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Constraints in partial differential
problems

« Local constraints (on local fields)
— Boundary conditions
¢ i.e., conditions on local fields on the boundary of the studied domain
— Interface conditions

¢ e.g., coupling of fields between sub-domains

+ Global constraints (functional on fields)

— Flux or circulations of fields to be fixed

¢ e.g., current, voltage, m.m.f., charge, etc.

— Flux or circulations of fields to be connected [Weak formulations forJ

s e.g., circuit coupling finite element models

Essential and natural constraints, “
i.e., strongly and weakly satisfied




Constraints in electromagnetic systems

« Coupling of scalar potentials with vector fields

— e.g., in h-¢ and a-v formulations

+ Gauge condition on vector potentials

— e.g., magnetic vector potential a, source magnetic field h

+ Coupling between source and reaction fields

— e.g., source magnetic field h_ in the h-¢ formulation,
source electric scalar potential v, in the a-v formulation

« Coupling of local and global quantities

— e.g., currents and voltages in h-¢ and a-v formulations
(massive, stranded and foil inductors)

+ Interface conditions on thin regions

— l.e., discontinuities of either tangential or normal components

~
Interest for a

“correct” discrete
form of these
constraints

~

~
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Sequence of finite element spaces
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Sequence of finite element spaces
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Sequence of finite element spaces

Base Continuity across Codomains of the
functions element interfaces operators
SO | {s., i e N} value ,
SO
S'|| {s;, ie E} tangential component grad SO c S! < b
S' [ oradS° |
S?|| {s,, ieF} normal component curl St §? < b
S2 [ curlS! |
S3|| {s;, ie V} discontinuity divS?cS3 < b
S L divs? ]
[ Conformity ] (Sequencej

[So grad >S1 curl >Sz div >S?,




Magnetodynamic problem
with global constraints

[ Equations ]_\ [ Boundary conditions } -

. B B Global conditions
curlh =] nxh| =0, n-b | r.=0 for circuit coupling J
CurleZ—ﬁtb j edl:\]1 , jri n‘de:Ii V
) Ti '
divb=0 ) \ Voltage \ J / Current

Constitutive relations

b:Hh QcC

[ Inductor]




Weak formulations

] [ Notations ]d - N
Green formulae - :
[ lJ involved in weak formulations ] ( a,b )Q JQ a-b dv
def
(a,b)p = '[Fa b ds
[ grad - div formula ] - o
(u,gradv)gﬂdivu,v)g} =00 “/
[ Weak global quantity of flux type ] « Domain €

- J

[ curl - curl formula ]
(curlu,v)g(u,curlv)gl

\ [ Weak global quantity of circulation type ]

u, v e H(Q), v e H(Q)




h-¢ and t-o weak formulations

[ Magnetic scalar potential in nonconducting regions Q_© ]

4]

~=—grad¢ in QFC with h=h +h,
\ ™~ Reaction magnetic field

[ h-¢ magnetodynamic formulation ] Source magnetic field

0;(uh,h' ) +(o~Lcurlh,curlh' )o, +<nxegh'>p =0 Vh' € Fpy (Q)

[

[ t-o magnetodynamic formulation (similar) ]

How to couple local and global quantities ? ]

Ih,(])l |Vi,lil




Current as a strong global quantity

[ Characterization of curl-conform vector fields : hor t ]

[h — Z Lhese, ve SL(Q) Coupling of edge end nodal finite elements
ce
Explicit constraints for circulations and zero curl

\ ( h= ZkeEc hy Sk+\Z:neNCC n Vp + ZieC i & \[ I.e. currents Ii

”~
\ D N o
E_:edgesin € Basis functions ™
N € - nodes in O € and on OO € ‘Circulation’ basis function,
C: cuts associated with a group of edges

Y, Transition layer of qi

from a cut

— 1ts circulation is equal to 1

along a closed path around Q_
ac ¢; = —grad q; Elementary geometrical

r entities (nodes, edges) and
\ global ones (groups of edges)

Cut Ieci
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Voltage as a weak global quantity

