Propagation of acoustic waves in fractal networks

Adrien SEMIN
Joint work with Patrick JOLY

MFO, 16 February 2009
Outline

- Introduction
- Equivalent boundary conditions
 - Notations
 - Helmholtz problem
 - Time-domain problem
- Numerical results
- Conclusion
Introduction

- Goal: study the propagation of acoustic waves in a network of slots.
Introduction

- Goal: study the propagation of acoustic waves in a network of slots.

- Our context:
 - slots are thin slots (width is smaller than wavelength),
 - great number of slots.
Introduction

- Goal: study the propagation of acoustic waves in a network of slots.

- Our context:
 - slots are thin slots (width is smaller than wavelength),
 - great number of slots.

- An application: propagation of acoustic waves in humans lungs (to detect crackles).
 - 23 generations,
 - over than 8 million slots,
 - the geometry is «almost» self similar.
Introduction

- Goal: study the propagation of acoustic waves in a network of slots.
- Our context:
 - slots are thin slots (width is smaller than wavelength),
 - great number of slots.
- An application: propagation of acoustic waves in humans' lungs (to detect crackles).
 - 23 generations,
 - over than 8 million slots,
 - the geometry is «almost» self similar.
- Hypothesis:
 - the number of generations is infinite,
 - self-similarity after a generation n_0.

Molding obtained by Ewald R. Wiebel, University of Berne, Switzerland
Introduction

- Goal: study the propagation of acoustic waves in a network of slots.
- Our context:
 - slots are thin slots (width is smaller than wavelength),
 - great number of slots.
- An application: propagation of acoustic waves in humans lungs (to detect crackles).
 - 23 generations,
 - over than 8 million slots,
 - the geometry is «almost» self similar.
- Hypothesis:
 - the number of generations is infinite,
 - self-similarity after a generation n_0.

These will permit us to construct equivalent boundary conditions.

Molding obtained by Ewald R. Wiebel, University of Berne, Switzerland

Modelling the problem

- Two aspects of modelling:
Modelling the problem

- Two aspects of modelling:
- Use simplified 1D models, with junctions conditions at nodes:
 - Standard Kirchhoff conditions ($O(\delta)$)

\[u_i = u_j \quad \text{and} \quad \sum a_i \frac{\partial u_i}{\partial s_i} = 0 \]

Modelling the problem

- Two aspects of modelling:
 - use simplified 1D models, with junctions conditions at nodes:
 - standard Kirchhoff conditions \((O(\delta))\)
 \[u_i = u_j \quad \text{and} \quad \sum a_i \frac{\partial u_i}{\partial s_i} = 0 \]
 - improved Kirchhoff conditions \((O(\delta^2))\)
Modelling the problem

- Two aspects of modelling:

- Use simplified 1D models, with junction conditions at nodes:
 - Standard Kirchhoff conditions \(O(\delta) \)
 \[
 u_i = u_j \quad \text{and} \quad \sum a_i \frac{\partial u_i}{\partial s_i} = 0
 \]
 - Improved Kirchhoff conditions \(O(\delta^2) \)

- Exploit self-similarity to construct equivalent boundary conditions (object of this talk)

We take Σ a finite segment of length 1.
Definition of a self-similar p-adyce tree

- We take Σ a finite segment of length 1.
- We take p strictly contractant direct similitudes s_i of amplitude $\alpha_i < 1$.
We define, for \(n \geq 0 \) and \(0 \leq j < p^n \):

- We take \(\Sigma \) a finite segment of length 1.
- We take \(p \) strictly contractant direct similitudes \(s_i \) of amplitude \(\alpha_i < 1 \).
Definition of a self-similar p-adyc tree

- We take Σ a finite segment of length 1.
- We take p strictly contractant direct similitudes s_i of amplitude $\alpha_i < 1$.
- We define, for $n \geq 0$ and $0 \leq j < p^n$:
 $$e_{0,0} = \Sigma$$

Example with $p=2$.

We take Σ a finite segment of length 1. We take p strictly contractant direct similitudes s_i of amplitude $\alpha_i < 1$. We define, for $n \geq 0$ and $0 \leq j < p^n$:

$$e_{0,0} = \Sigma$$
We define, for \(n \geq 0 \) and \(0 \leq j < p^n \):

- We take \(\Sigma \) a finite segment of length 1.
- We take \(p \) strictly contractant direct similitudes \(s_i \) of amplitude \(\alpha_i < 1 \).
- We define, for \(n \geq 0 \) and \(0 \leq j < p^n \):

 \[
 e_{0,0} = \sum \\
 e_{1,k} = s_{k+1}(e_{0,0})
 \]

Example with \(p = 2 \).
We define, for $n \geq 0$ and $0 \leq j < p^n$:

- We take Σ a finite segment of length 1.
- We take p strictly contractant direct similitudes s_i of amplitude $\alpha_i < 1$.
- We define, for $n \geq 0$ and $0 \leq j < p^n$:

$$e_{0,0} = \sum$$
$$e_{1,k} = s_{k+1}(e_{0,0})$$
$$e_{n+1,pj+k} = s_{k+1}(e_{n,j})$$

Example with $p=2$.

Adrien SEMIN
Propagation of acoustic waves in fractal networks
5
Definition of a self-similar p-adyc tree

- We take Σ a finite segment of length 1.
- We take p strictly contractant direct similitudes s_i of amplitude $\alpha_i < 1$.
- We define, for $n \geq 0$ and $0 \leq j < p^n$:

 $\begin{align*}
 e_{0,0} &= \Sigma \\
 e_{1,k} &= s_{k+1}(e_{0,0}) \\
 e_{n+1,pj+k} &= s_{k+1}(e_{n,j})
 \end{align*}$
- We define the generation G_n as

 $G_n = \bigcup_{j=0}^{p^n-1} e_{n,j}$

Example with $p=2$.
We define, for \(n \geq 0 \) and \(0 \leq j < p^n \):

- \(e_{0,0} = \Sigma \)
- \(e_{1,k} = s_{k+1}(e_{0,0}) \)
- \(e_{n+1,pj+k} = s_{k+1}(e_{n,j}) \)

