A SCALABLE EDDY-CURRENT SOLVER
FOR ANSYS

MASTER THESIS
OF

SIEBENMANN STEFAN

FEBRUARY 24, 2010

SUPERVISOR:
PRrROF. DR. R. HIPTMAIR

ETH ZURICH
COMPUTATIONAL SCIENCE AND ENGINEERING
SEMINAR OF APPLIED MATHEMATICS

Contents

I__Introductionl 2
2 Theoretical Background)| 3
2.1 Eddy Current Model| 3
2.2 Variational Problem| 3
2.3 Fmte Element Galerkin Discretizationl 3
2.4 Auxiliary Space Preconditioning|. 4
[2.4.1 Discrete Stable Splittings| 5}

[2.4.2 Algorithm| 5)

25 Complex Casel. 7

[3 Implementation| 8
3.1 Overview, Workflow| 8
[3.2 Discretization by ANSYS| 9
8.3 DriverAndDatalo 9
3.4 ANSYS Input Reader| 11
B41 cdbFilel . . 000 12

B.42 HBFilel . .. 000000 14

3.4.3 mapping File|o 15

3.5 Preconditionmerl L 15
BET Tnifl. . - - o oot 15

5 Applyl - . o 20

[4 Testcases, Results| 23
4.1 Constant Coeficientsl, 23
4.2 Singular Problem| o000 25
65__Conclusions| 27
A Abpend 28
|A.1 Preconditioner tor Complex Systems| 28
[A.2 Sparse Matrices in Difipack|00 o000 30
|A.3 Linear Systems in Difipack|. 30
[A4 Grid in Diffpacklo oo 30
A5 DegFree 31
A6 Matrices PPAP. GTAG|. 31
B_Overview Files| 37
Bibliograp 38

1 Introduction

We are interested in an efficient numerical solution of the following problem
stemming from Maxwell’s equations:

curl a curlu+pfu = finQ CR3 (1.1)

uxn = 0 on 9N

with coefficients o > 0, § >= 0. An extension to complex-valued coefficients
(for the equation in the frequency domain) is possible. A Galerkin finite element
discretization based on edge elements yields the linear system of equations

AZ=b (1.2)

The use of a direct solver is restricted to smaller problems. The only option
for bigger problems are iterative solvers. Hiptmair and Xu introduced in [2]
an auxiliary space preconditioner for the problem [I.I} The application of the
preconditioner involves the solution of several Poisson problems, which can be
done very efficiently with AMG (algebraic multigrid) methods.

In this thesis T will implement the AMS (Auxiliary space Maxwell Solver)
preconditioner for the software package ANSYS and test its performance on a
couple of problems.

2 Theoretical Background

2.1 Eddy Current Model

Time harmonic electromagnetic fields are governed by Maxwell’s equations in
the frequency domain:

curl E = —iwu(x)H inQCcR3 (2.1)
curl H = (iwe(x)+o(x))E+j, in Q C R

-E: electric field

-H: magnetic field

-u: magnetic permeability

-¢: dielectric permittivity

-0: conductivity

-jo: source current
-w: angular frequency

For small € we get the eddy current model:
curl 4! curl E +iwoE = —iwj, in Q (2.2)
Exn = 0 on 0N

2.2 Variational Problem

We consider the following model boundary value problem

curl o(x) curl u+ g(x)u = finQ (2.3)
uxn = 0ondQ

At first we will only deal with real valued coefficients «, 8. Integration by parts
leads then to the following variational problem:

seek u € Hy (curl,Q), s.t. Vv € Hp (curl, Q) : (2.4)
/a(x)curl u -curl v+B(x)u~vdx:/f-vdx
Q Q

Where the function space Hy (curl, 2) is defined as:

Hj (curl, Q) := {v € L*(Q) : curl v € L*(Q),v x n =0 on 99} (2.5)

2.3 Finite Element Galerkin Discretization

Replacing Hy (curl, Q) with the finite element space Ej (M) C Hg (curl,Q)
yields the discrete variational problem

seek ue E, (M), st. Ve E, (M) : (2.6)
a(u,v) := (a(x)curl u, curl v), + (B (x)u,v), = (f,v)q

Here Ej, (M) denotes the edge finite element space on the tetrahedral mesh M.
E), is defined as:

By (M) = {v, € Hy (curl,Q) u, (x)|x =a+bxx, abe R3, K ¢ M}
(2.7)
The space Ej, has a basis of locally supported functions associated with the
edges of M with the property

/be ds = 0 (2.8)

e

The local shape functions of a tetrahedral element the can be expressed as:
B(i,j) =grad); - \; —grad); - \; (2.9)

where \; denotes the barycentric coordinate of node i.
Vector functions can be approximated in Ejp, by the use of the edge interpolation

e I: (c° (Q))3 — Ep, u— Z (/eu . ds) be 210

Evaluation the variational problem for pairs of basis functions leads to the
linear system of equations

AT =10 (2.11)
The Galerkin matrix A is symmetric positive (semi—)ﬂ definit and ill-conditioned.
To solve the system efficiently with a conjugate gradient method one needs a
good preconditioner. A preconditioner B should be an approximation of A~*
and its action on a vector 7 should be efficient to compute.

2.4 Auxiliary Space Preconditioning

A theoretical framework for finding a good preconditioner for the variational
problem

ueV:aluv)=f(u) YveV, a(,-) spd. (2.12)
in the space V' is the auxiliary space technique [5]. Its main building blocks are:
e auxiliary space W (finite element space) with inner product d (-,) on W
e continuous transfer operator Il : W — V : |[Hw|| 4 < ¢ ||w]|
e smoother S : V — V’/ induced by a s.p.d. bilinear form s (-,-) on V
The Auxiliary space preconditioner then takes the form:
B=S"1'4+ToD ! oIl* (2.13)

The quality of the preconditioner measured by the condition number of the
preconditioned system depends on the stability of the following splitting:

3co > 02 5 (vo,v0) + d (w,w) < co o]y, Yv=1v,4Tw eV (2.14)
= cond (BA) < ¢ (ci + HS‘1H2) (2.15)

Lif 3 = 0 for some materials in the domain

2.4.1 Discrete Stable Splittings

A starting point for finding a stable splitting for the finite element space Ej, is
the Helmholtz decomposition:

u=w+grad ¢, divw=0,

with u € Hy (curl;), w € (H (2))°, ¢ € gradH} ()
Indeed the Helmholtz decomposition offers a stable splitting for the space
Hj (curl; Q) [2]. But obviously we are not interested in a preconditioner for
Hj (curl; ©2). The straightforward way to discretize the above decomposition is
to replace H{ (€2) by the space of continuous piecewise linear functions Sp 5, (M).
Unfortunately (So,h)3 C Ej, does not hold in general, which requires the use of
the edge interpolation operator. Furthermore Ej # I (So,h)3 + grad Spp due
to local high-frequency edge element functions, to capture these we need the

smoother. This yields the following decomposition:
For all vj, € E}, there exist ¥, € (Son (Q))3 ,0n € So,n, Vi, € Ej, such that

vy, =Ipy, + V), + gradypy (2.16)
¥l i) + lenll) + Hh_lvhHLz(Q) S Ivallaearsoy (217)
This leads to the auxiliary space:

