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Abstract

This bachelor’s thesis is concerned with finding boundary element methods for the solu-
tion of the following Maxwell-type problem

(δd− k2)u = 0 (0.1)

on the sphere S2 where u is a zero or one form defined on a simply connected Ω ⊂ S2

and the boundary conditions are given on the boundary Γ of a simply connected C ⊂ S2.
This is a generalization of rot rot- and grad div-type problems in a differential geometric
setting.
The flat (Rn) case has already been discussed in [5].

To do this, first a Green’s function for the Helmholtz problem is obtained

(4− k2)u = 0 (0.2)

with 4 = δd+ dδ the Hodge Laplacian.

This Green’s function (a Green’s double form) is then used to construct a single layer
potential for the Maxwell-type problem. With help of this single layer potential and a
discretization of the appropriate function spaces, discretized boundary integral equations
for the Maxwell-type problem are obtained.
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1 Introduction

The intent of this bachelor’s thesis is to numerically solve the following problem

(δd− k2)u = 0 in Ω ⊆ S2 (1.1)

where u is a differential form, on the unit sphere S2 with given Dirichlet boundary con-
ditions on the boundary Γ of a simply connected C ⊂ S2. An example of the geometry
can be seen in Figure 1.1.

This problem is a generalization of a range of equations from electrodynamics. On
one hand, if ω is a 1-form representing a vector, (1.1) generalizes the following problem
from magnetics, with A as the vector potential:

(rot rot +k2)A = 0 (1.2)

if we use the relation rotω = ?dω (found for example in [7, p.22]).
On the other hand, if ω is a 0-form (i.e. a function), (1.1) generalizes the following
electric potential problem, where V is the electric potential:

(grad div +k2)V = 0 (1.3)

if we use the relations grad f = df , divX =
√

det g
−1
∂i(X

i
√

det g) and

δω =
√

det g
−1
∂i(g

ij
√

det g ωj) (see [7, pp. 17ff]).

This problem will be approached by applying the differential geometric ideas from
[5] to S2 which has nontrivial curvature. The final goal is obtaining boundary integral
equations which enable a solution via boundary element methods.
First, Green’s fundamental solutions will be developed for the similar Helmholtz-type
equation (4 − k2)ω = 0 in the case of 0- and 1-forms, then with help of a modified
lemma from [5] boundary integral equations for (1.1) are obtained.
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Figure 1.1: Example of the situation described above with Ω the red region and C the
complement of Ω. Γ is the boundary of C.
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2 Definitions

2.1 Basic Definitions

In this chapter the necessary definitions and notations are explained.

S2 is understood as the unit sphere with its standard topology, atlas and metric coming
from its canonical embedding into R3. If not further specified the standard coordinates
on S2 are given by ϕ, the longitude and θ the colatitude. This gives us the standard
metric g = sin2 θ dϕ2 + dθ2.

The tangent space of a manifold M at a point x ∈M will be denoted by TxM , the tan-
gent bundle over M is TM . The space of p-forms over the manifold M is given by Ωp(M).

Vectors and one-forms are related to each other via the metric. The metric g induces
the musical isomorphisms ] and [ such that the following holds:

A[(·) = g(A, ·)
ω(·) = g(ω], ·)

(2.1)

for A a vector and ω a 1-form. This naturally extends to p-forms and p-vectors (the
theory with ] and [ is taken from [6, p.342], notation is inspired from [2]).

The metric also induces an L2 product on forms on the manifold M which will be
denoted by the following:

〈ω, η〉M :=

∫
M
g(ω], η]) (2.2)

Sometimes, to avoid heavy usage of musical symbols, ĝ(·, ·) := g(·], ·]) will be used.

? denotes the Hodge star on manifolds induced by the metric. d : Ωp(M)→ Ωp+1(M)
denotes the exterior derivative, δ : Ωp(M)→ Ωp−1(M) denotes the codifferential induced
by the Hodge star. Note that d and δ are adjoint in the L2 product in the sense that
〈d·, ·〉M = 〈·, δ·〉M .
4p = dδ + δd denotes the Hodge Laplacian acting on p-forms.
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2.2 Sobolev Spaces

Hk(U) denotes the L2-Sobolev space of k-th order on a domain U , H−k(U) denotes its
dual. HkΩp(U) denotes the space of p-forms on the domain U with component functions
in Hk(U).

HkΩp(d, U) denotes the space of p-forms on the domain U that are in HkΩp(U) and
have an exterior derivative in HkΩp(U). HkΩp(δ, U) and HkΩp(δd, U) are defined anal-
ogously.

H
1
2

‖ Ωp(∂U) is defined as the trace space of H1Ωp(U) where ∂U is the boundary of

U . H
± 1

2
⊥ Ωp(∂U) is defined as the hodge star of the space H

± 1
2

‖ Ωq−1(∂U) where q is the
number adjoint to p in terms of the Hodge star.

All these definitions can be found (with slightly different notation) in [5].

2.3 Double Forms

A double p-form on the tangent spaces TxM , TyN is a map D of the following form:

D : (TxM)p × (TyN)p → R (2.3)

that is bilinear and alternating in (TxM)p, (TyN)p. This definition is motivated by [5,
pp.13ff] This double form induces an operator on p-forms by the following identification;

D : Ωp(N)→ Ωp(M)

ω 7→ D[·, ω]]
(2.4)

The operator notation and the double form notation will be used side by side and with-
out further comment.1

By convention, the L2 product defined in (2.2) is evaluated in the second part of the
two-form, i.e. 〈D, η〉M (vx) := g(D[vx, ·]], η]) is a p-form.

