(x, t)) t\right) \tag{8.2.12}
\end{equation*}
$$

Example 8.2.13 (Breakdown of characteristic solution formula).

for Burger's equation (8.1.11):
( $f(u)=\frac{1}{2} u^{2}$ smooth and strictly convex)
$\triangleright \quad f^{\prime}(u)=u \quad$ (increasing)
$\triangleleft$ if $u_{0}$ smooth and decreasing
> characteristic curves intersect !
$>$ solution formula (8.2.12) becomes invalid

$t<1.3$ : solution by (8.2.12)
breakdown of classical solutions \& Ex. 8.2.10 $\quad \Rightarrow$ new concept of solution of (8.2.7)
"Space-time Gaussian theorem"

$$
\begin{array}{r}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=0 \\
\operatorname{div}_{(x, t)}\binom{f(u)}{u}=0 \quad \text { in } \widetilde{\Omega}
\end{array}
$$

$\nabla \forall$ "space-time control volumes" $\widetilde{V} \subset \widetilde{\Omega}$ :

$$
\int_{\partial \widetilde{V}}\binom{f(u(\widetilde{\boldsymbol{x}}))}{u(\widetilde{\boldsymbol{x}})} \cdot\binom{n_{x}(\widetilde{\boldsymbol{x}})}{n_{t}(\widetilde{\boldsymbol{x}})} \mathrm{d} S(\widetilde{\boldsymbol{x}})=0,
$$

$\widetilde{\boldsymbol{n}}:=\left(n_{x}, n_{t}\right)^{T} \hat{=}$ space-time unit normal
(8.2.15) for space-time rectangle $\widetilde{V}=] x_{0}, x_{1}[\times] t_{0}, t_{1}[>$ integral form of (8.2.14), cf. (8.2.3):

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} u\left(x, t_{1}\right) \mathrm{d} x-\int_{x_{0}}^{x_{1}} u\left(x, t_{0}\right) \mathrm{d} x=\int_{t_{0}}^{t_{1}} f\left(u\left(x_{0}, t\right)\right) \mathrm{d} t-\int_{t_{0}}^{t_{1}} f\left(u\left(x_{1}, t\right)\right) \mathrm{d} t . \tag{8.2.16}
\end{equation*}
$$

Still, (8.2.16) encounters problems, if a discontinuity of $u$ coincides with an edge of the space-time rectangle.

Idea: Obtain weak form of (8.2.14) from (8.2.15) by integration by parts, that is, application of Green's first formula Thm. 2.4.7 in space-time!

STEP I: Test (8.2.15) with compactly supported smooth function $\Phi: \widetilde{\Omega} \mapsto \mathbb{R}, \Phi(\cdot, T)=0$, and integrate over space-time cylinder $\widetilde{\Omega}=\mathbb{R} \times[0, T]$ :

$$
\text { (8.2.15) }>\int_{\widetilde{\Omega}} \operatorname{div}_{(x, t)}\binom{f(u)}{u} \Phi(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} \mathrm{~d} t=0
$$

STEP II: Perform integration by parts using Green's first formula Thm. 2.4.7 on $\widetilde{\Omega}$ :
$\int_{\widetilde{\Omega}} \operatorname{div}_{(x, t)}\binom{f(u)}{u} \Phi(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} \mathrm{d} t=0$

$$
\stackrel{\text { Thm. [2.4.7] }}{\Rightarrow} \int_{\widetilde{\Omega}}\binom{f(u)}{u} \cdot \operatorname{grad}_{(x, t)} \Phi \mathrm{d} \boldsymbol{x} \mathrm{~d} t+\int_{-\infty}^{\infty} u(x, 0) \Phi(x, 0) \mathrm{d} x=0
$$

because $\quad \partial \widetilde{\Omega}=\mathbb{R} \times\{0\} \cup \mathbb{R} \times\{T\}$ with "normals" $n=\binom{0}{-1}\left(t=0\right.$ boundary) and $n=\binom{0}{1}$ ( $t=T$ boundary), which has to be taken into account in the boundary term in Green's formula. The " $t=T$ boundary part" does not enter as $\Phi(\cdot, T)=0$.

Note that $u(x, 0)$ is fixed by the initial condition: $u(x, 0)=u_{0}(x)$.

Definition 8.2.17 (Weak solution of Cauchy problem for scalar conservation law). For $\left.u_{0} \in L^{\infty}(\mathbb{R}), u: \mathbb{R} \times\right] 0, T[\mapsto \mathbb{R}$ is a weak solution of the Cauchy problem (8.2.7), if

$$
u \in L^{\infty}(\mathbb{R} \times] 0, T[) \wedge \int_{-\infty}^{\infty} \int_{0}^{T}\left\{u \frac{\partial \Phi}{\partial t}+f(u) \frac{\partial \Phi}{\partial x}\right\} \mathrm{d} t \mathrm{~d} x+\int_{-\infty}^{\infty} u_{0}(x) \Phi(x, 0) \mathrm{d} x=0
$$

for all $\Phi \in C_{0}^{\infty}(\mathbb{R} \times[0, T[), \Phi(\cdot, T)=0$.

Remark 8.2.18 (Properties of weak solutions).

By reversing integration by parts, it is easy to see that
$u$ weak solution of (8.2.7) \& $u \in C^{1} \Longleftrightarrow u$ classical solution of (8.2.7).

Arguments from mathematical integration theory confirm
$u \in L_{\mathrm{loc}}^{\infty}(\mathbb{R} \times] 0, T[)$ weak solution of (8.2.7) $\quad \Rightarrow \quad$ for "almost all" $x_{0}<x_{1}, 0<t_{0}<t_{1}<T$.

For piecewise smooth vectorfield $\mathbf{j}: \Omega \subset \mathbb{R}^{2}$ :

$$
" \operatorname{div} \mathbf{j}=0 "
$$

$\Uparrow$
$\int_{V} \mathbf{j} \cdot \boldsymbol{n} \mathrm{~d} S=0 \quad \forall$ control volumes $V \subset \Omega$
Necessary condition:

Continuity of normal components across discontinuities
discontinuous divergence-free vectorfield


Apply this to vectorfield on space-time domain $\widetilde{\Omega}=\mathbb{R} \times] 0, T[$ :

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=0 \quad \Leftrightarrow \quad \operatorname{div}_{(x, t)} \underbrace{\binom{f(u)}{u}}_{=: \mathbf{j}}=0 \quad \text { in } \widetilde{\Omega} . \tag{8.2.15}
\end{equation*}
$$

Normal at $C^{1}$-curve $\Gamma:=\tau \mapsto(\gamma(\tau), \tau)$ in $(\gamma(\tau), \tau)$

$$
\widetilde{\boldsymbol{n}}=\frac{1}{\sqrt{1+|\dot{s}|^{2}}}\binom{1}{-\dot{s}}, \quad \dot{s}:=\frac{d \gamma}{d \tau}(\tau) \quad \text { "speed of curve". }
$$

To see this, recall that the normal is orthogonal to the tangent vector $\binom{\dot{s}}{1}$ and that in 2D the direction orthogonal to $\binom{x_{1}}{x_{2}}$ is given by $\binom{-x_{2}}{x_{1}}$.
"normal continuity" of piecewise smooth vectorfield $(f(u), u)^{T}$

$$
\begin{gather*}
\mathbb{\Downarrow} \\
\binom{1}{-\frac{d \gamma}{d \tau}} \cdot\binom{[f(u)]}{[u]}=0 \tag{8.2.19}
\end{gather*}
$$

where $[\cdot] \hat{=}$ jump across $\Gamma$.


Terminology: $\quad(8.2 .19)=$ Rankine-Hugoniot (jump) condition, shorthand notation:

$$
\begin{equation*}
\dot{s}\left(u_{l}-u_{r}\right)=f_{l}-f_{r} \quad, \quad \dot{s}:=\frac{d \gamma}{d \tau} \quad \text { "propagation speed of discontinuity" } \tag{8.2.20}
\end{equation*}
$$

Remark 8.2.21 (Discontinuity connecting constant states).

The simples situtation compliant with Rankine-Hugoniot jump condition: constant states to the left and right of the curve of discontinuity (8.2.19):


$$
u(x, t)=\left\{\begin{array}{lll}
u_{l} \in \mathbb{R} & , \text { for } & x<\dot{s} t  \tag{8.2.22}\\
u_{r} \in \mathbb{R} & , \text { for } & x<\dot{s} t
\end{array}\right.
$$

with constant speed $\dot{s}$ of discontinuity, according to (8.2.20) given by (for $u_{l} \neq u_{r}$ )

$$
\dot{s}=\frac{f\left(u_{l}\right)-f\left(u_{r}\right)}{u_{l}-u_{r}}
$$

Rem. 8.2.21: situation of locally constant states in particularly easy.

Consider: Cauchy-problem (8.2.7) for piecewise constant initial data $u_{0}$.

Definition 8.2.23 (Riemann problem).

$$
u_{0}(x)=\left\{\begin{array}{ll}
u_{l} \in \mathbb{R} & , \text { if } x<0, \\
u_{r} \in \mathbb{R} & , \text { if } x>0
\end{array} \quad \hat{=} \quad\right. \text { Riemann problem for (8.2.7) }
$$

Assumption, cf. Sect. 8.2.2: $\quad$ flux function $f: \mathbb{R} \mapsto \mathbb{R}$ smooth \& convex
$f^{\prime}$ non-decreasing $>$ pattern of characteristic curves for Riemann problem:


## Definition 8.2.24 (Shock).

If $\Gamma$ is a smooth curve in the $(x, t)$-plane and $u$ a weak solution of (8.2.7), a discontinuity of $u$ across $\Gamma$ is called a shock.

Rem.8.2.21 $>$ shock speed $s \leftrightarrow$ Rankine-Hugoniot jump conditions:

$$
\left(x_{0}, t_{0}\right) \in \Gamma: \quad \dot{s}=\frac{f\left(u_{l}\right)-f\left(u_{r}\right)}{u_{l}-u_{r}}, \quad \begin{align*}
& u_{l}:=\lim _{\epsilon \rightarrow 0} u\left(x_{0}-\epsilon, t_{0}\right),  \tag{8.2.25}\\
& u_{r}:=\lim _{\epsilon \rightarrow 0} u\left(x_{0}+\epsilon, t_{0}\right) .
\end{align*}
$$

## Lemma 8.2.26 (Shock solution of Riemann problem).

$$
u(x, t)=\left\{\begin{array}{ll}
u_{l} & \text { for } x<\dot{s} t \\
u_{r} & \text { for } x>\dot{s} t
\end{array}, \quad \dot{s}:=\frac{f\left(u_{l}\right)-f\left(u_{r}\right)}{u_{l}-u_{r}}, \quad x \in \mathbb{R}, 0<t<T,\right.
$$

is weak solution of Riemann problem $(\rightarrow$ Def. 8.2.23) for (8.2.7).





Burgers flux $f(u)=\frac{1}{2} u^{2}, u_{l}<u_{r}$ : characteristic curves emanate from shock (expansion shock)

Example 8.2.27 (Vanishing viscosity for Burgers equation).

There is no such material as an "invsicid" fluid in nature, because in any physical system there will be a tiny amount of friction. This leads us to the very general understanding that conservation laws can usually be regarded as limit problems $\epsilon=0$ for singularly perturbed transport-diffusion problems with an " $\epsilon$-amount" of diffusion.

In 1D, for any $\epsilon>0$ these transport-diffusion problems will possess a unique smooth solution. Studying its behavior for $\epsilon \rightarrow 0$ will tell us, what are "physically meaningful" solutions for the conservation
law. This consideration is called the vanishing viscosity method to define solutions for conservation laws.

Here we pursue this idea for Burgers equation, see Sect. 8.1.2.

$$
\begin{align*}
\text { Viscous Burgers equation: } \quad \frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)= & \epsilon \frac{\partial^{2} u}{\partial x^{2}}  \tag{8.2.28}\\
& \text { dissipative term }
\end{align*}
$$

Travelling wave solution of Riemann problem for (8.2.28) via Cole-Hopf transform $\rightarrow$ [10, Sect. 4.4.1]

$$
u_{\epsilon}(x, t)=w(x-\dot{s} t) \quad, \quad w(\xi)=u_{r}+\frac{1}{2}\left(u_{l}-u_{r}\right)\left(1-\tanh \left(\frac{\xi\left(u_{l}-u_{r}\right)}{4 \epsilon}\right)\right), \quad \dot{s}=\frac{1}{2}\left(u_{l}+u_{r}\right)
$$



Highly accurate numerical solution of

Riemann problem for (8.2.28)

$$
u_{l}<u_{r}
$$

$$
u_{\epsilon}(x, 0.5) \triangleright
$$

no shock as $\epsilon \rightarrow 0!$
$u_{\epsilon} \rightarrow$ a piecewise linear function!


Let us try to derive a (weak) solution of the homogeneous scalar conservation law (8.2.14) with the structure observed in Ex. 8.2.27.

Idea: conservation law (8.2.14) homogeneous in spatial/temporal derivatives:

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=0 \quad \text { in } \mathbb{R} \times \mathbb{R}^{+} \Rightarrow \frac{\partial u_{\lambda}}{\partial t}+\frac{\partial}{\partial x} f\left(u_{\lambda}\right)=0 \quad \text { in } \mathbb{R} \times \mathbb{R}^{+}
$$

$u_{\lambda}(x, t):=u(\lambda x, \lambda t), \lambda>0$. This suggests that we look for solutions of the Riemann problem that are constant on all straight lines in the $x-t$-plane that cross $(0,0)^{T}$.
try similarity solution:

$$
\begin{aligned}
& u(x, t)= \psi(x / t) \\
& \leftarrow \text { insert in } \frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=0
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(\psi(x / t)) \psi^{\prime}(x / t)=(x / t) \psi^{\prime}(x / t) \quad \forall x \in \mathbb{R}, 0<t<T . \\
& \text { - } \psi^{\prime} \equiv 0 \quad \vee \quad f^{\prime}(\psi(w))=w \underset{\boldsymbol{l}}{\stackrel{\mu}{l}} \psi(w)=\left(f^{\prime}\right)^{-1}(w) \text {. } \\
& f^{\prime} \text { strictly monotone! }
\end{aligned}
$$



## Lemma 8.2.29. (Rarefaction solution of Riemann problem)

 If $f \in C^{2}(\mathbb{R})$ strictly convex, $u_{l}<u_{r}$, then$$
\begin{aligned}
& u(x, t):= \begin{cases}u_{l} & \text { for } x<f^{\prime}\left(u_{l}\right) t, \\
g\left(\frac{x}{t}\right) & \text { for } f^{\prime}\left(u_{l}\right)<\frac{x}{t}<f^{\prime}\left(u_{r}\right), \\
u_{r} & \text { for } x>f^{\prime}\left(u_{r}\right) t,\end{cases} \\
& g:=\left(f^{\prime}\right)^{-1}, \text { is a weak solution of the } \\
& \text { Riemann problem ( } \rightarrow \text { Def. 8.2.23). }
\end{aligned}
$$

Proof. We show that the rarefaction solution is a weak solution according to Def. 8.2.17 $>$ for $\Phi \in C_{0}^{\infty}(\mathbb{R} \times] 0, T[)$

$$
\begin{aligned}
\int_{0}^{T}\left\{\int_{-\infty}^{f^{\prime}\left(u_{l}\right) t} u_{l} \frac{\partial \Phi}{\partial t}+f\left(u_{l}\right) \frac{\partial \Phi}{\partial x} \mathrm{~d} x+\int_{f^{\prime}\left(u_{l}\right) t}^{f^{\prime}\left(u_{r} t\right)} g\left(\frac{x}{t}\right)\right. & \left.\frac{\partial \Phi}{\partial t}+f\left(g\left(\frac{x}{t}\right)\right) \frac{\partial \Phi}{\partial x} \mathrm{~d} x+\int_{f\left(u_{r}\right) t}^{\infty} u_{r} \frac{\partial \Phi}{\partial t}+F\left(u_{r}\right) \frac{\partial \Phi}{\partial x} \mathrm{~d} x\right\} \mathrm{d} t \\
& =\int_{0}^{T} \int_{f^{\prime}\left(u_{1}\right) t}^{f^{\prime}\left(u_{r}\right) t} g^{\prime}\left(\frac{x}{t}\right) \frac{x}{t^{2}} \Phi-f^{\prime}\left(g\left(\frac{x}{t}\right)\right) \frac{1}{t} g^{\prime}\left(\frac{x}{t}\right) \Phi \mathrm{d} x \mathrm{~d} t=0
\end{aligned}
$$

because $f^{\prime} \circ g=I d$ and by fundamental theorem of calculus.

Terminology: solution of Lemma8.2.29 $=$ rarefaction wave: continuous solution !


### 8.2.6 Entropy condition

if $f^{\prime}$ is increasing and $u_{l}<u_{r}$ both a shock and a rarefaction wave provide valid weak solutions.

How to select "physically meaningful" = admissible solution?