W = (Son)” X Son (2.18)

with the transfer operator:
IT:=1, x grad (2.19)

2.4.2 Algorithm
The matrix representation of the auxiliary space preconditioner reads as follows
B=S,'+PA,'PT + GA'GT (2.20)

e G is the discrete gradient matrix, i.e. it represents the mapping :
on € Son — gradgy, € Ej,. It has the entries

0 , if p is not an endpoint of e
Gep =14 —1 ,if pisendpoint 1 of e (2.21)
1 , if p is endpoint 2 of e

e The matrix P is the discrete version of the interpolation I, : (SO,h)3 — By
If ¢y, € (Sop)” then

/ d)h . ds — d)h (p2) ; ¢h (pl) . <p2 . pl) (222)
e=(P1,P2)

For a coefficient vector ¢ for (507;1)3 with three components cj, cp, c;, for
every node p we therefore get (with (e, ey, e.) := (py — py))

1
(Pe), = Z 3 (excy + eych + e.cl) (2.23)

peEe

e A is the Galerkin matrix of the bilinear form (u,v) — [, grad u -

grad v dx discretized on Sp; with standard node associated basis func-
tions. The bilinear form corresponds to the Poisson problem —div (5 grad.).

e A is the Galerkin matrix of the bilinear form (u, v) — [, a grad u-

grad v dx discretized on (S’O,h)3 with standard node associated basis func-
tions. The bilinear form corresponds to the Poisson problem —div (« grad-).

. SZI is a symmetric Gauss-Seidel smoother

Note that P and G are local operators, they transfer values from the endpoints
of each edge to the edge itself. PT, GT transfer values from the edges to its
endpoints with the same weights. Evaluation of the preconditioner B for a

vect

1

2.

or 7 produces a result ¢ = B7 through the following steps:

. Set &= 0 and apply a symmetric Gauss-Seidel sweep to the system A¢ = 7
Set (:= GT7
Set p:=PTF

. Approximately solve Ay = g
Approximately solve AR = 5

Transfer corrections ¢ « ¢+ P5 + GR

An alternative form of the preconditioner is the multiplicative variant:

1

2.

. Set &= 0 and apply a symmetric Gauss-Seidel sweep to the system Aé = 7
Set := GT (7 — A?)

Approximately solve AR = f

Transfer correction ¢« ¢+ GK

Set 7:= PT7

—

Approximately solve A = p

— —

Transfer correction ¢« ¢+ P¥

8. Set ¢ := GT (7 — A?)
9. Approximately solve AR = 5
10. Transfer correction ¢« ¢+ GR

11. Apply a symmetric Gauss-Seidel sweep to the system Ac =7

Some remarks:

e All of the above steps - except the steps involving the solution of the Pois-
son problems in the nodal spaces - have optimal computational complexity
O (dim Ep).

e The exact solution of these problems can be replaced by efficient AMG
preconditioner, yielding an overall optimal computational effort.

e The matrix A can be replaced by PTAP, the matrix A by GTAG

2.5 Complex Case

So far we only considered the case with real valued o, 8. For the equations
in the frequency domain [becomes imaginary. When discretizing equation
with complex coefficients one arrives at a complex valued linear system of
equations

7eC': AZ=b AcC"™ beC" (2.24)

This system of equations can be replaced by an equivalent one in R
Ar —Ar\ (Zr br
) = 3 2.25
(% a5 a2
|

A=Ag+iA; Agr A;ceR™
EZER—FH;] ER,EI e R"

with

7=Zr+1Z1 Zr,Zr €R"

The matrix A is symmetric but not positive definite. Hence we use a (symmet-
ric) MINRES instead of the conjugate gradient method to solve the system. To
speed up the convergence we use the block preconditioner

B = (B B) (2.26)

where B is the AMS preconditioner for A = Ar + Aj. A justification for this
preconditioner can be found in [A.1]

3 Implementation

3.1 Overview, Workflow

Preparation in ANSYS

The user creates a suitable electromagnetic problem with the use of element
SOLID236 (for further information contact Dr. Henrik Nordborgﬂ). The dis-
cretization of the model yields the Galerkin matrix A and the rhs b. Mesh,
physical data, Galerkin matrix and rhs will then be saved in the following
ASCII files:

e testcase.cdb: physical model, mesh
e testcase.matrix: Galerkin matrix and rhs of the discretized model

e testcase.mapping: equation « edge(/node)

ANSYS C++/Diffpack Application
- create model ~* cdb - scan
- *.mappin .
N pp g - init
- *.matrix
- solve

< -resultReport
Xr.m

Xc.m

Figure 1: workflow

Solve with C++ /Diffpack

The focus of this thesis is on the programming of a C++-application, which
reads this data in and solves the linear system using a Krylov solver with a
AMS preconditioner. The required mathematical functionality is provided by
Diffpack. Diffpack is a numerical C++-library with main emphasis on numerical
solution of partial differential equations. An online documentation can be found
on http://www.diffpack.com/.

2CADFEM (Suisse) AG, Henrik Nordborg, henrik.nordborg@cadfem.ch

http://www.diffpack.com/

3.2 Discretization by ANSYS

ANSYS solves the Maxwell’s equation by introducing potentials such that:

E = —iwA — gradV (3.1)

-A: magnetic vector potential
-V'. electric scalar potential

To ensure uniqueness of the discretized solution ANSYS uses a tree gauging
algorithm that sets some degrees of freedom to zero. For the AMS precondi-
tioner we have to disable the tree gauging algorithm and set instead all dofs
associated with V' to zero. To resulting variational formulation then becomes

uckb: (,u_l

curl u ,curl v) +iw (ou ,v) = (jo,v) Vv e Ej, (3.2)
The values of p = popry and w = 2 f are defined by the following parameters:
e EMUNIT for pg
e MURX for tiyg
e RSVX for %

e HARFERQ for f

3.3 DriverAndData

The main class for this project is called DriverAndData. As the name suggests,
the class contains all the data (matrix, rhs of the system, grid, etc) that defines
the problem. Furthermore the class provides functions to perform the steps
needed to solve the linear system problem. If we look at the main function (in
main.cpp):

int main (int argc, const charx argv([])

{
initDiffpack (argc, argv); // every Diffpack application
starts with that command
DriverAndData driver;
driver.scan();
driver.init ();
driver.solveProblem () ;
driver .resultReport () ;
}

We see four function calls corresponding to the steps in figure [I}

scan

The scan function creates an ANSYSInput object. The object then reads the
text files with the problem data created by ANSYS and fills the related at-

tributes of the Driver class:

e A_real: Sparse matrix (cf. |[A.2)) representing the real part of the Galerkin

matrix. Corresponds to the bilinear form (;Fl

b_real: Real part of the rhs of the linear system

b_imag: Imaginary part of the rhs of the linear system

grid: the mesh created by ANSYS (cf. [A.4])

curl u, curl v) on Fp.