The identity double p-form Ip is defined as a double form such that the following holds:

Ip : (TxM)p × (TyN)p → R

Ip(P
x
y v) = v[ or equivalently

Ip[ux, vy] = g(ux, P
y
x vy)

(2.5)

where P yx is the parallel transport from y to x along minimizing geodesics. In general
one may have to worry about well-definedness, but on S2 this is not an issue.

1D can also be turned into an operator by plugging ω] into its first slot, however this convention will
only be used where specifically indicated
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3 Solving the Helmholtz Equation

3.1 Theory

This section draws heavily on unpublished notes form S. Kurz and on his work with B.
Auchmann [5].

Solving (1.1) will happen via solving a different problem first, the Helmholtz equation.
The Helmholtz equation is defined as follows:

(4p − k2)u = 0 on Ω ⊆ S2 (3.1)

where u is a differential form, on the unit sphere S2, boundary conditions given on Γ as
in the introduction.

To construct boundary integral equations a Green’s function is needed. Similar to [5]
p.15 an ansatz is used where the Green’s function is a double form:

Gp(x, y) := wp(s(x, y))I

(4p − k2)Gp(x, y) = δy(x)Ip
(3.2)

where s(x, y) is the geodesic distance between x and y, δy(x) is the Dirac delta function
and the double form is interpreted as an operator as in (2.4). This ansatz makes sense, as
in the flat case there is the same ansatz in [5], just with the standard euclidean distance
instead of the geodesic distance.

Finding the Green’s function is done using theory from [3]. Lemma 1 from p.111 states,
with Σ = S2:

4p

∫ π

0
wp(s)(Ss + Ŝs)β dµ(s) =

∫ π

0
Lpwp(s)(Ss + Ŝs)β dµ(s) (3.3)

Identities (3a) and (3b) from p.108 give the following:

(Ss + Ŝs)β(s) =
1

m(s)

∫
SS2 (x,s)

(τp(x, x
′) + τ̂p(x, x

′)) ·′ β(x′) dS(x′) (3.4)

Using the property from the top of p.108 allows to introduce parallel transport:

(Ss + Ŝs)β(s) =
1

m(s)

∫
SS2 (x,s)

g(·, P x′x β](x′)) dS(x′)

=
1

m(s)

∫
SS2 (x,s)

Ip(β
](x′)) dS(x′)

(3.5)
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As this holds for an arbitrary form β, weakly one has:

(Ss + Ŝs) = Ip (3.6)

and similarly conclude from (3.3) that weakly one has:

4p (wp(s)Ip) = Lpwp(s)I (3.7)

where the Lp are from [3] Lemma 1:

L0 = − ∂2

∂s2
− cot s

∂

∂s

L1 = − ∂2

∂s2
− cot s

∂

∂s
+

1

cos2 s
2

(3.8)

Thus, to find a Green’s function for (3.1) the following two ODEs have to be solved:(
− d2

ds2
− cot s

d

ds
− k2

)
w0(s) = δ0(s)(

− d2

ds2
− cot s

d

ds
+

1

cos2
(
s
2

) − k2

)
w1(s) = δ0(s)

(3.9)

3.2 Solving the ODE for p=0

In this section the following ODE is solved:(
− d2

ds2
− cot s

d

ds
− k2

)
w0(s) = δ0(s) (3.10)

First the ODE = 0 will be solved, then the function will be appropriately scaled to fit
the singularity.

The problem (3.10) is transformed into a hypergeometric differential equation with
the substitution t = sin2 s

2 . The following identities then hold:

d

ds
=
dt

ds

d

dt
=

1

2
sin s

d

dt
d2

ds2
=

1

2
cos s

d

dt
+

1

4
sin2 s

d2

dt2

sin2 s = 4t(1− t)
cos s = 1− 2t

(3.11)
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Thus the problem becomes

0 =

(
−t(1− t) d

2

dt2
− (1− 2t)

d

dt
− k2

)
w0(t)

= (1− t)tw′′(t) + (1− 2t)w′(t) + k2w0(t)

(3.12)

This is the hypergeometric equation. A solution to this in the form of hypergeometric
functions is not very convenient though, so a further substitution is made, x = 2t − 1.
The following then holds:

d

dt
=
dx

dt

d

dx
= 2

d

dx
d2

dt2
= 2

d

dx
2
d

dx
= 4

d2

dx2

(3.13)

This gives

0 =

(
(1− x2)

d2

dx2
− 2x

d

dx
+ k2

)
w0(x)

= (1− x2)w′′0(x)− 2xw′0(x) + k2w0(x)

(3.14)

This is the Legendre differential equation with ν(ν + 1) = k2 (as of [1, pp.332ff]). Defin-
ing κ =

√
1 + 4k2 this means ν = −1±κ

2 . Without loss of generality choose ν = −1+κ
2 .

As degeneracies might develop if κ is an integer, exclude all these cases from the analysis.