We define the generation \(G_n \) as

\[
G_n = \bigcup_{j=0}^{p^n-1} e_{n,j}
\]

We define the partial tree \(\mathcal{T}_n \) as

\[
\mathcal{T}_n = \bigcup_{m=0}^{n} G_m
\]
Definition of a self-similar p-adyce tree

- We take Σ a finite segment of length 1.
- We take p strictly contractant direct similitudes s_i of amplitude $\alpha_i < 1$.
- We define, for $n \geq 0$ and $0 \leq j < p^n$:
 \[
 e_{0,0} = \Sigma \\
 e_{1,k} = s_{k+1}(e_{0,0}) \\
 e_{n+1,pj+k} = s_{k+1}(e_{n,j})
 \]
- We define the generation G_n as
 \[
 G_n = \bigcup_{j=0}^{p^n-1} e_{n,j}
 \]
- We define the partial tree T_n as
 \[
 T_n = \bigcup_{m=0}^{n} G_m
 \]
- Finally, we define the p-adyce tree T as the limit of T_n when n tends to ∞.

Example with $p=2$.

\begin{itemize}
 \item [] \text{G}_0
 \item [] \text{e}_{0,0}
 \item [] \text{G}_1
 \item [] \text{e}_{1,0}
 \item [] \text{e}_{1,1}
 \item [] \text{G}_2
 \item [] \text{e}_{2,0}
 \item [] \text{e}_{2,1}
 \item [] \text{e}_{2,2}
 \item [] \text{e}_{2,3}
\end{itemize}
A model Helmholtz equation on \mathcal{T}

- On this domain, we define a weight $\mu : \mathcal{T} \rightarrow \mathbb{R}_+$ piecewise constant such that:

Example with $p=2$.

\[
\begin{array}{c}
\text{Example with } p=2. \\
0
\end{array}
\]
On this domain, we define a weight \(\mu : \mathcal{T} \rightarrow \mathbb{R}_+ \) piecewise constant such that:

\[
\mu(e_{0,0}) = 1
\]

Example with \(p=2 \).
On this domain, we define a weight \(\mu : \mathcal{T} \rightarrow \mathbb{R}_+ \) piecewise constant such that:

\[
\begin{align*}
\mu(e_{0,0}) &= 1 \\
\mu(e_{1,k}) &= \mu_{k+1}
\end{align*}
\]

Example with \(p=2 \).
A model Helmholtz equation on \mathcal{T}

- On this domain, we define a weight $\mu : \mathcal{T} \rightarrow \mathbb{R}_+$ piecewise constant such that:

\[
\begin{align*}
\mu(e_{0,0}) &= 1 \\
\mu(e_{1,k}) &= \mu_{k+1} \\
\mu(e_{n+1,pj+k}) &= \mu_{k+1} \mu(e_{n,j})
\end{align*}
\]

Example with $p=2$.

```
Example with p=2.
```
On this domain, we define a weight $\mu : \mathcal{T} \rightarrow \mathbb{R}_+$ piecewise constant such that:

\begin{align*}
\mu(e_{0,0}) &= 1 \\
\mu(e_{1,k}) &= \mu_{k+1} \\
\mu(e_{n+1,pj+k}) &= \mu_{k+1} \mu(e_{n,j})
\end{align*}

For the d-geometric tree, we take $\mu_k = \alpha_k^{d-1}$.
On this domain, we define a weight $\mu : \mathcal{T} \to \mathbb{R}_+$ piecewise constant such that:

- $\mu(e_{0,0}) = 1$
- $\mu(e_{1,k}) = \mu_{k+1}$
- $\mu(e_{n+1,pj+k}) = \mu_{k+1} \mu(e_{n,j})$

For the d-geometric tree, we take $\mu_k = \alpha_k^{d-1}$

On tree \mathcal{T}, we want to solve the Helmholtz equation:

$$(\mu u')' + \omega^2 \mu u = 0 \quad \text{on} \quad \mathcal{T}$$

$u(0) = 1$

$Bu = 0 \quad \text{at infinity}$

Example with $p=2$.
A model Helmholtz equation on \mathcal{T}

- On this domain, we define a weight $\mu : \mathcal{T} \rightarrow \mathbb{R}_+$ piecewise constant such that:
 \[
 \mu(e_{0,0}) = 1 \\
 \mu(e_{1,k}) = \mu_{k+1} \\
 \mu(e_{n+1,pj+k}) = \mu_{k+1}\mu(e_{n,j})
 \]

- For the d-geometric tree, we take $\mu_k = \alpha_k^{d-1}$

- On tree \mathcal{T}, we want to solve the Helmholtz equation:
 \[
 (\mu u')' + \omega^2 \mu u = 0 \quad \text{on} \quad \mathcal{T} \\
 u(0) = 1 \\
 B u = 0 \quad \text{at infinity}
 \]

- The previous equation gives implicitly:
 \[
 u'' + \omega^2 u = 0 \quad \text{on each} \quad e_{n,j} \\
 u \quad \text{continuous at node} \quad M_{n,j} \\
 u'_{n,j}(M_{n,j}) = \sum_{k=0}^{p-1} \mu_{k+1}u'_{n+1,pj+k}(M_{n,j})
 \]

Example with $p=2$.

On each $e_{n,j}$, μ is continuous at node $M_{n,j}$.
The non-classical condition $Bu=0$ represents a homogeneous Dirichlet or Neumann condition at «infinity» whose sense is given through a weak formulation of the problem.

This requires a functional framework.
Conditions at infinity

- The non-classical condition $Bu=0$ represents a homogeneous Dirichlet or Neumann condition at «infinity» whose sense is given through a weak formulation of the problem.

- This requires a functional framework.