A _imag: Sparse matrix (cf. [A.2]) representing the imaginary part of the
Galerkin matrix. Corresponds to the bilinear form w (ou, v) on Ej,.

phys data: simple structure containing the parameters of the model, as

described in chapter [3.2] murx and rsvx are vectors, entry i corresponds

to material i.

e edge_dofs: mapping equation < edge (cf. |A.5)

The internals of the ANSYSInput class are described in chapter To under-
stand the implementation of the preconditioner one can skip that chapter and

just remember the mentioned data structures describing the model.

init
The init function creates the linear system AZ = b with

A=Arp+Aj, 5253—#51 real case

A= (_AAR] :2;) , b= <—b§I> complex case

Secondly it computes alpha and beta from the phys data structure.

L 1
ali) = emunit - murz(i)
.~ _ 2m-harfreq

Bi) = “rsoa(l)

Furthermore it sets the parameters for the Krylov solver:

if (complex){

solv_prm—>basic_method = "SymMinRes" ;

conv_prm—>residual tp = LEFTPREC RES;
telse{

solv_prm—>basic_method = "ConjGrad";

conv_prm—>residual tp = ORIGINAL RES;

10

(3.3)

(3.4)

solv_prm—>startmode = USER,_START;

solv_prm—>max iterations = 100;

conv_prm—>monitor tp = "CMRelResidual"; J/ |r_kl/]r_o]
< tol

conv_prm—>conv _tolerance = 1.0e—6;

conv_prm—>norm_tp = 12; // 2—norm

Based on these choices it then creates a solver object. Finally it builds the
AMS preconditioner, calls its init function and attaches the preconditioner to

the linear system (cf. [A.3)).

solveProblem
Calls the solve function of the Krylov solver with the linear system as argument.

resultReport
Writes the solution to the hard disc (files: xr, xc) and gives some additional
information about the convergence behavior.

3.4 ANSYS Input Reader

The ANSYSInput class reads the information given by the *.cdb, *.mapping and
* matrix file. The class uses the C+-+ stream classes fstream and stringstream.
The class will first read a line from the file. If the line is relevant it will fill an
istringstream object with the line. With the » operator we can then extract
information from the istringstream object.

A simple example illustrates that procedure:

If we assume the first line from the *.mapping file is:

1 234 AZ

the following code will then fill the variables eqn, node and dof with the values
1, 234 and "AZ";

ifstream fin;
fin.open(dof file.c str());

string dof;
int eqn, node;

istringstream sline;
char line[80];

while (fin.getline(line, 80)){

sline . clear () ;
sline .str(line);

sline >> eqn >> node >> dof;

11

3.4.1 cdb File

To allocate the necessary memory to save the grid data structures (cf. function
redim of the GridFE class) we have to determine the numbers of elements,
nodes, edges, materials etc. This is done by the function ReadMeshInfo. For
the most values the read-out from the cdb-file is pretty simple. For example:
For the number of elements one can find the line

NUMOFF, ELEM, 18456

in the cdb-file). The only difficulty is caused by the nodes and edges. ANSYS
has no specific data format for edges, they are just represented by nodes located
in the middle of the edge.

MAN.OPLUNVWX

Tetrahedral Option
M.M.O PV W X

Q 1
Pyramid Option

A
M “' QP W
Y A B
i KLS
R
? J
Prismn Qplion

Figure 2: ANSYS: local nodes

For the purpose of the AMS preconditioner we are not interested in the coor-
dinates of the midnode, instead we want to know for every edge which are his two
endnodes. This requires that we save the edges and the (real) nodes in a different
format (cf. . The function labelEdges goes through the element definitions
and labels all mid-nodes as edges in the array ANSYSnode is edge. Further-
more it creates an array (or more precisely a Diffpack vector) ANSYS_2_ diffpack

12

that realizes the mapping: ANSYS node number — Diffpack edge/node num-
ber. The renumbering is done in a way that preserves the property that the
edge orientation is always from the lower (global) node number to the higher
node number. With the information in these two arrays we can then determine
the number of edges and nodes, allocate the necessary memory and fill all the
grid data structures mentioned in [A.4]

Edges and Elements
The elements are defined after the EBLOCK label. The cdb-file uses two lines
for every element. The format of the first line is as follows:

e Field 1: material number of the element

o Field 2-11: -

e Field 12-19: the global numbers of the local nodes I, J, K, L, M, N, O, P
The second line contains the remaining nodes:

e Field 1-12: the global numbers of the local nodes Q, R, S, T, U, V, W,
X,Y,7Z,A B

The function readElementsEdges then fills then the grid data structure associated
with the elements and edges.

Nodes
The nodes are defined after the NBLOCK command. The format is:

e Field 1: node number

o Field 2,3: - 3

e Field 4-6: the coordinates
e Field 7-9: -3

Zero entries at the end are omitted. The coordinates for the nodes are then
saved by the function readCoord;

Boundary conditions
The boundary conditions are at the end of the cdb-file after an empty line. In
the case of zero boundary conditions the format is

e Field 1: "D"

e TField 2: node

e Field 3: dof label (AZ, VOLT)
e Field 4,5: dof value (0)

3the information in these fields is not used

13

Physical Parameter
The physical parameters are represented by the following entries:

e HARFREQ for f = 27w
e MURX for pi,
e RSVX for 1/0

3.4.2 HB File

ANSYS saves the Galerkin matrix A and the rhs in the Harwell Boeing format.
The HB format was created to exchange sparse matrices in text format. HB
uses the CCS (Compressed Column Storage) format, which is similar to the
CRS (Compressed Row Storage) format, the difference is that it is column
oriented instead of row oriented. The text file starts with a header block, which
contains information about the storage format and the required memory to save
the data. The header block is followed by several data blocks containing the
matrix and the rhs. The first data block contains the column start pointers,
followed by blocks with the row indices and the numerical values of the matrix
entries. The last data block contains the rhs.

To read the data from the file T use the open source code [11] . The code
I use is slightly modified because the original version used single precision and
had no support for complex matrices. The interface to the code is realized in
the function readMatrixRHS(). There are several outputs corresponding to the
entries in HB-file. The most important are:

e mxtype: a three character array describing the storage format. In our case
it should be "CSA’ (Complex, Symmetric, Assembled)

e nnzero: number of nonzeros in the matrix. Note that in case of a symmet-
ric matrix HB only saves (and counts) the lower left triangle.

e ncol, nrow: the dimension of the matrix

e colptr: int array of length ncol +1, colptr [i—1]: pointer to the first entry
in column i

e rowind: int array of length nnz, rowind[i—1]: row index of entry j

e val real, val _imag: double array of length nnz, val[i—1] : numerical value
of entry j

e rhs real, rhs _imag: double arrays of length nrow representing the rhs

To use the matrix and the rhs we have to save them in a format, that is
understandable by Diffpack. In the case of the rhs the task is trivial. For
the matrix it is more complicated: The first problem is that Diffpack uses the
CRS-format instead of the column oriented format. Secondly Diffpack does not

14

support symmetric sparse matrices (at least not yet), so we have to copy all
entries (with the exception of the diagonal entries). The function that builds
a Diffpack sparse matrix based on the colptr, rowind and val arrays is called
hb 2 dpsparse.