The Legendre ODE has two linear independent solutions consisting of Legendre func-
tions of the first (Pl) and second (Ql) kind. As the second kind functions have a singu-
larity near 1, which is unwanted, discard them. The solution is thus of the form:

w0(x) = CPκ−1
2

(x)

w0(t) = CPκ−1
2

(2t− 1)

w0(s) = CPκ−1
2

(
2 sin2 s

2
− 1
) (3.15)

It is left to determine C in (3.15). In the flat case the fundamental solution is i
4H0(ks),

with H0 Hankel function of the first kind (as of [5, p.15]). Near 0, this behaves similarly
to 1

2π log ks = K − 1
2π log s

2 ∼ −
1

2π log s
2 if one disregards all terms not of order log.

As the behavior near the singularity is determined by the partial derivative of highest
order, the terms of order log should be the same for the curved and the flat case where

the ODE just reads
(
− d2

ds2
− k2

)
w0(s) = δ0(s).

Near −1 one has Pl(z) ∼ 1
π sin(lπ) log z+1

2 (again ignore terms not of order log).1 Thus:

1series expansion taken from http://functions.wolfram.com/HypergeometricFunctions/

LegendrePGeneral/06/01/05/, [9]
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w0(s) = CPκ−1
2

(
2 sin2 s

2
− 1
)
∼ C 1

π
sin

(
π
κ− 1

2

)
log
(

sin2 s

2

)
C

1

π
sin

(
π
κ− 1

2

)
log
(s

2

)2
∼ C 2

π
sin

(
π
κ− 1

2

)
log

s

2

(3.16)

This gives the following equation:

C
2

π
sin

(
π
κ− 1

2

)
log

s

2
= − 1

2π

C = − 1

4 sin
(
π κ−1

2

) (3.17)

which is well-defined as κ can’t be an integer.
This comparison of series terms is legitimate as the Taylor series is unique after sub-
tracting the log-like singularity and the singularity is exactly of order log in both cases.

3.3 Solving the ODE for p=1

In this section the following ODE is solved:(
− d2

ds2
− cot s

d

ds
+

1

cos2 s
2

− k2

)
w1(s) = δ0(s) (3.18)

First the ODE = 0 will be solved, then the function will be appropriately scaled to fit
the singularity.

To try to come to a hypergeometric problem consider the substitution t = sin2 s
2 .

Then:

d

ds
=
dt

ds

d

dt
=

1

2
sin s

d

dt
d2

ds2
=

1

2
sin s

d

dt

d

ds
=

1

2
sin s

d

dt

1

2
sin s

d

dt

=
1

4
sin s

(
d sin s

dt

d

dt
+ sin s

d2

dt2

)
=

1

4
sin s

(
cos s

ds

dt

d

dt
+ sin s

d2

dt2

)
(3.19a)

sin s cos s
ds

dt
= 2− 4t

sin2 s = 4t(1− t)
cos s = 1− 2t

cos2 s

2
= 1− t

(3.19b)
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Thus the problem becomes(
−1

4
(2− 4t)

d

dt
− t(1− t) d

2

dt2
− 1

2
(1− 2t)

d

dt
+

1

1− t
− k2

)
w1(s) = 0(

t(1− t) d
2

dt2
+ (1− 2t)

d

dt
− 1

1− t
+ k2

)
w1(s) = 0

(3.20)

As the next step in the hypergeometric approach substitute w1(t) = (1− t)v(t). The
problem changes to:

0 =

(
t(1− t) d

2

dt2
+ (1− 2t)

d

dt
− 1

1− t
+ k2

)
(1− t)v(t)

= t(1− t)
(
−2v′(t) + (1− t)v′′(t)

)
+ (1− 2t)

(
−v(t) + (1− t)v′(t)

)
− v(t) + k2(1− t)v(t)

= t(1− t)2v′′(t) + ((1− 2t)(1− t)− 2t(1− t))v′(t) + (k2(1− t)− (1− 2t)− 1)v(t)

= (1− t)
(
(1− t)tv′′(t) + (1− 4t)v′(t) + (k2 − 2)v(t)

)
0 = (1− t)tv′′(t) + (1− 4t)v′(t)− (2− k2)v(t)

(3.21)

This is the hypergeometric ODE with c = 1, a + b = 3, ab = 2 − k2 (notation here
and the following solutions are taken from [4, pp.56ff]). A solution for this is 2a = 3−κ,
2b = 3 + κ with κ :=

√
1 + 4k2.

Assuming κ is no integer (to avoid degeneracies of the hypergeometric ODE) leads to
the following two linearly independent solutions (as of [4, p.75]):

v(1)(t) = F

(
3− κ

2
,
3 + κ

2
, 1, t

)
v(2)(t) = F

(
3− κ

2
,
3 + κ

2
, 3, 1− t

) (3.22)

with F (a, b, c, z) the standard Gauss hypergeometric function.2

Again here the first solution will lead to a singularity at s = 1 which is unwanted. As
it was done in the p = 0 case, the first solution is discarded. The solution is thus of the
form:

w1(t) = C(1− t)F
(

3− κ
2

,
3 + κ

2
, 3, 1− t

)
w1(s) = C

(
1− sin2 s

2

)
F

(
3− κ

2
,
3 + κ

2
, 3, 1− sin2 s

2

) (3.23)

It is left to determine C in (3.23). Again in the flat case w1(s) = i
4H0(ks), with H0

Hankel function of the first kind (as of [5, p.15]). Similarly to last section, disregarding
all terms not or order log this behaves similarly to − 1

2π log s
2 . By the same reasoning as

2This function is sometimes also written as 2F1(a; b, c, z) in literature.
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in the last sections this is compared to the logarithmic terms in the series expansion of
(3.23).