Vanishing viscosity technique ( $\rightarrow$ Ex. 8.2.27): add an " $\epsilon$-amount" of diffusion ("friction") and study

## However, desirable: simple selection criteria (entropy conditions)

Definition 8.2.30 (Lax entropy condition).
$u \hat{=}$ weak solution of (8.2.7), piecewise classical solution in a neigborhood of $C^{2}$-curve $\Gamma:=$ $(\gamma(\tau), \tau), 0 \leq \tau \leq T$, discontinuous across $\Gamma$.
$\begin{aligned} & u \text { satisfies the Lax entropy } \\ & \text { condition in }\left(x_{0}, t_{0}\right) \in \Gamma\end{aligned}: \Leftrightarrow f^{\prime}\left(u_{l}\right)>\dot{s}:=\frac{f\left(u_{l}\right)-f\left(u_{r}\right)}{u_{l}-u_{r}}>f^{\prime}\left(u_{r}\right)$.
$\Uparrow$

Characteristic curves must not emanate from shock $\leftrightarrow$ no "generation of information"
Parlance: shock satisfying Lax entropy condition $=$ physical shock

Note:
$f^{\prime}$ increasing $>$ Def 8.2.30: necessary for physical shock

$$
u_{l}>u_{r}
$$

Physically meaningful weak solution of conservation law = entropy solution
For scalar conservation laws with locally Lipschitz-continuous flux function $f$ :
Existence \& uniqueness of entropy solutions

Remark 8.2.31 (General entropy solution for 1D scalar Riemann problem). $\quad \rightarrow$ [16]

Entropy solution of Riemann problem ( $\rightarrow$ Def. 8.2.23) for (8.2.7) with arbitrary $f \in C^{1}(\mathbb{R})$ :

$$
u(x, t)=\psi(x / t) \quad, \quad \psi(\xi):=\left\{\begin{array}{ll}
\underset{\operatorname{argmin}_{l}}{\operatorname{argmin}}(f(u)-\xi u) & , \text { if } u_{l}<u_{r}  \tag{8.2.32}\\
u_{l} \leq u_{r} \\
u_{r} \leq u \leq u_{l}
\end{array}, \quad \text { if } u_{l} \geq u_{r}\right.
$$

Example 8.2.33 (Entropy solution of Burgers equation).

Analytical solution available for Burgers eqution (8.1.11) with intial data, see [10, Sect. 3.4, Ex. 3]

$$
u_{0}(x)= \begin{cases}0 & , \text { if } x<0 \text { or } x>1 \\ 1 & , \text { if } 0 \leq x \leq 1\end{cases}
$$




$$
\binom{f(u(x, t))}{u(x, t)}
$$

for entropy solution $u=u(x, t)$

Observe the normal continuity across the shock: the vector field is tangential to the shock curve.


### 8.2.7 Properties of entropy solutions

Setting: $u \in L^{\infty}(\mathbb{R} \times] 0, T[)$ weak $(\rightarrow$ Def. 8 8.2.17) entropy solution of Cauchy problem

$$
\left.\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=0 \quad \text { in } \mathbb{R} \times\right] 0, T\left[\quad, \quad u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}\right.
$$

with flux function $f \in C^{1}(\mathbb{R})$ (not necessarily convex/concave).

Notation: $\quad \bar{u} \in L^{\infty}(\mathbb{R} \times] 0, T[) \hat{=}$ entropy solution w.r.t. initial datal $\bar{u}_{0} \in L^{\infty}(\mathbb{R})$.

Theorem 8.2.34 (Comparison principle for scalar conservation laws).

$$
\text { If } \left.u_{0} \leq \bar{u}_{0} \text { a.e. on } \mathbb{R} \Rightarrow u \leq \bar{u} \text { a.e. on } \mathbb{R} \times\right] 0, T[
$$

With obvious consequences:

$$
\left.u_{0}(x) \in[\alpha, \beta] \text { on } \mathbb{R} \quad \Rightarrow \quad u(x, t) \in[\alpha, \beta] \text { on } \mathbb{R} \times\right] 0, T[
$$

$L^{\infty}$-stability ( $>$ no blow-up can occur!)

$$
\begin{equation*}
\forall 0 \leq t \leq T: \quad\|u(\cdot, t)\|_{L^{\infty}(\mathbb{R})} \leq\left\|u_{0}\right\|_{L^{\infty}(\mathbb{R})} . \tag{8.2.35}
\end{equation*}
$$

Theorem 8.2.36 ( $L^{1}$-contractivity of evolution for scalar conservation law).

$$
\forall t \in] 0, T\left[, R>0: \quad \int_{|x|<R}|u(x, t)| \mathrm{d} x \leq \int_{|x|<R+\dot{s} t}\left|u_{0}(x)\right| \mathrm{d} x,\right.
$$

with maximal speed of propagation

$$
\begin{equation*}
\dot{s}:=\max \left\{\left|f^{\prime}(\xi)\right|: \inf _{x \in \mathbb{R}} u_{0}(x) \leq \xi \leq \sup _{x \in \mathbb{R}} u_{0}(x)\right\} . \tag{8.2.37}
\end{equation*}
$$

Thm. 8.2.36> finite speed of propagation in conservation law, bounded by $\dot{s}$ from (8.2.37):

As in the case of the wave equation $\rightarrow$ Sect. 6.2.2:

maximal domain of dependence of $(\bar{x}, \bar{t}) \in \widetilde{\Omega}$

maximal domain of influence of $I_{0} \subset \mathbb{R}$

Analoguous to Thm. 6.2.18:

Corollary 8.2.38 (Domain of dependence for scalar conservation law). $\rightarrow$ [8, Cor. 6.2.2] The value of the entropy solution at $(\bar{x}, \bar{t}) \in \widetilde{\Omega}$ depends only on the restriction of the initial data to $\{x \in \mathbb{R}:|x-\bar{x}|<\dot{s} t\}$.

Another strand of theoretical results asserts that the solution of a 1D scalar conservation law cannot develop oscillations:
$u$ solves (8.2.7) > No. of local extrema (in space) of $u(\cdot, t)$ decreasing with time

### 8.3 Conservative finite volume discretization

Example 8.3.1 (Naive finite difference scheme).

Cauchy problem for Burgers equation (8.1.11) rewritten using product rule:

$$
\left.\frac{\partial u}{\partial t}(x, t)+u(x, t) \frac{\partial u}{\partial x}(x, t)=0 \quad \text { in } \quad \mathbb{R} \times\right] 0, T[.
$$

$\leftrightarrow \quad$ related to advection with velocity $v(x, t)=u(x, t)$ :

$$
\begin{gathered}
\left.\frac{\partial u}{\partial t}(x, t)+u(x, t) \frac{\partial u}{\partial x}(x, t)=0 \quad \text { in } \quad \mathbb{R} \times\right] 0, T[. \\
\uparrow \\
\downarrow \\
\left.\frac{\partial u}{\partial t}(x, t)+v(x, t) \frac{\partial u}{\partial x}(x, t)=0 \quad \text { in } \quad \mathbb{R} \times\right] 0, T[.
\end{gathered}
$$

If $u_{0}(x) \geq 0$, then, by Thm. 8.2.34, $u(x, t) \geq 0$ for all $0<t<T$, that is, positive direction of transport throughout.

Heeding guideline from Sect. 7.3.1: use upwind discretization (backward differences) in space!
on (infinite) equidistant grid, meshwidth $h>0, x_{j}=h j, j \in \mathbb{Z}$, obtain semi-discrete problem for nodal values $\mu_{j}=\mu_{j}(t) \approx u\left(x_{j}, t\right)$

$$
\begin{align*}
& \left.\frac{\partial u}{\partial t}(x, t)+u(x, t) \frac{\partial u}{\partial x}(x, t)=0 \quad \text { in } \quad \mathbb{R} \times\right] 0, T[ \\
& \downarrow  \tag{8.3.2}\\
& \downarrow
\end{align*}
$$

Numerical experiment with Cauchy problem from Ex. 8.2.33, $h=0.08$, integration of (8.3.2) with MATLAB ode 45.


Observation from numerical experiment: OK for rarefaction wave, but scheme cannot capture speed of shock correctly!

Analysis: consider $\quad \mu_{j}(0)= \begin{cases}1 & , \text { if } j<0, \\ 0 & , \text { if } j \geq 0\end{cases}$
$\leftrightarrow$ Riemann problem with $u_{0}(x)=1$ for $x<0-\epsilon, u_{0}(x)=0$ for $x>0-\epsilon, \epsilon \ll 1$.

Entropy solution (for this $u_{0}$ ) $=$ travelling shock ( $\rightarrow$ Lemma 8.2.26), speed

$$
\dot{s}=\frac{1}{2}>0
$$

Numerical solution:
$\triangleleft \triangleright$

$$
\overrightarrow{\boldsymbol{\mu}}(t)=\overrightarrow{\boldsymbol{\mu}}_{0} \text { for all } t>0 \text { ! }
$$

> 3-point FDM (??) "converges" to wrong solution!

### 8.3.1 Semi-discrete conservation form

Objective: spatial semi-discretization of Cauchy problem

$$
\begin{equation*}
\left.\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=0 \quad \text { in } \mathbb{R} \times\right] 0, T\left[\quad, \quad u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}\right. \tag{8.2.7}
\end{equation*}
$$

on (infinite) equidistant spatial mesh with mesh width $h>0$

$$
\begin{equation*}
\mathcal{M}:=\{ ] x_{j-1}, x_{j}\left[: x_{j}:=j h, j \in \mathbb{Z}\right\} \tag{8.3.3}
\end{equation*}
$$



Finite volume interpretation of nodal unknowns
$=$ conserved quantities in dual cells $\quad] x_{j-1 / 2}, x_{j+1 / 2}\left[\right.$, midpoints $x_{j-1 / 2}:=\frac{1}{2}\left(x_{j}+x_{j-1}\right)$ :

$$
\begin{equation*}
\overrightarrow{\mu_{j}(t) \approx \frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u(x, t) \mathrm{d} x} . \tag{8.3.4}
\end{equation*}
$$

notation: characteristic function $\quad \chi_{] x_{j-1 / 2}, x_{j+1 / 2}}[x)= \begin{cases}1 & \text {, if } x_{j-1 / 2}<x \leq x_{j+1 / 2}, \\ 0 & \text { elsewhere }\end{cases}$

$$
\left(\mu_{j}(t)\right)_{j \in \mathbb{Z}} \longleftrightarrow \text { piecewise constant approximation } u_{N}(t) \approx u(\cdot, t)
$$

By spatial integration over dual cells, which now play the role of the control volumes in (8.2.1):

$$
\begin{align*}
& \frac{d}{d t} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u(x, t) \mathrm{d} x+f\left(u\left(x_{j+1 / 2}, t\right)\right)-f\left(u\left(x_{j-1 / 2}, t\right)\right)=0, \quad j \in \mathbb{Z}  \tag{8.3.6}\\
& \quad \frac{d \mu_{j}}{d t}(t)+\frac{1}{h}(\underbrace{f\left(u_{N}\left(x_{j+1 / 2}, t\right)\right)}_{?}-\underbrace{f\left(u_{N}\left(x_{j-1 / 2}, t\right)\right)}_{?})=0, \quad j \in \mathbb{Z} \tag{8.3.7}
\end{align*}
$$

Problem: ambiguity of values $\left.u_{N}\left(x_{j+1 / 2}, t\right), u_{N}\left(x_{j-1 / 2}, t\right)\right)$, as we encountered it in the context of upwind quadrature in Sect. 7.2.2.1.

Abstract "solution":
Approximation $\quad f\left(u_{N}\left(x_{j+1 / 2}, t\right)\right) \approx f_{j+1 / 2}(t):=F\left(\mu_{j-m_{l}+1}(t), \ldots, \mu_{j+m_{r}}(t)\right), \quad j \in \mathbb{Z}$, with numerical flux function $F: \mathbb{R}^{m_{l}+m_{r}} \mapsto \mathbb{R}, \quad m_{l}, m_{r} \in \mathbb{N}_{0}$.

Note: the same numerical flux function is used for all dual cells!

Finite volume semi-discrete evolution for (8.2.7) in conservation form:

$$
\frac{d \mu_{j}}{d t}(t)=\frac{1}{h}\left(F\left(\mu_{j-m_{l}+1}(t), \ldots, \mu_{j+m_{r}}(t)\right)-F\left(\mu_{j-m_{l}}(t), \ldots, \mu_{j+m_{r}-1}(t)\right)\right), \quad j \in \mathbb{Z}
$$

$$
\text { Special case: } \quad \text { 2-point numerical flux }\left(m_{l}=m_{r}=1\right): \quad F=F(v, w)
$$

$$
(v \hat{=} \text { left state }, w \hat{=} \text { right state })
$$

$$
\begin{equation*}
\text { (8.3.8) }>\frac{d \mu_{j}}{d t}(t)=-\frac{1}{h}\left(F\left(\mu_{j}(t), \mu_{j+1}(t)\right)-F\left(\mu_{j-1}(t), \mu_{j}(t)\right)\right), \quad j \in \mathbb{Z} \tag{8.3.9}
\end{equation*}
$$

Assumption on numerical flux functions: $F$ Lipschitz-continuous in each argument.

### 8.3.2 Discrete conservation property

An evident first property of finite volume methods in conservation form:

$$
\begin{equation*}
\mu_{j}(0)=\mu_{0} \in \mathbb{R} \quad \forall j \in \mathbb{Z} \quad \Rightarrow \quad \mu_{j}(t)=\mu_{0} \quad \forall j \in \mathbb{Z}, \quad \forall t>0 . \tag{8.3.10}
\end{equation*}
$$

that is, constant solutions are preserved by the method.

A "telescopic sum argument" combined with the interpretation (8.3.5) shows that the conservation form (8.3.8) of the semi-discrete conservation law involves

$$
\begin{gathered}
\frac{d}{d t} \int_{x_{k-1 / 2}}^{x_{m+1 / 2}} u_{N}(x, t) \mathrm{d} x=h \sum_{l=k}^{m} \frac{d \mu_{j}}{d t}(t)=-\left(f_{m+1 / 2}(t)-f_{k-1 / 2}(t)\right) \quad \forall k, m \in \mathbb{Z} \\
\frac{d}{d t} \int_{x_{k-1 / 2}}^{x_{m+1 / 2}} u(x, t) \mathrm{d} x=-\left(f\left(u\left(x_{j+1 / 2}, t\right)\right)-f\left(u\left(x_{k-1 / 2}, t\right)\right)\right)
\end{gathered}
$$

With respect to unions of dual cells and numerical fluxes, the semidiscrete solution $u_{N}(t)$ satisfies a balance law of the same structure as a (weak) solution of (8.2.7).

Of course, the numerical flux function $F$ has to fit the flux function $f$ of the conservation law:

Definition 8.3.11 (Consistent numerical flux function).
A numerical flux function $F: \mathbb{R}^{m_{l}+m_{r}} \mapsto \mathbb{R}$ is consistent with the flux function $f: \mathbb{R} \mapsto \mathbb{R}$, if

$$
F(u, \ldots, u)=f(u) \quad \forall u \in \mathbb{R} .
$$

Focus: solution of Riemann problem ( $\rightarrow$ Def. 8.2.23) by finite volume method in conservation form (8.3.8):

$$
\text { Initial data "constant at } \pm \infty \text { ": } \quad \mu_{-j}(0)=u_{l} \quad, \quad \mu_{j}(0)=u_{r} \quad \text { for large } j \text {. }
$$

Consistency of the numerical flux function implies for large $m \gg 1$

$$
\frac{d}{d t} \int_{-x}^{x_{-m-1 / 2}} u_{N}(x, t) \mathrm{d} t=-\left(F\left(u_{r}, \ldots, u_{r}\right)-F\left(u_{l}, \ldots, u_{l}\right)\right)=-\left(f\left(u_{r}\right)-f\left(u_{l}\right)\right)
$$

Exactly the same balance law holds for any weak solutions of the Riemann problem!

Situation: discrete solution $u_{N}(t)$ decreasing \& supposed to approximate a shock
approximate location of shock at time $t$ ):

$$
\begin{aligned}
& \text { approximate location of shock at time } t \text { ): } \\
& x_{*}(t) \in \mathbb{R} \text { : } \\
& \int_{-\infty}^{\infty} u_{l}-u_{N}(x, t) \mathrm{d} x=\int_{x_{*}(t)}^{\infty} u_{N}(x, t)-u_{r} \mathrm{~d} x \\
& \text { equality of yellow areas } \\
& \triangleright
\end{aligned}
$$

$$
\pm \quad \int_{x_{-m-1 / 2}}^{x_{m+1 / 2}} u_{N}(x, t) \mathrm{d} x=\left(x_{*}(t)+x_{m+1 / 2}\right) u_{l}+\left(x_{m+1 / 2}-x_{*}(t)\right) u_{r} \text {. }
$$

$$
\stackrel{(8.3 .12)}{\Rightarrow} \frac{d x_{*}}{d t}(t)=\frac{1}{u_{l}-u_{r}} \sum_{j \in \mathbb{Z}} \frac{d \mu_{j}}{d t}(t)=\frac{f\left(u_{l}\right)-f\left(u_{r}\right)}{u_{l}-u_{r}} \stackrel{(8.2 .20)}{=} \dot{s} \text {. }
$$

Conservation form with consistent numerical flux yields correct "discrete shock speed" (not liable to effect of Ex. 8.3.1)

### 8.3.3 Numerical flux functions

### 8.3.3.1 Central flux

- Cauchy problem for Burgers equation (8.1.11) (flux function $f(u)=\frac{1}{2} u^{2}$ ) from Ex. 8.2.33 ("box" intial data)
- Spatial finite volume discretization in conservvation form (8.3.8) with central numerical fluxes

$$
\begin{equation*}
F_{1}(v, w):=\frac{1}{2}(f(v)+f(w)) \quad, \quad F_{2}(v, w):=f\left(\frac{1}{2}(v+w)\right) . \tag{8.3.14}
\end{equation*}
$$

Obviously the 2-point numerical fluxes $F_{1}$ and $F_{2}$ are consistent according to Def. 8.3.11. The resulting spatially semi-discrete scheme is given by, see (8.3.9)

$$
\begin{array}{ll}
F_{1}: & \frac{d \mu_{j}}{d t}(t)=-\frac{1}{2 h}\left(f\left(\mu_{j+1}(t)\right)-f\left(\mu_{j-1}(t)\right)\right) \\
F_{2}: & \frac{d \mu_{j}}{d t}(t)=-\frac{1}{h}\left(f\left(\frac{1}{2}\left(\mu_{j}(t)+\mu_{j+1}(t)\right)\right)-f\left(\frac{1}{2}\left(\mu_{j}(t)+\mu_{j-1}(t)\right)\right)\right) .
\end{array}
$$

- timestepping based on adaptive Runge-Kutta method ode 45 of MATLAB

```
(opts = odeset('abstol',1E-7,'reltol',1E-6);).
```

Fully discrete evolution for central numerical flux $F_{1}$ :


Fully discrete evolution for central numerical flux $F_{1}$ :




Observation: massive spurious oscillations utterly pollute numerical solution

Example 8.3.15 (Central flux for linear advection).