3.4.3 mapping File

This file lists for every equation the associated node/edge. The format is:
e Field 1: equation
e Field 2: node/edge
e Field 3: dof label (AZ, VOLT)

The routine readDOFs creates the DegFree object (cf. [A.5)) for the edge space.

3.5 Preconditioner

The AMS preconditioner is implemented in the class PrecAMS. The class has to
implement the function applyPrec(const LinEqvector& r, LinEqvector& c)., which
gets called in each iteration of the Krylov solver (cf. . To perform the
algorithm outlined in chapter the preconditioner needs the following in-
formation:

e the matrix of the linear system A = Ar + Ay, or in the complex case

_(Ar —Aj
(B) .
in either case I will actually only use the matrix Ap = Ar + Aj.
e the grid describing the domain, including all the edges (cf. [A.4))

e « and (3: vectors, where the entry i corresponds to the value of «, 3 for
material i

e edge dof: the mapping equation < edge

These objects are passed to the preconditioner through the constructor. Before
the preconditioner is ready to use (i.e. the apply function does what it is
supposed to do) we have to call the init function of the preconditioner.

3.5.1 Init

The init function builds the following matrices

e the transfer matrices G and P = (Px P, PZ)

15

A
e the Poisson matrices A, A = A or alternatively the matrices

A
GTABG, PIAgP; (i=1,2,3) in the nodal space.

To create these matrices I will use three objects of the type DegFree (cf. |A.5):

e edge dof: is associated with the edge space and is created from the *.map-
ping file

e node_ipol_dof: is agsociated with the scalar Poisson problem —div (« grad-)
discretized on Sy, in the nodal space. Assigns a dof to all nodes except
the boundary nodes (assuming zero boundary conditions)

e node_pot_dof: is associated with the scalar Poisson problem —div (3 grad-)
discretized on Sy 5, in the nodal space. Assigns a dof to all nodes, that are
not boundary nodes and are not exclusively in a material with 8 = 0.

Note that if § > 0 everywhere node_ipol dof and node_pot_dof are identical.

Building the Transfer Matrices G and P

Building the discrete gradient matrix G and the interpolation matrix P =
(Px P, Pz) is quite simple with the created data structures. The matrix G
is a mapping from the nodal space described by node pot_dof to the edge
space described by edge dof. Similarly P; is a mapping from the nodal space
described by node_ipol dof to the edge space. It is sufficient to describe the
transfers between nodes and edges that represent dofs in their respective spaces.
This leads to zero rows in the matrix G. To implement those correctly one has
to remember that the CRS format requires that row(i) for a empty row i points
to the next nonzero entry in the matrix.

void PrecAMS:: buildGMatrix () {

int i; // equation number in edge space

int e; // edge associated with equation i

int sn, en; // sn, en: nodes s.t.: e = (sn, en)

const int nrow = edge dof.getNoEqu() ; // number of
rows of G (equal to number of edge equations);

const int ncol = node_ pot_dof.getNoEqu () ; // number of
columns of G (equal to number of node equations);

int nnz = 0; // number of

nonzero entries in G
for (i=1; i<=nrow; i++){
e = edge dof.getEdge(i);
sn — grid.getNodel(e);
en = grid.getNode2(e);
nnz += node pot_dof.getEqu(sn)!=0;
nnz += node pot_dof.getEqu(en)!=0

16

}

Handle (SparseDS) pattern;

pattern.rebind (new SparseDS(nrow, ncol, nnz));
G.redim (xpattern);

G.fill (0); // should be redundant

pattern—irow (1) =1 ;

int ij = 0;
for (i=1; i<=nrow; i++){
e = edge dof.getEdge(i);
sn = grid.getNodel(e);
en = grid.getNode2(e);
if (node pot_dof.getEqu(sn)){
++1j
G(ij) = -1
pattern—>jcol (ij) = node pot_ dof.getEqu(sn);
if (node_ pot_dof.getEqu(en)){
++1ij
G(ij) = 1;
pattern—>jcol (ij) = node pot_ dof.getEqu(en);
}
pattern—irow (i+1) = ij+1;
}
}
void PrecAMS:: buildPMatrix (){
int i; // equation number in edge space
int e; // edge associated with equation i
int sn, en; // sn, en: nodes s.t.: e = (sn, en)

double tr weight x, tr_ weight y, tr_weight z; // transfer
weight

const int nrow = edge dof.getNoEqu() ; // mumber of
rows of P_x/y/z (equal to number of edge equations);

const int ncol = node ipol dof.getNoEqu(); // number of
columns of P_i (equal to number of node equations);

int nnz = 0; // number of mnonzero entries in P
for (int i=1; i<=nrow; i++){

e = edge dof.getEdge(i);

sn = grid.getNodel(e);

en = grid.getNode2(e);

nnz += node_ipol dof.getEqu(sn)!=0;

17

nnz += node_ipol_dof.getEqu(en)!=0;

}

Handle (SparseDS) pattern;
pattern.rebind (new SparseDS(nrow, ncol, nnz));

Px.redim (x pattern);
Py.redim (xpattern);
Pz.redim (xpattern);

Px. fill (0);
Py. fill (0);
Pz. fill (0);
pattern—irow (1) =1

)

int ij=0;
for (i=1; i<=nrow; i++){

e = edge dof.getEdge(i);

sn grid .getNodel(e);
en = grid.getNode2(e);

tr_weight x = .5%(grid.getCoor(en,1)—grid.getCoor (sn
1))

tr_weight y = .5x(grid.getCoor(en,2)—grid.getCoor (sn
2))5

tr_weight z = .5x(grid.getCoor(en,3)—grid.getCoor(sn
:3))5

if (node ipol dof.getEqu(sn)){
++ij;
Px(ij) = tr_weight x;
Py(ij) = tr_weight y;
Pz(ij) = tr_weight z;
pattern—>jcol (ij) = node ipol dof.getEqu(sn) ;;

if (node ipol dof.getEqu(en)){
++1ij
Px(ij) = tr_weight x;
Py(ij) = tr_weight y;
Pz(ij) = tr_weight z;
pattern—>jcol (ij) = node_ ipol dof.getEqu(en) ;;

}

pattern—irow (i+1) = ij+1;

18

FEM-matrices A, A

The matrices associated with the Poisson problems —div (5 grad-) and —div (« grad-)
discretized on Sy 4, (So,h)3 are created with a subclass of the Diffpack class FEM.
The FEM class has already implemented several algorithms that are typically
used in finite element programs. In the default version I only have to implement
the integrands function. This functions adds the contribution of an integration
point to the element matrix. The value of alpha and beta for the integration
point can be obtained through the material number of the element (function:
grid . getMaterial Type(int elem). The matrix assembly is then done by the func-
tion makeSystem. I always compute the full matrix (i.e. one equation for every
node) and then extract the relevant submatrix based on the information in the
corresponding DegFree object.