Near 1 one has that F (a, b, a+ b, z) = − Γ(a+b)
Γ(a)Γ(b) log(1− z). This gives:

F

(
3− κ

2
,
3 + κ

2
, 3, 1− sin2 s

2

)
∼ − Γ(3)

Γ
(

3−κ
2

)
Γ
(

3+κ
2

) log sin2 s

2

∼ − 2

Γ
(

3−κ
2

)
Γ
(

3+κ
2

) log
(s

2

)2

∼ − 4

Γ
(

3−κ
2

)
Γ
(

3+κ
2

) log
s

2

(3.24)

Inserting into w1(s) gives:

w(s) = C
(

1− sin2 s

2

)
F

(
3− κ

2
,
3 + κ

2
, 3, 1− sin2 s

2

)
∼ −C

(
1−

(s
2

)2
)

4

Γ
(

3−κ
2

)
Γ
(

3+κ
2

) log
s

2

∼ −C 4

Γ
(

3−κ
2

)
Γ
(

3+κ
2

) log
s

2

(3.25)

For C this gives:

C =
1

2π

Γ
(

3−κ
2

)
Γ
(

3+κ
2

)
4

=
Γ
(

3−κ
2

)
Γ
(

3+κ
2

)
8π

(3.26)

which is well-defined as κ can’t be an integer.

3.4 Green’s Functions for the Helmholtz Equation

(3.15) and (3.17) give the following Green’s function for the case p = 0:

G0(x, y) = w0(s(x, y))I0

w0(s) = − 1

4 sin
(
π κ−1

2

)Pκ−1
2

(
2 sin2 s

2
− 1
) (3.27)

a plot of w0 can be seen in Figure 3.1.

(3.23) and (3.26) give the following Green’s function for the case p = 1:

G1(x, y) = w1(s(x, y))I1

w1(s) =
Γ
(

3−κ
2

)
Γ
(

3+κ
2

)
8π

(
1− sin2 s

2

)
F

(
3− κ

2
,
3 + κ

2
, 3, 1− sin2 s

2

)
(3.28)

a plot of w1 can be seen in Figure 3.2.
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Figure 3.1: A plot of w0(s) from 0 to π with κ = 15.4.
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Figure 3.2: A plot of w1(s) from 0 to π with κ = 15.4.

11



In both cases s(x, y) denotes the geodesic distance between x and y. This solves the
problem of finding Green’s functions for the Helmholtz equation. In the following chap-
ters the functions from (3.27) and (3.28) will be used without further comment.

One could construct boundary integral equations for the Helmholtz problem now, but
as the goal is to tackle the Maxwell problem in the following chapter these Green’s
functions are used to construct a Green’s function for the Maxwell problem.
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4 Solving the Maxwell Equation

4.1 Theory

The Green’s double form for the Helmholtz problem can now be used to construct a
Green’s double form for the Maxwell problem. But first one needs to set up a clear
formulation of the problem using the right Sobolev spaces. A more extensive formulation
of (1.1):

(δd− k2)u = 0 in Ω ⊆ S2

tru = β on Γ ⊆ S2
(4.1)

where Γ is the boundary of a simply connected C ⊂ S2 and u ∈ L2Ωp(δd,Ω) (the def-
inition here is inspired from [5, p.27]). In the weak formulation later this is reduced

to L2Ωp(d,Ω). Thus the boundary condition β ∈ H
− 1

2
⊥ Ω(d,Γ) makes sense. One has

H
− 1

2
⊥ Ω(d,Γ) = trL2Ωp(d,Ω) as of [5, p.23], so this is well-defined.

A gauge-type condition as in [5, p.27], as for k 6= 0 (and we excluded all the cases
where κ is not an integer) the following holds:

δdu = k2u

δ2du = 0 = k2δu
(4.2)

and thus δu = 0.

4.2 Finding a Fundamental Solution

The Green’s double form for the Helmholtz problem can now be used to construct a
Green’s double form for the Maxwell problem (1.1). A naive approach (described in [5,
p.42]) would be:

G̃p =

(
1− 1

k2
dδ

)
Gp (4.3)

This is a Green’s function to the Maxwell problem as the following calculation shows:

(δd− k2)G̃p(x, y) = (δd− k2)

(
1− 1

k2
dδ

)
Gp(x, y) = (δd+ dδ − k2)Gp(x, y)

= (4p − k2)Gp(x, y) = δy(x)Ip

(4.4)
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However this is not a very good approach: (4.3) contains two derivatives, and as Gp
already contains a logarithmic singularity this creates an even worse singularity. This
makes numerical methods more complicated.

A smarter alternative is done in [5] p.41 for the flat case if one is going to use the
single layer potential anyway. For this however first a generalization of Lemma 1 from
[5] needs to be proven:1

Lemma 4.1 The following identities hold for the Green’s functions Gp of the Helmholtz
problem, where d,δ act on the first slot and d′,δ′ act on the second slot of the double
form:2

(1) dGp = δ′Gp+1 (4.5a)

(2) δGp = d′Gp−1 (4.5b)

(4.5c)

provided that k is chosen such that 4p − k2 has trivial kernel.