- On tree T, we define the following weighted «broken» norms (depending on choose of weight μ, i.e. depending on $(\mu_i)_{1 \leq i \leq p}$):

 \[
 \|u\|_{L^2_{\mu}(T)}^2 = \sum_{n \geq 0} \sum_{j=0}^{p^n-1} \mu_{n,j} \|u\|_{L^2(e_{n,j})}^2
 \]

 \[
 \|u\|_{H^1_{\mu}(T)}^2 = \sum_{n \geq 0} \sum_{j=0}^{p^n-1} \mu_{n,j} \|u'\|_{L^2(e_{n,j})}^2
 \]

 \[
 \|u\|_{H^1_{\mu}(T)}^2 = \|u\|_{L^2_{\mu}(T)}^2 + \|u\|_{H^1_{\mu}(T)}^2
 \]
The non-classical condition $Bu=0$ represents a homogeneous Dirichlet or Neumann condition at «infinity» whose sense is given through a weak formulation of the problem.

This requires a functional framework.

On tree \mathcal{T}, we define the following weighted «broken» norms (depending on choose of weight μ, i.e. depending on $(\mu_i)_{1 \leq i \leq p}$):

$$
\|u\|^2_{L^2_{\mu}(\mathcal{T})} = \sum_{n \geq 0} \sum_{j=0}^{p^n-1} \mu_{n,j} \|u\|^2_{L^2(e_{n,j})}
$$

$$
\|u\|^2_{H^1_{\mu}(\mathcal{T})} = \sum_{n \geq 0} \sum_{j=0}^{p^n-1} \mu_{n,j} \|u'\|^2_{L^2(e_{n,j})}
$$

$$
\|u\|^2_{H^1_{\mu}(\mathcal{T})} = \|u\|^2_{L^2_{\mu}(\mathcal{T})} + \|u\|^2_{H^1_{\mu}(\mathcal{T})}
$$

Moreover, we define the weighted Besov spaces $\mathcal{H}^1_{\mu}(\mathcal{T})$ and $\mathcal{H}^1_{\mu,0}(\mathcal{T})$ as:

$$
\mathcal{H}^1_{\mu}(\mathcal{T}) = \left\{ v \text{ continuous such that } |v(0)|^2 + |v|^2_{H^1_{\mu}} < \infty \right\}
$$

$$
\mathcal{H}^1_{\mu,0}(\mathcal{T}) = \text{closure of } \left\{ v \in \mathcal{H}^1_{\mu}(\mathcal{T}) \text{ such that } \exists n, v = 0 \text{ on } \mathcal{T} \setminus \mathcal{T}_n \right\}
$$
Conditions at infinity

- The non-classical condition $Bu=0$ represents a homogeneous Dirichlet or Neumann condition at «infinity» whose sense is given through a weak formulation of the problem.

- This requires a functional framework.

- On tree \mathcal{T}, we define the following weighted «broken» norms (depending on choose of weight μ, i.e. depending on $(\mu_i)_{1\leq i\leq p}$):

\[
\|u\|_{L^2_{\mu}(\mathcal{T})}^2 = \sum_{n\geq 0} \sum_{j=0}^{p^n-1} \mu_{n,j} \|u\|_{L^2(e_{n,j})}^2
\]

\[
|u|_{H^1_{\mu}(\mathcal{T})}^2 = \sum_{n\geq 0} \sum_{j=0}^{p^n-1} \mu_{n,j} \|u'\|_{L^2(e_{n,j})}^2
\]

\[
\|u\|_{H^1_{\mu}(\mathcal{T})}^2 = \|u\|_{L^2_{\mu}(\mathcal{T})}^2 + |u|_{H^1_{\mu}(\mathcal{T})}^2
\]

- Moreover, we define the weighted Besov spaces $\mathcal{H}^1_{\mu}(\mathcal{T})$ and $\mathcal{H}^1_{\mu,0}(\mathcal{T})$ as:

\[
\mathcal{H}^1_{\mu}(\mathcal{T}) = \left\{ v \text{ continuous such that } |v(0)|^2 + |v|_{H^1_{\mu}}^2 < \infty \right\}
\]

\[
\mathcal{H}^1_{\mu,0}(\mathcal{T}) = \text{closure of } \left\{ v \in \mathcal{H}^1_{\mu}(\mathcal{T}) \text{ such that } \exists n, v = 0 \text{ on } \mathcal{T} \setminus \mathcal{T}_n \right\}
\]

- We also define the Sobolev spaces $H^1_{\mu}(\mathcal{T})$ and $H^1_{\mu,0}(\mathcal{T})$.
We denote the variational formulation of the Neumann problem as follow:

find \(u \in H^1_\mu(\mathcal{T}) \) such that \(u(0)=1 \) and

\[
\int_\mathcal{T} \mu u' v' - \omega^2 \int_\mathcal{T} \mu uv = 0, \quad \forall v \in H^1_\mu(\mathcal{T}) \text{ such that } v(0) = 0
\]
Weak formulations of the Helmholtz problems

- We denote the variational formulation of the Neumann problem as follow:
 find $u \in H^1_{\mu}(\mathcal{T})$ such that $u(0)=1$ and
 $$\int_{\mathcal{T}} \mu u' v' - \omega^2 \int_{\mathcal{T}} \mu uv = 0, \quad \forall v \in H^1_{\mu}(\mathcal{T}) \text{ such that } v(0) = 0$$

- We also denote the variational formulation of the Dirichlet problem as follow:
 find $u \in H^1_{\mu,0}(\mathcal{T})$ such that $u(0)=1$ and
 $$\int_{\mathcal{T}} \mu u' v' - \omega^2 \int_{\mathcal{T}} \mu uv = 0, \quad \forall v \in H^1_{\mu,0}(\mathcal{T}) \text{ such that } v(0) = 0$$
We denote the variational formulation of the Neumann problem as follow:
find $u \in H^1_\mu(\mathcal{T})$ such that $u(0)=1$ and
\[
\int_\mathcal{T} \mu u' v' - \omega^2 \int_\mathcal{T} \mu uv = 0, \quad \forall v \in H^1_\mu(\mathcal{T}) \text{ such that } v(0) = 0
\]

We also denote the variational formulation of the Dirichlet problem as follow:
find $u \in H^1_{\mu,0}(\mathcal{T})$ such that $u(0)=1$ and
\[
\int_\mathcal{T} \mu u' v' - \omega^2 \int_\mathcal{T} \mu uv = 0, \quad \forall v \in H^1_{\mu,0}(\mathcal{T}) \text{ such that } v(0) = 0
\]

Proposition (existence and uniqueness).