Matrices PTAP, GTAG
The block matrix A can be replaced by PTAgP or by

PIARP,
Pl ApP, (3.7)
PTARP,

The multiplication of two sparse matrices is usually not implemented in numeri-
cal libraries like Diffpack, since in general the product of two sparse matrices can
be completely dense. In our case however a realization in O (nnz) is possible.
For the entry (1,m) of (Pz;ABPx) we get the following expression:

N N

(PLABP) 0 =D Y Po(iAnigPaim (38)
i=1 j=1

The term P, ;) Ap i, j)Ps@i,m) 18 equal to zero, unless the edges i, j and the
nodes 1, m are all part of the same element. This allows to compute the matrix
(PfA BPz) by adding up the contributions from the different elements. This
is implemented in the routine build_PAP_GAG (cf. . First I create the
sparsity pattern of the resulting matrix, it is identical to a sparsity pattern of a
FEM-matrix discretized in the nodal space with standard locally supported ba-
sis functions and can be created with the Diffpack function makeSparsityPattern
from FEM.h. Similarly to a finite element assembly I will also work with local
element matrices, this is done to minimize costly matrix accesses of the form
(i).

The matrix A can also be replaced by GT A gG. With exact arithmetic the
two matrices would be identical (GTARG =0, GTA;G = A. But numerical
experiments show that the matrices can be quite different and that GTApG
yields better results for the AMS preconditioner.

19

3.5.2 Apply
The Krylov solver calls in each iteration the apply() function of the precon-

... R o el
ditioner. This function realizes the preconditioner action ¢ = B7 or <cj> =
2

(B B :_{ in the complex case, where B is the AMS preconditioner de-
2
scribed in chapter

void AuxSpacePrec::apply (const LinEqVector &r, LinEqVector &c
, TransposeMode tpmode){

// realizes preconditioner ¢ = Br
no_calls++;
cout << "apply Preconditioner , number of calls: " <<

no calls << endl;

if (!complex){

const Vec(dpreal)& rvec = r.getVec(1l);
Vec(dpreal)& cvec = c.getVec(1);

applyMultPrec(*A B, rvec, cvec);
//applyAddPrec (xA_B, rvec, cvec);

}

else{
const Vec(dpreal)& rvecl = r.getVec(1);
const Vec(dpreal)& rvec2 = r.getVec(2);
Vec(dpreal)& cvecl = c.getVec(l);
Vec(dpreal)& cvec2 = c.getVec(2);
applyMultPrec (xA_B, rvecl, cvecl);
applyMultPrec(*A B, rvec2, cvec2);
//applyAddPrec (*A_B, rvecl, cvecl);
//applyAddPrec (xA_B, rvec2, cvec2);

}

Additive Variant

void PrecAMS:: applyAddPrec(MatSparse(dpreal)& A sys, const Vec
(dpreal) &r, Vec(dpreal) &c){

2. fill (0);
A sys.SSOR1lit(c, ¢2, r, 1);

20

if (!two_level _method){ // beta != 0

G.prod(r, rhs_beta, TRANSPOSED) ; // rhs = G°T
* T
sys beta—>attach(x_beta, rhs beta);
solver —solve (xsys beta); // x = D—1 x
rhs
G.prod(x_beta, c, NOT _TRANSPOSED, true); // ¢ = ¢ + Gx
T
}
Px.prod(r, rhs, TRANSPOSED) ; // rhs = Pz"T
¥ T
sys_x—>attach(x, rhs);
solver —solve (*sys_x); // x = Dz™—1 %
rhs
Px.prod(x, c, NOT_TRANSPOSED, true); // ¢ = ¢ + Px
¥

Py.prod(r, rhs, TRANSPOSED) ;
sys_y—>attach(x, rhs);

solver—solve (xsys_y);

Py.prod(x, c, NOT_TRANSPOSED, true);

Pz.prod(r, rhs, TRANSPOSED) ;
sys_z—>attach (x, rhs);

solver —>solve (xsys_z);

Pz.prod(x, ¢, NOT TRANSPOSED, true);

Multiplicative Variant

void PrecAMS:: applyMultPrec(MatSparse(dpreal)& A _ sys, const
Vec(dpreal) &r, Vec(dpreal) &c){

c.fill (0.0); //c=0;

A sys.SSORI1it(c2, ¢, r, 1); // apply a symmetric Gauss
Seidel sweep to Ac = r;

if (!two_level_method){ // beta!=0
computeRes(res, ¢2, r, A sys); // res = r—Ac

G.prod(res, rhs_ beta, TRANSPOSED); // rhs = G Txres
sys_beta—>attach (x_beta, rhs_beta); // x = D—1 % rhs
solver —>solve (xsys_beta);

G.prod(x_beta, c¢2, NOT_TRANSPOSED, true); // ¢ = ¢ + G

* T

21

}

computeRes(res, c¢2, r, A sys);

Px.prod(res, rhs, TRANSPOSED) ; // rhs = Pz~T
sys_x—>attach(x, rhs);
solver —solve (xsys_x); // & = Dzx~—1 % rhs

Px.prod(x, c¢2, NOT_TRANSPOSED, true); // ¢ =c¢ + (Pxz)_x

Py.prod(res, rhs, TRANSPOSED) ;
sys_y—>attach(x, rhs);

solver —>solve (xsys_y);

Py.prod(x, c2, NOT_TRANSPOSED, true);

Pz.prod(res, rhs, TRANSPOSED) ;
sys_prec_z—>attach(x, rhs);

solver —>solve (xsys_z);

Pz.prod(x, c¢2, NOT TRANSPOSED, true);

if (!two_level method){
computeRes(res, ¢2, r, A sys);

G.prod(res, rhs beta, TRANSPOSED) ;

sys beta—>attach(x_beta, rhs beta);

solver —solve (xsys_beta) ;

G.prod(x_beta, c2, NOT_TRANSPOSED, true);
}

A sys.SSORlit(c, c2, r, 1);

}

Remarks:

e For every call of the preconditioner we have to solve four (or in the com-
plex case eight) problems in the nodal space. To achieve overall optimal
performance an approximative solution with AMG V-cycles would be opti-
mal. Unfortunately caused by unexpected problems with the AMG solver
I was not able to implement that in time. Instead I use a direct solver.

e A symmetric Gauss-Seidel sweep is a special case of SSOR iteration with
w set to one. The SSOR iteration is implemented in Diffpack by the
function SSORI1it. So all we have to do to realize the smoothing step is
to call this function with w = 1.

