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Constraints in partial differential 
problems 

Local constraints (on local fields)
– Boundary conditions

i.e., conditions on local fields on the boundary of the studied domain
– Interface conditions

e.g., coupling of fields between sub-domains

Global constraints (functional on fields)
– Flux or circulations of fields to be fixed

e.g., current, voltage, m.m.f., charge, etc.
– Flux or circulations of fields to be connected

e.g., circuit coupling
Weak formulations for
finite element models

Essential and natural constraints, 
i.e., strongly and weakly satisfied
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Constraints in electromagnetic systems

Coupling of scalar potentials with vector fields
– e.g., in h-φ and a-v formulations

Gauge condition on vector potentials
– e.g., magnetic vector potential a, source magnetic field hs

Coupling between source and reaction fields
– e.g., source magnetic field hs in the h-φ formulation, 

source electric scalar potential vs in the a-v formulation

Coupling of local and global quantities
– e.g., currents and voltages in h-φ and a-v formulations 

(massive, stranded and foil inductors)

Interface conditions on thin regions
– i.e., discontinuities of either tangential or normal components

Interest for a 
“correct” discrete 
form of these 
constraints

Sequence of 
finite element 

spaces
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Sequence of finite element spaces

Geometric elements
Tetrahedral

(4 nodes)
Hexahedra

(8 nodes)
Prisms
(6 nodes)

Mesh

Geometric entities

Nodes
i ∈ N

Edges
i ∈ E

Faces
i ∈ F

Volumes
i ∈ V

S0 S1 S2 S3

Sequence of function spaces
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Sequence of finite element spaces

Functions Functionals Degrees of 
freedomProperties

{si ,  i ∈ N}

{si ,  i ∈ E}

{si ,  i ∈ F}

{si ,  i ∈ V}

Bases Finite elements

S0

S1

S2

S3 Volume
element

Point 
evaluation

Curve 
integral
Surface 
integral

si (x j) = δ ij
∀ i, j ∈N

si . n ds
j∫ = δ ij

∀ i, j ∈F

si dv
j∫ = δij

∀ i, j ∈V

si . dl
j∫ = δ ij

∀ i, j ∈E

Nodal
elementNodal value

Circulation 
along edge

Edge
element

Flux across 
face

Face
element

Volume 
integral

Volume 
integral

uK = φi (u) si
i

∑
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Sequence of finite element spaces

Base 
functions

Continuity across 
element interfaces

Codomains of the 
operators

S0

S1

S2

S3

S0

S1 grad S0

S2 curl S1

S3 div S2

value{si ,  i ∈ N}

tangential component{si ,  i ∈ E} grad S0 ⊂ S1

normal component{si ,  i ∈ F} curl S1 ⊂ S2

discontinuity{si ,  i ∈ V} div S2 ⊂ S3

Conformity
S0 grad →   S1 curl →   S2 div →   S3

Sequence
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Magnetodynamic problem 
with global constraints

Constitutive relations

Boundary conditions
Global conditions

for circuit couplingn × hΓh = 0 ,    n ⋅ bΓe = 0

e l⋅ =∫ d V
i

iγ
  ,       n j⋅ =∫ ds I

j
i iΓ

Inductor

Voltage Current

Equations

curl h = j

curl e = – ∂t b

div b = 0

b = µ h

j = σ e
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Weak formulations

( )a b a b,

,

Ω Ω

Γ Γ

= ⋅

=

∫

∫

def
dv

a b a b ds
def

Notations
Green formulae

involved in weak formulations

( u , grad v )Ω + ( div u , v )Ω = < n · u , v >Γ

grad - div formula

Γ = ∂Ω

Domain Ω

n

Weak global quantity of flux type

( curl u , v )Ω – ( u , curl v )Ω = < n × u , v >Γ

curl - curl formula

u, v ∈ H1(Ω), v ∈ H1(Ω)

Weak global quantity of circulation type
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h-φ and t-ω weak formulations

Magnetic scalar potential in nonconducting regions Ωc
C

(1)

hr = – grad φ  in ΩcC

∂ µ σt scurl curl
c e

( , ' ) ( , ' ) , 'h h h h n e hΩ Ω Γ+ +< × > =−1 0 ∀ ∈h' ( )Fhφ Ω

t-ω magnetodynamic formulation (similar)

with  h = hs + hr

Source magnetic field

Reaction magnetic field

φ

h-φ magnetodynamic formulation

How to couple local and global quantities ?
Vi, Iih, φ
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Current as a strong global quantity
Characterization of curl-conform vector fields : h or t

Ec : edges in Ωc

Nc
C : nodes in Ωc

C and on ∂Ωc
C

C : cuts

Elementary geometrical
entities (nodes, edges) and
global ones (groups of edges)

Basis functions
‘Circulation’ basis function,
associated with a group of edges
from a cut
→ its circulation is equal to 1 
along a closed path around Ωc

c i igrad q= −

h s v= ∈
∈∑ h Se ee E , ( )1 Ω

h s v c= + +
∈ ∈ ∈∑ ∑ ∑h Ik kk E n nn N i ii Cc c

C φ

Coupling of edge end nodal finite elements
Explicit constraints for circulations and zero curl

i.e. currents Ii
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Voltage as a weak global quantity

