Dual Finite Element Formulations and Associated Global Quantities for Field-Circuit Coupling

Edge and nodal finite elements allowing natural coupling of fields and global quantities

Patrick Dular, Dr. Ir., Research associate F.N.R.S. Dept. of Electrical Engineering - University of Liège - Belgium Patrick.Dular@ulg.ac.be

Constraints in partial differential problems

* Local constraints (on local fields)

- Boundary conditions
 - i.e., conditions on local fields on the boundary of the studied domain
- Interface conditions
 - e.g., coupling of fields between sub-domains

***** Global constraints (functional on fields)

- Flux or circulations of fields to be fixed
 - e.g., current, voltage, m.m.f., charge, etc.
- Flux or circulations of fields to be connected
 - e.g., circuit coupling

Weak formulations for finite element models

Essential and natural constraints, i.e., strongly and weakly satisfied

Constraints in electromagnetic systems

* Coupling of scalar potentials with vector fields

- e.g., in h-\phi and a-v formulations

* Gauge condition on vector potentials

- e.g., magnetic vector potential a, source magnetic field h_s

***** Coupling between source and reaction fields

- e.g., source magnetic field h_s in the h- ϕ formulation, source electric scalar potential v_s in the a-v formulation

* Coupling of local and global quantities

 e.g., currents and voltages in h-φ and a-v formulations (massive, stranded and foil inductors)

* Interface conditions on thin regions

- i.e., discontinuities of either tangential or normal components

Interest for a "correct" discrete form of these constraints

Sequence of finite element spaces

Sequence of finite element spaces

	Functions	Properties	Functionals	Degrees of freedom	
S ⁰	$\{s_i, i \in N\}$	$s_i(x_j) = \delta_{ij} \delta_{ij \in N}$	Point evaluation	Nodal value	Nodal element
S ¹	$\{\mathbf{s}_i, i \in E\}$	$\int_{j} \mathbf{s}_{i} \cdot d\mathbf{l} = \delta_{ij}$	Curve integral	Circulation along edge	Edge element
S ²	$\{\mathbf{s}_i, i \in F\}$	$\int_{j} \mathbf{s}_{i} \cdot \mathbf{n} d\mathbf{s} = \delta_{ij}_{\forall i,j \in F}$	Surface integral	Flux across face	Face element
S ³	$\{s_i^{},i\in V\}$	$\int_{j} s_i dv = \delta_{ij}_{\forall i,j \in V}$	Volume integral	Volume integral	Volume element
	ł	-)	
Bases $u_{K} = \sum_{i} \phi_{i}(u) s_{i}$ Finite elements					

Sequence of finite element spaces

	Base functions	Continuity across element interfaces	Codomains of the operators
S ⁰	$\{s_i, i \in N\}$	value	S ⁰
S ¹	$\{\mathbf{s}_i, i \in E\}$	tangential component	grad $S^0 \subset S^1$
S ²	$\{\mathbf{s}_i, i \in F\}$	normal component	curl S ¹ \subset S ²
S ³	$\{s_i, i \in V\}$	discontinuity	div S ² \subset S ³ div S ²
		Conformity	Sequence
			$S^0 \xrightarrow{\text{grad}} S^1 \xrightarrow{\text{curl}} S^2 \longrightarrow$

Magnetodynamic problem with global constraints

Weak formulations

h- ϕ and t- ω weak formulations

Current as a strong global quantity

Characterization of curl-conform vector fields : h or t

Voltage as a weak global quantity

Discrete weak formulation

Test function $\mathbf{h'} = \mathbf{s}_k, \mathbf{v}_n \rightarrow \text{classical treatment, no contribution for } < \cdot >_{\Gamma_e}$ Test function $\mathbf{h'} = \mathbf{c}_i \rightarrow \text{contribution for } < \cdot >_{\Gamma_e}$

$$\langle \mathbf{n} \times \mathbf{e}_{s}, \mathbf{h}' \rangle_{\Gamma_{h}} = \langle \mathbf{n} \times \mathbf{e}_{s}, \mathbf{c}_{i} \rangle_{\Gamma_{h}} = \langle \mathbf{n} \times \mathbf{e}_{s}, -\operatorname{grad} q_{i} \rangle_{\Gamma_{h}} = \oint_{\gamma_{i}} \mathbf{e}_{s} \cdot d\mathbf{l} = \mathbf{V}_{i}$$