22

4 Testcases, Results

We investigate the performance of the following variants of the AMS precondi-
tioner:

1. Additive variant with Poisson auxiliary matrices A, A
2. Multiplicative variant with Poisson auxiliary matrices A, A
3. Additive variant with auxiliary matrices PYAP; (i = 1,2,3), GTAG

4. Multiplicative variant with auxiliary matrices PY AP; (i = 1,2,3), GTAG

4.1 Constant Coeflicients

As a first example we consider the unit cube meshed with tetrahedral elements.

0.200 0.600

Figure 3: unit cube

The material parameters are constant in the domain and have the following
values:

-0 =10°

- = Hofbra, With pg = 47710_7; prg =1

The frequency is 1. With these parameters we get for o and :

oa:%-107

o 3 =2r10°

23

narm residuum

' —+— additive AMS precond
F —+— multiplicative AMS precond
—+—no precond

10 1 1 1 1 | 1 1 | 1

0 10 20 30 40 50 60 70 80 90
number of iterations

Figure 4: relative error of the residuum against the number of iterations

100

The following tables show the performance of the preconditioner with the con-
vergence tolerance set to 1070

N Hnitl‘nitQ‘nitS‘nitél‘
7673 15 8 16 8
17794 14 8 16 8
34428 15 8 16 8
73372 15 8 16 8
142072 15 8 17 8

Table 1: number of iteration for the real case

N [mie 2 [mi 4|
7673 31 28
17794 33 29
34428 35 [29
73372 371 30
142072 39 30

Table 2: number of iteration for the complex case

24

| N || o | init | transfer | residuum | smoother | solve |

7673 31 | 0.087 0.02 0.03 0.016
17794 33| 0.15 0.028 0.032 0.048
34428 35| 0.30 0.065 0.015 0.281
73372 37| 0.55 0.10 0.062 0.405
142072 || 39 | 0.91 0.18 0.181 0.813

Table 3: time spent in different parts of the preconditioner (variant 4) on the
coarsest mesh (Core 2 Duo 2.8GHz)

4.2 Singular Problem

The geometry of the second example is shown in the following picture

0000 0350 n.7|ou (m)

The model consists of three different materials with the following parame-
ters:

e air:

—0o=0

— [L = Hofbre, With pg = 471077, pipy =1
o wall:

— =107

25

— W= fholbry, With ug = 471077, Prg =1
e conductor:
— o=10
— = flofbre, With po = 471077, fiy = 200

Note that G4 is zero. The matrix of the system is semi-definit and the rhs has
to satisfy compatibility conditions.

0
10 T T T T T T T
~ ——— additive AMS precond
10 E —— mulfiplicative AMS precond 3
[—— no precond
107}

E 107k

a0

=y

e

E .

o 10 E
107k 4
10°L 4
10'7 1 1 1 I 1 1 1 1 I

0 10 20 30 40 50 60 70 80 90 100

number of iterations

’N Hnitél‘nitii‘
5508 9 21
6570 10 25
7418 11 26

10665 12 27
21027 12 25
49505 12 26

Table 4: number of iteration for the real case

The complex case did not converge for that example.

26

5 Conclusions

The numerical tests for the real case demonstrate that the AMS preconditioner
works very well even for challenging problems. Theoretical results indicate that
it should also work for complex-valued systems. The numerical tests however
show mixed results . Further tests are needed to explain these results and
hopefully improve the performance for complex-valued systems.

A comparison between different variants of the preconditioner indicated that
the multiplicative variant with matrices PTAP, GTAG for the nodal space
problems is the best choice.

The following extensions of the application could be implemented in the
future:

e support for more general boundary conditions
e support for different elements (hexahedron, pyramid, prism)

e replace the direct solver in the nodal space by AMG V-cycles

27

A Appendix

A.1 Preconditioner for Complex Systems
Consider a complex linear system of equations:
Az=10

with
A=Ag+iA; Agp A;cR™

b=>bgr +1ib; br,by €R"”
Z=7Zr+1izr zgr,zZr €R"
Assumption: M € R™™ s.p.d. with

fyzHMz < ‘zHAz| <72MMz VzeC”

then we get for the preconditioned system

Y Ap —Ap) (M2 3
M Y2)\-A; —Ap _M-Y2) T

the spectral condition number:

Proof:
If Az =0 then

(A1)

(A.2)

(A.3)

(A4)

v Mz < |27 Az| = 70| = | MM 1| < (27 Mz) 2 (B M)

1
= [lzllpr < 5 160l 371

ywHw < |w® M- Y2AM /2 w| < rwfw YweC?
—_—
A

If Aw = b then 1
il < — |7
Y

reeie (%) (3)
=4)

|25 Aw| < 7|2y lwlly,

Assumption:

28

(A.5)

= |7 Aw| < 712l Jull = |&] < 7

If A% = b then

Special case Ar, A symmetric, positive Ay s.p.d.
’zHAz‘ = |ZHARZ + izHAIz‘

> \}i (|zHAz‘ + |zHAzD

v

(zHARz + zHAIz)

v

ST

ZH (AR =+ A[)Z
~——
M

‘zHAw’ = }zHARw +izHA1w‘
< (|2 Aw| + ¥ Aw)

< \/5\/|zHAw]2 + |2H Awl|?

< \@\/(ZHAR,Z) (wHARw) + (27 Az) (wH A jw)

< (zHMz) 1/2 (wHMw) 1/2

With M= Ag+A; we have y = 1v2, 7=1

29

(A.10)

(A.11)

(A.12)
(A.13)

(A.14)

A.2 Sparse Matrices in Diffpack

The storage of sparse matrices is implemented in the Diffpack class MatSparse.
The class uses the Compressed Row Storage (CRS) format. For a complete
documentation see [9].

A.3 Linear Systems in Diffpack

Linear systems are represented in Diffpack by the class LinEqSystemStd [9].
The class contains a blockmatrix of the type LinEqMatrix [9] and two block-
vectors of the type LinEqVector [9] representing the rhs and the solution of the
system.

To solve a preconditioned linear systems we can use the class LinEqSystem-
Prec [9]. This class is a simple extension of the class LinEqSystemStd and has
additionally a preconditioner attached. The preconditioner has to implement
the function applyPrec(const LinEqVector& r, LinEqVector& c). To solve the sys-
tem we then have to create a solver object and call its solve function with the
linear system as argument.