[ Discrete weak formulation ]

[ 0;(uh,h' ) +(o~Lcurlh,curlh )Qc +< nxey,h' > = 0 Vh' € Fp, () ]

) \
[ h = ZkeEc hy sy + ZneNCC Gp Vo + ZieC Ii ¢ J [system of equations J

/ (symmetrical matrix)

[Tes‘[ function h'=s,, v. — classical treatment, no contribution for < - T }

Test function h'=¢, — contribution for <- >

€

i

[<nxessh'\>rh =<n><eS/,cQﬂh :<n><es,—/g‘radch,>rh Zﬁy

l Electromotive force ]

es-dlei ]

[ Weak global quantity ]




Voltage as a weak global quantity
and circuit relations

[ Source of e.m.f. ]

\ O(1h,ci)q + (o~ Leurlh,curle)) =-V;

[ Weak circuit relation between V; and |. for inductor i ]

“0; (Magnetic Flux)+ Resistance x Current = Voltage™

Natural way to compute a weak voltage !
Better than an explicit nonunique line integration |




Massive and stranded inductors

[Massive inductor] ] .
{ Direct application ]

[ Stranded inductor} —
\ ( Additional treatment } T :
\ \ ree technique ...
h=h,+ \J‘GQ - h. h € Fygn_(Q) / Numbel<f turns
Reaction field Source field due to a magnetomotive force N;
(one basis function for each stranded inductor)

('3 (Mh,h' ) (G—lcurlh,curlh' ) (G_Ij ,curlh’ ) < nxe ,h' >r = O
t ot ot S ot s> >
vh'e Fh(l)hs (Q)

h':hs‘
)
-1 .
\ a‘[(“hﬂhs,j)Q_I_Is,j (G Js,jacurlhs,j)QS:—Vj

[ Weak circuit relation between V; and |, for stranded inductor j ]

[ Natural way to compute the magnetic flux through all the wires ! ]13




Stranded inductors - Source field

[ h= ZkeEc hy sy +Mn + ZieC I; ¢; J Simplified source field

[ Projection method ] /

Source

(curl hs,j ,curl hv)QS,j — (j S,j ,Curl h')Qs,j

Vh'EFh (QS,J)

[ Electrokinetic problem ]

Lo ol &‘ (! curlhg j.curlh’)q =0
BRI IR AN /' wheR @)
o A Source = N;
< N RRENAA NG
AL With gauge condition (tree) &
LY J//\L i \i XLZ l Vo boundary conditions




Stranded inductors - Magnetic flux

[ Physical and geometrical interpretation of the circuit relation ]

(H hahs,j)Q

p
Natural way to compute
the magnetic flux

5 through all the wires !

:n4 N_fnl_nz
T T Tm&
® | ®"
N N N N-nj

n3 Total m.m.f.: N=n1+n2+N3+n4

O=M+2)+BG)+®

(3)
o n
........... @)
®n2 R
L. n4

Superposition of local edges:
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a-v weak formulation

[ Magnetic vector potential - Electric s

a

D ——

e=—0,a—gradv inQ,, with b=curla

calar potential
I \'; ’

n Q ]

[ a-v magnetodynamic formulation ]

(™" curla,curla)g+(cd,a,a")q_+(ogradv,a’)g

—(Js.a)q, =0, Va'eF,(Q)

4y

How to couple local and global quantities ? ]

Ia,vl |Vi,lil
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Voltage as a strong global quantity

| With a' = grad v' in (1) |

\

2
(c0a,grad V')QC +(o grad v,grad V')Qc =<n- j,V’>1—j Vv'eF,(Q,) @

[ Weak form of divj=0 ]

{ At the discrete level : implication only true when grad F,(Q))) c F,(Q) ]

[ OK with nodal and edge finite elements ] “

Otherwise : consideration of the 2 formulations (1) and (2)
with a penalty term for gauge condition

17



Voltage as a strong global quantity

Vs

Unit source electric scalar potential v,

Needs a finite element J

N

resolution !