Note that the restriction on k isn’t very bad: resonance cases were excluded anyways
when solving the relevant ODEs.

Proof First note that the following hold:

(4p+1 − k2)d = d(4p − k2)

(4p−1 − k2)δ = δ(4p − k2)
(4.6)

This is true as of following calculation:

(4p+1 − k2)d = dδd+ δdd− k2d = dδd− k2d

= dδd+ ddδ − dk2 = d(4p − k2)
(4.7)

The calculation is analogous for δ.

Now for any u ∈ L2Ωp(δd,Ω) one has:

u(x) = 〈δy(x)Ip(x, y), u(y)〉S2 = 〈(4p − k2)Gp(x, y), u(y)〉S2

= (4p − k2)〈Gp(x, y), u(y)〉S2

(4.8)

This gives the following the equivalent formulations, once by pulling δ into the L2

product, once by inserting δu(x) into the above identity:

δu(x) = 〈δ(4p − k2)Gp(x, y), u(y)〉S2

δu(x) = 〈(4p−1 − k2)Gp−1(x, y), δ′u(y)〉S2

(4.9)

1This proof comes mainly from notes by Stefan Kurz
2As specified in the note after (2.4)
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Using the fact that d′ and δ′ are adjoint:

〈δ(4p − k2)Gp(x, y), u(y)〉S2 = 〈(4p−1 − k2)Gp−1(x, y), δ′u(y)〉S2

= 〈d′(4p−1 − k2)Gp−1(x, y), u(y)〉S2

(4.10)

As this holds for any test form u, one has weakly:

δ(4p − k2)Gp(x, y) = d′(4p−1 − k2)Gp−1(x, y) (4.11)

Using (4.6) and the fact that (4p − k2) is injective gives:

(4p−1 − k2)δGp(x, y) = (4p−1 − k2)d′Gp−1(x, y)

δGp(x, y) = d′Gp−1(x, y)
(4.12)

which proves (2). The proof of (1) is analogous.

This proves the lemma. �

4.3 Single Layer Potential

With this lemma the single layer potential can now be formulated. The single layer
potential is now defined in the spirit of [5] pp.17ff. Define the Helmholtz single layer
potential:

(Ψpω)(x) := 〈ω(y), tr’Gp(x, y)〉Γ (4.13)

This is the normal single layer potential as used in boundary integral equations (seen
for example in [8, p.118]) where the L2 product has been changed into a L2 product for
differential forms.

Lemma 4.2 The following properties hold for the Helmholtz single layer potential:

(1) (4p − k2)Ψp = 0 on Ω (4.14a)

(2) δΨp −Ψp−1δ = 0 on Ω (4.14b)

Proof (1) is shown by the following calculation:

(4p − k2)Ψpω = 〈ω(y), (4p − k2) tr’Gp(x, y)〉Γ
= 〈ω(y), tr’(4p − k2)Gp(x, y)〉Γ = 0

(4.15)

Similarly, (2) is shown by:

δΨpω = δ〈ω(y), tr’Gp(x, y)〉Γ = 〈ω(y), tr’ δGp(x, y)〉Γ
= 〈ω(y), tr’ d′Gp−1(x, y)〉Γ = 〈ω(y), d′ tr’Gp−1(x, y)〉Γ
= δ′〈ω(y), tr’Gp−1(x, y)〉Γ = Ψp−1δ

′ω

(4.16)

(the dash left at the end is cosmetics, it means that the codifferential of ω(y) is taken in
terms of y. This is clear, so one can just omit it as it is done in the formulation of the
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lemma). It was also used that the exterior derivative commutes with the trace operator,
but this follows from the fact that exterior differentiation commutes with the pullback
of differential forms.3

This proves the lemma. �

It is worth noting that as in Lemma 7 of [5] Ψ : H
− 1

2

‖ Ωp(Γ) → H1Ωp(Ω), or by re-

stricting the domain Ψ : H
− 1

2

‖ Ωp(δ,Γ)→ L2Ωp(δd,Ω).

With the Helmholtz single layer potential it is now possible to define a Maxwell single
layer potential that won’t exhibit the same problems as (4.3):

Ψ̃pω :=

(
Ψp −

1

k2
dΨp−1δ

)
ω (4.17)

Lemma 4.3 The following property holds for the Maxwell single layer potential:

(δd− k2)Ψ̃p = 0 on Ω (4.18)

Proof This is verified by the following calculation:

(δd− k2)Ψ̃p = (δd− k2)

(
Ψp −

1

k2
dΨp−1δ

)
= (4− k2)Ψp − dδΨp + dΨp−1δ

= d(Ψp−1δ − δΨp) = 0

(4.19)

where Lemma 4.2 was used.
This proves the lemma. �

From the spaces discussion for Ψp it can be seen that Ψ̃p : H
− 1

2

‖ Ωp(δ,Γ)→ L2Ωp(δd,Ω)

In the spirit of [8] p.119 the single layer operator is now defined:

Ṽp := tr Ψ̃p (4.20)

Now as [5] p.23 states that tr : L2Ωp(d,Ω)→ H
− 1

2
⊥ Ωp(d,Γ), it is possible to conclude

that Ṽp : H
− 1

2

‖ Ωp(δ,Γ)→ H
− 1

2
⊥ Ωp(d,Γ).