For any frequency ω complex, Neumann and Dirichlet problems have a unique solution, called respectively $u_n(\omega, \cdot)$ and $u_d(\omega, \cdot)$.
We denote the variational formulation of the Neumann problem as follow: find $u \in H^1_\mu(T)$ such that $u(0)=1$ and

$$\int_T \mu u' v' - \omega^2 \int_T \mu uv = 0, \quad \forall v \in H^1_\mu(T) \text{ such that } v(0) = 0$$

We also denote the variational formulation of the Dirichlet problem as follow: find $u \in H^1_{\mu,0}(T)$ such that $u(0)=1$ and

$$\int_T \mu u' v' - \omega^2 \int_T \mu uv = 0, \quad \forall v \in H^1_{\mu,0}(T) \text{ such that } v(0) = 0$$

Theorem (Joly-Semin)

We have the following equivalence:

$$H^1_\mu(T) \neq H^1_{\mu,0}(T) \iff \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} > 1$$
Weak formulations of the Helmholtz problems

- We denote the variational formulation of the Neumann problem as follow: find \(u \in H^1_\mu(T) \) such that \(u(0)=1 \) and
 \[
 \int_T \mu u'v' - \omega^2 \int_T \mu uv = 0, \quad \forall v \in H^1_\mu(T) \text{ such that } v(0) = 0
 \]

- We also denote the variational formulation of the Dirichlet problem as follow: find \(u \in H^1_{\mu,0}(T) \) such that \(u(0)=1 \) and
 \[
 \int_T \mu u'v' - \omega^2 \int_T \mu uv = 0, \quad \forall v \in H^1_{\mu,0}(T) \text{ such that } v(0) = 0
 \]

Theorem (Joly-Semin)

We have the following equivalence:

\[
H^1_\mu(T) \neq H^1_{\mu,0}(T) \iff \sum_{i=1}^p \frac{\mu_i}{\alpha_i} > 1
\]

- In the following, we assume this condition.
We denote the variational formulation of the Neumann problem as follow:

\[\int_T \mu u' v' - \omega^2 \int_T \mu uv = 0, \quad \forall v \in H^1_\mu(T) \text{ such that } v(0) = 0 \]

We also denote the variational formulation of the Dirichlet problem as follow:

\[\int_T \mu u' v' - \omega^2 \int_T \mu uv = 0, \quad \forall v \in H^1_{\mu,0}(T) \text{ such that } v(0) = 0 \]

Theorem (Joly-Semin)

We have the following equivalence:

\[H^1_\mu(T) \neq H^1_{\mu,0}(T) \iff \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} > 1 \]

In the following, we assume this condition.

For the d-geometrical tree, this condition becomes \(\sum \alpha_i^{d-2} > 1 \).
Weak formulations of the Helmholtz problems

- We denote the variational formulation of the Neumann problem as follow: find \(u \in H^1_\mu(T) \) such that \(u(0)=1 \) and
 \[
 \int_T \mu u' v' - \omega^2 \int_T \mu uv = 0, \quad \forall v \in H^1_\mu(T) \text{ such that } v(0) = 0
 \]

- We also denote the variational formulation of the Dirichlet problem as follow: find \(u \in H^1_{\mu,0}(T) \) such that \(u(0)=1 \) and
 \[
 \int_T \mu u' v' - \omega^2 \int_T \mu uv = 0, \quad \forall v \in H^1_{\mu,0}(T) \text{ such that } v(0) = 0
 \]

Theorem (Joly-Semin)

We have the following equivalence:

\[
H^1_\mu(T) \neq H^1_{\mu,0}(T) \iff \sum_{i=1}^p \frac{\mu_i}{\alpha_i} > 1
\]

- In the following, we assume this condition.

- For the d-geometrical tree, this condition becomes \(\sum \alpha_i^{d-2} > 1 \).

Definition (\(\Lambda \))

One defines the following two functions (depending of \(\omega \)):

\[
\Lambda_n(\omega) = u'_n(\omega,0) \\
\Lambda_\delta(\omega) = u'_\delta(\omega,0)
\]

- Propagation of acoustic waves in fractal networks
Construction of impedance condition

Assume that we know \(\Lambda \). If we cut on the first generation, one can replace resolution of Helmholtz equation on each subtree (red and blue on figure) by DtN conditions obtained on a \(p \)-adye tree of main length \(\alpha_i \):

\[
 u' = \alpha_i^{-1} \Lambda(\alpha_i \omega) u
\]
Assume that we know Λ. If we cut on the first generation, one can replace resolution of Helmholtz equation on each subtree (red and blue on figure) by DtN conditions obtained on a p-adic tree of main length α_i:

$$u' = \alpha_i^{-1} \Lambda(\alpha_i \omega) u$$

If we cut further (on the n^{th} generation), one can use the DtN conditions obtained on each p-adic tree of main length $\ell_{n,j}$:

$$u' = \ell_{n,j}^{-1} \Lambda(\ell_{n,j} \omega) u$$
Assume that we know \(\Lambda \). If we cut on the first generation, one can replace resolution of Helmholtz equation on each subtree (red and blue on figure) by DtN conditions obtained on a \(p \)-adyc tree of main length \(\alpha_i \):

\[
u' = \alpha_i^{-1} \Lambda(\alpha_i \omega) u
\]

If we cut further (on the \(n \)-th generation), one can use the DtN conditions obtained on each \(p \)-adyc tree of main length \(\ell_{n,j} \):

\[
u' = \ell_{n,j}^{-1} \Lambda(\ell_{n,j} \omega) u
\]

Since \(\ell_{n,j} \leq (\sup \alpha_i)^n \), it is sufficient to have a good approximation of \(\Lambda(\omega) \) for small \(\omega \).

We define the function u_i as the restriction of u to subtree \mathcal{T}^i.
We define the function u_i as the restriction of u to subtree T^i.

By a scaling argument, one has

$$u_i(\omega, s_i(x)) = u(\omega, 1) \cdot u(\alpha_i \omega, x)$$
We define the function u_i as the restriction of u to subtree T_i.