Cauchy problem (8.1.4): constant valocity scalar linear advection, $v=1$, flux function $f(u)=v u$

$$
\begin{equation*}
\left.\frac{\partial u}{\partial t}+v \frac{\partial u}{\partial x}=0 \quad \text { in } \quad \widetilde{\Omega}=\mathbb{R} \times\right] 0, T\left[, \quad u(x, 0)=u_{0}(x) \quad \forall x \in \mathbb{R}\right. \tag{8.1.4}
\end{equation*}
$$

= Cauchy problem for 1D transport equation (7.3.7)!

Finite volume spatial discretization in conservation form (8.3.8) with central numerical fluxes from (8.3.14):

$$
\begin{aligned}
& F_{1}(v, w):=\frac{1}{2}(f(v)+f(w)) \\
& F_{2}(v, w):=f\left(\frac{1}{2}(v+w)\right)
\end{aligned} \Rightarrow \frac{d \mu_{j}}{d t}(t)=-\frac{v}{2 h}\left(\mu_{j+1}(t)-\mu_{j-1}(t)\right), \quad j \in \mathbb{Z}
$$

$=$ spatial semi-discretization using linear finite element Galerkin discretization of convective term, see (7.2.14)

Sect. 7.3.1:
this method is prone to spurious oscillations, see Ex. 7.3.4.
This offers an explanation also for its failure for Burgers equation, see Ex. 8.3.13

### 8.3.3.2 Lax-Friedrichs flux

Sect. 7.2.2.2: atificial diffusion cures instability of central difference quotient


Can this be rewritten in conservation form (8.3.8)? YES!

$$
\begin{gather*}
(v h / 2) \frac{-\mu_{j-1}+2 \mu_{j}-\mu_{j+1}}{h^{2}}+v \frac{\mu_{j+1}+\mu_{j-1}}{2 h}=\frac{1}{h}\left(F\left(\mu_{j}, \mu_{j+1}\right)-F\left(\mu_{j-1}, \mu_{j}\right)\right), \\
\text { with } F F(v, w):=\frac{v}{2}(v+w)-\frac{v}{2}(w-v) .  \tag{8.3.16}\\
\text { diffusive/viscous numerical flux }
\end{gather*}
$$

Recall from Rem. 8.2.2: the flux function $f(u)=-\frac{\partial u}{\partial x}$ models diffusion. Hence, the diffusive numerical flux amounts to a central finite difference discretization of the partial derivative in space:

$$
-\frac{\partial u}{\partial x}(x, t)_{\mid x=x_{j+1 / 2}} \approx-\frac{1}{h}\left(u\left(x_{j+1}, t\right)-u\left(x_{j}, t\right)\right) .
$$

How to adapt this to general scalar conservation laws?

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)= \frac{\partial u}{\partial t}+f^{\prime}(u) \frac{\partial u}{\partial x}=0  \tag{8.3.17}\\
& \text { local speed of transport }
\end{align*}
$$

$$
\begin{equation*}
F_{\mathrm{LF}}(v, w)=\frac{1}{2}(f(v)+f(w))-\frac{1}{2} \max _{\min \{v, w\} \leq u \leq \max \{v, w\}}\left|f^{\prime}(u)\right|(w-v) \tag{8.3.18}
\end{equation*}
$$

Example 8.3.19 (Lax-Friedrichs flux for Burgers equation).
same setting and conservative discretization as in Ex. 8.3.13
Numerical flux function: Lax-Friedrichs flux (8.3.18)



Observation: spurious completely suppressed, qualitatively good resolution of both shock and rarefaction.

Effect of artificial diffusion: smearing of shock, cf. discussion in Ex. 7.2.26.

Another idea for stable spatial discretization of stationary transport in Sect. 7.2.2.1:
"upwinding" = obtain information from where transport brings it
remedy for ambiguity of evaluation of discontinuous gradient in upwind quadrature Ambiguity also faced in the evaluation of $f\left(u_{N}\left(x_{j+1 / 2}\right), t\right), f\left(u_{N}\left(x_{j-1 / 2}\right), t\right)$, see (8.3.7), which forced us to introduce numerical flux functions in (8.3.8).
(8.3.17): local velocity of transport at $(x, t) \in \widetilde{\Omega}$ is given by $\quad f^{\prime}(u(x, t))$
$>$ ambiguous local velocity of transport at discontinuity of $u_{N}$ !

Idea: deduce local velocity of transport from Rankine-Hugoniot jump condition (8.2.20)

- local velocity of transport $= \begin{cases}f^{\prime}(u) & \text { for unique state, } u=u_{l}=u_{r} \\ \frac{f\left(u_{r}\right)-f\left(u_{l}\right)}{u_{r}-u_{l}} & \text { at discontinuity. }\end{cases}$ ( $u_{l}, u_{r} \hat{=}$ states to left and right of discontinuity)
upwind flux for scalar conservation law with flux function $f$ :

$$
F_{\text {uw }}(v, w)=\left\{\begin{array}{ll}
f(v) & \text {, if } \quad \dot{s}>0, \\
f(w) & \text {, if } \quad \dot{s}<0,
\end{array} \quad \dot{s}:=\frac{f(w)-f(v)}{w-v} .\right.
$$

Example 8.3.20 (Upwind flux for Burgers equation).
same setting and conservative discretization as in Ex. 8.3.13
Numerical flux function: upwind flux (8.3.3.3)


Cauchy problem (8.2.7) for Burgers equation (8.1.11), i.e., $f(u)=\frac{1}{2} u^{2}$ and initial data

$$
u_{0}(x)= \begin{cases}-1 & \text { for } \quad x<0 \text { or } x>1 \\ 1 & \text { for } \quad 0<x<1\end{cases}
$$




The entropy solution ( $\rightarrow$ Sect. 8.2.6) of this Cauchy problem features a transsonic rarefaction fan at $x=0$ : this is a rarefaction solution $(\rightarrow$ Lemma[8.2.29) whose "edges" move in opposite directions.







Conservative finite volume discretization with upwind flux produces (stationary) expansion shock instead of transonic rarefaction!

Sect. 8.2.6: this is a weak solution, but it violates the entropy condition, "non-physical shock".

Example 8.3.22 (Upwind flux: Convergence to expansion shock).

- Cauchy problem (8.2.7) for Burgers equation (8.1.11), i.e., $f(u)=\frac{1}{2} u^{2}$
- $u_{0}(x)=1$ for $x>0, u_{0}(x)=-1$ for $x<0$
> entropy solution $=$ rarefaction wave $(\rightarrow$ Lemma 8.2.29)
- FV in conservation form, upwind flux (8.3.3.3), on equidistant grid, $x_{j}=\left(j+\frac{1}{2}\right) h$, meshwidth $h>0$
initial nodal values $\mu_{j}(0)= \begin{cases}-1 & \text { for } j<0 \\ 1 & \text { for } j \geq 0\end{cases}$
Semi-discrete evolution equation:

$$
\frac{d \mu_{j}}{d t}(t)=-\frac{1}{h} \cdot \begin{cases}\mu_{j+1}^{2}(t)-\mu_{j}^{2}(t) & \text { for } j \geq 0 \\ \mu_{j}^{2}(t)-\mu_{j-1}^{2}(t) & \text { for } j<0\end{cases}
$$

$\mu_{j}(t)=\mu_{j}(0)$ for all $t>$ for $h \rightarrow 0$, convergence to entropy violating expansion shock!
finite volume method may converge to non-physical weak solutions !

### 8.3.3.4 Godunov flux

The upwind flux (8.3.3.3) is a numerical flux of the form

$$
F(v, w)=f\left(u^{\downarrow}(v, w)\right) \quad \text { with an intermediate state } \quad u^{\downarrow}(v, w) \in \mathbb{R} .
$$

For the upwind flux the intermediate state is not really "intermediate", but coincides with one of the states $v, w$ depending on the sign of the "local shock speed" $\dot{s}:=\frac{f(w)-f(v)}{w-v}$.

Idea: obtain suitable intermediate state as

$$
\begin{equation*}
u^{\downarrow}(v, w)=\psi(0) \tag{8.3.23}
\end{equation*}
$$

where $u(x, t)=\psi(x / t)$ solves the Riemann problem ( $\rightarrow$ Def. 8.2.23)

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=0 \quad, \quad u(x, 0)= \begin{cases}v & , \text { for } x<0  \tag{8.3.24}\\ w & , \text { for } x \geq 0\end{cases}
$$

We focus on $\quad f: \mathbb{R} \mapsto \mathbb{R}$ strictly convex \& smooth $\quad$ (e.g. Burgers equations (8.1.11))
$>$ Riemann problem (8.3.24) $(\rightarrow$ Def. 8.2.23) has the entropy solution $(\rightarrow$ Sect. 8.2.6):
(1) If $v>w>$ discontinuous solution, shock $(\rightarrow$ Lemma 8.2.26)

$$
u(t, x)=\left\{\begin{array}{ll}
v & \text { if } x<\dot{s} t,  \tag{8.3.25}\\
w & \text { if } x>\dot{s} t,
\end{array} \quad \dot{s}=\frac{f(v)-f(w)}{v-w} .\right.
$$

(2) If $v \leq w>$ continuous solution, rarefaction wave ( $\rightarrow$ Lemma 8.2.29)

$$
u(t, x)= \begin{cases}v & \text { if } x<f^{\prime}(v) t  \tag{8.3.26}\\ g(x / t) & \text { if } f^{\prime}(v) \leq x / t \leq f^{\prime}(w), \quad g:=\left(f^{\prime}\right)^{-1} \\ w & \text { if } x>f^{\prime}(w) t\end{cases}
$$

All weak solutions of a Riemann problem are of the form $u(x, t)=\psi(x / t)$ with a suitable function $\psi$, which is

- piecewise constant with a jump at $\dot{s}:=\frac{f(w)-f(v)}{w-v}$ for a shock solution (8.3.25),
- the continuous function (in the case of strictly convex flux function $f$ )

$$
\psi(\xi):= \begin{cases}v & , \text { if } \xi<f^{\prime}(v) \\ \left(f^{\prime}\right)^{-1}(\xi) & , \text { if } f^{\prime}(v)<\xi<f^{\prime}(w), \\ w & , \text { if } \xi>f^{\prime}(v)\end{cases}
$$

provided that $w>v=$ situation of a rarefaction solution (8.3.26), see Lemma 8.2.29.



Detailed analysis of (8.3.27):

$$
\begin{gathered}
v>w \text { (shock case): } f\left(u^{\downarrow}(v, w)\right)=\left\{\begin{array}{llll}
f(v) & \text {, if } \frac{f(w)-f(v)}{w-v}>0 \quad \Leftrightarrow \quad f(w)<f(v), \\
f(w), \text { if } \frac{f(w)-f(v)}{w-v} \leq 0 & \Leftrightarrow f(w) \geq f(v) .
\end{array}\right. \\
\quad f\left(u^{\downarrow}(v, w)\right)=\max \{f(v), f(w)\} .
\end{gathered}
$$

For a convex flux function $f$ :
$v<w \Rightarrow f^{\prime}(v) \leq \frac{f(w)-f(v)}{w-v} \leq f^{\prime}(w)$.

- For $v<w$ (rarefaction case)
$f\left(u^{\downarrow}(v, w)\right)= \begin{cases}f(v) & , \text { if } f^{\prime}(v)>0, \\ f(z) & , \text { if } f^{\prime}(v)<0<f^{\prime}(w), \\ f(w) & , \text { if } f^{\prime}(w)<0,\end{cases}$
where $f^{\prime}(z)=0 \Leftrightarrow f$ has a global minimum in $z$.


2-point numerical flux function according to (8.3.23) and (8.3.24): Godunov numerical flux

- Godunov numerical flux function

$$
F_{\mathrm{GD}}(v, w)= \begin{cases}\min _{v \leq u \leq w} f(u) & , \text { if } \quad v<w  \tag{8.3.28}\\ \max _{w \leq u \leq v} f(u) & , \text { if } \quad w \leq v\end{cases}
$$



Remark 8.3.29 (Upwind flux and expansion shocks).

$$
F_{\mathrm{uw}}(v, w)=F_{\mathrm{GD}}(v, w) \text {, except for the case of transsonic rarefaction! }
$$

(transsonic rarefaction $=$ rarefaction fan with edges moving in opposite direction, see Ex. 8.3.21)

What does the upwind flux $F_{u w}(v, w)$ from (8.3.3.3) yield in the case of transsonic rarefaction?

If $f$ convex, $v<w, f^{\prime}(v)<0<f^{\prime}(w)$,

$$
\nabla F_{\mathrm{uw}}(v, w)=f(\psi(0)),
$$

where $u(x, t)=\psi(x / t)$ is a non-physical entropy-condition violating ( $\rightarrow$ Def. 8.2.30) expansion shock weak solution of (8.3.24).

## Upwind flux treats transsonic rarefaction as expansion shock!

$>$ Explanation for observation made in Ex. 8.3.21.

Example 8.3.30 (Godunov flux for Burgers equation).
same setting and conservative discretization as in Ex. 8.3.21
Numerical flux function: Godunov numerical flux (8.3.28)

Observation: Transonic rarefaction captured by discretization, but small remnants of an expansion shock still observed.

### 8.3.4 Montone schemes

Observations made for some piecewise constant solutions $u_{N}(t)$ of semi-discrete evolutions arising from spatial finite volume discretization in conservation form (8.3.9):

Ex. 8.3.19 (Lax-Friedrichs numerical flux (8.3.18)) Ex. 8.3.30 (Godunov numerical flux (8.3.28))
$: \bullet \min _{x \in \mathbb{R}} u_{0}(x) \leq u_{N}(x, t) \leq \max _{x \in \mathbb{R}} u_{0}(x)$
-no new local extrema in numerical solution In these respects the conservative finite volume discretizations based on either the Lax-Friedrichs numerical flux or the Godunov numerical flux inherit crucial structural properties of the exact solution,
see Sect. 8.2.7, in particular, Thm. 8.2.34 and the final remark: they display structure preservation, cf. (5.7).

Is this coincidence for the special settings exmained in Ex. 8.3.19 and Ex. 8.3.30?

Focus: semi-discrete evolution (8.3.9) resulting from finite volume discretization in conservation form on an equidistant infinite mesh

$$
\begin{equation*}
\text { (8.3.8) }>\frac{d \mu_{j}}{d t}(t)=-\frac{1}{h}\left(F\left(\mu_{j}(t), \mu_{j+1}(t)\right)-F\left(\mu_{j-1}(t), \mu_{j}(t)\right)\right), \quad j \in \mathbb{Z}, \tag{8.3.9}
\end{equation*}
$$

for Cauchy problem

$$
\begin{equation*}
\left.\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=0 \quad \text { in } \mathbb{R} \times\right] 0, T\left[\quad, \quad u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}\right. \tag{8.2.7}
\end{equation*}
$$

induced by Lax-Friedrichs numerical flux (8.3.18)

$$
\begin{equation*}
F_{\mathrm{LF}}(v, w)=\frac{1}{2}(f(v)+f(w))-\frac{1}{2} \max _{\min \{v, w\} \leq u \leq \max \{v, w\}}\left|f^{\prime}(u)\right|(w-v) . \tag{8.3.18}
\end{equation*}
$$

- $\frac{d \mu_{j}}{d t}=-\frac{1}{2 h}\left(f\left(\mu_{j+1}\right)-f\left(\mu_{j-1}\right)-\right.$

$$
\begin{equation*}
\left.\max _{u \in\left[\mu_{j}, \mu_{j}+1\right]}\left|f^{\prime}(u)\right|\left(\mu_{j+1}-\mu_{j}\right)+\max _{u \in\left[\mu_{j-1}, \mu_{j}\right]}\left|f^{\prime}(u)\right|\left(\mu_{j}-\mu_{j-1}\right)\right) . \tag{8.3.31}
\end{equation*}
$$

Goal: show that $u_{N}(t)$ linked to $\overrightarrow{\boldsymbol{\mu}}(t)$ from (8.3.31) through piecewise constant reconstruction (8.3.5) satisfies

$$
\begin{equation*}
\min _{x \in \mathbb{R}} u_{N}(x, 0) \leq u_{N}(x, t) \leq \max _{x \in \mathbb{R}} u_{N}(x, 0) \quad \forall x \in \mathbb{R}, \quad \forall t \in[0, T] . \tag{8.3.32}
\end{equation*}
$$

Recall from Sect. 8.2.7: estimate (8.3.32) for the exact solution $u(x, t)$ of (8.2.7) is a consequence of the comparison principle of Thm. 8.2.34 and the fact that constant initial data are preserved during the evolution. The latter property is straightforward for conservative finite volume spatial semidiscretization, see (8.3.10).