4.4 Boundary Integral Equations

With the single layer potential set up and working one can now set up boundary inte-
gral equations. Here the indirect method will be used which only needs the single layer

3Muss ich hierzu etwas zitieren?
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potential. Theory for this mainly can be seen e.g. in [8, pp.171ff].

Plugging the Dirichlet condition into the boundary integral equation for the single
layer operator gives the following integral equation:

Ṽpω = β (4.21)

where β ∈ H−
1
2

⊥ Ωp(d,Γ) is the Dirichlet boundary condition and ω ∈ H−
1
2

‖ Ωp(δ,Γ) is the
unknown boundary density. A weak formulation for this is:

〈Ṽpω, η〉Γ = 〈β, η〉Γ (4.22)

with η ∈ H−
1
2

‖ Ωp(δ,Γ).

Writing this out in integral form gives:

〈Ṽpω, η〉Γ =

∫
Γ
ĝ

(
tr

(
Ψpω −

1

k2
dΨp−1δω

)
, η

)
dΓ

=

∫
Γ
ĝ (Ψpω, η) dΓ− 1

k2

∫
Γ
ĝ (dΨp−1δω, η) dΓ

=

∫
Γ
ĝ (Ψpω, η) dΓ− 1

k2

∫
Γ
ĝ (Ψp−1δω, δη) dΓ

=

∫
Γ

∫
Γ
ĝ
(
ĝ′(ω(y), tr’Gp(x, y)), η(x)

)
dΓydΓx

− 1

k2

∫
Γ

∫
Γ
ĝ
(
ĝ′(δω(y), tr’Gp−1(x, y)), δη(x)

)
dΓydΓx

=

∫
Γ

∫
Γ
ĝ
(
Gp(x, y)[ω](y), ·], η(x)

)
dΓydΓx

− 1

k2

∫
Γ

∫
Γ
ĝ
(
Gp−1(x, y)[(δω)](y), ·]), δη(x)

)
dΓydΓx

=

∫
Γ

∫
Γ
Gp(x, y)[ω](y), η](x)]dΓydΓx

− 1

k2

∫
Γ

∫
Γ
Gp−1(x, y)[(δω)](y), (δη)](x)]dΓydΓx

(4.23)

where the trace can be ignored after the first and fourth lines because of the scalar
product with a form that lies on the boundary. For the right side:

〈β, η〉Γ =

∫
Γ
g(β](x), η](x))dΓx (4.24)

The boundary integral equation that has to be solved is thus the weak problem∫
Γ

∫
Γ
Gp(x, y)[ω](y), η](x)]dΓydΓx −

1

k2

∫
Γ

∫
Γ
Gp−1(x, y)[(δω)](y), (δη)](x)]dΓydΓx

=

∫
Γ
g(β](x), η](x))dΓx

(4.25)
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for η ∈ H−
1
2

‖ Ωp(δ,Γ) test function.

4.5 Representation Formula

Once the boundary density ω from the last section has been found the representation
formula can be used to obtain a solution u to (1.1). As of Lemma 4.2 one can obtain
the solution from the following representation formula:

u(x)[vx] =

∫
Γ
G̃p(x, y)[vx, ω

](y)]dΓy (4.26)

where G̃p is the Green’s function for the Maxwell problem.

Again the direct use of the Green’s function for the Maxwell problem is not advisable
as of the double differentiation of the logarithmic singularity. Using Lemma 4.2 and the
fact that for the representation formula x /∈ Γ, (4.26) can be rewritten as:

u(x)[vx] = (Ψ̃pω)[vx] (4.27)

This is equivalent to (4.26) because of the following calculation:

Ψ̃pω(y) = (Ψp −
1

k2
dΨp−1δ)ω(y)

=

∫
Γ
ĝ′(ω(y), tr’Gp(x, y))dΓy −

1

k2
d

∫
Γ
ĝ′(δ′ω(y), tr’Gp−1(x, y))dΓy

=

∫
Γ
ĝ′(ω(y), tr’Gp(x, y))dΓy −

1

k2

∫
Γ
ĝ′(ω(y), tr’ dd′Gp−1(x, y))dΓy

=

∫
Γ
ĝ′(ω(y), tr’Gp(x, y)− 1

k2
tr’ dδGp−1(x, y))dΓy

=

∫
Γ
G̃p(x, y)[·, ω](y)]dΓy

(4.28)

where Lemma 4.1 was used.

Inserting the definition for Ψ̃p and calculating gives:

u(x)[vx] =

(
Ψp −

1

k2
dΨp−1δ

)
ω[vx]

=

∫
Γ

tr’Gp(x, y))[vx, ω
](y)]− 1

k2
d tr’Gp−1(x, y)[vx, δω(y)]dΓy

(4.29)

Notice that here it is not possible to get rid of the last derivative.

18



5 Discretization

Where the last sections have been rather theoretical, here the case p = 1 (i.e. u is a
1-form) is further explored and an explicit discretization is proposed.