(basis function for the voltage)

_ i 1
\ V= Zierj Vi vy

[ Electrokinetic problem (physical field) ]

(o grad v ,gradv')Qc =0, Vv eF,(Q,)

\

y

N

Generalized potential

vy =8l = .S
(nonphysical field) 0 Znerj !

)

N PAVAVAVA
PORROOER P8
RO NAAADRN
RARPORRARPARAZA AN, 2 Transition
Ky PR 7 Vo layer
§§§¥ Eﬁ'ﬁ‘ﬁ vo=1 0<vp<1
R ke
o i R
’%ié'% ﬁ}%ﬁ% vo=0 Cross-
& <> .
NV K
oo s KRR section
SRR
LORRRRAAPORRE

[ Direct expression J
3\

Reduced support




Current as a weak global quantity
and circuit relations

\‘ {for massive inductor i ]

<n-j,si>pi=<n-j,1>p= Iri n-jds=1;
J J i
J

\ I.=(c 8ta,gradsi)gC +(c5gradv,gradsi)QC

‘ I; =(c0;a,grads!)q_+V; (cgrad Vo' ,gradst)q

Weak circuit relation between V; and |.
for massive inductor i

Natural way to compute a weak current !
Better than an explicit nonunique surface integration |




Circuit relation for stranded inductors

From the a-formulation

I;= (c0:a,grad vy - - ad vy ; 9gradv0,j)Qs,j [ cannot be used ]

From the h-formulation

_1 .
Or(hhg o +15(0™ s jeurlhg g ==V

\ O¢(nhhg 1) = 0¢(bhg ;) = 0 (curlahg j)q
\ O¢(nhhg ;) =0y (acurlhg ;)q + 0y <nxahg; >50

\ Oy(nhhg o =01 (ajs o = 0 (ais o ;

. -1 . .
\ at(aa.ls,j)Qs’j +Ij (o .]s,ja.]s,j)Qs,j = _Vj

Weak circuit relation between Vj and Ij
for massive inductor j
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Equivalent current density (1)

[ Explicit distribution of the current density ]

N. def
js=—2t=w=wlI

unit
Sj

\ ﬁth a-w dQS-i-RIj:—Vj

21



Equivalent current density (2)

[ Source electric scalar potential ] [ Source electric vector potential ]
[ Projection method ] Source [ Projection method ] Source
(o grad v ,grad V')QS’J_ =(—js(:,/grad V')Qs,j (curlhg j.curlh)q _(js,jélh')ﬂs,j
Vv'eF, (Q ) Vh'eF, (Q ;)
[ Electrokinetic problem ] / Source [ Electrokinetic problem ]
(cgradvy.gradv)g_ =<n-js,v>r, (o~ curlhg jcurlh)g_ =0
Vv'eF, (Q ;) / Vh'eF, (g ;)
Source = N,

J

[ Tensorial conductivity ]

I With gauge condition (tree) &
boundary conditions
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Application - Massive inductor

Inductor-Core system in air ]

Surf bn0

/

Inductor

(b)

QO
Cut" "~ Surf htO
e core = 1, 10, 100, 6= 5.9 10’'m S/m
Frequency f= 50, 200 Hz

Computation of resistance

and inducance

/

Complementarity between a-v and h-¢

formulations — validation at global level

Resistance R (uQ/m)

Inductance L (uH/m)
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Application - Stranded inductor

Inductor-Core system in air ]

[ Computation of a source field J

Computation of reaction field, total field
and inducance

7 AN

4

J

Complementarity between h-¢ and a-v
formulations — validation at global level

~N

J/

Inductance L (H/m)