Goal: Establish comparison principle for finite volume semi-discrete solutions based on LaxFriedrichs numerical flux:

$$
\left\{\begin{array}{c}
\overrightarrow{\boldsymbol{\mu}}(t), \overrightarrow{\boldsymbol{\eta}}(t) \text { solve (8.3.31) }, \\
\eta_{j}(0) \leq \mu_{j}(0) \quad \forall j \in \mathbb{Z}
\end{array}\right\} \quad \Rightarrow \quad \eta_{j}(t) \leq \mu_{j}(t) \quad \forall j \in \mathbb{Z}, \quad \forall 0 \leq t \leq T
$$

Assumption: $\overrightarrow{\boldsymbol{\mu}}=\overrightarrow{\boldsymbol{\mu}}(t)$ and $\overrightarrow{\boldsymbol{\eta}}=\overrightarrow{\boldsymbol{\eta}}(t)$ solve (8.3.31) and satisfy for some $t \in[0, T]$

$$
\eta_{k}(t) \leq \mu_{k}(t) \quad \forall k \in \mathbb{Z} \quad, \quad \xi:=\eta_{j}(t)=\mu_{j}(t) \quad \text { for some } j \in \mathbb{Z}
$$

Can $\eta_{j}$ raise above $\mu_{j}$ ?

$$
\frac{d}{d t}\left(\mu_{j}-\eta_{j}\right)=-\frac{1}{h}\left(F_{\mathrm{LF}}\left(\xi, \mu_{j+1}\right)-F_{\mathrm{LF}}\left(\xi, \eta_{j+1}\right)+F_{\mathrm{LF}}\left(\eta_{j-1}, \xi\right)-F_{\mathrm{LF}}\left(\mu_{j-1}, \xi\right)\right)
$$

To show: $\frac{d}{d t}\left(\mu_{j}-\eta_{j}\right) \geq 0 \quad>\mu_{j}(t)$ will stay above $\eta_{j}(t)$.
This can be concluded, if

$$
\begin{equation*}
F_{\mathrm{LF}}\left(\xi, \mu_{j+1}\right)-F_{\mathrm{LF}}\left(\xi, \eta_{j+1}\right) \leq 0 \quad \text { and } \quad F_{\mathrm{LF}}\left(\eta_{j-1}, \xi\right)-F_{\mathrm{LF}}\left(\mu_{j-1}, \xi\right) \leq 0 \tag{8.3.33}
\end{equation*}
$$

The only piece of information we are allowed to use is

$$
\mu_{j+1} \geq \eta_{j+1} \quad \text { and } \quad \mu_{j-1} \geq \eta_{j-1}
$$

This would imply (8.3.33), if $F_{\mathrm{LF}}$ was increasing in the first argument and decreasing in the second argument.

Definition 8.3.34 (Monotone numerical flux function).
A 2-point numerical flux function $F=F(v, w)$ is called monotone, if
$F$ is an increasing function of its first argument
and
$F$ is a decreasing function of its second argument.

Simple criterion: A continuously differentiable 2-point numerical flux function $F=F(v, w)$ is montone, if and only if

$$
\begin{equation*}
\frac{\partial F}{\partial v}(v, w) \geq 0 \quad \text { and } \quad \frac{\partial F}{\partial w}(v, w) \leq 0 \quad \forall(v, w) . \tag{8.3.35}
\end{equation*}
$$

Lemma 8.3.36 (Monotonicity of Lax-Friedrichs numerical flux and Godunov flux). For any continuously differentiable flux function $f$ the associated Lax-Friedrichs flux (8.3.18) and Godunov flux (8.3.28) are monotone.

## Proof.

(1) Lax-Friedrichs numerical flux:

$$
\begin{equation*}
F_{\mathrm{LF}}(v, w)=\frac{1}{2}(f(v)+f(w))-\frac{1}{2} \max _{\min \{v, w\} \leq u \leq \max \{v, w\}}\left|f^{\prime}(u)\right|(w-v) \tag{8.3.18}
\end{equation*}
$$

Application of the criterion (8.3.35) is straightforward:

$$
\begin{aligned}
& \frac{\partial F_{\mathrm{LF}}}{\partial v}(v, w)=f^{\prime}(v)+\max _{\min \{v, w\} \leq u \leq \max \{v, w\}}\left|f^{\prime}(u)\right| \geq 0 \\
& \frac{\partial F_{\mathrm{LF}}}{\partial w}(v, w)=f^{\prime}(w)-\max _{\min \{v, w\} \leq u \leq \max \{v, w\}}\left|f^{\prime}(u)\right| \leq 0
\end{aligned}
$$

(2) Godunov numerical flux

$$
F_{\mathrm{GD}}(v, w)= \begin{cases}\min _{v \leq u \leq w} f(u) & , \text { if } \quad v<w  \tag{8.3.28}\\ \max _{w \leq u \leq v} f(u) \quad, \text { if } \quad w \leq v\end{cases}
$$

$v<w$ : If $v$ increases, then the range of values over which the minimum is taken will shrink, which makes $F_{\mathrm{GD}}(v, w)$ increase.
If $w$ is raised, then the minimum is taken over a larger interval, which causes $F_{\mathrm{GD}}(v, w)$ to become smaller.
$v \geq w$ : If $v$ increases, then the range of values over which the maximum is taken will grow, which makes $F_{\mathrm{GD}}(v, w)$ increase.
If $w$ is raised, then the maximum is taken over a smaller interval, which causes $F_{\mathrm{GD}}(v, w)$ to decrease.

Lemma 8.3.37 (Comparison principle for monotone semi-discrete conservative evolutions). Let the 2-point numerical flux function $F=F(v, w)$ be monotone $(\rightarrow$ Def. 8.3.34) and $\vec{\mu}=$ $\overrightarrow{\boldsymbol{\mu}}(t), \overrightarrow{\boldsymbol{\eta}}=\overrightarrow{\boldsymbol{\eta}}(t)$ solve (8.3.9). Then

$$
\eta_{k}(0) \leq \mu_{k}(0) \quad \forall k \in \mathbb{Z} \quad \Rightarrow \quad \eta_{k}(t) \leq \mu_{k}(t) \quad \forall k \in \mathbb{Z}, \quad \forall 0 \leq t \leq T
$$

The assertion of Lemma 8.3.37 means that for monotone numerical flux, the semi-discrete evolution satisfies the comparison principle of Thm. 8.2.34.

Proof (of Lemma 8.3.37, following the above considerations for the Lax-Friedrichs flux).
The two sequences of nodal values satisfy (8.3.9)

$$
\begin{align*}
\frac{d \mu_{j}}{d t}(t)=-\frac{1}{h}\left(F\left(\mu_{j}(t), \mu_{j+1}(t)\right)-F\left(\mu_{j-1}(t), \mu_{j}(t)\right)\right), \quad j \in \mathbb{Z}  \tag{8.3.38}\\
\frac{d \eta_{j}}{d t}(t)=-\frac{1}{h}\left(F\left(\eta_{j}(t), \eta_{j+1}(t)\right)-F\left(\eta_{j-1}(t), \eta_{j}(t)\right)\right), \quad j \in \mathbb{Z} \tag{8.3.39}
\end{align*}
$$

Let $t_{0}$ be the earliest time, at which $\overrightarrow{\boldsymbol{\eta}}$ "catches up" with $\overrightarrow{\boldsymbol{\mu}}$ in at least one node $x_{j}, j \in \mathbb{Z}$, of the mesh, that is

$$
\eta_{k}\left(t_{0}\right) \leq \mu_{k}\left(t_{0}\right) \quad \forall k \in \mathbb{Z} \quad, \quad \xi:=\eta_{j}\left(t_{0}\right)=\mu_{j}\left(t_{0}\right)
$$

By subtracting (8.3.38) and (8.3.39) we get
$\frac{d}{d t}\left(\mu_{j}-\eta_{j}\right)\left(t_{0}\right)=-\frac{1}{h}\left(F\left(\xi, \mu_{j+1}\left(t_{0}\right)\right)-F\left(\xi, \eta_{j+1}\left(t_{0}\right)\right)+F\left(\eta_{j-1}\left(t_{0}\right), \xi\right)-F\left(\mu_{j-1}\left(t_{0}\right), \xi\right)\right) \geq 0$,
because for a monotone numerical flux function ( $\rightarrow$ Def. 8.3.34)

$$
\begin{aligned}
& \eta_{j-1}\left(t_{0}\right) \leq \mu_{j-1}\left(t_{0}\right) \\
& \eta_{j+1}\left(t_{0}\right) \leq \mu_{j+1}\left(t_{0}\right)
\end{aligned} \quad \text { increasing in first argument } \quad F\left(\eta_{j-1}\left(t_{0}\right), \xi\right)-F\left(\mu_{j-1}\left(t_{0}\right), \xi\right) \leq 0, ~ 子 \quad F\left(\xi, \mu_{j+1}\left(t_{0}\right)\right)-F\left(\xi, \eta_{j+1}\left(t_{0}\right)\right) \leq 0 .
$$

This means that " $\eta_{j}$ cannot overtake $\mu_{j}$ ": no value $\eta_{j}$ can ever raise above $\mu_{j}$.

Now we want to study the "preservation of the number of local extrema" during a semi-discrete evolution, another structural property of exact solutions of conservations laws, see Sect. 8.2.7.

Intuitive terminology: $\vec{\mu}$ has a local maximum $u_{m} \in \mathbb{R}$, if
$\exists j \in \mathbb{Z}: \quad \mu_{j}=u_{m} \quad$ and $\quad \exists k_{l}<j<k_{r} \in \mathbb{N}: \max _{k_{l}<l<k_{r}} \mu_{l}=u_{m} \quad$ and $\quad \mu_{k_{l}}<u_{m}, \mu_{k_{r}}<u_{m}$. In analogous fashion, we define a local minimum. If $\vec{\mu}$ is constant for large indices, these values are also regarded as local extrema.


Lemma 8.3.40 (Non-oscillatory monotone semi-discrete evolutions). If $\overrightarrow{\boldsymbol{\mu}}=\overrightarrow{\boldsymbol{\mu}}(t)$ solves (8.3.9) with a monotone numerical flux function $F=F(v, w)$ and $\overrightarrow{\boldsymbol{\mu}}(0)$ has finitely many local extrema, then the number of local extrema of $\vec{\mu}(t)$ cannot be larger than that of $\overrightarrow{\boldsymbol{\mu}}(0)$.

Proof. $\quad i \hat{=}$ index of local maximum of $\overrightarrow{\boldsymbol{\mu}}(t), t$ fixed

$$
\begin{aligned}
& \mu_{i-1}(t) \leq \mu_{i}(t), \text { monotone flux } \\
& \mu_{i+1}(t) \leq \mu_{i}(t) \\
& \Rightarrow \quad \frac{d}{d t} \mu_{i}(t)=-\frac{1}{h}\left(F\left(\mu_{i+1}\right) \geq F\left(\mu_{i+1}\right)-\mu_{i}\right) \geq F\left(\mu_{i-1}, \mu_{i}\right) \\
& \Rightarrow
\end{aligned}
$$

$>$ maxima of $\vec{\mu}$ subside, (minima of $\vec{\mu}$ rise !)

Idea of proof:
No new (local) extrema can arise !
Adjacent values cannot "overtake": local maximum: cannot move up local minmum: cannot move down
Focus: $\quad$ Explicit Runge-Kutta timestepping methods $(\rightarrow$ Def. 6.1.26)

Recall [14, Def. 11.4.1]: for explicit $s$-stage Runge-Kutta single step methods the coefficients $a_{i j}$ vanish for $j \geq i, 1 \leq i, j \leq s>$ the increments $\mathbf{K}_{i}$ can be computed in turns (without solving a non-linear system of equations).

Initial value problem for abstract semi-discrete evolution in $\mathbb{R}^{\mathbb{Z}}$ :

$$
\begin{equation*}
\frac{d \overrightarrow{\boldsymbol{\mu}}}{d t}(t)=\mathcal{L}_{h}(\overrightarrow{\boldsymbol{\mu}}(t)), \quad 0 \leq t \leq T \quad, \quad \overrightarrow{\boldsymbol{\mu}}(0)=\overrightarrow{\boldsymbol{\mu}}_{0} \in \mathbb{R}^{\mathbb{Z}} . \tag{8.4.1}
\end{equation*}
$$

Here: $\quad \mathcal{L}_{h}: \mathbb{R}^{\mathbb{Z}} \mapsto \mathbb{R}^{\mathbb{Z}} \hat{=}$ (non-linear) finite difference operator, e.g. for finite volume semidiscretization in conservation form with 2-point numerical flux:

$$
\begin{equation*}
(8.3 .9)>\left(\mathcal{L}_{h} \overrightarrow{\boldsymbol{\mu}}\right)_{j}:=-\frac{1}{h}\left(F\left(\mu_{j}, \mu_{j+1}\right)-F\left(\mu_{j-1}, \mu_{j}\right)\right) . \tag{8.4.2}
\end{equation*}
$$

$\mathcal{L}_{h}$ is local: $\left(\mathcal{L}_{h}(\overrightarrow{\boldsymbol{\mu}})\right)_{j}$ depends only on "neighboring values" $\mu_{j-n_{l}}, \ldots, \mu_{j+n_{r}}$.

Explicit $s$-stage Runge-Kutta single step method for (8.4.1), timestep $\tau>0$ :

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{\kappa}}_{1}=\mathcal{L}_{h}\left(\overrightarrow{\boldsymbol{\mu}}^{(k)}\right) \\
& \overrightarrow{\boldsymbol{\kappa}}_{2}=\mathcal{L}_{h}\left(\overrightarrow{\boldsymbol{\mu}}^{(k)}+\tau a_{21} \overrightarrow{\boldsymbol{\kappa}}_{1}\right), \\
& \overrightarrow{\boldsymbol{\kappa}}_{3}=\mathcal{L}_{h}\left(\overrightarrow{\boldsymbol{\mu}}^{(k)}+\tau a_{31} \overrightarrow{\boldsymbol{\kappa}}_{1}+\tau a_{32} \overrightarrow{\boldsymbol{\kappa}}_{2}\right), \quad \overrightarrow{\boldsymbol{\mu}}^{(k+1)}=\overrightarrow{\boldsymbol{\mu}}^{(k)}+\tau \sum_{l=1}^{s} b_{l} \overrightarrow{\boldsymbol{\kappa}}_{j} . \\
& \quad \vdots \\
& \overrightarrow{\boldsymbol{\kappa}}_{s}=\mathcal{L}_{h}\left(\overrightarrow{\boldsymbol{\mu}}^{(k)}+\tau \sum_{j=1}^{s-1} a_{s j} \overrightarrow{\boldsymbol{\kappa}}_{j}\right),
\end{aligned}
$$

Here, $a_{i j} \in \mathbb{R}$ and $b_{l} \in \mathbb{R}$ are the coefficients from the Butcher scheme (6.1.27). For explicit RKmethods the coefficient matrix $\mathfrak{A}$ is strictly lower triangular.


Setting: equidistant spatial mesh $\mathcal{M}$, meshwidth $h>0$, nodes $x_{j}:=h j, j \in \mathbb{Z}$, uniform timestep $\tau>0, t_{k}:=\tau k, k \in$ $\mathbb{N}_{0}$.

Single step timestepping for (8.4.1) produces a sequence $\left(\overrightarrow{\boldsymbol{\mu}}^{(k)}\right)_{k \in \mathbb{N}_{0}}$

$$
\mu_{j}^{(k)} \approx u\left(x_{j}, t_{k}\right), \quad j \in \mathbb{Z}, k \in \mathbb{N}_{0}
$$

- Fully discrete evolution

$$
\overrightarrow{\boldsymbol{\mu}}^{(k+1)}=\mathcal{H}_{h}\left(\overrightarrow{\boldsymbol{\mu}}^{(k-1)}\right), \quad k \in \mathbb{N}_{0} .
$$

$\mathcal{H}_{h}: \mathbb{R}^{\mathbb{Z}} \mapsto \mathbb{R}^{\mathbb{Z}}: \quad$ fully discrete evolution operator, arising from applying single step timestepping (8.4.3) to (8.4.1).

Example 8.4.4 (Fully discrete evolutions).

Fully discrete evolution arising from finite volume semi-discretization in conservation form with 2-point numerical flux $F=F(v, w)$

$$
\begin{equation*}
(\overline{8.3 .9})>\left(\mathcal{L}_{h} \overrightarrow{\boldsymbol{\mu}}\right)_{j}:=-\frac{1}{h}\left(F\left(\mu_{j}, \mu_{j+1}\right)-F\left(\mu_{j-1}, \mu_{j}\right)\right) . \tag{8.4.2}
\end{equation*}
$$

in combination with explicit Euler timestepping ( $\hat{=} 1$-stage explicit RK-method)

$$
\begin{gather*}
\overrightarrow{\boldsymbol{\mu}}^{(k+1)}=\overrightarrow{\boldsymbol{\mu}}^{(k)}+\tau \mathcal{L}_{h}\left(\overrightarrow{\boldsymbol{\mu}}^{(k)}\right) . \\
\left(\mathcal{H}_{h}(\overrightarrow{\boldsymbol{\mu}})\right)_{j}=\mu_{j}^{(k)}-\frac{\tau}{h}\left(F\left(\mu_{j}^{(k)}, \mu_{j+1}^{(k)}\right)-F\left(\mu_{j-1}^{(k)}, \mu_{j}^{(k)}\right)\right) \tag{8.4.5}
\end{gather*} .
$$

In the case of explicit trapezoidal rule timestepping [14, Eq. 11.4.3] (method of Heun)

$$
\begin{gather*}
\overrightarrow{\boldsymbol{\kappa}}=\boldsymbol{\mu}^{(k)}+\frac{\tau}{2} \mathcal{L}_{h}\left(\overrightarrow{\boldsymbol{\mu}}^{(k)}\right) \quad, \quad \overrightarrow{\boldsymbol{\mu}}^{(k+1)}=\boldsymbol{\mu}^{(k)}+\tau \mathcal{L}_{h}(\overrightarrow{\boldsymbol{\kappa}}) . \\
\kappa_{j}:=(\overrightarrow{\boldsymbol{\kappa}})_{j}=\mu_{j}^{(k)}-\frac{\tau}{h}\left(F\left(\mu_{j}^{(k)}, \mu_{j+1}^{(k)}\right)-F\left(\mu_{j-1}^{(k)}, \mu_{j}^{(k)}\right)\right), \\
\left(\mathcal{H}_{h}(\overrightarrow{\boldsymbol{\mu}})\right)_{j}=\mu_{j}^{(k)}-\frac{\tau}{h}\left(F\left(\kappa_{j}, \kappa_{j+1}\right)-F\left(\kappa_{j-1}, \kappa_{j}\right)\right) . \tag{8.4.6}
\end{gather*}
$$

Remark 8.4.7 (Difference stencils).

Stencil notation: Visualization of flow of information in fully discrete explicit evolution (action of $\mathcal{H}_{h}$ ), cf. Fig. 198.