A.4 Grid in Diffpack

The necessary data structures to describe a grid are realized in the Diffpack class
GridFE (cf.). The class contains a matrix nodel, which lists the nodes for every
element. The coordinates for a node are saved in the matrix coor. Furthermore
the class marks every boundary node and has a vector material type which
contains for every element its material number (1,2, .., nmat). The physical
data corresponding to a material has to be saved outside of the GridFE object.
Accessing this information can be done through the following functions (for a
complete list of all the functions see the man page of the class [9])

e loc2glob(int e, int local node)
given a local node number in an element, the function returns the corre-
sponding global number of that node.

e getCoor(int node, int dir)
get the coordinates of a node.

o getMaterialType (int e)
gets the material number of an element.

e boNode (int node)
returns "true" if a given node is marked with a boundary indicator.

To implement the AMS preconditioner we need two additional matrices describ-
ing the (oriented) edges of the mesh. The first one - edgel - is similar to nodel
and lists the edges for every element. An oriented edge is described by its head
and tail node, this information is saved in the matrix edges.

30

e loc2globEdge(int e, int local edge)

given a local edge number in an element, the function returns the corre-

sponding global number of that edge.

e getNodel(int edge)
get the tail node of an edge.

o getNode2(int edge)
get the head node of an edge.

A.5 DegFree

This class realizes the mappings: node/edge +— equation and equation +—
node/edge. This information is saved in two arrays and can be accessed as

follows:

e int getEdge(int dof)
get the edge associated with dof

e int getNode(int dof)

get the node associated with dof (just a different name for the function

getEdge).

e int getDof(int node/edge)

get the dof associated with edge/node. returns 0 if there is no dof associ-

ated with the edge/node

A.6 Matrices PTAP, GTAG
void PrecAMS::build PAP GAG(){

// create sparsity pattern for nodal space
Handle (SparseDS) pattern;

Handle (DegFreeFE) dof;
pattern.rebind (new SparseDS());

dof.rebind (new DegFreeFE(grid, 1));
makeSparsityPattern (xpattern, xdof);

const int n_node el = 4; // number of nodes per
const int n_edge el = 6; // number of edges per
const int nelem = grid.getNoElms();

int el, e2; // local edgenumber
int gl _el, gl e2; // global edgenumber

element
element

int dof el, dof e2; // equation associated with edge

gl _el, gl e2

int sn_el, en_el; // first and second node for edge el:

gl el = (sn_el, en_el)

int sn_e2, en_e2; // first and second node for edge e2:

gl _e2 = (sn_e2, en_e2)

31

int loc_node 1, loc_node_ 2;

int sn_el loc, en_el loc; // first and second local node
for edge el

int sn_e2 loc, en_e2 loc; // first and second local node
for edge €2

double tr_ weight x, tr_ weight y, tr_ weight z;

Mat(dpreal) Ae x, Ae_ y, Ae_7z;

Ae x.redim(n_ node el,n_node el) // local elem mat
Ae y.redim(n_node el,n node el); // local elem mat
Ae_z.redim(n node el,n node el); // local elem mat
Mat(dpreal) A

Ae.redim (n_node_el ,n_node_el);

MatSimplest (int) loc_node;
loc_node.redim (6,2) ;

loc_node(1,1) = 1; loc_node(1,2) = 2;
loc_node(2,1) = 2; loc_node(2,2) = 3;
loc_node(3,1) 1; loc_node(3,2) 3;
loc_node(4,1) = 1; loc_node(4,2) = 4;
loc_node(5,1) = 2; loc_node(5,2) = 4;
loc_node(6,1) = 3; loc_node(6,2) = 4;
VecSimple(int) idx(n_node el); // local node to

global node mapping
int index;

Lx.redim (xpattern); // Pz"TAPz
Ly.redim (xpattern); // Py TAPy
Lz.redim (* pattern); // Pz "TAPz
Lx. fill (0);

Ly. fill (0);

Lz. fill (0);

L.redim (xpattern); // G"TAG
L.fill(0);

VecSimple (bool) alr transferred (A B-—>getNoNonzeroes());
alr _transferred. fill (false);

dpreal tr_val;
dpreal tr val x, tr val y, tr val z;

for (int i=1; i<=nelem; i++){

Ae_x. fill (0);
Ae y. fill (0);
Ae z.fill (0);
Ae. fill (0);

for (int j=1; j<=n node_el; j++){

32

for

idx(j) = grid.loc2glob(i,j);

(el=1; el<=n_edge el; el++){
gl el = grid.getEdge(i, el);

if (edge dof.getEqu(gl el)==0)

continue ;
dof el = edge dof.getEqu(gl el);

sn_el = grid.getNodel(gl el);
en_el = grid.getNode2(gl el);

loc_node 1 = loc_node(el,1);
loc_node 2 = loc_node(el,2);

if (grid.loc2glob (i, loc_node 1) =
sn_el loc = loc_node 1;

en_ el loc = loc _node 2;

sn_el){

}
else{
sn_el loc = loc_node_ 2;
en_el loc = loc_node 1;
}

tr_weight x = .5%(grid.getCoor(en_el,1)—grid.
getCoor(sn_el,1));

tr_weight y = .5*(grid.getCoor(en_el,2)—grid.
getCoor(sn_el,2));

tr_weight z = .5%(grid.getCoor(en_el,3)—grid.
getCoor(sn_el,3));

index = A B—>idx(dof _el, dof el);
if (index==0){
cout << "Warning in routine buildPoissonMatrix
Entry (" << dof el <<", " << dof el << ")
not in sparsity pattern of A" << std::endl
)
continue;

}

if (lalr transferred(index)){
tr_val = (%A _B) (index);
tr_val x = tr_val x tr_ weight x x tr_ weight x
tr_v;al_y = tr val =« tr weight y * tr weight y

Y

33

tr_val _z = tr_val x tr_ weight z x tr_ weight =z

)

Ae x(sn_el loc, sn_el loc) 4+= tr_val x;
Ae x(sn_el loc, en_el loc) 4= tr_val x;
Ae x(en_el loc, sn_el loc) 4= tr_val x;
Ae x(en_el loc, en_el loc) += tr_val x;
Ae y(sn_el loc, sn_el loc) += tr_val y;
Ae y(sn_el loc, en_el loc) += tr_val y;
Ae y(en el loc, sn_el loc) += tr_val y;
Ae y(en_ el loc, en_el loc) += tr_val y;
Ae z(sn_el loc, sn_el loc) 4= tr_val z;
Ae z(sn_el _loc, en_el loc) += tr_val z;
Ae z(en el loc, sn_el loc) += tr_val z;
Ae z(en_el loc, en_el loc) 4= tr_val z;
Ae(sn_el loc, sn_el loc) += tr_ val;
Ae(sn_el loc, en_el loc) —= tr_val;
Ae(en_el loc, sn_el loc) —= tr_val;
Ae(en_el loc, en_el loc) += tr_ val;

alr transferred (index) = true;

for (e2=el+1; e2<=n_edge el; e2++){
gl e2 = grid.getEdge(i, e2);

if (edge dof.getEqu(gl e2) ==0)
continue;

dof e2 = edge dof.getEqu(gl e2);

if (dof el<dof e2)
index = A B—idx(dof el, dof e2);
else

index = A B—>idx(dof_e2, dof el);

if (index==0){
cout << "Warning in routine
buildPoissonMatrix: Entry (" << dof el