Mr core - 10
T Ly, s e
NI ey
N rY
11 /[///////,/// - .
v /'/////, -
e
Lo /////, s
Ny NG
111////////////, R
l Z / / /: > \\\\\ N
WL
1 l / // // :/ p L //’k":\ N \\\\\\ \\
l 1 1 // =7, // =N \\\\ AN
1 l J j[[/ ://: //////i\\\\\\\;\\\i\\\ (SRR
TN 7 St AN
| { //f// e \\\\\ Wx AR
LB E A s
Voo UH’l’HI
3.2
3 -
e . h-form., ;=100
28 o O mmmm e 5o E— —a:f(;n;]jllr;iob ——————————————————— 8
26 F 75 - h-form., p, =10
"""""""" ettt F et TSRS
2.4 | B e a-form., =10
22+
2 b
18 -
1.6 | h-form., p=1
\*\*\,_,‘
1.4 Fx” o a-form., p=1
12 10‘00 zdoo 3c;oo 5060 ec;oo

4
Number of elements
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Application

[ Inductor-Core system in air ]

“r,core

6=5.910"m S/m shield

z=100mm —

Core

T

/

I

x=50mm

I A A |
T 7

x=75mm %=100mm

x=200mm || x=201.6mm

(1/16th)

Enforcement of the current Ij

14

/

formulations — validation at local level

Complementarity between h-¢ and a-v ]
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Application

Inductance L (H/m)

[ Inductor-Core system in air ]

[ Computation of the inductance ] B
CO1
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formulations — validation at global level
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Foil winding circuit relations

[ Circuit relation for one foil ] _, Domain of the foil
N
A’ L_fIi:(csata,gradvs,i)QBy +V;(ogradvy ; ,gradvs,i)QBy V. =V (a)
(04
# turns N —_—
Voltage [ Continuum for V;(a) and weak form of circuit relation ]
Total thickness of all the foils
N
— __fIi fQ V'(a)do +(cs@ta,V'(oc)gratdvs,i)gmBY
Foil winding and ] o *
its continuous representation J + V(@) (ogradvg ;,V' (Oﬁ)grast,i)QaBy ~0
ey e
N VV'(a) e IR([0,L,])
AR TRY \ L 1 _J
B Transition
vs,i=0 \ I layer /
vs,i=1 ! 0<vg;< 1 Whole foil region
~T2NN coordinate|o
'd I A . .
vs,i=0 |/ N Cross- Need of basis functions for V,(a)
N/ Iy section (polynomial or 1D finite element
F— . .
/) MY Limited approximations)
/// v/ support of v . | | . . PR
Foils ~ " pportotv; ! I Anisotropic conduct1v1ty o7

- J




Spatially dependent global quantities

[ Foil Inductor-Core system in air ]

0.36

0.35

0.34
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0.29

0.28
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0.26

)

Global voltage - 0 order poly. -
Global voltage - 1st order poly. --------
Global voltage - 2nd order poly. ----—---

Global voltage - 3rd order poly. ———

Massive foils (6)  *
Massive foils (12) O

| | I\/IassiveI foils (18)

10 15 20
Position a (mm)

Voltage of the foils in an n-foil 3D winding (n =6, 12, 18) and
its continuum in the associated foil region approximated by
complete and piecewise polynomials
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Conclusions - Global quantities

« General method for the definition of global quantities

— natural coupling between local quantities (scalar and vector fields) and

global quantities (flux and circulation)
— for various formulations of various physical problems
— for all kinds of geometrical models (2D, 3D)
— for linear or nonlinear material characteristics

— for various finite elements (geometry and degree)

+ For efficient treatment of coupled problems

— within a finite element problem

— through external lumped circuits
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Conclusions - h-¢ formulation

<+ h-¢ magnetodynamic finite element formulations with
massive and stranded inductors

«+ Use of edge and nodal finite elements for h and ¢

— Natural coupling between h and ¢

— Definition of current in a strong sense with basis functions either for massive
or stranded inductors

— Definition of voltage in a weak sense

— Natural coupling between fields, currents and voltages
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Conclusions - a-v formulation

+ a-v, Magnetodynamic finite element formulation with
massive and stranded inductors

+ Use of edge and nodal finite elements for a and v,

— Definition of a source electric scalar potential v, in massive inductors in an
efficient way (limited support)

— Natural coupling between a and v, for massive inductors
— Adaptation for stranded inductors: several methods

— Natural coupling between local and global quantities, i.e. fields and currents
and voltages
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