By a scaling argument, one has

\[u_i(\omega, s_i(x)) = u(\omega, 1) \cdot u(\alpha_i \omega, x) \]

Differentiating in x gives

\[\alpha_i u_i'(\omega, s_i(x)) = u(\omega, 1) \cdot u'(\alpha_i \omega, x) \]
We define the function u_i as the restriction of u to subtree T^i.

By a scaling argument, one has

$$u_i(\omega, s_i(x)) = u(\omega, 1) \, u(\alpha_i \omega, x)$$

Differentiating in x gives

$$\alpha_i u_i'(\omega, s_i(x)) = u(\omega, 1) \, u'(\alpha_i \omega, x)$$

Taking $x=0$ gives

$$\alpha_i u_i'(\omega, 1) = u(\omega, 1) \, \Lambda(\alpha_i \omega)$$
We define the function \(u_i \) as the restriction of \(u \) to subtree \(\mathcal{T}^i \).

By a scaling argument, one has
\[
 u_i(\omega, s_i(x)) = u(\omega, 1) u(\alpha_i \omega, x)
\]

Differentiating in \(x \) gives
\[
 \alpha_i u_i'(\omega, s_i(x)) = u(\omega, 1) u'(\alpha_i \omega, x)
\]

Taking \(x = 0 \) gives
\[
 \alpha_i u_i'(\omega, 1) = u(\omega, 1) \Lambda(\alpha_i \omega)
\]

Along the first branch:
\[
 u(\omega, x) = \cos(\omega x) + \frac{\Lambda(\omega)}{\omega} \sin(\omega x)
\]
We define the function u_i as the restriction of u to subtree \mathcal{T}^i.

By a scaling argument, one has

$$u_i(\omega, s_i(x)) = u(\omega, 1) u(\alpha_i \omega, x)$$

Differentiating in x gives

$$\alpha_i u_i'(\omega, s_i(x)) = u(\omega, 1) u'(\alpha_i \omega, x)$$

Taking $x=0$ gives

$$\alpha_i u_i'(\omega, 1) = u(\omega, 1) \Lambda(\alpha_i \omega)$$

Along the first branch:

$$u(\omega, x) = \cos(\omega x) + \frac{\Lambda(\omega)}{\omega} \sin(\omega x)$$

which gives

$$u(\omega, 1) = \cos(\omega) + \frac{\Lambda(\omega)}{\omega} \sin(\omega)$$

$$u'(\omega, 1) = \Lambda(\omega) \cos(\omega) - \omega \sin(\omega)$$
Functional relation on Λ

\[\alpha_i u'_i(\omega, 1) = u(\omega, 1) \Lambda(\alpha_i \omega) \]

\[u(\omega, 1) = \cos(\omega) + \frac{\Lambda(\omega)}{\omega} \sin(\omega) \]

\[u'(\omega, 1) = \Lambda(\omega) \cos(\omega) - \omega \sin(\omega) \]
The node condition at $x=1$ writes

$$u'(\omega, 1) = \sum_{i=1}^{p} \mu_i u'_i(\omega, 1)$$
Functional relation on Λ

\[
\alpha_i u'_i(\omega, 1) = u(\omega, 1) \Lambda(\alpha_i \omega)
\]

\[
u(\omega, 1) = \cos(\omega) + \frac{\Lambda(\omega)}{\omega} \sin(\omega)
\]

\[
u'(\omega, 1) = \Lambda(\omega) \cos(\omega) - \omega \sin(\omega)
\]

- The node condition at $x=1$ writes

\[
u'(\omega, 1) = \sum_{i=1}^{p} \mu_i \nu'_i(\omega, 1)
\]

which gives the quadratic functional relation on Λ:

\[
\Lambda(\omega) \cos(\omega) - \omega \sin(\omega) = \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} \left(\cos(\omega) + \frac{\Lambda(\omega)}{\omega} \sin(\omega) \right) \Lambda(\alpha_i \omega)
\]
Functional relation on Λ

$$P \Lambda(\omega) \cos(\omega) - \omega \sin(\omega) = \sum_{i=1}^{P} \frac{\mu_i}{\alpha_i} \left(\cos(\omega) + \frac{\Lambda(\omega)}{\omega} \sin(\omega) \right) \Lambda(\alpha_i \omega)$$
Conjecture

There exists two meromorphic functions satisfying this quadratic relation, and unicity is given knowing $\Lambda(0)$.
Functional relation on Λ

\[
\mathcal{P} \quad \Lambda(\omega) \cos(\omega) - \omega \sin(\omega) = \sum_{i=1}^{P} \frac{\mu_i}{\alpha_i} \left(\cos(\omega) + \frac{\Lambda(\omega)}{\omega} \sin(\omega) \right) \Lambda(\alpha_i \omega)
\]

Conjecture

There exists two meromorphic functions satisfying this quadratic relation, and unicity is given knowing $\Lambda(0)$.

Proposition

$\Lambda(\omega)$ is even with respect to ω.
Functional relation on Λ

$$\mathcal{P} \quad \Lambda(\omega) \cos(\omega) - \omega \sin(\omega) = \sum_{i=1}^{P} \frac{\mu_i}{\alpha_i} \left(\cos(\omega) + \frac{\Lambda(\omega)}{\omega} \sin(\omega) \right) \Lambda(\alpha_i \omega)$$

Conjecture

There exists two meromorphic functions satisfying this quadratic relation, and unicity is given knowing $\Lambda(0)$.

Proposition

$\Lambda(\omega)$ is even with respect to ω.

Taking $\omega=0$ leads to the Laplace problems:
Functional relation on Λ

\[
\mathcal{P} \quad \Lambda(\omega) \cos(\omega) - \omega \sin(\omega) = \sum_{i=1}^{P} \frac{\mu_i}{\alpha_i} \left(\cos(\omega) + \frac{\Lambda(\omega)}{\omega} \sin(\omega) \right) \Lambda(\alpha_i \omega)
\]

Conjecture

There exists two meromorphic functions satisfying this quadratic relation, and unicity is given knowing $\Lambda(0)$.