2-point numerical flux \& explicit Euler timestepping
upwinding \&
explicit trapezoidal rule

2-point numerical flux \& explicit trapezoidal rule

A consequence of explicit timestepping: locality of fully discrete evolution operator:

$$
\begin{equation*}
\exists m_{l}, m_{r} \in \mathbb{N}_{0}: \quad(\boldsymbol{\mathcal { H }}(\overrightarrow{\boldsymbol{\mu}}))_{j}=\mathcal{H}_{j}\left(\mu_{j-m_{l}}, \ldots, \mu_{j+m_{r}}\right) . \tag{8.4.8}
\end{equation*}
$$

If flux function $f$ does not depend on $x, f=f(u)$ as in (8.2.7), we can expect

$$
\mathcal{H}_{h} \text { is translation-invariant: } \quad \mathcal{H}_{j}=\mathcal{H} \quad \forall j \in \mathbb{Z}
$$

This is the case for (8.4.5) and (8.4.6).

By inspection of (8.4.3): if $\mathcal{L}_{h}$ is translation-invariant

$$
\left(\mathcal{L}_{h}(\overrightarrow{\boldsymbol{\mu}})\right)_{j}=\mathcal{L}\left(\mu_{j-n_{l}}, \ldots \mu_{j+n_{r}}\right), \quad j \in \mathbb{Z}
$$

and timestepping relies on an $s$-stage explicit Runge-Kutta method, then we conclude for $m_{l}, m_{r}$ in (8.4.8)

$$
m_{l} \leq s \cdot n_{l} \quad, \quad m_{r} \leq s \cdot n_{r}
$$

Definition 8.4.9 (Numerical domain of dependence).
Consider explicit translation-invariant fully discrete evolution $\overrightarrow{\boldsymbol{\mu}}^{(k+1)}:=\boldsymbol{\mathcal { H }}\left(\overrightarrow{\boldsymbol{\mu}}^{(k)}\right)$ on uniform spatio-temporal mesh ( $x_{j}=h j, j \in \mathbb{Z}, t_{k}=k \tau, k \in \mathbb{N}_{0}$ ) with

$$
\begin{equation*}
\exists m \in \mathbb{N}_{0}: \quad(\mathcal{H}(\overrightarrow{\boldsymbol{\mu}}))_{j}=\mathcal{H}\left(\mu_{j-m}, \ldots, \mu_{j+m}\right), \quad j \in \mathbb{Z} \tag{8.4.10}
\end{equation*}
$$

Then the numerical domain of dependence is given by

$$
D_{h}^{-}\left(x_{j}, t_{k}\right):=\left\{\left(x_{m}, t_{l}\right) \in \mathbb{R} \times\left[0, t_{k}\right]: j-m(k-l) \leq m \leq j+m(k-l)\right\}
$$

From Thm. 8.2.36 recall the maximal analytical domain of dependence for a solution of (8.2.7)

$$
D^{-}(\bar{x}, \bar{t}):=\left\{(x, t) \in \mathbb{R} \times[0, \bar{t}]: \dot{s}_{\min }(\bar{t}-t) \leq x-\bar{x} \leq \dot{s}_{\max }(\bar{t}-t)\right\}
$$

with maximals speeds of propagation

$$
\begin{align*}
\dot{s}_{\min } & :=\min \left\{f^{\prime}(\xi): \inf _{x \in \mathbb{R}} u_{0}(x) \leq \xi \leq \sup _{x \in \mathbb{R}} u_{0}(x)\right\}  \tag{8.4.11}\\
\dot{s}_{\max } & :=\max \left\{f^{\prime}(\xi): \inf _{x \in \mathbb{R}} u_{0}(x) \leq \xi \leq \sup _{x \in \mathbb{R}} u_{0}(x)\right\} \tag{8.4.12}
\end{align*}
$$


$D^{-}(\bar{x}, \bar{t}) \subset \mathbb{R} \times[0, T]$

$D_{h}^{-}(\bar{x}, \bar{t})$ for 3-point stencil

## Definition 8.4.13 (Courant-Friedrichs-Lewy (CFL-)condition). $\quad \rightarrow$ Rem. 6.2.41]

An explicit translation-invariant local fully discrete evolution $\overrightarrow{\boldsymbol{\mu}}^{(k+1)}:=\boldsymbol{\mathcal { H }}\left(\overrightarrow{\boldsymbol{\mu}}^{(k)}\right)$ on uniform spatio-temporal mesh ( $x_{j}=h j, j \in \mathbb{Z}, t_{k}=k \tau, k \in \mathbb{N}_{0}$ ) as in Def. 8.4.9 satisfies the Courant-Friedrichs-Lewy (CFL-)condition, if the convex hull of its numerical domain of dependence contains the maximal analytical domain of dependence:

$$
D^{-}\left(x_{j}, t_{k}\right) \subset \operatorname{convex}\left(D_{h}^{-}\left(x_{j}, t_{k}\right)\right)
$$

By definition of $D^{-}(\bar{x}, \bar{t})$ and $D_{h}^{-}\left(x_{j}, t_{k}\right)$ sufficient for the CFL-condition is

$$
\begin{equation*}
\frac{\tau}{h} \leq \frac{m}{\dot{s}} \quad \longleftrightarrow \quad \text { timestep constraint! } \tag{8.4.14}
\end{equation*}
$$

This is a timestep constraint similar to the one encountered in Sect. 6.2.5 in the context of leapfrog timestepping for the semi-discrete wave equation.

We cannot expect convergence for fixed ratio $\tau: h$, for $h \rightarrow 0$ in case the CFL-condition is violated.

Refer to Fig. 201 for a "graphical argument":

( $\bullet \hat{=}$ coarse grid, $\boldsymbol{\square} \hat{=}$ fine grid, $\square \hat{=}$ d.o.d)
$\triangleleft$ Sequence of equidistant space-time grids of $\mathbb{R} \times[0, T]$ with $\tau=\gamma h(\tau / h=$ meshwidth in time/space)

If $\gamma>$ CFL-constraint (8.4.14) then analytical domain of dependence
$\not \subset$ numerical domain of dependence

In Sect. 6.1.4.2 and Sect. 6.2.5 we found that for explicit timestepping
timestep constraints $\tau \leq O\left(h^{r}\right), \quad r \in\{1,2\}$, necessary to avoid exponential blow-up (instability)

Is the timestep constraint (8.4.14) suggested by the CFL-condition also stipulated by stability requirements?

We are going to investigate the question only for the Cauchy problem for scalar linear advection in 1D with constant velocity $v>0$ :

$$
\begin{equation*}
\left.\frac{\partial u}{\partial t}+v \frac{\partial u}{\partial x}=0 \quad \text { in } \quad \mathbb{R} \times\right] 0, T\left[, \quad u(x, 0)=u_{0}(x) \quad \forall x \in \mathbb{R} .\right. \tag{8.1.4}
\end{equation*}
$$

Semi-discretization in space on equidistant mesh with meshwidth $h>0$
> linear, local, and translation-invariant semi-discrete evolution

$$
\begin{equation*}
\frac{d \overrightarrow{\boldsymbol{\mu}}}{d t}(t)=\mathcal{L}_{h}(\overrightarrow{\boldsymbol{\mu}}(t)), \quad \text { with } \quad\left(\mathcal{L}_{h}(\overrightarrow{\boldsymbol{\mu}})\right)_{j}=\sum_{l=-m}^{m} c_{l} \mu_{j+l}, \quad j \in \mathbb{Z}, \tag{8.4.15}
\end{equation*}
$$

for suitable weights $c_{l} \in \mathbb{R}$.

Example 8.4.16 (Upwind difference operator for linear advection).

Finite volume semi-discretization of (8.1.4) in conservation form with Godunov numerical flux (8.3.28) (= upwind flux (8.3.3.3))

$$
\begin{align*}
\left(\mathcal{L}_{h}(\overrightarrow{\boldsymbol{\mu}})\right)_{j} & =-\frac{v}{h}\left(\mu_{j}-\mu_{j-1}\right)  \tag{8.4.17}\\
\ln (8.4 .15): & c_{0}=-\frac{v}{h} \quad, \quad c_{-1}=\frac{v}{h}
\end{align*}
$$

Note: Lax-Friedrichs numerical flux (8.3.18) yields the same $\mathcal{L}_{h}$.

The new twist is that $\mathcal{L}_{h}$ acts on the sequence space $\mathbb{R}^{\mathbb{Z}}$ !

Idea: trial expression for "eigenvectors"

$$
\begin{equation*}
\left(\vec{\zeta}^{\xi}\right)_{j}:=\exp (\imath \xi j), \quad j \in \mathbb{Z}, \quad-\pi<\xi \leq \pi \tag{8.4.18}
\end{equation*}
$$

By straightforward computations:

$$
\begin{equation*}
\left(\mathcal{L}_{h}(\overrightarrow{\boldsymbol{\mu}})\right)_{j}=\sum_{l=-m}^{m} c_{l} \mu_{j+l} \Rightarrow \mathcal{L}_{h} \boldsymbol{\zeta}^{\xi}=(\underbrace{\sum_{l=-m}^{m} c_{l} \exp (i \xi l)}_{\text {"eigenvalue" } \hat{c}_{h}(\xi)}) \boldsymbol{\zeta}^{\xi} \tag{8.4.19}
\end{equation*}
$$

spectrum of $\mathcal{L}_{h}: \quad \sigma\left(\mathcal{L}_{h}\right)=\left\{\hat{c}_{h}(\xi):=\sum_{l=-m}^{m} c_{l} \exp (\imath \xi l):-\pi<\xi \leq \pi\right\}$.
Terminology: The function $\hat{c}_{h}(\xi)$ is known as the symbol of the difference operator $\mathcal{L}_{h}$, cf. the concept of symbol of a differential operator.

Example 8.4.20 (Spectrum of upwind difference operator).

Apply formula (8.4.19) with $c_{0}=-\frac{v}{h}, c_{-1}=\frac{v}{h}$ (from (8.4.17)):
For $\mathcal{L}_{h}$ from (8.4.17): $\quad \sigma\left(\mathcal{L}_{h}\right)=\left\{\frac{v}{h}(\exp (-\imath \xi)-1):-\pi<\xi \leq \pi\right\}$

Spectrum of upwind finite difference operator for linear advection with velocity $v>0$ (meshwidth $h>0$ )


Also here: diagonalization of semi-discrete evolution leads to decoupled scalar linear ODEs. However, now we have uncountably many "eigenvectors" $\vec{\zeta}^{\xi}$, so that linear combination becomes integration:

$$
\begin{gather*}
\overrightarrow{\boldsymbol{\mu}}(t)=\int_{-\pi}^{\pi} \hat{\mu}(t, \xi) \overrightarrow{\boldsymbol{\zeta}}^{\xi} \mathrm{d} \xi \Leftrightarrow \mu_{j}(t)=\int_{-\pi}^{\pi} \hat{\mu}(t, \xi) \exp (\imath \xi j) \mathrm{d} \xi .  \tag{8.4.21}\\
 \tag{8.4.22}\\
=\frac{d \overrightarrow{\boldsymbol{\mu}}}{d t}(t)=\mathcal{L}_{h}(\overrightarrow{\boldsymbol{\mu}}(t)) \Rightarrow \frac{\partial \hat{\mu}}{\partial t}(t, \xi)=\hat{c}_{h}(\xi) \hat{\mu}(t, \xi) .
\end{gather*}
$$

This is a family of scalar, linear ODEs parameterized by $\xi \in]-\pi, \pi]$.

Remark 8.4.23 (Fourier series).

Up to normalization the relationship

$$
\left.\left.\overrightarrow{\boldsymbol{\mu}}^{(0)} \in \mathbb{R}^{\mathbb{Z}} \quad \leftrightarrow \quad \hat{\mu}^{(0)}:\right]-\pi, \pi\right] \mapsto \mathbb{C}
$$

from (8.4.24) is the Fourier series transform, which maps a sequence to a $2 \pi$-periodic function. It has the important isometry property

$$
\sum_{j=-\infty}^{\infty}\left|\mu_{j}\right|^{2}=2 \pi \int_{-\pi}^{\pi}|\hat{\mu}(\xi)|^{2} \mathrm{~d} \xi
$$

The symbol $\hat{c}_{h}$ can be viewed as the representation of a difference operator in Fourier domain.

The decoupling manifest in (8.4.22) carries over to Runge-Kutta timestepping in the sense of the commuting diagram (6.1.54).

We introduce the Fourier transforms of the members of the sequence $\left(\overrightarrow{\boldsymbol{\mu}}^{(k)}\right)_{k}$ created by timestepping

$$
\begin{equation*}
\overrightarrow{\boldsymbol{\mu}}^{(k)}=\int_{-\pi}^{\pi} \hat{\mu}^{(k)}(\xi) \overrightarrow{\boldsymbol{\zeta}}^{\xi} \mathrm{d} \xi \Leftrightarrow \mu_{j}^{(k)}=\int_{-\pi}^{\pi} \hat{\mu}^{(k)}(\xi) \exp (\imath \xi j) \mathrm{d} \xi \tag{8.4.24}
\end{equation*}
$$

Example 8.4.25 (Explicit Euler in Fourier domain).
Explicit Euler timestepping [14, Eq. 11.2.1] for semi-discrete evolution (8.4.15), see also (8.4.5),

$$
\begin{gathered}
\overrightarrow{\boldsymbol{\mu}}^{(k+1)}=\overrightarrow{\boldsymbol{\mu}}^{(k)}+\tau \mathcal{L}_{h} \overrightarrow{\boldsymbol{\mu}}^{(k)} \\
\int_{-\pi}^{\pi} \hat{\mu}^{(k+1)}(\xi) \overrightarrow{\boldsymbol{\zeta}}^{\xi} \mathrm{d} \xi=\left(\mathrm{Id}+\tau \mathcal{L}_{h}\right) \int_{-\pi}^{\pi} \hat{\mu}^{(k)}(\xi) \overrightarrow{\boldsymbol{\zeta}}^{\xi} \mathrm{d} \xi=\int_{-\pi}^{\pi} \hat{\mu}^{(k)}(\xi)\left(1+\tau \hat{c}_{h}(\xi)\right) \mathrm{d} \xi \\
>\quad \hat{\mu}^{(k+1)}(\xi)=\hat{\mu}^{(k)}(\xi)\left(1+\tau \hat{c}_{h}(\xi)\right)
\end{gathered}
$$

In Fourier domain a single explicit Euler timestep corresponds to a multiplication of $\hat{\mu}:]-\pi, \pi] \mapsto \mathbb{C}$ with the function $\left.\left.\left(1+\tau \hat{c}_{h}\right):\right]-\pi, \pi\right] \mapsto \mathbb{C}$.

Relate this to an explicit Euler step for the ODE $\frac{\partial \hat{\mu}}{\partial t}(t, \xi)=\hat{c}_{h}(\xi) \hat{\mu}(t, \xi)$ from (8.4.22) with paramter $\xi:$

$$
\hat{\mu}^{(k+1)}(\xi)=\left(1+\tau \hat{c}_{h}(\xi)\right) \hat{\mu}^{(k)}(\xi) .
$$

Generalize the observation made in the previous example:

$$
\overrightarrow{\boldsymbol{\mu}}^{(k)}=\int_{-\pi}^{\pi} \hat{\mu}^{(k)}(\xi) \overrightarrow{\boldsymbol{\zeta}}^{\xi} \mathrm{d} \xi
$$

where $\left(\eta^{(k)}(\xi)\right)_{k \in \mathbb{N}_{0}}$ is the sequence of approximations created by the Runge-Kutta method when applied to the scalar linear initial value problem

$$
\dot{y}=\hat{c}(\xi) y \quad, \quad y(0)=\hat{\mu}^{(0)}(\xi) .
$$

Clearly, timestepping can only be stable, if blowup $\left|\hat{\mu}^{(k)}(\xi)\right| \rightarrow \infty$ for $k \rightarrow \infty$ can be avoided for all $-\pi<\xi \leq \pi$.

From [14, Thm. 12.1.1] we know:

Theorem 8.4.26 (Stability function of explicit Runge-Kutta methods).
The execution of one step of size $\tau>0$ of an explicit $s$-stage Runge-Kutta single step method $\left(\rightarrow\right.$ Def. 6.1.26) with Butcher scheme $\begin{array}{c|c}\mathbf{c} & \mathfrak{A} \\ \hline \mathbf{b}^{T}\end{array}$ (see (6.1.27)) for the scalar linear ODE $\dot{y}=\lambda y$, $\lambda \in \mathbb{C}$, amounts to a multiplication with the number

$$
\Psi_{\lambda}^{\tau}=\underbrace{1+z \mathbf{b}^{T}(\mathbf{I}-z \mathfrak{A})^{-1} \mathbf{1}}_{\text {stability function } S(z)}=\operatorname{det}\left(\mathbf{I}-z \mathfrak{A}+z \mathbf{1} \mathbf{b}^{T}\right), \quad z:=\lambda \tau, \quad \mathbf{1}=(1, \ldots, 1)^{T} \in \mathbb{R}^{s}
$$

Example 8.4.27 (Stability functions of explicit RK-methods).

- Explicit Euler method (8.4.5)

$$
\begin{array}{l|l}
0 & 0 \\
\hline & 1
\end{array}
$$

$$
>\quad S(z)=1+z
$$

- Explicit trapezoidal rule (8.4.6) : $\quad$| 0 | 0 | 0 |
| :--- | :--- | :--- |
| 1 | 1 | 0 |
|  | $\frac{1}{2}$ | $\frac{1}{2}$ |

$$
>\quad S(z)=1+z+\frac{1}{2} z^{2}
$$



Thm 8.4.26 together with the combinatorial formula for the determinant means that $\Psi_{\lambda}^{\tau}(z)$ is a polynomial of degree $\leq s$ in $z \in \mathbb{C}$.