Electromotive force

Weak global quantity

Voltage as a weak global quantity and circuit relations

" $\partial_t (Magnetic Flux) + Resistance \times Current = Voltage"$

Natural way to compute a weak voltage ! Better than an explicit nonunique line integration

Massive and stranded inductors

Stranded inductors - Source field

Stranded inductors - Magnetic flux

Physical and geometrical interpretation of the circuit relation

a-v weak formulation

a-v magnetodynamic formulation

 $(\mu^{-1}\operatorname{curl} \mathbf{a}, \operatorname{curl} \mathbf{a}')_{\Omega} + (\sigma \partial_t \mathbf{a}, \mathbf{a}')_{\Omega_c} + (\sigma \operatorname{grad} \mathbf{v}, \mathbf{a}')_{\Omega_c} - (\mathbf{j}_s, \mathbf{a}')_{\Omega_s} = 0, \quad \forall \mathbf{a}' \in F_a(\Omega)$ (1)

How to couple local and global quantities ? a, v V_i , I_i

Voltage as a strong global quantity

With a' = grad v' in (1)

 $(\sigma \partial_t \mathbf{a}, \operatorname{grad} \mathbf{v}')_{\Omega_c} + (\sigma \operatorname{grad} \mathbf{v}, \operatorname{grad} \mathbf{v}')_{\Omega_c} = \langle \mathbf{n} \cdot \mathbf{j}, \mathbf{v}' \rangle_{\Gamma_j}$

Weak form of div j = 0

 $\forall v' \in F_v(\Omega_c)$

(2)

At the discrete level : implication only true when $\operatorname{grad} F_v(\Omega_c) \subset F_a(\Omega)$

OK with nodal and edge finite elements

Otherwise : consideration of the 2 formulations (1) and (2) with a penalty term for gauge condition

Voltage as a strong global quantity

Current as a weak global quantity and circuit relations

$$<\mathbf{n} \cdot \mathbf{j}, s^{i} >_{\Gamma_{j}^{i}} = <\mathbf{n} \cdot \mathbf{j}, 1 >_{\Gamma_{j}^{i}} = \int_{\Gamma_{j}^{i}} \mathbf{n} \cdot \mathbf{j} \, ds = I_{i}$$

in (2)
$$I_i = (\sigma \partial_t \mathbf{a}, \operatorname{grad} s^i)_{\Omega_c} + (\sigma \operatorname{grad} v, \operatorname{grad} s^i)_{\Omega_c}$$

$$I_i = (\sigma \partial_t \mathbf{a}, \operatorname{grad} s^i)_{\Omega_c} + V_i (\sigma \operatorname{grad} v_0^i, \operatorname{grad} s^i)_{\Omega_c}$$

Weak circuit relation between V_i and I_i for massive inductor i

Natural way to compute a weak current ! Better than an explicit nonunique surface integration

Circuit relation for stranded inductors

From the a-formulation

$$I_{j} = (\sigma \partial_{t} \mathbf{a}, \operatorname{grad} \mathbf{v}_{0,j})_{\Omega_{s,j}} + V_{j} (\sigma \operatorname{grad} \mathbf{v}_{0,j}, \operatorname{grad} \mathbf{v}_{0,j})_{\Omega_{s,j}}$$
 cannot be used