Proposition

$\Lambda(\omega)$ is even with respect to ω.

Taking $\omega=0$ leads to the Laplace problems:

- The Neumann problem is: find u in $\mathcal{H}_{\mu}^1(\mathcal{T})$ such that $u(0)=1$ and
 \[
 \int_{\mathcal{T}} \mu(x) u'(x) v(x) dx = 0, \quad \forall v \in \mathcal{H}_{\mu}^1(\mathcal{T}) \text{ such that } v(0) = 0
 \]
Functional relation on Λ

\[\mathcal{P} \Lambda(\omega) \cos(\omega) - \omega \sin(\omega) = \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} \left(\cos(\omega) + \frac{\Lambda(\omega)}{\omega} \sin(\omega) \right) \Lambda(\alpha_i \omega) \]

Conjecture

There exists two meromorphic functions satisfying this quadratic relation, and unicity is given knowing $\Lambda(0)$.

Proposition

$\Lambda(\omega)$ is even with respect to ω.

Taking $\omega = 0$ leads to the Laplace problems:

- The Neumann problem is: find u in $\mathcal{H}^1_{\mu}(\mathcal{T})$ such that $u(0) = 1$ and
 \[\int_{\mathcal{T}} \mu(x) u'(x) v'(x) dx = 0, \quad \forall v \in \mathcal{H}^1_{\mu}(\mathcal{T}) \text{ such that } v(0) = 0 \]

- The Dirichlet problem is: find u in $\mathcal{H}^1_{\mu,0}(\mathcal{T})$ such that $u(0) = 1$ and
 \[\int_{\mathcal{T}} \mu(x) u'(x) v'(x) dx = 0, \quad \forall v \in \mathcal{H}^1_{\mu,0}(\mathcal{T}) \text{ such that } v(0) = 0 \]
Laplacian problems

- The Neumann problem is: find u in $\mathcal{H}^1_\mu(T)$ such that $u(0)=1$ and
 \[\int_T \mu(x) u'(x)v'(x) \, dx = 0, \quad \forall v \in \mathcal{H}^1_\mu(T) \text{ such that } v(0) = 0 \]

- The Dirichlet problem is: find u in $\mathcal{H}^1_{\mu,0}(T)$ such that $u(0)=1$ and
 \[\int_T \mu(x) u'(x)v'(x) \, dx = 0, \quad \forall v \in \mathcal{H}^1_{\mu,0}(T) \text{ such that } v(0) = 0 \]
The Neumann problem is: find u in $\mathcal{H}_\mu^1(\mathcal{T})$ such that $u(0)=1$ and
\[
\int_{\mathcal{T}} \mu(x)u'(x)v'(x)dx = 0, \quad \forall v \in \mathcal{H}_\mu^1(\mathcal{T}) \text{ such that } v(0) = 0
\]

The Dirichlet problem is: find u in $\mathcal{H}_{\mu,0}^1(\mathcal{T})$ such that $u(0)=1$ and
\[
\int_{\mathcal{T}} \mu(x)u'(x)v'(x)dx = 0, \quad \forall v \in \mathcal{H}_{\mu,0}^1(\mathcal{T}) \text{ such that } v(0) = 0
\]

These two problems are well-posed problems. The solution of the Neumann problem is simply $u=1$.

Theorem (existence and uniqueness).
Laplacian problems

- The Neumann problem is: find u in $H^1_\mu(T)$ such that $u(0)=1$ and
 \[\int_T \mu(x)u'(x)v'(x)dx = 0, \quad \forall v \in H^1_\mu(T) \text{ such that } v(0) = 0\]

- The Dirichlet problem is: find u in $H^1_{\mu,0}(T)$ such that $u(0)=1$ and
 \[\int_T \mu(x)u'(x)v'(x)dx = 0, \quad \forall v \in H^1_{\mu,0}(T) \text{ such that } v(0) = 0\]

Theorem (existence and uniqueness).

These two problems are well-posed problems. The solution of the Neumann problem is simply $u=1$.

- Taking $\omega=0$ in P leads to
 \[P_0, \quad \Lambda(0) = (1 + \Lambda(0)) \sum_{i=1}^{p} \frac{\mu_i \Lambda(0)}{\alpha_i}\]
Laplacian problems

- The Neumann problem is: find \(u \) in \(\mathcal{H}^1_\mu (\mathcal{T}) \) such that \(u(0)=1 \) and
 \[
 \int_{\mathcal{T}} \mu(x) u'(x)v'(x) \, dx = 0, \quad \forall v \in \mathcal{H}^1_\mu (\mathcal{T}) \text{ such that } v(0) = 0
 \]

- The Dirichlet problem is: find \(u \) in \(\mathcal{H}^1_{\mu,0} (\mathcal{T}) \) such that \(u(0)=1 \) and
 \[
 \int_{\mathcal{T}} \mu(x) u'(x)v'(x) \, dx = 0, \quad \forall v \in \mathcal{H}^1_{\mu,0} (\mathcal{T}) \text{ such that } v(0) = 0
 \]

Theorem (existence and uniqueness).

These two problems are well-posed problems. The solution of the Neumann problem is simply \(u=1 \).

Theorem (value of \(u'(0) \))

For the Neumann problem, one gets:

\[
\Lambda_n = 0
\]

For the Dirichlet problem, one gets:

\[
\Lambda_0 = 1 - \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}
\]
For ω small, one has (using that the Helmholtz equation is even w.r.t ω):

$$\Lambda(\omega) = \lambda_0 + \lambda_2 \omega^2 + O(\omega^4)$$
For ω small, one has (using that the Helmholtz equation is even w.r.t ω):

$$\Lambda(\omega) = \lambda_0 + \lambda_2 \omega^2 + O(\omega^4)$$

Going back to the time-domain wave equation (replacing $-i\omega$ by a derivative with respect to time) gives the following DtN condition at entrance of the tree:

$$\frac{\partial u}{\partial n} = \lambda_0 u - \lambda_2 \frac{\partial^2 u}{\partial t^2}$$
Taylor expansions of Λ