So we conclude for the evolution of "Fourier transforms" $\hat{\mu}^{(k)}(\xi)$ :

$$
\hat{\mu}^{(k+1)}(\xi)=S(\tau \hat{c}(\xi)) \cdot \hat{\mu}^{(k)}(\xi), \quad k \in \mathbb{N}_{0}, \quad-\pi<\xi \leq \pi
$$

where $z \mapsto S(z)$ is the stability function of the Runge-Kutta timestepping method, see Thm. 8.4.26. For the explicit Euler method we recover the formula of Ex. 8.4.25.

```
Stability of RK-timestepping of linear semi-discrete evolution \Longleftrightarrow}\mp@subsup{\operatorname{max}}{-\pi<\xi\leq\pi}{}|S(\tau\hat{c}(\xi))|\leq
```


## von Neumann stability analysis

Remark 8.4.28 (Stability domains).

Terminology in the theory of Runge-Kutta single step methods
Stability domain: $\quad\{z \in \mathbb{C}:|S(z)| \leq 1\}$.

Stability domains:

explicit Euler method

explicit trapezoidal rule


Classical RK4-method

Necessary stability condition:

$$
\{\tau \hat{c}(\xi),-\pi<\xi \leq \pi\} \subset \text { stability domain of RK-method }
$$

Example 8.4.29 (Stability and CFL condition).

Consider: upwind spatial discretization (8.4.17) \& explicit Euler timestepping
$>$ symbol of difference operator $\left(\rightarrow\right.$ Ex. 8.4.20) : $\hat{c}_{h}(\xi)=\frac{v}{h}(\exp (-\imath \xi)-1)$, stability function:

$$
S(z)=1+z .
$$

Locus of

$$
\Sigma:=S(\tau \hat{c}(\xi)), \quad-\pi<\xi \leq \pi
$$

in the complex plane


$$
|S(\tau \hat{c}(\xi))| \leq 1 \quad \forall-\pi<\xi \leq \pi \quad \Longleftrightarrow \quad v \frac{\tau}{h} \leq 1
$$

$=$ CFL-condition of Def. 8.4.13!
Note that the maximal analytic region of dependence for constant velocity $v$ linear advection is merely a line with slope $v$ in the $x-t$-plane, see Ex. 8.2.10.

Consider: upwind spatial discretization (8.4.17) \& explicit trapezoidal: stability function $S(z)=1+$ $z+\frac{1}{2} z^{2}$

Plots for $v=1, \tau=1$



$$
>\quad|S(\tau \hat{c}(\xi))| \leq 1 \quad \forall-\pi<\xi \leq \pi \quad \Longleftrightarrow \quad v \frac{\tau}{h} \leq 1
$$

$=$ tighter timestep constraint than stipulated by mere CFL-condition (8.4.14).

To see this note that the explicit trapezoidal rule is a 2 -stage Runge-Kutta method. Hence, the spatial stencil has width 2 in upwind direction, see Fig. 276.

### 8.4.3 Convergence

Example 8.4.30 (Convergence of fully discrete finite volume methods for Burgers equation).

- Cauchy problem for Burgers equation (8.1.11)

$$
\left.\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)=0 \quad \text { in } \mathbb{R} \times\right] 0, T\left[, \quad u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}\right.
$$

- smooth, non-smooth and discontinuous initial data, supported in $[0,1]$ :

$$
\begin{array}{rll}
u_{0}(x)=1-\cos ^{2}(\pi x), & 0 \leq x \leq 1, & 0 \text { elsewhere } \\
u_{0}(x)=1-2 *\left|x-\frac{1}{2}\right|, & 0 \leq x \leq 1, & 0 \text { elsewhere } \\
u_{0}(x)=1, & 0 \leq x \leq 1, & 0 \text { elsewhere } \tag{8.4.33}
\end{array}
$$

$>$ maximum speed of propagation $\dot{s}=1$.

- Spatial discretization on equidistant mesh with meshwidth $h>0$ based on finite volume method in conservation form with 1 (local) Lax-Friedrichs numerical flux (8.3.18), (2 Godunov numerical flux (8.3.28).
- Initial values $\overrightarrow{\boldsymbol{\mu}}^{(0)}$ obtained from dual cell averages.
- Explicit Runge-Kutta (order 4) timestepping with uniform timestep $\tau>0$.
- Fixed ratio: $\tau: h=1$ ( $>$ CFL-condition satisfied)
- Monitored: error norms (log-log plots)

$$
\begin{align*}
& \operatorname{err}_{1}(h):=\max _{k>0} h \sum_{j}\left|\mu_{j}^{(k)}-u\left(x_{j}, t_{k}\right)\right| \approx \max _{k>0}\left\|u_{N}^{(k)}-u\left(\cdot, t_{k}\right)\right\|_{L^{1}(\mathbb{R})}  \tag{8.4.34}\\
& \operatorname{err}_{\infty}(h):=\max _{k>0} \max _{j \in \mathbb{Z}}\left|\mu_{j}^{(k)}-u\left(x_{j}, t_{k}\right)\right| \approx \max _{k>0}\left\|u_{N}^{(k)}-u\left(\cdot, t_{k}\right)\right\|_{L^{\infty}(\mathbb{R})} \tag{8.4.35}
\end{align*}
$$

for different final times $T=0.3,4, h \in\left\{\frac{1}{20}, \frac{1}{40}, \frac{1}{80}, \frac{1}{160}, \frac{1}{320}, \frac{1}{640}, \frac{1}{1280}\right\}$.

From Thm. 8.2.34 and Thm. 8.2.36 we know that the evolution for a scalar conservation law in 1D enjoys stability on the norms $\|\cdot\|_{L^{1}(\mathbb{R})}$ and $\|\cdot\|_{L^{\infty}(\mathbb{R})}$. Hence, these norms are the natural norms for measuring discretization errors, cf. the use of the energy norm for measuring the finite element discretization error for 2nd order elliptic BVP.

$$
T=4, \text { error } \operatorname{err}_{1}
$$




$T=0.3:$ error $\operatorname{err}_{\infty}$



$T=4:$ error $\operatorname{err}_{\infty}$




Error obtained by comparison with numerical "reference solution" obtained on a very fine spatiotemporal grid.

Oberservations: for either numerical flux function

- (near) first order algebraic convergence $\left(\rightarrow\right.$ Def. 1.6.19) w.r.t. mesh width $h$ in err $_{1}$,
- algebraic convergence w.r.t. mesh width $h$ in $\mathrm{err}_{\infty}$ before the solution develops discontinuities (shocks),
- no covergence in norm err $\infty$ after shock formation.

Best we get: merely first order algebraic convergence $O(h)$

Heuristic explanation for limited order:
$u=u(x, t) \hat{=}$ smooth entropy solution of Cauchy problem

$$
\begin{equation*}
\left.\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=0 \quad \text { in } \mathbb{R} \times\right] 0, T\left[\quad, \quad u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}\right. \tag{8.2.7}
\end{equation*}
$$

We study the so-called consistency error of the numerical flux $F=F(v, w)$

$$
\left(\overrightarrow{\boldsymbol{\tau}}_{F}(t)\right)_{j}=F\left(u\left(x_{j}\right), u\left(x_{j+1}, t\right)\right)-f\left(u\left(x_{j+1 / 2}, t\right)\right), j \in \mathbb{Z}
$$

which measures the deviation of the approximate flux and the true flux, when the approximate solution agreed with the exact solution at the nodes of the mesh.

What we are interested in

$$
\text { behavior of }\left(\overrightarrow{\boldsymbol{\tau}}_{F}(t)\right)_{j} \text { as mesh width } h \rightarrow 0,
$$

where an equidistant spatial mesh is assumed.

Terminology:

$$
\max _{j \in \mathbb{Z}}\left(\overrightarrow{\boldsymbol{\tau}}_{F}(t)\right)_{j}=O\left(h^{q}\right) \text { for } h \rightarrow 0 \leftrightarrow \quad \text { numerical flux consistent of order } q \in \mathbb{N} .
$$

Rule of thumb: Order of consistency of numerical flux function limits (algebraic) order of convergence of (semi-discrete and fully discrete) finite volume schemes.

Example 8.4.36 (Consistency error of upwind numerical flux).

Assumption: $f$ continuously differentiable $u_{0} \geq 0$ and $f^{\prime}(u) \geq 0$ for $u \geq 0>$ no transsonic rarefactions!

In this case the upwind numerical flux (8.3.3.3) agrees with the Godunov flux (8.3.28), see Rem. 8.3.29 and

$$
F_{\mathrm{uw}}\left(u\left(x_{j}, t\right), u\left(x_{j+1}, t\right)\right)=f\left(u\left(x_{j}\right), t\right), \quad j \in \mathbb{Z} .
$$

$$
\begin{aligned}
\Delta\left(\overrightarrow{\boldsymbol{\tau}}_{F_{\mathrm{uw}}}(t)\right)_{j} & =f\left(u\left(x_{j}, t\right)\right)-f\left(u\left(x_{j+1 / 2}, t\right)\right) \\
& =f^{\prime}\left(u\left(x_{j+1 / 2}, t\right)\right)\left(u\left(x_{j}, t\right)-u\left(x_{j+1 / 2}, t\right)\right)+O\left(\left|u\left(x_{j}, t\right)-u\left(x_{j+1 / 2}, t\right)\right|^{2}\right) \\
& =-f^{\prime}\left(u\left(x_{j+1 / 2}, t\right) \frac{\partial u}{\partial x}\left(x_{j+1 / 2}, t\right) \frac{1}{2} h+O\left(h^{2}\right) \quad \text { for } h \rightarrow 0,\right.
\end{aligned}
$$

by Taylor expansion of $f$ and $u$.
This means that the upwind/Godunov numerical flux is (only) first order consistent.

Example 8.4.37 (Consistency error of Lax-Friedrichs numerical flux).

Assumption: smooth flux function

Recall: The (local) Lax-Friedrichs numerical flux

$$
\begin{equation*}
F_{\mathrm{LF}}(v, w)=\frac{1}{2}(f(v)+f(w))-\frac{1}{2} \max _{\min \{v, w\} \leq u \leq \max \{v, w\}}\left|f^{\prime}(u)\right|(w-v) \tag{8.3.18}
\end{equation*}
$$

is composed of the central flux and a diffusive flux.

We examine the consistency error for both parts separately, using Taylor expansion
(1) central flux:

$$
\begin{align*}
& \frac{1}{2}\left(f\left(u\left(x_{j}, t\right)\right)+f\left(u\left(x_{j+1}, t\right)\right)\right)-f\left(u\left(x_{j+1 / 2}, t\right)\right) \\
& \quad=\frac{1}{2} f^{\prime}\left(u\left(x_{j+1 / 2}, t\right)\right)\left(u\left(x_{j}, t\right)-u\left(x_{j+1 / 2}, t\right)+u\left(x_{j+1}, t\right)-u\left(x_{j+1 / 2}, t\right)\right)+O\left(h^{2}\right)  \tag{8.4.38}\\
& \quad=\frac{1}{2} f^{\prime}\left(u\left(x_{j+1 / 2}, t\right)\right)\left(\frac{\partial u}{\partial x}\left(x_{j+1 / 2}, t\right)\left(-\frac{1}{2} h+\frac{1}{2} h\right)+O\left(h^{2}\right)\right)+O\left(h^{2}\right) \\
& \quad=O\left(h^{2}\right) \quad \text { for } h \rightarrow 0
\end{align*}
$$

However, due to instability the central flux is useless, see Sect. 8.3.3.1.
(2) diffusive flux part:

$$
\begin{gathered}
u\left(x_{j+1}, t\right)-u\left(x_{j}, t\right)=\frac{\frac{\partial u}{\partial x}\left(x_{j+1 / 2}, t\right) h}{}+O\left(h^{2}\right) \quad \text { for } h \rightarrow 0 \\
F_{\mathrm{LF}}\left(u\left(x_{j}, t\right), u\left(x_{j+1}, t\right)\right)-f\left(u\left(x_{j+1 / 2}, t\right)\right)=O(h) \text { for } h \rightarrow 0
\end{gathered}
$$

because the consistency error is dominated by the diffusive flux.

The observations made in the above examples are linked to a general fact:

Monotone numerical fluxes $(\rightarrow$ Def. 8.3.34) are at most first order consistent.

### 8.5 Higher order conservative schemes

In standard semi-discrete finite volume schemes in conservation form for 2-point numerical flux function, textcolorblue

$$
\begin{equation*}
\frac{d \mu_{j}}{d t}(t)=-\frac{1}{h}\left(F\left(\mu_{j}(t), \mu_{j+1}(t)\right)-F\left(\mu_{j-1}(t), \mu_{j}(t)\right)\right), \quad j \in \mathbb{Z} \tag{8.3.9}
\end{equation*}
$$

the numerical flux function is evaluated for the cell averages $\mu_{j}$, which can be read as approximate values of a projection of the exact solution onto piecewise constant functions (on dual cells)

$$
\begin{equation*}
\mu_{j}(t) \approx \frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u(x, t) \mathrm{d} x \tag{8.3.4}
\end{equation*}
$$

## By Taylor expansion we find

$$
u\left(x_{j+1 / 2}, t\right)-\frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u(x, t) \mathrm{d} x=O(h) \quad \text { for } h \rightarrow 0
$$

and, unless some lucky cancellation occurs as in the case of the central flux, see Ex. 8.4.37, this does not allow more than first order consistency.

Idea: Plug "better" approximations of $u\left(x_{j \pm 1 / 2}, t\right)$ into numerical flux function in (8.3.9)

$$
\frac{d \mu_{j}}{d t}(t)=-\frac{1}{h}\left(F\left(\nu_{j}^{+}(t), \nu_{j+1}^{-}(t)\right)-F\left(\nu_{j-1}^{+}(t), \nu_{j}^{-}(t)\right)\right), \quad j \in \mathbb{Z}
$$

where $\nu_{j}^{ \pm}$are obtained by piecewise linear reconstruction from the (dual) cell values $\mu_{j}$.

$$
\begin{align*}
\nu_{j}^{-}(t) & :=\mu_{j}(t)-\frac{1}{2} h \sigma_{j}(t), \\
\nu_{j}^{+}(t) & :=\mu_{j}(t)+\frac{1}{2} h \sigma_{j}(t), \tag{8.5.1}
\end{align*}
$$

with suitable slopes $\sigma_{j}(t)=\sigma(\overrightarrow{\boldsymbol{\mu}}(t))$.


## Index

$H^{1}$-semi-norm, 137
$L^{2}$-norm, 134
2-regularity
of Dirichlet problem, 575
a priori estimates, 475 a-orthogonal, 454 affine linear function
in 2D, 278
affine transformation, 368
algorithm
numerical, 66
analytic solution, 65
angle condition
for Delaunay mesh, 438
anisotropic diffusion, 740
artificial diffusion, 736
artificial viscosity, 736
assembly, 292
cell oriented, 356
in FEM, 349
barycentric coordinate representation
of local shape functions, 363
barycentric coordinates, 293
basis
change of, 270
best approximation error, 456
beta function, 366
bilinear form, 46, 60
positive definite, 174
bilinear transformation, 397
boundary conditions, 24, 63, 223
Dirichlet, 223, 234
homogeneous, 236
Neumann, 226, 235
radiation, 235
boundary fitting, 408
parabolic, 408
boundary flux
compuation of, 557
boundary layer, 711
boundary value, 156
boundary value problem
elliptic, 237
boundary value problem (BVP), 156
bounding box, 342
Burger's equation, 821
Burgers equation, 796
calculus of variations, 41
Cauchy problem, 788, 799, 813
for one-dimensional conservation law, 805
for wave equation, 659
cell, 306
cell contributions, 350
central flux, 846
CFL-condition, 685, 889
characteristic curve, 806
characteristic method, 764
Chebychev nodes, 120
circumcenter, 437
classical solution, 56, 246
coefficient vector, 269
collocation, [114, 115
spline, 123
compatibility condition, 248
compatibility conditions
for $H^{1}(\Omega), 196$
complete space, 450
composite midpoint rule, 104 composite trapezoidal rule, 104 computational domain, 228 computational effort, 520 conditionally stable, 648
configuration space, 24
for taut membrane, 162
congruent matrices, 271
conservation
of energy, 669
conservation form, 841
conservation law, 800
differential form, 803
integral form, 803
one-dimensional, 804
scalar, 804
conservation of energy, 229
consistency error, 910
continuity
of a linear form, 193
of linear functional, 550
control volume, 433, 800
convection-diffusion equation, 699
convective cooling, 235
convective terms, 699
convergence, 130, 459
convex function, 177
corner singular function, 532
Courant-Friedrichs-Levy condition (CFL), 685
Crank-Nicolson method, 615
curve, 24
length, 25
parametrization, 24
cut-off function, 565
d'Alembert solution, 660
Delaunay mesh
angle condition, 438 delta distribution, 211
dielectric tensor, 167
difference quotient, 127
differential operator, 118, 156
diffusion tensor, 740
diffusive flux, 802
diffusive terms, 699
Dirac delta function, 211
Dirichlet boundary conditions, 223, 234
Dirichlet data, 203, 252
Dirichlet problem, 223
variational formulation, 202
discrete model, 30
discrete variational problem, 264, 269
discretization, 66, 262
discretization error, 130, 456
discretization parameter, 459
displacement, 63
displacement function, 63
dissipation, 608
DistMesh, 342
divergence
of a vectorfield, 217
domain, 156
computational, 228
spatial, 64, 160
domain of dependence, 662 domain of influence, 662
dual mesh, 436
dual problem, 554
duality estimate, 554
edge, 306
elastic energy, 29
mass-spring model, 30
elastic string, 22
electric field, 165
electric scalar potential, 166
electromagnetic field energy, 166
electrostatic field energy, 167
electrostatics, 165
element, 306
element load vector, 352
element stiffness matrix, 352
elliptic
linear scalar second order PDE, 233
elliptic boundary value problem, 237
energy
conservation, 229
of electrostatic field, 167
energy conservation
for wave equation, 665
energy norm, 175
equidistant mesh, 97, 127, 314
equilibrium length
of spring, 29
equilibrium principle, 31
equivalence
of norms, 498
Euler equations, 796
Euler method, 614
evolution operator
fully discrete, 883
semi-discrete, 882
evolution problem, 595
expansion shock, 821
explicit Euler method, 614
face, 306
field energy
electromagnetic, 166
finite difference methods, 421
finite differences
1D, 126
in 2D, 421
finite elements
parametric, 401
finite volume methods, 432
flow field, 693
flux function, 800, 805
force density, 163
Fourier's law, 230
if fluid, 698
Frobenius norm, 491
functional, 548
linear, 550
fundamental lemma of calculus of variations, 221
Galerkin discretization, 69, 263
Galerkin matrix, 350
Galerkin orthogonality, 454
Galerkin solution, 71
quasi-optimality, 456
Galerkin test space, 71