5.1 Theory

The weak equation that has to be discretized is (4.22). For the case of 1-forms the spaces
simplify:

H
− 1

2

‖ Ω1(δ,Γ) = ?H
− 1

2
⊥ Ω0(d,Γ) = ? trL2Ω0(d,Ω) (5.1)

where [5], pp.22f was used. Now 0-forms on Ω with exterior derivative in L2 are just
functions with all partial derivatives in L2. One can thus write:

H
− 1

2

‖ Ω1(δ,Γ) = ? trH1(Ω) = ?H
1
2 (Γ) (5.2)

A similar trick works for the other space which appears in the weak formulation:

H
− 1

2
⊥ Ω1(d,Γ) = ?H

− 1
2

‖ Ω0(δ,Γ) = ? trL2Ω0(δ,Ω) (5.3)

Now all 0-forms for which the codifferential is defined have a codifferential in L2, as it
is 0 for 0-forms. This gives all L2 functions, and thus:

H
− 1

2
⊥ Ω1(d,Γ) = ? trL2(Ω) = ?H−

1
2 (Γ) (5.4)

With this simplification of the spaces it is possible to first discretize the normal scalar
Sobolev space and then simply ? it. This will be done in the next section.

5.2 Galerkin’s Method for the Boundary Integral Equations

The discretization for the space H
1
2 (Γ) which will be used consists of piecewise linear

functions.
Assume the boundary Γ is parametrized by arc length via χ : [0, d] → Γ. Consider
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the partition of [0, d] into N intervals [xi, xi+1], hi := xi+1 − xi. On this partition it is
possible to define hat functions:

ϕi(ξ) :=


0 if ξ /∈ [xi−1, xi+1)
ξ−xi−1

hi
if ξ ∈ [xi−1, xi)

xi+1−ξ
hi+1

if ξ ∈ [xi, xi+1)

(5.5a)

with respective derivative:

Φ(ξ) := ϕ′i(ξ) =


0 if ξ /∈ [xi−1, xi+1)
1
hi

if ξ ∈ [xi−1, xi)

− 1
hi+1

if ξ ∈ [xi, xi+1)

(5.5b)

With ∂
∂l the unit tangent vector to Γ coming from the parametrization χ and dl the

corresponding 1-form it is possible to define the hat forms Li(x) := ϕi(χ
−1(x))dl(x) on

Γ. This is a valid discretization of ?H
1
2 (Γ).

Project ω, the boundary density, onto the subspace to get:

ω(N) :=
∑
i

ω
(N)
i Li (5.6)

Insert into the boundary equations from last chapter and construct Galerkin equations:∫
Γ

∫
Γ
G1(x, y)[

∑
i

ω
(N)
i L]i(y), L]j(x)]dΓydΓx

− 1

k2

∫
Γ

∫
Γ
G0(x, y)[

∑
i

ω
(N)
i (δLi)

](y), (δLj)
](x)]dΓydΓx =

∫
Γ
g(β](x), L]j(x))dΓx

∑
i

ω
(N)
i

(∫
Γ

∫
Γ
G1(x, y)[L]i(y), L]j(x)]− 1

k2
G0(x, y)[(δLi)

](y), (δLj)
](x)]dΓydΓx

)

=

∫
Γ
g(β](x), L]j(x))dΓx

(5.7)

Inserting results from (7.1 - 7.4) in the appendix the equations read:

∑
i

ω
(N)
i

(∫
Γ

∫
Γ
w1(s(x, y))ϕi(χ

−1(x))ϕj(χ
−1(x))g(dl](x), P yx dl

](y))

− 1

k2
w0(s(x, y))Φi(χ

−1(x))Φj(χ
−1(x))dΓydΓx

)
=

∫
Γ
ϕj(χ

−1(x))b(x)dΓx

(5.8)

with β(x) = b(x)dl(x).

20



Define the following coefficients:

Ki,j :=

∫ d

0

∫ d

0
ϕi(ζ)ϕj(ξ)w1(s(χ(ξ), χ(ζ)))g(dl](χ(ξ)), P yx dl

](χ(ζ))) dζdξ

Li,j := − 1

k2

∫ d

0

∫ d

0
w0(s(χ(ξ), χ(ζ)))Φi(ζ)Φj(ξ) dζdξ

Rj :=

∫ d

0
b(χ(ξ))ϕj(ξ) dζ

(5.9)

Then the Galerkin equations reduce to the following linear system:∑
i

ω
(N)
i (Ki,j + Li,j) = Rj (5.10)

5.3 Discretizaton of the Representation Formula

The only thing left on the way to a complete numerical method is the discretization of
the representation formula (4.29).
First write out the representation formula. Inserting results from (7.5 - 7.6) in the
appendix the equations read:

g(u](x), vx) =

∫
Γ

tr’G1(x, y))[vx, ω
](y)]− 1

k2
dG0(x, y)[vx, δω(y)]dΓy

=

∫
Γ
w1(s(x, y))g(vx, trP

y
xω

](y))− 1

k2
dw0(s(x, y))[vx]δω(y)dΓy

(5.11)

Now, inserting ω =
∑

i ω
(N)
i Li gives:

u](x)[vx] =
∑
i

ω
(N)
i

∫
Γ

(
w1(s(x, y))g(vx, trP

y
xL

]
i(y))

− 1

k2
dw0(s(x, y))[vx]δLi(y)

)
dΓy

=
∑
i

ω
(N)
i

∫
Γ

(
w1(s(x, y))ϕi(χ

−1(y))g(vx, trP
y
x dl

](y))

+
1

k2
dw0(s(x, y))[vx]Φ−1

i (χ−1(y))

)
dΓy

(5.12)

Defining the following coefficient:

Pi(vx) =

∫ d

0
w1(s(χ(x), χ(y)))ϕi(ζ)g(vx, trP

y
x dl

](χ(ζ)))

+
1

k2
dw0(s(χ(x), χ(y)))[vx]Φ−1

i (ζ)dζ

(5.13)
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then gives the following solution to the Maxwell problem:

u](x)[vx] =
∑
i

ω
(N)
i Pi(vx) (5.14)

This is the representation formula which serves as a general solution to (1.1) for the
case p = 1.