- For ω small, one has (using that the Helmholtz equation is even w.r.t ω):

$$\Lambda(\omega) = \lambda_0 + \lambda_2 \omega^2 + O(\omega^4)$$

- Going back to the time-domain wave equation (replacing $-i\omega$ by a derivative with respect to time) gives the following DtN condition at entrance of the tree:

$$\frac{\partial u}{\partial n} = \lambda_0 u - \lambda_2 \frac{\partial^2 u}{\partial t^2}$$

- If we put wave equation on a truncated tree with this condition at each ending node, we get the conservation of the energy

$$\int_{T_c} \left\{ \left| \frac{\partial u}{\partial t}(t, \cdot) \right|^2 + |u'(t, \cdot)|^2 \right\} + \sum_{M \in \mathcal{N}_{\text{end}}} \left(\lambda_{2, M} \left| \frac{\partial u}{\partial t}(t, M) \right|^2 - \lambda_{0, M} |u(t, M)|^2 \right)$$
Taylor expansions of Λ

- For ω small, one has (using that the Helmholtz equation is even w.r.t ω):
 \[\Lambda(\omega) = \lambda_0 + \lambda_2 \omega^2 + O(\omega^4) \]

- Going back to the time-domain wave equation (replacing $-i\omega$ by a derivative with respect to time) gives the following DtN condition at entrance of the tree:
 \[\frac{\partial u}{\partial n} = \lambda_0 u - \lambda_2 \frac{\partial^2 u}{\partial t^2} \]

- If we put wave equation on a truncated tree with this condition at each ending node, we get the conservation of the energy
 \[\int_{T_c} \left(\left| \frac{\partial u}{\partial t}(t, \cdot) \right|^2 + |u'(t, \cdot)|^2 \right) + \sum_{M \in \mathcal{N}_{\text{end}}} \left(\lambda_{2, M} \left| \frac{\partial u}{\partial t}(t, M) \right|^2 - \lambda_{0, M} |u(t, M)|^2 \right) \]

- For ensuring stability, one would like $\lambda_0 \leq 0$ and $\lambda_2 \geq 0$.

Adrien SEMIN
Propagation of acoustic waves in fractal networks

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE
Using P, one can determine inductively in n the coefficients λ_{2n}.
Taylor expansions of Λ

- Using \mathcal{P}, one can determine inductively in n the coefficients λ_{2n}.

- In particular, for $n=0$ and $n=1$, we obtain:
Taylor expansions of Λ

- Using \mathcal{P}, one can determine inductively in n the coefficients λ_{2n}.
- In particular, for $n=0$ and $n=1$, we obtain:

Neumann case

\[
\begin{align*}
\lambda_0 &= 0 \\
\lambda_2 &= \frac{1}{1 - \sum_{i=1}^{p} \mu_i \alpha_i}
\end{align*}
\]
Taylor expansions of Λ

- Using \mathcal{P}, one can determine inductively in n the coefficients λ_{2n}.
- In particular, for $n=0$ and $n=1$, we obtain:

<table>
<thead>
<tr>
<th>Neumann case</th>
<th>Dirichlet case</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_0 = 0$</td>
<td>$\lambda_0 = \frac{1 - \sum_{i=1}^{p} \mu_i}{\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}}$</td>
</tr>
<tr>
<td>$\lambda_2 = \frac{1}{1 - \sum_{i=1}^{p} \mu_i \alpha_i}$</td>
<td>$\lambda_2 = \frac{\left(1 + \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} + \left(\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}\right)^2\right)}{3 \left(\left(\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}\right)^2 - \sum_{i=1}^{p} \mu_i \alpha_i\right)}$</td>
</tr>
</tbody>
</table>
Taylor expansions of Λ

- Using P, one can determine inductively in n the coefficients λ_{2n}.
- In particular, for $n=0$ and $n=1$, we obtain:

Neumann case

\[
\begin{align*}
\lambda_0 &= 0 \\
\lambda_2 &= \frac{1}{1 - \sum_{i=1}^{p} \mu_i \alpha_i}
\end{align*}
\]

Dirichlet case

\[
\begin{align*}
\lambda_0 &= \frac{1 - \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}}{\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}} \\
\lambda_2 &= \frac{1 + \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} + \left(\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} \right)^2}{3 \left(\left(\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} \right)^2 - \sum_{i=1}^{p} \frac{\mu_i \alpha_i}{\alpha} \right)}
\end{align*}
\]

Stability of Neumann case

\[
\lambda_2 > 0 \iff \sum_{i=1}^{p} \mu_i \alpha_i < 1
\]

This condition means that L^2-norm of constant function is finite.
Taylor expansions of Λ

- Using \mathcal{P}, one can determine inductively in n the coefficients λ_{2n}.
- In particular, for $n=0$ and $n=1$, we obtain:

Neumann case

$$\begin{align*}
\lambda_0 &= 0 \\
\lambda_2 &= \frac{1}{1 - \sum_{i=1}^{p} \mu_i \alpha_i}
\end{align*}$$

Stability of Neumann case

$$\lambda_2 > 0 \iff \sum_{i=1}^{p} \mu_i \alpha_i < 1$$

This condition means that L^2-norm of constant function is finite.

Dirichlet case

$$\begin{align*}
\lambda_0 &= 1 - \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} \\
\lambda_2 &= \frac{\left(1 + \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} + \left(\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}\right)^2\right)}{3 \left(\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}\right)^2 - \sum_{i=1}^{p} \mu_i \alpha_i}
\end{align*}$$

Stability of Dirichlet case

We always have $\lambda_0 < 0$ and $\lambda_2 > 0$.
Taylor expansions of Λ

- Using P, one can determine inductively in n the coefficients λ_{2n}.
- In particular, for $n=0$ and $n=1$, we obtain:

<table>
<thead>
<tr>
<th>Neumann case</th>
<th>Dirichlet case</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_0 = 0$</td>
<td>$\lambda_0 = \frac{1 - \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}}{\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}}$</td>
</tr>
<tr>
<td>$\lambda_2 = \frac{1}{1 - \sum_{i=1}^{p} \mu_i \alpha_i}$</td>
<td>$\lambda_2 = \frac{\left(1 + \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} + \left(\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}\right)^2\right)}{3 \left(\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}\right)^2 - \sum_{i=1}^{p} \frac{\mu_i \alpha_i}{\alpha_i}}$</td>
</tr>
</tbody>
</table>

Neumann case (d-geometric tree)

$\lambda_2 = \frac{1}{1 - \sum_{i=1}^{p} \alpha_i^d}$

Stability of Neumann case (d-geometric tree)

$\lambda_2 > 0$ if the Hausdorff dimension of the tree is strictly lesser than d.