<<", " << dof_e2 << ") not in sparsity
pattern of A" << std::endl;
continue;

if (lalr transferred (index)){

sn_e2 = egrid.getNodel(gl e2);
en_e2 = egrid.getNode2(gl e2);

34

loc_node 1 loc_node(e2,1);
loc_node_ 2 = loc_node(e2,2);

if (grid.loc2glob (i, loc_node 1) = sn_e2)

sn_e2 loc = loc_node 1;
en_e2 loc = loc_node_ 2;
}
else{
sn_e2 loc = loc_node_ 2;
en_e2 loc = loc_node_ 1;

}
tr_val = (%A _B)(index);

tr_val x = tr_ valxtr weight x=x.5x(grid.
getCoor(en_e2,1)—grid.getCoor(sn_e2,1))

tr_val y = tr_valxtr weight y=x.5x(grid.
getCoor(en_e2,2)—grid.getCoor(sn_e2,2))

tr_val z = tr_ valxtr weight z*.5x(grid.
getCoor (en_e2,3)—grid.getCoor(sn_e2,3))

)

Ae x(sn_el loc, sn_e2 loc) += tr_val x;
Ae x(sn_el loc, en_e2 loc) += tr_val x;
Ae x(en_el loc, sn_e2 loc) += tr_val x;
Ae x(en_el loc, en_e2 loc) += tr_val x;
Ae x(sn_e2 loc, sn_el loc) += tr_val x;
Ae x(sn_e2 loc, en_el loc) + tr_val x;
Ae x(en_e2 loc, sn_el loc) += tr_val x;
Ae x(en_e2 loc, en_el loc) += tr_val x;
Ae y(sn_el loc, sn_e2 loc) += tr_val y;
Ae y(sn_el loc, en_e2 loc) += tr_val y;
Ae y(en_el loc, sn_e2 loc) += tr_val y;
Ae y(en_ el loc, en_e2 loc) += tr_val y;
Ae y(sn_e2 loc, sn_el loc) += tr_val y;
Ae y(sn_e2 loc, en_el loc) += tr_val y;
Ae y(en_e2 loc, sn_el loc) += tr_val y;
()

Ae _y(en_e2 loc, en_el loc) += tr_val y;

Ae 7z(sn_el loc, sn_e2 loc) += tr_val z;

Ae z(sn_el loc, en_e2 loc) += tr_val z;

Ae z(en el loc, sn_e2 loc) += tr_val z;
()

Ae z(en_el loc, en_e2 loc) += tr_val z;

35

Ae z(sn_e2 loc, sn_el loc) += tr_val z;
Ae z(sn_e2 loc, en_el loc) += tr_val z;
Ae z(en_e2 loc, sn_el loc) += tr_val z;
Ae z(en_e2 loc, en_el loc) += tr_val z;
Ae(sn_el loc, sn_e2 loc) += tr_val;
Ae(sn_el loc, en_e2 loc) ——= tr_ val;
Ae(en_el loc, sn_e2 loc) —= tr_val;
Ae(en_el loc, en_e2 loc) += tr_val;

Ae(sn_e2 loc, sn_el loc) += tr_val;
Ae(sn_e2 loc, en_el loc) —— tr_ val;
Ae(en_e2 loc, sn_el loc) —= tr_ val;
Ae(en_e2 loc, en_el loc) += tr_val;

alr _transferred(index) — true;

}
}
Lx.assemble (Ae_x, idx, idx, i);
Ly.assemble (Ae y, idx, idx, i);
Lz.assemble (Ae z, idx, idx, i);
L.assemble (Ae, idx, idx, i);

36

B Overview Files

main.cpp
PrecAMS.h
PrecAMS.cpp
DriverAndData.h
DriverAndData.cpp
AnsysInput.h
AngysInput.cpp
Poisson.h
Poisson.cpp
PhysParamter.h
DegFree.h
hb_io.h

hb _io.cpp
EdgeGridFE.h

EdgeGridFE.cpp

37

References

[1] R. Hiptmair, J. Xu: Auxiliary Space Preconditioning for Edge Elements,
IEEE Trans. Magnetics, 44 (2008), pp. 938-941

[2] R. Hiptmair, J. Xu: Nodal Auxiliary Space Preconditioning in H(curl) and
H(div) spaces, STAMJ. Numer. Anal., 45 (2007), pp. 2483-2509

[3] T. Kolev, P. Vassilevski: Parallel Auxiliary Space AMG for H(curl) Prob-
lems, J. Comp. Math., 27 (2009), pp. 604-623

[4] T. Kolev, P. Vassilevski, Parallel Hl-based auxiliary space AMG solver for
H(curl) problems, Technical Report UCRL-TR-222763, LLNL, Livermore,
California, USA, 2006

[5] J. Xu, The auxiliary space method and optimal preconditioning techniques
for unstructured grids, Computing, 56 (1996), pp. 215-235

[6] H. P. Langtangen: Computational Partial Differential Equations, Second
Edition, Springer, ISBN: 3-540-43416-X

|7] — : SparseMatrices, p. 787, 793
[8] — : Chapter 3: Programming of Finite Element Solvers, p. 251 ff

[9] Online Diffpack Documentation: http://www.diffpack.com/cgi-bin/
search.cgi

[10] Matrix Market, Text File Formats:
http://math.nist.gov/MatrixMarket/formats.html

[11] HB IO, Harwell Boeing Sparse Matrix Files Read and Write Utilities
http://people.sc.fsu.edu/ burkardt/cpp_src/hb_io/hb_io.html

[12] ANSYS: Theory Reference: chapter 5.1.: Electromagnetic Field Funda-
mentals

[13] ANSYS: Programmer’s Manual for Mechanical APDL: chapter 3.2.: Coded
Database File Commands

38

http://www.diffpack.com/cgi-bin/search.cgi
http://www.diffpack.com/cgi-bin/search.cgi
http://math.nist.gov/MatrixMarket/formats.html
http://people.sc.fsu.edu/~burkardt/cpp_src/hb_io/hb_io.html

	Introduction
	Theoretical Background
	Eddy Current Model
	Variational Problem
	Finite Element Galerkin Discretization
	Auxiliary Space Preconditioning
	Discrete Stable Splittings
	Algorithm

	Complex Case

	Implementation
	Overview, Workflow
	Discretization by ANSYS
	DriverAndData
	ANSYS Input Reader
	cdb File
	HB File
	mapping File

	Preconditioner
	Init
	Apply

	Testcases, Results
	Constant Coefficients
	Singular Problem

	Conclusions
	Appendix
	Preconditioner for Complex Systems
	Sparse Matrices in Diffpack
	Linear Systems in Diffpack
	Grid in Diffpack
	DegFree
	Matrices PT A P, GT A G

	Overview Files
	Bibliography