Galerkin trial space, 71
Gamma function, 366
Gauss' theorem, 218, 233, 698, 811
Gauss-Legendre quadrature, 376
Gauss-Lobatto quadrature, 376
General entropy solution for 1D scalar Riemann problem, 830
generic constants, 517
global shape functions, 314
Godunov numerical flux, 866
gradient
of a function, 166
Green's first formula, 218
grid
1D, 97, 127
grid function, 131
h-refinement, 526
hanging node, 309
hat function, 199, 282
heat capacity, 597
heat conductivity, 231
heat equation, 597
heat flux, 228, 231
computation of, 557
convective, 698
diffusive, 698
heat source, 230
Hessian, 487
Heun method, 884
Hilbert space, 450
homogeneous boundary conditions, 236

Hooke's law, 29
hyperbolic evolution problem, 656
discrete case, 666
implicit Euler method, 614
implicit midpoint rule, 615
increments
Runge-Kutta, 616
index mapping matrix, 354
inflow, 800
inflow boundary, 713 initial conditions, 594 initial value problem
stiff, 625
initial-boundary value problems (IBVP), 595
parabolic, 599
integrated Legendre polynomials, 81
integration by parts
in 1D, 53
multidimensional, 218
intermediate state, 862
interpolant
piecewise linear, 441
interpolation error, 486
interpolation error estimates
anisotropic, 504
in 1D, 477
interpolation nodes, 321
inviscid, 793
kinetic energy, 665

L-shaped domain, 467
L-stability, 639
Lagrangian finite elements, 320,358
on quadrilaterals, 393
Lagrangian method, 764
for advectiOn, 755
Laplace equation, 222
Lax entropy condition, 829
Lax-Friedrichs flux, 852
leapfrog, 675
Legendre polynomials, 82
integrated, 81
LehrFEM, 336
lifting theorem, 530, 537
linear boundary fitting, 544
linear form, 46
continuity, 193
linear function
in 2D, 278
linear interpolation
in 1D, 477
in 2D, 485, 486
linear variational problem, 60
Linearity, 238
linearization
of variational problems, 409
load vector, 269, 350
local linearization, 414
local operations, 357
local shape function, 316
barycentric representation, 391
local shape functions
quadratic, 322
mass lumping, 677
mass-spring model, 28
elastic energy, 30
material coordinate, 26 material tensor, 203 mathematical modelling, 20 maximum principle, 580, 705 Maxwell's equations
static case, 166
mean value formula, 487
membrane, 158
potential energy, 162, 163
membrane problem
variational formulation, 202
mesh, 306
1D, 97,127
data structures, 343
equidistant, 97, 127
node, 275
non-conforming, 309
quadrilateral, 307
simplicial, 309
triangular, 307
mesh data structure, 343
mesh file format, 337
triangular mesh, 338
mesh generation, 342
mesh generator, 337
mesh width, 463
method of characteristics, 712
method of lines, 611
midpoint rule
composite, 104
mixed boundary conditions, 237
Mixed Neumann-Dirichlet problem, 227
model
continuous, 66
discrete, 30, 66
monomial basis, 80
multi-index notation, 311
multiplicative trace inequality, 256
NETGEN, 342
Neumann boundary conditions, 226, 235
Neumann data
admissibilty conditions, 253
Neumann problem, 247
compatibility condition, 248
variational form, 247
Newton update, 417
Newton's method, 413
in function space, 413
Newton's second law of motion, 653
Newton-Cotes formula, 376
Newton-Galerkin iteration, 417
nodal basis, 281
nodal interpolation operators, 496
nodal value, 282
node, 275
1D, 97, 127
quadrature, 86
norm, 132
on function space, 133
numerical domain of dependence, 887
numerical flux, 434, 841
numerical flux function, 434
numerical quadrature, 86
nodex, 367
weights, 367
offset function, 47
order of quadrature rule, 368
outflow, 800
outflow boundary, 713
output functional, 548
p-refinement, 526
parametric finite elements, 401, 402
parametric quadrature rule, 367
parametrization
of curve, 24
particle method, 764
PDE
ILinear scalar second order elliptic, 233
perpendicular bisector, 437
phase space, 800
Phythagoras' theorem, 454
piecewise linear interpolant, 441 piecewise linear reconstruction, 915 piecewise quadratic interpolation, 497 Poincaré-Friedrichs inequality, 192, 254 point force, 52
Poisson equation, 222, 460

Poisson matrix, 425
polar coordinates, 212
polynomials
degree, 310
multivariate, 310
univariate, 78
positive definite
bilinear form, 174
uniformly, 168
postprocessing, 131
potential energy, 665
of taut membrane, 162
problem parameters
for elastic string, 28
problem size, 520
procedural form
of functions, 261
product rule, 606
in higher dimensions, 216
production term, 800
pullback, 385
quadratic functional, 171
quadratic local shape functions, 322
quadratic minimization problems, 170
quadrature formula, 86
quadrature node, 86
quadrature nodes, 367
quadrature rule, 367
on triangle, 372
order, 368
parametric, 367
quadrature rules
Gauss-Legendre, 376
Gauss-Lobatto, 376
quadrature weight, 86
quadrature weights, 367
quadrilateral mesh, 307
quasi-optimality, 456
Radau timestepping, 639
radiation boundary conditions, 235, 245
rarefaction
subsonic, 865
supersonic, 865
transonic, 865
rarefaction wave/fan, 827
reaction term
in 2nd-order BVP, 273
reference elements, 402
regular refinement, 457
reversibility, 669
Riemann problem, 818
Riesz representation theorem, 450
right hand side vector, 350
Robin boundary conditions, 235
rubber band, 22
Runge-Kutta
increments, 616
Runge-Kutta method, 616
Runge-Kutta methods
stability function, 899
SDIRK timestepping, 639
semi-discrete, 611
semi-norm, 137
sensitivity
of a problem, 207
shape functions
global, 314
shape regularity measure, 494
shock, 819
physical, 829
subsonic, 865
supersonic, 865
shock speed, 819
similarity solution, 825
simplicial mesh, 309
singular perturbation, 715
Sobolev norms, 500
Sobolev semi-norms, 502
Sobolev space $H^{1}(\Omega), 190$
Sobolev space $H_{0}^{1}(\Omega)$, 187
Sobolev spaces, 181, 500
solution
analytic, 65
approximate, 66
source term, 156
space-time-cylinder, 594
sparsity pattern, 289
spatial domain, 160
spectrum, 893
spline
cubic, 124
spline collocation, 123
spring constant, 29
Störmer scheme, 674
stability
of linear variational problem, 206
stability domain, 901
stability function
of explicit Runge-Kutta methods, 899
of RK-SSM, 639
stiff IVP, 625
stiffness
of spring, 29
stiffness matrix, 269, 350
sparsity, 316
Strang splitting, 756
streamline, 694
streamline diffusion, 735
strong form, 56
subsonic rarefaction, 865
subsonic shock, 865
supersonic rarefaction, 865
supersonic shock, 865
supremum norm, 133
symbol
of a difference operator, 893
T-matrix, 354
Taylor expansion, 43
tensor product polynomials, 312
tensor-product grid, 422
tent function, 98
test function, 47
test space, 47

TETGEN, 342
trace theorem, 256
trajectory, 694
transformation of functions, 385
transformation techniques, 401
translation-invariant, 886
transonic rarefaction, 865
transport equation, 752
transsonic rarefaction fan, 858
trapezoidal rule
composite, 103, 104
trial space, 47, 115
triangle inequality, 132
triangular mesh, 307
triangular mesh: file format, 338
triangulation, 306
two-point boundary value problem, 56
two-step method, 674
uniformly positive, 232
upwind quadrature, 729, 731
upwinding, 724
variational crime, 539
variational equation
linear, 60
non-linear, 44
variational problem
discrete, 264, 269
linear, 60
non-linear, 410
perturbed, 539

## vertex, 306

virtual work principle, 45
von Neumann stability analysis, 901
Voronoi cell, 436
Voronoi dual mesh, 436
wave equation, 656
weak form, 56
weak solution, 813 weight
quadrature, 86
width
of a mesh, 463

## Examples and Remarks

$L^{2}$ interpolation error, 572
$L^{2}$-convergence of FE solutions, 569
$L^{2}$-estimates on non-convex domain, 577
$L^{\infty}$ interpolation error estimate in 1D, 515
$|\cdot|_{H^{1}(\Omega)}$-semi-norm, 190
(Bi)-linear Lagrangian finite elements on hybrid meshes, 334
[Fully discrete evolutions, 883
[Membrane with free boundary values, 223
ode 45 for discrete parabolic evolution, 622
"PDEs" for univariate functions, 21
"Physics based" discretization, 67
1D convection-diffusion boundary value problem, 711
Admissible Dirichlet data, 252
Admissible Neumann data, 253
Affine transformation of triangles, 368
Approximate Dirichlet boundary conditions, 380 Approximate sub-steps for Strang splitting time, 761 Approximation of mean temperature, [551, 554 Arrays storing 2D triangular mesh, 346

Assembly for linear Lagrangian finite elements on triangular mes, 355
Assembly for quadratic Lagrangian FEM, 358
Asymptotic estimates, 525
Asymptotic nature of a priori estimates, 517
Barycentric representation of local shape functions, 391
Bases for polynomial spectral collocation, 120
Behavior of generalized eigenvalues of $\mathbf{A} \overrightarrow{\boldsymbol{\mu}}=\lambda \mathbf{M} \overrightarrow{\boldsymbol{\mu}}, 628$
Benefit of variational formulation of BVPs, 99
Bilinear Lagrangian finite elements, 327
Blow-up for leapfrog timestepping, 681
Boundary conditions and $L^{2}(\Omega)$, 185
Boundary conditions for 2nd-order parabolic IBVPs, 600
Boundary conditions for linear advection, 792
Boundary conditions for wave equation, 658
Boundary conditions in $H_{0}^{1}(\Omega)$, 188
Boundary value problems, 155
Boundary values for conservation laws, 804
Breakdown of characteristic solution formula, 809

Causes for non-smoothness of solutions of elliptic BVPs, 538
Central flux for Burgers equation, 846
Central flux for linear advection, 850
Characteristics for advection, 807
Choice of basis for polynomial spectral Galerkin methods, 80
Choice of timestepping for m.o.l. for transient convectiondiffusion, 750
Coefficients/data in procedural form, 68
Collocation approach on "complicated" domains, 420
Collocation points for polynomial spectral collocation, 120
Compatible boundary and initial data, 599
Computation of heat flux, 558, 566
Conditioning of linear variational problems, 206
Conrner singular functions, 531
Consistency error of Lax-Friedrichs numerical flux, 912
Consistency error of upwind numerical flux, 911
Continuity of interpolation operators, 503
Convective cooling, 235
Convergence of Euler timestepping, 617
Convergence of fully discrete finite volume methods for Burgers equation, 905
Convergence of fully discrete timestepping in one spatial dimension, 641
Convergence of Lagrangian FEM for $p$-refinement, 472
Convergence of linear and quadratic Lagrangian finite elements in $L^{2}$-norm, 465
Convergence of linear and quadratic Lagrangian finite elements in energy norm, 460
Crank-Nicolson timestepping, 615

Delaunay-remeshing in 2D, 772
Derivative of non-linear $u \mapsto \mathrm{a}(u ; \cdot)$, 415
Difference stencils, 885
Differentiating a functional on a space of curves, 44
Differentiating bilinear forms with time-dependent arguments 606
Diffusive flux, 802
Dimensionless equations, 27
Dimensions of Lagrangian finite element spaces on triangular meshes, 521
Discontinuity connecting constant states, 817
Domain of dependence/influence for 1D wave equation, constant coefficient case, 661

Effect of added diffusion, 736
Efficient implementation of assembly, 361
Elastic string shape by finite element discretization, 112
Elliptic lifting result in 1D, 529
Energy conservation for leapfrog, 678
Energy norm, 134
Energy norm and $H^{1}(\Omega)$-norm, 498
Entropy solution of Burgers equation, 830
Euler equations, 796
Euler timestepping, 614
Euler timestepping for 1st-order form of semi-discrete wave equation, 669
Evaluation of local shape functions at quadrature points, 390
Explicit Euler in Fourier domain, 897
Exploring convergence experimentally, 149
Extended MATLAB mesh data structure, 346
Extra regularity requirements, 57

Extra smoothness requirement for PDE formulation, 223
Finding continuous replacement functionals, 568
Finite differences for convection-diffusion equation in 1D, 717
First-order semidiscrete hyperbolic evolution problem, 668 Formulation in physical space coordinate, 62
Fourier series, 895
Gap between interpolation error and best approximation error, 513
Generic constants, 517
Geometric interpretation of CFL condition in 1D, 685
Geometric obstruction to Voronoi dual meshes, 437
Godunov flux for Burgers equation, 868
Good accuracy on "bad" meshes, 510
Grid functions, 131
heat conduction, 237
Heat conduction with radiative cooling, 411
Higher order timestepping for 1D heat equation, 644
Impact of choice of basis, 270
Impact of linear boundary fitting on FE convergence, 544
Impact of numerical quadrature on finite element discretization error, 541
Implementation of non-homogeneous Dirichlet b.c. for linear FE, 381
Implementation of spectral Galerkin discretization for elastic string problem, 91
Implementation of spectral Galerkin discretization for linear 2nd-order two-point BVP, 87

Implicit Euler method of lines for transient convection-diffusio 747
Imposing homogeneous Dirichlet boundary conditions, 333 Inefficiency of conditionally stable single step methods, 648
Initial time, 595
Internal layers, 738
Interpolation nodes for cubic and quartic Lagrangian FE in 2D, 325
$\mathrm{L}(\pi)$-stable Runge-Kutta single step methods, 639
Lagrangian finite elements on hybrid meshes, 336
Lagrangian method for convection-diffusion in 1D, 776
Laplace operator, 222
Lax-Friedrichs flux for Burgers equation, 853
Leapfrog timestepping, 675
Linear FE discretization of 1D convection-diffusion problem, 717
Linear finite element Galerkin discretization for elastic string model, 106
Linear finite element space for homogeneous Dirichlet problem, 282
Linear variational problems, 60
Local interpolation onto higher degree Lagrangian finite element spaces, 496
Local quadrature rules on quadrilaterals, 375
Local quadrature rules on triangles, 372
Mass lumping, 677
Material coordinate, 26
Mathematical modelling, 20
Maximum principle for finite difference discretization, 585

Maximum principle for higher order Lagrangian FEM, 592
Maximum principle for linear FE for 2nd-order elliptic BVPs, 591
Mesh file format for MATLAB code, 340
Minimal regularity of membrane displacement, 164
Mixed boundary conditions, 237
Naive finite difference scheme, 836
Non-continuity of boundary flux functional, 563
Non-differentiable function in $H_{0}^{1}(] 0,1[)$, 199
Non-existence of solutions of positive definite quadratic minimization problem, 179
Non-linear variational equation, 46
Non-polynomial "bilinear" local shape functions, 399
Non-smooth external forcing, 51
Norms on grid function spaces, 138
Numerical quadrature in LehrFEM, 373
Offset function for finite element Galerkin discretization, 106
Offset functions and Galerkin discretizatio, 73
offset functions for linear Lagrangian FE, 379
One-sided difference approximation of convective terms, 721
Ordered basis of test space, 75
Output functionals, 548
Parametrization of a curve, 24
Piecewise linear functions (not) in $H^{1}, 196$
Piecewise quadratic interpolation, 497
Point charge, 210
Point particle method for pure advection, 765
Properties of weak solutions, 814

Pullback of functions, 385
Quadratic functionals with positive definite bilinear form in 2D, 176
Quadratic minimization problems on Hilbert spaces, 186
Quadratic tensor product Lagrangian finite elements, 331
Quasi-locality of solution of scalar elliptic boundary value problem, 241

Radiative cooling, 236
Recirculating flow, 713
Relationship between discrete minimization problem and discrete variational problem, 71
Scalar elliptic boundary value problem in one space dimension, 239
Scaling of entries of element matrix for $-\Delta, 296$
Semi-Lagrangian method for convection-diffusion in 1D, 784
Smoothness of solution of scalar elliptic boundary value problem, 240
Smoothness requirements for collocation trial space, 117 Solution formula for sourceless transport, 753
Space of square integrable functions, 183
Sparse sitffness matrices, 288
Spatial difference operators for linear advection, 892
Spatial discretization options, 611
Spatial domains, 160
Specification of local quadrature rules, 370
Spectral Galerkin discretization of non-linear variational problem, 95
Spectral Galerkin discretization with quadrature, 86
Spectrum of elliptic operators, 633

Spectrum of upwind difference operator, 893
Spurious Galerking solution for 2D convection-diffusion BVP, 725
Stability and CFL condition, 902
Stability domains, 901
Stability functions of explicit RK-methods, 899
Streamline-diffusion discretization, 742
Supports of global shape functions in 1D, 314
Supports of global shape functions on triangular mesh, 315
Tense string without external forcing, 38
Timestepping for ODEs, 68
Transformation of basis functions, 85
Transformation techniques for bilinear transformations, 406
Triangular mesh: file format, 338
Triangular quadratic Lagrangian finite elements, 320
Uniqueness of solutions of Neumann problem, 248
Upwind flux and expansion shocks, 867
Upwind flux and transsonic rarefaction, 857
Upwind flux for Burgers equation, 856
Upwind quadrature discretization, 733
Vanishing viscosity for Burgers equation, 821
Variational formulation for convection-diffusion BVP, 709
Variational formulation for heat conduction with Dirichlet boundary conditions, 243
Variational formulation for pure Neumann problem, 247 Variational formulation: heat conduction with general radiation boundary conditions, 245