Stability of Dirichlet case

We always have $\lambda_0 < 0$ and $\lambda_2 > 0$.
Taylor expansions of Λ

- Using \mathcal{P}, one can determine inductively in n the coefficients λ_{2n}.
- In particular, for $n=0$ and $n=1$, we obtain:

Neumann case

\[
\begin{align*}
\lambda_0 &= 0 \\
\lambda_2 &= \frac{1}{1 - \sum_{i=1}^{p} \mu_i \alpha_i}
\end{align*}
\]

Neumann case (d-geometric tree)

\[
\lambda_2 = \frac{1}{1 - \sum_{i=1}^{p} \alpha_i^d}
\]

Stability of Neumann case (d-geometric tree)

$\lambda_2 > 0$ if the Hausdorff dimension of the tree is strictly lesser than d.

Dirichlet case

\[
\begin{align*}
\lambda_0 &= \frac{1 - \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}}{\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}} \\
\lambda_2 &= \frac{\left(1 + \sum_{i=1}^{p} \frac{\mu_i}{\alpha_i} + \left(\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}\right)^2\right)}{3 \left(\left(\sum_{i=1}^{p} \frac{\mu_i}{\alpha_i}\right)^2 - \sum_{i=1}^{p} \mu_i \alpha_i\right)}
\end{align*}
\]

Dirichlet case (d-geometric tree)

\[
\begin{align*}
\lambda_0 &= \frac{1 - \sum_{i=1}^{p} \alpha_i^{d-2}}{\sum_{i=1}^{p} \alpha_i^{d-2}} \\
\lambda_2 &= \frac{\left(1 + \sum_{i=1}^{p} \alpha_i^{d-2} + \left(\alpha_i^{d-2}\right)^2\right)}{3 \left(\left(\sum_{i=1}^{p} \alpha_i^{d-2}\right)^2 - \sum_{i=1}^{p} \alpha_i^{d}\right)}
\end{align*}
\]
Numerical simulations (Dirichlet problem)

- We solve the time-domain wave equation on \mathcal{T}_n for different values of n, with outgoing condition at entrance of the tree, and various conditions at the end of the tree:

\[
\begin{align*}
 u &= 0 \quad \text{(Dirichlet condition)} \\
 \frac{\partial u}{\partial n} &= \lambda_0 u \quad \text{(First order impedance condition)} \\
 \frac{\partial u}{\partial n} &= \lambda_0 u - \lambda_2 \frac{\partial^2 u}{\partial t^2} \quad \text{(Second order impedance condition)}
\end{align*}
\]
Dyadic symmetric tree, $\alpha_1 = \alpha_2 = 0.6$, angle between slots is taken $\pi/2$ for convenience, $d=2$.

Cauchy data is a Gaussian spreading right.

A constant spacestep h along the tree.

“Exact” computation is done with taking 20 generations and Dirichlet condition.

We look at the value of the solution (as a function of time) in the middle of the longest slot.
Computation done with 7 generations (left) and 9 generations (right).

Condition used at boundary is Dirichlet condition.

Exact solution is red lined, approximated solution is blue dotted.
Computation done with 7 generations (left) and 9 generations (right).

Condition used at boundary is first order impedance condition.

Exact solution is red lined, approximated solution is blue dotted.
Computation done with 7 generations (left) and 9 generations (right).

Condition used at boundary is second order impedance condition.

Exact solution is red lined, approximated solution is blue dotted.
Numerical simulations - error estimates

<table>
<thead>
<tr>
<th>Number of generations</th>
<th>Dirichlet condition</th>
<th>First order imp. condition</th>
<th>Second order imp. condition</th>
<th>Gain with first order</th>
<th>Gain with second order</th>
<th>Number of d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.429</td>
<td>0.320</td>
<td>0.123</td>
<td>1.34</td>
<td>3.05</td>
<td>198598</td>
</tr>
<tr>
<td>6</td>
<td>0.370</td>
<td>0.205</td>
<td>0.050</td>
<td>1.80</td>
<td>7.35</td>
<td>258318</td>
</tr>
<tr>
<td>7</td>
<td>0.217</td>
<td>0.075</td>
<td>0.028</td>
<td>2.89</td>
<td>7.63</td>
<td>329982</td>
</tr>
<tr>
<td>8</td>
<td>0.083</td>
<td>0.018</td>
<td>0.013</td>
<td>4.53</td>
<td>6.45</td>
<td>415978</td>
</tr>
<tr>
<td>9</td>
<td>0.023</td>
<td>0.0031</td>
<td>0.0028</td>
<td>7.47</td>
<td>8.09</td>
<td>519174</td>
</tr>
</tbody>
</table>

L^2-error between sismograph of exact solution and sismigraph of approximated solution, with respect of number of generations and condition at boundary of the tree. Number of d.o.f. of exact simulation is $\approx 4.5 \times 10^6$.

Green values: round problems with double precision programs. Actually testing with quadruple precision programs.
Conclusion and perspectives

- Results are validated in case of symmetric tree, are in progress when $\mu_1 \neq \mu_2$.
- Need to compute poles and zeros of function Λ and establish their relationship with eigenvalues of Laplacian operator on the tree,
- Need to prove that we are able to take some Taylor development of $\Lambda(\omega)$ with respect to $\omega=0$. A priori, it is not possible when $\mathcal{H}_\mu^1(\mathcal{T}) = \mathcal{H}^1_{\mu,0}(\mathcal{T})$ (this intuition is guided by the behaviour of the Sobolev spaces when we take a monoadyc tree, i.e. $p=1$).
Thank you for your attention