From the h-formulation

$$\partial_{t}(\mu \mathbf{h}, \mathbf{h}_{s,j})_{\Omega} + I_{j}(\sigma^{-1} \mathbf{j}_{s,j}, \operatorname{curl} \mathbf{h}_{s,j})_{\Omega_{s,j}} = -V_{j}$$

$$\partial_{t}(\mu \mathbf{h}, \mathbf{h}_{s,j})_{\Omega} = \partial_{t}(\mathbf{b}, \mathbf{h}_{s,j})_{\Omega} = \partial_{t}(\operatorname{curl} \mathbf{a}, \mathbf{h}_{s,j})_{\Omega}$$

$$\partial_{t}(\mu \mathbf{h}, \mathbf{h}_{s,j})_{\Omega} = \partial_{t}(\mathbf{a}, \operatorname{curl} \mathbf{h}_{s,j})_{\Omega} + \partial_{t} < \mathbf{n} \times \mathbf{a}, \mathbf{h}_{s,j} >_{\partial\Omega}$$

$$\partial_{t}(\mu \mathbf{h}, \mathbf{h}_{s,j})_{\Omega} = \partial_{t}(\mathbf{a}, \operatorname{curl} \mathbf{h}_{s,j})_{\Omega} = \partial_{t}(\mathbf{a}, \mathbf{j}_{s,j})_{\Omega} = \partial_{t}(\mathbf{a}, \mathbf{j}_{s,j})_{\Omega}$$

$$\partial_t (\mathbf{a}, \mathbf{j}_{s,j})_{\Omega_{s,j}} + I_j (\sigma^{-1} \mathbf{j}_{s,j}, \mathbf{j}_{s,j})_{\Omega_{s,j}} = -V_j$$

Weak circuit relation between V_j and I_j for massive inductor j

Equivalent current density (1)

Explicit distribution of the current density

$$\mathbf{j}_{s} = \frac{N_{j}}{S_{j}} \mathbf{t}^{def} = \mathbf{w} = \mathbf{w} I_{unit}$$

$$\partial_t \int_{\Omega_s} \mathbf{a} \cdot \mathbf{w} \, d\Omega_s + R \, \mathbf{I}_j = -V_j$$

Equivalent current density (2)

Application - Massive inductor

Inductor-Core system in air

Application - Stranded inductor

Inductor-Core system in air

 $\mu_{r,core} = 10$

24

Application

Application

Inductor-Core system in air

Computation of the inductance

3D coil

Axisymmetrical coil

Complementarity between a-v and h- ϕ formulations \rightarrow validation at global level

Foil winding circuit relations

Spatially dependent global quantities

Foil Inductor-Core system in air

Voltage of the foils in an n-foil 3D winding (n = 6, 12, 18) and its continuum in the associated foil region approximated by complete and piecewise polynomials

Conclusions - Global quantities

* General method for the definition of global quantities

- natural coupling between local quantities (scalar and vector fields) and global quantities (flux and circulation)
- for various formulations of various physical problems
- for all kinds of geometrical models (2D, 3D)
- for linear or nonlinear material characteristics
- for various finite elements (geometry and degree)

* For efficient treatment of coupled problems

- within a finite element problem
- through external lumped circuits

Conclusions - h- ϕ formulation

* h-\u00f6 magnetodynamic finite element formulations with massive and stranded inductors

 $\boldsymbol{\ast}$ Use of edge and nodal finite elements for h and $\boldsymbol{\phi}$

- Natural coupling between h and ϕ
- Definition of current in a strong sense with basis functions either for massive or stranded inductors
- Definition of voltage in a weak sense
- Natural coupling between fields, currents and voltages

Conclusions - a-v formulation

- a-v₀ Magnetodynamic finite element formulation with massive and stranded inductors
- $\boldsymbol{\ast}$ Use of edge and nodal finite elements for a and \boldsymbol{v}_0
 - Definition of a source electric scalar potential v₀ in massive inductors in an efficient way (limited support)
 - Natural coupling between a and v_0 for massive inductors
 - Adaptation for stranded inductors: several methods
 - Natural coupling between local and global quantities, i.e. fields and currents and voltages