5.4 Implementing the Parallel Transport Function

The parallel transport function can be implemented via embedding into R3. For some
vector vy based at y ∈ S2 transported to wx := P yx vy based at x ∈ S2 this happens like
this: consider S2 embedded into R3 where the equator is the great circle containing y
and x and the segment from y to x is positively oriented. Pick local spherical coordi-
nates with α longitude, β latitude. Then the α and β components of a vx are the same
as the α and β components of wx, as the unit vectors corresponding to these spherical
coordinates form an orthonormal frame along the great circle.

Let ry and rx be the position vectors of y and x in R3. Then the unit latitude vectors
ax, ay are orthogonal to vy and wx and can thus be represented using the R3 cross
product:

ax = ay =
ry × rx
‖ry × rx‖

=
ry × rx

sin s
(5.15)

as the angle between ry and rx is exactly s due to the radius of S2 being 1. The vector
points up as a consequence of the right-hand rule and the fact the line segment from y
to x is positively oriented.

The unit longitude vectors bx, by are orthonormal to ax, ay and rx, ry and point the
same direction as the great circle: from y to x. They can thus be represented by another
cross product:

by = ay × ry
bx = ax × rx

(5.16)

A sketch of the situation can be seen in Figure 5.1.

Using the normal R3 dot product one can now simply pick out the right components
and the parallel transport reduces to:

wx = P yx vy = (vy · by) bx + (vy · ay) ax (5.17)
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bx

by

ax

ay

rx

ry

x

y

Figure 5.1: Calculating the unit vectors of the orthonormal frame along the great circle
from y to x. rx, ry are position vectors, ax, ay are latitude vectors, bx, by are
longitude vectors.
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x

y

s/2
           d/2
  = sin s/2

s/2

Figure 5.2: Calculating the geodesic distance s between x and y given the R3 distance d.
The figure represents a cross-section through the sphere along a great circle
going through x and y.

5.5 Implementing the Geodesic Distance Function

The geodesic distance function s = s(x, y) can be easily implemented using standard
trigonometry on the R3 distance between x and y that one quickly obtains after the
embedding into R3.
The geodesic distance is the arc length of a great circle centered at 0 passing through x
and y. Figure 5.2 shows the situation with s geodesic distance, d R3 distance.

This gives sin s
2 = d

2 .

24



6 Summary and Outlook

In this bachelor’s thesis the Maxwell-type problem (δd− k2)u = 0 on some Ω ⊆ S2 with
Dirichlet boundary conditions on the boundary Γ of a simply connected C ⊂ S2 was
solved for u a 1-form. First the Green’s double form for 0- and 1-forms was calculated.
This was then used to construct the single layer operator. The single layer operator was
discretized with a Galerkin method to obtain the boundary density. With an indirect
approach the representation formula was then used to calculate u.

Still much remains to be done: the quadrature which has to be used to calculate (5.9)
and (5.13) is not trivial as it involves a singularity.
After this, an actual working implementation in MATLAB would be a next step.
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7 Appendix

Several facts which are not important to the main work but still need to be shown are
shown in this appendix.

7.1 Calculations for the Galerkin Discretization

The following calculations are referenced throughout the section about Galerkin dis-
cretization. All notation and definitions are the same as in that section.

?Li(x) = ϕi(χ
−1(x)) ? dl(x) = ϕi(χ

−1(x))

d ? Li(x) =
∂

∂x
ϕi(χ

−1(x))dl = Φi(χ
−1(x))dl

δLi(x) = − ?−1 d ? Li(x) = −Φi(χ
−1(x))

(7.1)

G0(x, y)[α](x), γ](y)] = w0(s(x, y))I0[α](x), γ](y)] = w0(s(x, y))α(x), γ(y)

G0(x, y)[δL]i(x), δL]j(y)] = w0(s(x, y))Φi(χ
−1(x))Φj(χ

−1(x))
(7.2)

G1(x, y)[α](x), γ](y)] = w1(s(x, y))I0[α](x), γ](y)] = w1(s(x, y))g(α](x), P yx γ
](y))

G1(x, y)[L]i(x), L]j(y)] = w1(s(x, y))ϕi(χ
−1(x))ϕj(χ

−1(x))g(dl](x), P yx dl
](y))

(7.3)

g(b(x)dl](x), L]j(x)) = ϕj(χ
−1(x))b(x)g(dl](x), dl](x)) = ϕj(χ

−1(x))b(x) (7.4)

7.2 Calculations for the Discretization of the Representation
Formula

The following calculations are referenced throughout the section about the Discretization
of the Representation Formula. All notation and definitions are the same as in that
section.

tr’G1(x, y))[vx, ω
](y)] = w1(s(x, y))g(vx, P

y
xω

](y)) (7.5)

dG0(x, y))[vx, δω
](y)] = dw0(s(x, y))[vx]δω(y) (7.6)
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