Discrete weak formulation

h s v c= + +
∈ ∈ ∈∑ ∑ ∑h Ik kk E n nn N i ii Cc c

C φ

∂ µ σt scurl curl
c e

( , ' ) ( , ' ) , 'h h h h n e hΩ Ω Γ+ +< × > =−1 0 ∀ ∈h' ( )Fhφ Ω

system of equations
(symmetrical matrix)

n e h n e c n e e× = × = × − = ⋅ =∫s s i s i s ih h h i
grad q dl V, ' , ,Γ Γ Γ γ

Test function  h' = sk, vn → classical treatment, no contribution for < · >Γe
Test function  h' = ci → contribution for < · >Γe

Electromotive force

Weak global quantity



12

Electromotive force

n e c e× = ⋅ =∫s i s ih
dl V, Γ γ

∂ µ σt i i icurl curl V
c

( , ) ( , )h c h cΩ Ω+ = −−1

Voltage as a weak global quantity
and circuit relations

Source of e.m.f.

in (1)

Weak circuit relation between Vi and Ii for inductor i

“ ∂t (Magnetic Flux) + Resistance × Current = Voltage ”

Natural way to compute a weak voltage !
Better than an explicit nonunique line integration
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Massive and stranded inductors

Stranded inductor

h h h= +
∈∑r s j s jj I

s
, ,Ω h ∈Fh hsφ ( )Ω

∂ µ σ σt scurl curl curl
c w

( , ' ) ( , ' ) ( , ' )h h h h j hΩ Ω Ω+ +− −1 1 +< × > =n e hs e
, ' Γ 0

Source field due to a magnetomotive force Nj
(one basis function for each stranded inductor)

Number of turns

Reaction field

Massive inductor
Direct application

Additional treatment Tree technique ...

∀ ∈h' ( )Fh hsφ Ω
h'=hs,j

∂ µ σt s j s j s j s j jI curl V
s

( , ) ( , ), , , ,h h j hΩ Ω+ =−−1

Weak circuit relation between Vj and Ij for stranded inductor j

Natural way to compute the magnetic flux through all the wires !
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Stranded inductors - Source field
h s v c= + +

∈ ∈ ∈∑ ∑ ∑h Ik kk E n nn N i ii Cc c
C φ Simplified source field

Source
Projection method

( , ') ( , '), ,, ,
curl curl curls j s js j s j

h h j hΩ Ω=

∀ ∈h ' ( ),Fh s jΩ

Electrokinetic problem

( , '), ,
σ− =1 0curl curls j s j

h h Ω

∀ ∈h ' ( ),Fh s jΩ
Source = Nj

With gauge condition (tree) & 
boundary conditions
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Stranded inductors - Magnetic flux
Physical and geometrical interpretation of the circuit relation

( , ),µ h h s j Ω

Natural way to compute 
the magnetic flux 

through all the wires !
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a-v weak formulation

e = – ∂t a – grad v  in Ωc ,   with    b = curl a  in Ω

a
Magnetic vector potential - Electric scalar potential

v

a-v magnetodynamic formulation

(1)
( , ') ( , ') ( , ')µ σ ∂ σ− + +1 curl curl grad vt c c

a a a a aΩ Ω Ω

− = ∀ ∈( , ') , ' ( )j a as as
FΩ Ω0

How to couple local and global quantities ?
a, v Vi, Ii
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Voltage as a strong global quantity

With a' = grad v' in (1)

( , ' ) ( , ' ) , 'σ ∂ σt grad v grad v grad v v
c c j

a n jΩ Ω Γ+ = < ⋅ > ∀ ∈v Fv c' ( )Ω
(2)

Weak form of  div j = 0

At the discrete level : implication only true when  grad Fv(Ωc) ⊂ Fa(Ω)

OK with nodal and edge finite elements

Otherwise : consideration of the 2 formulations (1) and (2) 
with a penalty term for gauge condition
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Voltage as a strong global quantity

v V vi
i

i j
=

∈∑ 0Γ

( , ' ) , ' ( )σ grad v grad v v F
c v c0 0Ω Ω= ∀ ∈

v s si nn j
i0 = =

∈∑ Γ
Generalized potential
(nonphysical field)

Needs a finite element 
resolution !