Wave equation as first order system in time, 658
Well-posed 2nd-order linear elliptic variational problems, 451

## Definitions

$H^{1}$-semi-norm, 137
Affine transformation, 368
Characteristic curve for one-dimensional scalar conserva-
tion law, 806
congruent matrices, 271
Consistent numerical flux function, 844
Courant-Friedrichs=Levy (CFL-)condition, 889
Cubic spline, 124
element load vector, 352
element stiffness matrix, 352
Energy norm, 175
Higher order Lagrangian finite element spaces, 320
Higher order Sobolev norms, 500
Higher order Sobolev semi-norms, 502
Higher order Sobolev spaces, 500
Imcompressible flow field, 701
L( $\pi$ )-stability, 639
Lax entropy condition, 829

Legendre polynomials, 82
Linear interpolation in 2D, 486
Local shape functions, 317
Material derivative, 781
Mean square norm/ $L^{2}$-norm, 134
mesh, 306
mesh width, 463
Monotone numerical flux function, 874
multivariate polynomials, 310
norm, 132
Numerical domain of dependence, 887
parametric finite elements, 402
Positive definite bilinear form, 174
pullback, 385
Quadratic functional, 171
Quadratic minimization problem, 172
Riemann problem, 818
Runge-Kutta method, 616

Shape regularity measure for simplex, 494

## shock, 819

Singularly perturbed problem, 715
Sobolev space $H^{1}(\Omega)$, 190
Sobolev space $H_{0}^{1}(\Omega)$, 187
Space $L^{2}(\Omega)$, 184
sparse matrix, 288
Support of a function, 101
Supremum norm, 133
Tensor product Langrangian finite element spaces, 331 tensor product polynomials, 312
Uniformly positive definite tensor field, 168
Weak solution of Cauchy problem for conservation law, 813

## MATLAB codes

```
assemMat_QFE, 359
sparse (MATLAB-function), 359
add_Edge2Elem, 346
add_Edges, 346
init_Mesh, 346
Loading a mesh from file, 341
```


## List of Symbols

$C_{0}^{2}([0,1]):=\left\{v \in C^{2}([0,1]): v(0)=v(1)=0\right\}$, 41
$C_{0}^{\infty}(\Omega) \hat{=}$ smooth functions with support inside $\Omega$, 192
$C^{k}([a, b]) \hat{=} k$-times continuously differentiable functions on $[a, b] \subset \mathbb{R}, 25$
$C_{\mathrm{pw}}^{k}([a, b]), 51$
$D^{-}(\bar{x}, \bar{t}) \xlongequal[=]{ }$ maximal analytical domain of dependence of $(\bar{x}, \bar{t}), 888$
$D^{\alpha} u \hat{=}$ multiple partial derivatives, 500
$M_{i} \hat{=} i$-th integrated Legendre polynomial, 81
$S(z) \hat{=}$ stability function of Runge-Kutta method, 899
$n, 234$
$\boldsymbol{n} \hat{=}$ exterior unit normal vectorfield, 218
$\mathcal{H}_{h}=$ fully discrete evolution operator, 883
$\mathcal{L}_{h} \hat{=}$ semi-discrete evolution operator doe 1D conservation law, 882
$\mathcal{P}_{p}(\mathbb{R}) \hat{=}$ space of univariate polynomials of degree $\leq p$, 78
$\mathcal{P}_{p}\left(\mathbb{R}^{d}\right)$, 310
$\mathcal{P}_{p}\left(\mathbb{R}^{d}\right) \hat{=}$ space of $d$-variate polynomials, 310
$\mathcal{Q}_{p}\left(\mathbb{R}^{d}\right), 312$
$\mathcal{V}(\mathcal{M}) \hat{=}$ set of vertices of a mesh, 275
$\Delta \hat{=}$ Laplace operator, 222
$\operatorname{div} \mathbf{j} \hat{=}$ divergence of a vectorfield, 217
$\mathcal{E}(\mathcal{M})$, 347
$\mathrm{I}_{1}$,486
$H^{m}(\Omega) \hat{=} m$-th order Sobolev space, 500
$\mathcal{S}_{1}^{0}(\mathcal{M})$, 277
$\mathrm{I}_{1} \hat{=}$ piecewise linear interpolation on finite element mesh, 441
$P_{n} \hat{=} n$-th Legendre polynomial, 82
$\mathcal{S}_{p}^{0}(\mathcal{M}) \hat{=} H^{1}(\Omega)$-conforming Lagrangian FE space, 320
$L^{\infty}(\Omega) \hat{=}$ space of (essentially) bounded functions on $\Omega$, 133
$L^{2}(\Omega) \hat{=}$ space of square-integrable functions on $\Omega$, 184
$\|\cdot\|_{0} \hat{=}$ norm on $L^{2}(\Omega)$, 184
$\|\cdot\|_{\infty} \hat{=}$ supremum norm of a function/maximum norm of a vector, 133
$\|u\|_{H^{m}(\Omega)} \hat{=} m$-th order Sobolev norm, 500
$\|u\|_{L^{\infty}(\Omega)} \hat{=}$ supremum norm of $u: \Omega \mapsto \mathbb{R}^{n}$, 133
$\|\cdot\|_{L^{2}(\Omega)} \hat{=} L^{2}$-norm of a function, 134
$\|\cdot\|_{L^{2}(\Omega)} \hat{=} \operatorname{norm}$ on $L^{2}(\Omega)$, 184
$\|\cdot\|_{0} \hat{=} L^{2}$-norm of a function, 134
$\mathcal{V}(\mathcal{M}), 306$
$\Omega, 156$
$\Omega \xlongequal{=}$ spatial domain or parameter domain, 24
$\Phi^{*}, 385$
$|u|_{H^{m}(\Omega)} m$-th order Sobolev semi-norm, 502
$|\cdot|_{H^{1}(\Omega)} \hat{=} H^{1}$-semi-norm of a function, 137
$\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ (matrices), 269
$\mathbf{M}^{-T} h a t=$ inverse transposed of matrix, 405
$\mathrm{a}_{K} \hat{=}$ restriction of bilinear form a to cell $K$, 292
$\cdot \hat{=}$ inner product of vectors in $\mathbb{C}^{n}$, 31
$\chi_{I} \hat{=}$ characteristic function of an interval $I \subset \mathbb{R}, 840$ $\ddot{u}:=\frac{\partial u}{\partial t^{2}}, 654$
$\dot{u}(t) \xlongequal{=}$ (partial) derivative w.r.t. time, 603
$\ell_{K}$ restriction of linear form $\ell$ to cell $K$, 301
$\frac{D f}{D \mathbf{v}}(t) \hat{=}$ material derivative w.r.t. velocity field $\mathbf{v}$, 781
grad $\hat{=}$ gradient of a scalar valued function, 166
$\hat{c}(\xi) \xlongequal{=}$ symbol of a finite difference operator, 893
$1=(1, \ldots, 1)^{T}$, 899
$\mathrm{d} S \hat{=}$ integration over a surface, 218
M, 306
$\boldsymbol{\nabla} F(\boldsymbol{x}):=\operatorname{grad} F(\boldsymbol{x}) \hat{=}$ nabla nontation for gradient, 167
$\operatorname{diam}(\Omega) \hat{=}$ diameter of $\Omega \subset \mathbb{R}^{d}$, 161
nnz, 288
$\partial \Omega \hat{=}$ boundary of domain $\Omega$, 161
$\rho_{K} \hat{=}$ shape regularity measure of cell $K$, 494
$\rho_{\mathcal{M}} \hat{=}$ shape regularity measure of a mesh $\mathcal{M}, 494$
$\overrightarrow{\boldsymbol{\mu}}, \overrightarrow{\boldsymbol{\varphi}}, \overrightarrow{\boldsymbol{\xi}}, \ldots$ (coefficient vectors), 269
$\mathcal{S}_{p, 0}^{0}(\mathcal{M}) \xlongequal[=]{ }$ Degree $p$ Lagrangian finite element space with zero Dirichlet boundary conditions., 333
$\mathcal{S}_{1,0}^{0}(\mathcal{M}) \hat{=}$ space of p.w. linear $C^{0}$-finite elements, 98
$H_{0}^{1}(\Omega)$ Sobolev space, 187
$h_{\mathcal{M}} \hat{=}$ mesh width of mesh $\mathcal{M}$,463
$h_{\mathcal{M}} \hat{=}$ meshwidth of a grid, 97
$x_{j-1 / 2}:=\frac{1}{2}\left(x_{j}+x_{j-1}\right) \hat{=}$ midpoint of cell in 1D, 840

## Bibliography

[1] A. Burtscher adn E. Fonn, P. Meury, and C. Wiesmayr. LehrFEM - A 2D Finite Element Toolbox. SAM, ETH Zürich, Zürich, Switzerland, 2010. http:.
[2] I. Babuška and M. Suri. The optimal convergence rate of the $p$-version of the finite element method. SIAM J. Numer. Anal., 24(4):750-769, 1987.
[3] D. Braess. Finite Elements. Cambridge University Press, 2nd edition, 2001.
[4] S. Brenner and R. Scott. Mathematical theory of finite element methods. Texts in Applied Mathematics. Springer-Verlag, New York, 2nd edition, 2002.
[5] D. Christodoulou. The Euler equations of compressible fluid flow. Bull. American Math. Soc., 44(4):581-602, 2007.
[6] P.G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 4 of Studies in Mathematics and its Applications. North-Holland, Amsterdam, 1978.
[7] B. Cockburn and J. Gopalakrishnan. New hybridization techniques. GAMM-Mitteilungen, (2):28, 2005.
[8] C.M. Dafermos. Hyperboloic conservation laws in continuum physics, volume 325 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 2000.
[9] D.A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Meth. Engr., 21:1129-1148, 1985.
[10] L.C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998.
[11] W. Hackbusch. Elliptic Differential Equations. Theory and Numerical Treatment, volume 18 of Springer Series in Computational Mathematics. Springer, Berlin, 1992.
[12] W. Hackbusch. Integral equations. Theory and numerical treatment., volume 120 of International Series of Numerical Mathematics. Birkhäuser, Basel, 1995.
[13] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2002.
[14] R. Hiptmair. Numerische mathematik für studiengang rechnergestützte wissenschaften. Lecture Slides, 2005. http://www.sam.math.ethz.ch/~hiptmair/tmp/NCSE.pdf.
[15] P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial Differential Equations, volume 44 of Texts in Applied Mathematics. Springer, Heidelberg, 2003.
[16] S. Osher. Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal., 21(2):217-235, 1984.
[17] P.-O. Persson and G. Strang. A simple mesh generator in matlab. SIAM Review, 46(2):329-345, 2004.
[18] C. Schwab. $p$ - and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford, 1998.
[19] M. Struwe. Analysis für informatiker. Lecture notes, ETH Zürich, 2009. https://moodleapp1.net.ethz.ch/ms $/ \mathrm{mod} /$ resource $/$ index.php?id=145.
[20] S. Zlotnik and P. Díez. Assembling sparse matrices in MATLAB. Communications in Numerical Methods in Engineering, 2008. Published Online: 1 Sep 2008.

## Appendix

## Essential skills

This chapter lists essential skills that you possess after having studied the individual chapters of the course.
A. 1 Chapter ??: Prologue: A Two-point Boundary Value Problem

You should know:

- a simple example for a two-point boundary value problem,
- the ideas behind its discretization by means of finite differences, collocation, and the Galerkin method,
- what is meant by discretization error and convergence of a method.
- different qualitative kinds of convergence and how to detect them in numerical experiments,
- how to measure the rate of algebraic convergence in numerical experiments
- what is meant by the "asymptotic nature" of convergence.


## A. 2 Chapter ??: Second-order scalar elliptic boundary value prob

## lems

You should know

- the concept of a second-order scalar elliptic boundary value problem together with appropriate boundary conditions (Drichlet, Neumann, radiation, mixed).
- the concept of uniform positivity of the conductivity/coefficient of a second-order scalar differential operator and its consequences for the associated bilinear form.
- the definition of weak derivatives and the rationale for introducing them
- to derive the complete variational form (bilinear form, right hand side functional and Hilbert space framework) for any linear second-order scalar elliptic boundary value problem.
- fundamental notions like ellipticity and continuity (of linear/bilinear forms)
- that functions in $H^{1}(\Omega)$ can be unbounded for $d>1$.
- the Lax-Milgram lemma and how to prove the ellipticity/continuity of bilinear forms arising from linear second-order scalar elliptic boundary value problems (Poincaré-Friedrichs inequalities)
- the compatibility condition for the pure Neumann problem.
- the trace theorem from $H^{1}(\Omega)$ and its significance for admissible Dirichlet and Neumann boundary data.
- how to tell invalid and valid source terms and boundary data from each other.
- how to express the variational form of a linear second-order scalar elliptic boundary value problem as an equivalent minimization problem.


## A. 3 Chapter ??: The Finite Element Method (FEM)

$\bullet$ the idea of the Galerkin approximation, Galerkin-orthogonality (5.1.7), and Cea's Lemma Thm. 5.1.10 (including the proof)

- how to derive a linear system of equations from linear variational problems
- the terms stiffness matrix and load vector
- the impact of a change of bases on the stiffness matrix and the Galerkin solution
- the concept of a mesh
- that FE functions for $H^{1}(\Omega)$ have to be continuous
- that FE spaces possess bases of locally supported functions associated with vertices/edges/cells
- the rationale behind the use of locally supported basis functions in FEM
- simplicial and quadrilateral Lagrangian FE (their local polynomial spaces and interpolation points)
- the concept of parametric (particularly affine equivalent) Lagrangian FE
- the concept of local assembly for the efficient computation of the stiffness matrix and load vector
- the use of parametric FE for the approximation of curved boundaries
- how to use numerical quadrature to approximate the coefficients of the stiffness matrix and load vector
- how to deal with non-homogeneous Dirichlet boundary conditions
- the notation of difference stencils
- the discrete maximum principle and its consequences for the discrete solution
- the idea behind finite volume methods and the construction of dual meshes
- different types of refinement and convergence and how to tell them from raw error data
- what the Bramble-Hilbert lemma Thm. ?? does tell
- the concept of shape regularity of simplicial meshes and its role in the transformation estimates (Lemma ??) for norms
- that acute angles do not affect accuracy of FE Galerkin solutions but obtuse angles are harmful
- the notion 2 -regularity of a 2 nd order elliptic boundary value problem
- what happens in case of reentrant corners to solutions of 2nd order elliptic boundary value problem
- the impact of numerical quadrature on the convergence rate of Lagrangian FE
- the convergence rates of Lagrangian FE in the energy and the $L^{2}$-norm in case of $h$-refinement
- that you can gain up to twice the convergence rate in the energy norm for the evaluation of $H^{1}(\Omega)$ continuous linear functionals

Practical: Implementing Lagrangian FE for 2nd order boundary value problems in 2D using the MATLAB environment of the exercises

## A. 4 Chapter ??: Special elliptic boundary value problems

You should know

- what a singular perturbed problem is
- what special phenomena are encountered in the case of convection-diffusion problems
- the idea behind upwinding and streamline diffusion
- the result of quasi optimality of Galerkin solutions and the notion dispersion in the case of the Helmholtz equation
- that saddle point problems lead to mixed formulations
- the notions continuous and discrete inf-sup condition and their importance for the discretization of saddle point problems
- the Stokes equation and some stable pairs for its FE discretization
- what consistent iteration does mean
- the principle underlying a fix point iteration
- how to derive Newton's method for non-linear elliptic boundary value problems


## A. 5 Chapter ??: Solving discrete boundary value problems

## You should know

- what the idea behind successive subspace correction is
- the terms iteration matrix, contraction number, and rate of convergence of linear stationary iterative methods
- how the hierarchical basis is defined
- the idea behind multigrid methods
- what the idea behind the cg- and the pcg-method is
- that the condition number of the stiffness matrix to 2 nd order elliptic boundary value problems grows like $h_{\mathcal{M}}^{-2}$
- that increasing condition numbers of the iteration matrix generally slow down the convergence of linear stationary iterative methods


## A. 6 <br> Chapter ??: Parabolic Boundary Value Problems

You should know

- how a 2nd order parabolic initial BVP looks like
- what the method of lines is
- what a stable single step method is, particluarly the notion $L(\pi)$-stability
- why implicit timestepping schemes have to be used
- that spatial and temporal errors enter the a priori estimates in an additive fashion
A. 7 Chapter ??: Numerical Methods for Conservation Laws

You should know

- how (nonlinear) conservation laws look like
- the concept of characteristics and their importance
- that classical solutions make no sense in case of shocks
- how to derive physically meaningful weak solutions
- the solution of a Riemann problem
- what a method in conservation form is
- what the idea behind the Godunov scheme is and its properties
- what the Lax-Friedrichs and Lax-Wendroff schemes are
- monotone schemes and the order barrier theorem
- the continuous and numerical region of dependence and their consequences ( $\rightarrow$ CFL-condition)


## A. 8 Chapter ??: Adaptive Finite Element Schemes

You should know

- the idea behind a priori adaptivity
- a few important a posteriori estimators for 2nd order elliptic BVPs
- how to derive goal oriented error estimators
- the properties of reliable and efficient error estimators
- the algorithm for adaptive local mesh refinement controlled by an a posteriori error estimator


[^0]:    flux of linear momentum $\quad f \sim v \cdot u \quad$ (after scaling: $f(u)=\frac{1}{2} u \cdot u$ ) ("momentum $u$ advected by velocity $u$ ")