Direct expression

Reduced support

Unit source electric scalar potential v0
(basis function for the voltage)

Electrokinetic problem (physical field)
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Current as a weak global quantity
and circuit relations

< ⋅ > =< ⋅ > = ⋅ =∫n j n j n j, ,s ds Ii ij
i

j
i

j
iΓ Γ Γ

1
for massive inductor i

I grads grad v gradsi t i i
c c

= +( , ) ( , )σ ∂ σa Ω Ω
in (2)

I grads V grad v gradsi t i i
i i

c c
= +( , ) ( , )σ ∂ σa Ω Ω0

Weak circuit relation between Vi and Ii
for massive inductor i

Natural way to compute a weak current !
Better than an explicit nonunique surface integration
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Circuit relation for stranded inductors

I grad v V grad v grad vj t j j j js j s j
= +( , ) ( , ), , ,, ,

σ ∂ σa 0 0 0Ω Ω

From the a-formulation
cannot be used

From the h-formulation
∂ µ σt s j j s j s j jI curl V

s j
( , ) ( , ), , , ,

h h j hΩ Ω+ = −−1

∂ µ ∂ ∂t s j t s j t s jcurl( , ) ( , ) ( , ), , ,h h b h a hΩ Ω Ω= =

∂ µ ∂ ∂ ∂Ωt s j t s j t s jcurl( , ) ( , ) ,, , ,h h a h n a hΩ Ω= + < × >

∂ µ ∂ ∂t s j t s j t s j s j( , ) ( , ) ( , ), , , ,h h a j a jΩ Ω Ω= =

∂ σt s j j s j s j js j s j
I V( , ) ( , ), , ,, ,

a j j jΩ Ω+ = −−1

Weak circuit relation between Vj and Ij
for massive inductor j
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Equivalent current density (1)

Explicit distribution of the current density

j t w ws
j

j

def
unit

N
S

I= = =

∂t s j jd R I V
s
a w⋅ + = −∫ Ω

Ω
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Equivalent current density (2)

Source electric vector potentialSource electric scalar potential

Source Source
Projection methodProjection method

( , ') ( , '), ,, ,
curl curl curls j s js j s j

h h j hΩ Ω=( , ') ( , ')
, ,

σ grad v grad v grad v
s j s js0 0Ω Ω= −j

∀ ∈v Fv s j' ( ),Ω ∀ ∈h ' ( ),Fh s jΩ

( , '), ,
σ− =1 0curl curls j s j

h h Ω

∀ ∈h ' ( ),Fh s jΩ

With gauge condition (tree) & 
boundary conditions

Electrokinetic problem

( , ') , '
, ,

σ grad v grad v v
s j J js0 Ω Γ= < ⋅ >n j

SourceElectrokinetic problem

∀ ∈v Fv s j' ( ),Ω
Source = Nj

Tensorial conductivity
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Application - Massive inductor
Inductor-Core system in air 
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Computation of resistance 
and inducance

Complementarity between a-v and h-φ
formulations → validation at global level
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Application - Stranded inductor
Inductor-Core system in air µr,core = 10

Computation of reaction field, total field 
and inducance
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Complementarity between h-φ and a-v
formulations → validation at global level
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Application
Inductor-Core system in air 
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Application
Inductor-Core system in air 

Computation of the inductance
3D coil
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Complementarity between a-v and h-φ
formulations → validation at global level
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Foil winding circuit relations

Foil winding and 
its continuous representation

coordinate α

βγβγ ΩΩ
α

σ+∂σ= )vgrad,vgrad(V)vgrad,(I
L
N

i,si,sii,sti
f a

Circuit relation for one foil

∫
αΩ

α
αα− d)('VI

L
N

i
f

αβγΩα∂σ+ )vgrad)('V,( i,sta

0)vgrad)('V,vgrad()(V i,si,si =ασα+
αβγΩ

])L,0([IR)('V α∈α∀

# turns

)(VV ii α=

Continuum for Vi(α) and weak form of circuit relation

Limited 
support of vs,i !

Domain of the foil

Voltage
Total thickness of all the foils

Whole foil region

Need of basis functions for Vi(α)
(polynomial or 1D finite element

approximations)
! Anisotropic conductivity !
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Spatially dependent global quantities
Foil Inductor-Core system in air 
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Voltage of the foils in an n-foil 3D winding (n = 6, 12, 18) and 
its continuum in the associated foil region approximated by 
complete and piecewise polynomials
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Conclusions - Global quantities

General method for the definition of global quantities
– natural coupling between local quantities (scalar and vector fields) and 

global quantities (flux and circulation)

– for various formulations of various physical problems

– for all kinds of geometrical models (2D, 3D)

– for linear or nonlinear material characteristics

– for various finite elements (geometry and degree)

For efficient treatment of coupled problems 
– within a finite element problem

– through external lumped circuits
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Conclusions - h-φ formulation

h-φ magnetodynamic finite element formulations with 
massive and stranded inductors
Use of edge and nodal finite elements for h and φ

– Natural coupling between h and φ
– Definition of current in a strong sense with basis functions either for massive 

or stranded inductors
– Definition of voltage in a weak sense
– Natural coupling between fields, currents and voltages
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Conclusions - a-v formulation

a-v0 Magnetodynamic finite element formulation with 
massive and stranded inductors 
Use of edge and nodal finite elements for a and v0

– Definition of a source electric scalar potential v0 in massive inductors in an 
efficient way (limited support)

– Natural coupling between a and v0 for massive inductors
– Adaptation for stranded inductors: several methods
– Natural coupling between local and global quantities, i.e. fields and currents 

and voltages
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